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Objective:With the aging population, cardiometabolic multimorbidity (CMM) has

become a major public health concern, increasing disease burden and impairing

quality of life. The metabolic score for insulin resistance (METS-IR) and

creatinine-to-cystatin C (CCR) are promising biomarkers linked to metabolic

dysfunction and muscle-renal status, respectively. However, their combined

effects on cardiometabolic multimorbidity (CMM), especially in both

community and hospitalized populations, remain unclear. This study aims to

explore the associations of METS-IR, CCR, and 1/CCR×METS-IR (MRII) with CMM

using data from the China Health and Retirement Longitudinal Study (CHARLS)

and clinical sources.

Research design and methods: This cross-sectional study included 10,811

participants from the 2014–2015 CHARLS follow-up and 437 elderly inpatients

from the Second Affiliated Hospital of Chongqing Medical University. CMM was

defined as the coexistence of two or more of heart disease, diabetes, and stroke.

METS-IR and CCR were calculated using standard formulas. Logistic regression

analyses with multi-model adjustment, restricted cubic spline (RCS) curves,

receiver operating characteristic (ROC) curves, and subgroup analyses were

performed to assess associations, nonlinear relationships, predictive value, and

effect modification.

Results: In both datasets, participants with CMMhad higher METS-IR, older age, and

higher prevalence of metabolic risk factors. METS-IR was independently and dose-

dependently associated with increased CMM risk. CCR showed context-dependent

associations, with inverse links in partially adjusted CHARLS models but no

significance in clinical data. The “Low CCR and High METS-IR” combination and

highest quartile of MRII were consistently linked to elevated CMM risk. METS-IR had

moderate predictive value (AUC = 0.712 in CHARLS, 0.618 in clinical data),

outperforming CCR. RCS curves revealed linear associations for METS-IR and
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U-shaped patterns for CCR in CHARLS. Subgroup analyses showed heterogeneity by

age, comorbidities, and hypertension.

Conclusion: METS-IR is a robust independent predictor of CMM in both

community and hospitalized populations, while CCR’s role is context-

dependent. The MRII enhances CMM risk stratification, highlighting the value of

concurrent assessment of metabolic and muscle-renal status for CMM

prevention and personalized risk management.
KEYWORDS

cardiometabolic multimorbidity, METS-IR, CCR, MRII, CHARLS (ChinaHealth and
Retirement Longitudinal Study)
1 Introduction

The aging population has led to a significant increase in chronic

diseases, which in turn has elevated the prevalence of

multimorbidity (1, 2). Multimorbidity is generally defined as the

coexistence of two or more chronic diseases or disease groups (2).

Compared with single cardiovascular diseases, multimorbidity

exerts more adverse effects on human health (3). Cardiometabolic

multimorbidity (CMM), defined as having two or more physician-

diagnosed conditions like heart diseases (e.g., myocardial infarction,

coronary heart disease, angina pectoris, congestive heart failure, or

other cardiac disorders), diabetes mellitus (including impaired

glucose tolerance and elevated fasting blood glucose), and stroke,

exerts severe adverse impacts on human health (4, 5). Existing

research has explored the influence of long-term air pollution

exposure on CMM (6), as well as the links between fat-related

indices such as the triglyceride-glucose index (TyG) and lipid

accumulation product (LAP) and CMM (3, 7–9). CMM escalates

the risks of mortality (10), dementia (11, 12), and depressive

symptoms (13). It also impairs lifestyle behaviors (14) and

cognitive function (15), etc. Thus, preventing CMM effectively is

vital for cutting disease burden and enhancing patients’ quality

of life.

The metabolic score for insulin resistance (METS-IR), a clinical

surrogate marker for obesity-related insulin resistance (IR), was

developed by Mexican researchers to assess insulin sensitivity.

Recognized as a more precise way to measure insulin sensitivity,

higher METS-IR values signal greater insulin resistance and a

heightened risk of metabolic disorders (16). Studies have found

an M-shaped association between METS-IR and heart failure in

American adults (17), suggesting its potential as a marker for

predicting heart failure. A retrospective study in Gifu, Japan,

showed METS-IR levels were linked to prehypertension or

hypertension in normoglycemic individuals (18). An 8-year

longitudinal study revealed a linear dose-response between

METS-IR and cardiovascular disease risks (e.g., cardiovascular

disease, stroke, heart disease) (19).
02
Serum creatinine-to-cystatin C(CCR) was used to evaluate renal

function. The ratio (serum creatinine/cystatin C multiplied by 100)

was validated by Kashani et al. in 2016 for correlating with muscle

mass, defined as the “sarcopenia index” (20). Regarded as a reliable

marker for assessing muscle mass (21), CCR predicts muscle mass

loss and sarcopenia in diseases like diabetes, tumors, and chronic

obstructive pulmonary disease (22–25). The relationships between

METS-IR, CCR, and cardiovascular diseases have been extensively

studied in community populations worldwide. These studies have

confirmed that both the CCR and METS-IR are individually

associated with CMM in community populations. However, the

combined effect of these two indices on CMM, as well as their

respective correlations with CMM in hospitalized patients, remains

unclear. This study innovatively defines the product inverse of CCR

and METS-IR (1/CCR×METS-IR) as the “metabolic-kidney

interaction index (MRII)”. The aim of this study is to investigate

the impacts of the CCR, METS-IR and MRII on CMM in both

community and hospitalized populations in China.
2 Materials and methods

2.1 Study population

This study incorporated data from both the China Health and

Retirement Longitudinal Study (CHARLS) database and clinical

sources. The CHARLS, spearheaded by the National School of

Development at Peking University, is designed to evaluate the

health, socioeconomic, and demographic characteristics of

Chinese adults aged 45 and over. Spanning 28 provinces, it uses a

multi-stage, stratified, and clustered sampling approach. Follow-up

surveys were carried out in 2013, 2015, 2018, and 2020. Ethical

approval was granted by the Biomedical Ethics Review Committee

of Peking University (RBK00001052-11015), and all participants

provided informed consent. The data can be accessed online at

http://charls.pku.edu.cn. The research methodology and data

collection processes for CHARLS have been elaborated in existing
frontiersin.org

http://charls.pku.edu.cn
https://doi.org/10.3389/fendo.2025.1694959
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2025.1694959
literature. For this study, the third-wave follow-up data (2014–

2015) were chosen, initially including 20,967 participants. After

excluding those with missing data and outliers, 10,811 participants

remained in the final analysis. Regarding clinical data, 521 middle-

aged and elderly patients admitted to the Department of Geriatrics
Frontiers in Endocrinology 03
at the Second Affiliated Hospital of Chongqing Medical University

were enrolled between May and July, 2025. After excluding

participants with incomplete data, 437 clinical patients were

included in the final analysis. The inclusion and exclusion criteria

for both samples are presented in Figures 1A, B, respectively.
FIGURE 1

Flow Charts. (A) Flow chart of CHARLS participants. (B) Flow chart of clinical participants.
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2.2 Assessment of CMM events

Cardiometabolic multimorbidity (CMM) is defined as the

coexistence of two or more cardiovascular-related diseases,

including heart disease, diabetes, and stroke.

For the CHARLS database, the diagnosis of heart disease was

determined based on questionnaire responses indicating that

participants had been diagnosed by a doctor with conditions such

as heart failure, coronary heart disease, myocardial infarction, or

other heart diseases, or were taking heart disease-related

medications. Diabetes was defined as a self-reported physician’s

diagnosis or the presence of any one of the following biochemical

criteria: fasting blood glucose ≥ 7.8 mmol/L, HbA1c ≥ 6.0%, or

random blood glucose ≥ 11.1 mmol/L. Additionally, individuals

taking diabetes-related medications or receiving insulin injections

were also classified as having diabetes. Stroke was identified based

on either a participant’s report of a physician-diagnosed

cerebrovascular event (such as cerebral infarction or cerebral

hemorrhage) or the use of antithrombotic or other stroke-specific

medications. In the clinical data, heart disease was primarily defined

by discharge diagnoses including coronary heart disease, heart

failure, myocardial infarction, or other heart diseases. Diabetes

was determined based on discharge diagnoses of type 1 or type 2

diabetes. Stroke was identified by discharge diagnoses of

cerebrovascular accidents such as cerebral infarction or

cerebral hemorrhage.
2.3 Assessment of METS-IR

The metabolic score for insulin resistance (METS-IR) has

become a promising indirect approach to identify insulin

resistance (IR) related to the pathophysiological elements of

metabolic syndrome (26). Current research has indicated that

METS-IR is associated with conditions like diabetes,

hypertension, obstructive sleep apnea, and kidney stones (27–30).

Instead of directly measuring insulin, METS-IR evaluates IR using

body mass index (BMI), triglycerides (TG), and fasting plasma

glucose (FPG), which makes it highly suitable for large-scale

screening and clinical application. As an indicator of insulin

resistance, a higher METS-IR value means a more severe degree

of insulin resistance, implying that the individual faces a greater

likelihood of developing metabolic disorders. The formula for

calculating METS-IR is: METS-IR = Ln [(2*FPG) + TG] × BMI

(kg/m²) ÷ (Ln[HDL-C]). Here, FPG stands for fasting plasma

glucose (mg/dL), HDL-C is high-density lipoprotein cholesterol

(mg/dL), and TG represents triglycerides (mg/dL). In the above

formula, FPG, HDL-C and TG represent fasting plasma glucose

(mg/dL), high-density lipoprotein cholesterol (mg/dL), and

triglycerides (mg/dL), respectively.
Frontiers in Endocrinology 04
2.4 Assessment of CCR

The creatinine-to-cystatin C ratio (CCR) is an indicator used to

evaluate renal function. By comparing the concentrations of serum

creatinine and cystatin C, it helps assess glomerular filtration rate

(GFR) (31–34). Serum creatinine varies with body composition,

while cystatin C is widely present in nucleated cells and is less

affected by muscle mass (35). Thus, CCR can provide information

on an individual’s muscle mass and renal function and serves as a

risk factor for sarcopenia. The calculation formula of CCR is: CCR =

creatinine (mg/dL)/cystatin C (mg/L) × 100.
2.5 Covariates

Covariates included demographic and health-related variables.

Demographic characteristics encompassed age, gender,

geographical residence, and marital status. Health-related

indicators consisted of anthropometric parameters (height,

weight, and BMI), as well as medical history (stroke, heart

disease, diabetes, hypertension, chronic lung disease, and

malignant tumors). The formula for calculating BMI is: weight

(kg) divided by the square of height (m²).

Blood test data from the CHARLS database were centrally

analyzed by the Youanmen Clinical Laboratory Center of Capital

Medical University using the enzyme colorimetric method. Two

staff members from the Chinese Center for Disease Control and

Prevention were fully responsible for the storage of blood samples.

During the testing process, the laboratory used quality control

samples daily, with the intra-batch coefficient of variation not

exceeding 1.0% and the inter-batch coefficient of variation not

exceeding 1.7%. Lipid profiles including total cholesterol (TC),

low-density lipoprotein cholesterol (LDL-C), high-density

lipoprotein cholesterol (HDL-C), and triglycerides (TG) were

quantified using enzymatic assays, while high-sensitivity C-

reactive protein (hsCRP) concentrations were measured by

immunoturbidimetry. The definitions of hypertension, diabetes,

and stroke were as described above, and the definitions of other

chronic diseases were determined by self-report. Laboratory

parameters from the clinical cohort were obtained from fasting

blood samples sent to the hospital laboratory on the day of

admission or the morning of the second day after admission.

Chronic disease data in the clinical data were the diseases

included in the discharge diagnosis.
3 Statistical analysis

The analysis of baseline data consists of two core parts:

descriptive statistics and inter-group comparison tests. For
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descriptive statistics, appropriate statistical measures are selected

based on the type and distribution characteristics of variables.

Normally distributed continuous variables are described using

mean ± standard deviation (x̄ ± s). Skewed continuous variables

are presented as median (interquartile range) [M (P25, P75)].

Categorical variables are expressed as frequency (percentage) [n

(%)]. For inter-group comparisons, corresponding statistical tests

are applied according to variable types and distribution

characteristics. The chi-square test is used for comparing

categorical variables, and Fisher’s exact test is adopted when the

theoretical frequency is less than 5. For continuous variables, the

independent samples t-test is used if they are normally distributed

with homogeneous variances, otherwise the Mann-Whitney U test

is employed.

To ensure model robustness and avoid interference from

spurious or collinear variables, we applied two key screening

criteria: (1) only variables with a statistical significance level of P

≤ 0.001 were retained; (2) variables that would induce severe

multicollinearity were excluded. Subsequently, the screened

variables were merged with basic confounding variables to form

an initial variable pool for model construction. Finally, bidirectional

stepwise regression was used to iteratively optimize and determine

the final variables included in Models 1–4 for each dataset

separately. To clarify the association between CCR, METS-IR and

CMM, this study uses multi-model logistic regression analysis. First,

CCR and METS-IR are divided into 3 levels (Q1, Q2, Q3) by the

tertile method, with the lowest tertile group (Q1) as the reference

group, to evaluate the strength of association between different

groups and the risk of CMM. Based on differences in data sources,

the following regression models are constructed respectively: For

the CHARLS database: Model 1 is unadjusted for any covariates;

Model 2 is adjusted for age and gender; Model 3 is further adjusted

for location, marital status, smoking history, drinking history,

hypertension (HTN), chronic lung disease (CLD), and cancer

(CA) on the basis of Model 2; Model 4 is additionally adjusted

for white blood cell count (WBC), glycosylated hemoglobin

(HbA1c), and total cholesterol (TC) on the basis of Model 3. For

the clinical database (Clinic data): Model 1 is unadjusted for any

covariates; Model 2 is adjusted for age and gender; Model 3 is

further adjusted for location, marital status, and hypertension

(HTN) on the basis of Model 2; Model 4 is additionally adjusted

for white blood cell count (WBC) and low-density lipoprotein

cholesterol (LDL-C) on the basis of Model 3.

This study employs the MRII metric to examine its correlation

with CMM, rather than using the standard interaction term

(CCR×METS-IR) for analysis. Biologically, 1/CCR aligns CCR’s

negative association with CMM with METS-IR’s positive

association (36–38), enabling intuitive interpretation. Meanwhile,

the Vuong test revealed that the MRII model outperformed the

CCR×METS-IR model significantly in the CHARLS dataset, with

statistically significant differences (Supplementary Tables S1, S2).

The MRII is calculated and divided into 4 levels (Q1, Q2, Q3, Q4)

by the quartile method. With the lowest quartile group (Q1) as the

reference, the same multi-model logistic regression as mentioned

above is used to analyze its association with CMM. Meanwhile,
Frontiers in Endocrinology 05
restricted cubic spline (RCS) curves are used to analyze the dose-

response relationship between CCR, METS-IR and CMM, so as to

clarify whether there is a nonlinear association between them;

receiver operating characteristic (ROC) curves are plotted and the

area under the curve (AUC) is calculated to evaluate the predictive

efficacy of CCR, METS-IR and MRII for CMM, and to compare the

predictive value of different indicators.

To investigate the impact of different population characteristics

on the association between CCR, METS-IR, MRII and CMM,

further subgroup analysis is conducted. Stratification is performed

according to key variables such as age, gender, and

hypertension status.

The analyses employed Empower® version 4.4.3.
4 Results

4.1 Based on baseline data tables for the
occurrence of CMM

This study investigated the associations of the metabolic score

for insulin resistance (METS-IR) and the creatinine-to-cystatin C

ratio (CCR) with cardiometabolic multimorbidity (CMM) using

data from the China Health and Retirement Longitudinal Study

(CHARLS) and clinical sources, and baseline data analysis was

conducted firstly (Table 1). In the CHARLS cohort (n = 10,811),

participants with CMM (n = 463) exhibited a higher age (median

66.0 vs. 61.5 years, p < 0.001) and BMI (median 25.8 vs. 23.5 kg/m²,

p < 0.001) than those without CMM (n = 10,348). The CMM group

also had a higher prevalence of hypertension (66.5% vs. 23.5%, p <

0.001), diabetes (92.2% vs. 15.6%, p < 0.001), and a higher METS-IR

(41.3 vs. 34.8, p < 0.001). In the clinical data cohort (n = 437), the

CMM subgroup (n = 154) had an older median age (75.0 vs. 69.0

years, p < 0.001), higher diabetes prevalence (76.0% vs. 16.3%, p <

0.001), and elevated METS-IR (29.8 vs. 27.9, p < 0.001) relative to

the non-CMM group (n = 283).
4.2 Impacts of CCR, METS-IR, MRII on
CMM occurrence

Logistic regression analysis was conducted on the relationship

between CCR and CMM based on the CHARLS database

(Table 2.1). In the analysis of the CHARLS database, the

association between CCR_per_TIR and the outcome across

sequential models was as follows. Model 1 (unadjusted) yielded

an OR of 0.99 (95% CI: 0.99–1.00, P < 0.001). Model 2 yielded an

OR of 1.00 (95% CI: 0.99–1.00, P = 0.001) after adjustment for age

and gender. Model 3 (further adjusted for location, marital status,

smoking, drinking, HTN, CLD, CA) presented an OR of 1.00 (95%

CI: 0.99–1.00, P = 0.01). Model 4 (adjusted for age, gender, location,

marital, HTN, WBC and LDL) yielded an OR of 1.00 (95% CI:1.00–

1.00, P = 0.353). For CCR layering (Q1 as reference), Q2 in Model 1

had an OR of 0.98 (95% CI: 0.97–0.99, P < 0.001), Q3 in Model 1

showed an OR of 0.97 (95% CI: 0.96–0.98, P < 0.001), with varying
frontiersin.org

https://doi.org/10.3389/fendo.2025.1694959
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


TABLE 1 Baseline table.

Level Overall Non-CMM CMM P Overall Non-CMM CMM P

437 283 154

] 69.0 [60.5, 77.0] 75.0 [68.0, 82.0] <0.001

143 (50.5) 51 (33.1)
0.001

140 (49.5) 103 (66.9)

168 (59.4) 82 (53.2)
0.257

115 (40.6) 72 (46.8)

249 (88.0) 123 (79.9)
0.033

34 (12.0) 31 (20.1)

228 (80.6) 135 (87.7)
0.079

55 (19.4) 19 (12.3)

222 (78.4) 120 (77.9)
0.996

61 (21.6) 34 (22.1)

48 (17.0) 25 (16.2)
0.952

235 (83.0) 129 (83.8)

146 (51.6) 45 (29.2)
<0.001

137 (48.4) 109 (70.8)

237 (83.7) 37 (24.0)
<0.001

46 (16.3) 117 (76.0)

246 (86.9) 135 (87.7)
0.944

37 (13.1) 19 (12.3)

203 (71.7) 16 (10.4)
<0.001

80 (28.3) 138 (89.6)

253 (89.4) 67 (43.5)
<0.001

30 (10.6) 87 (56.5)

272 (96.1) 151 (98.1)
0.415

11 (3.9) 3 (1.9)

] 23.4 [20.9, 26.0] 24.1 [21.6, 25.8] 0.134

(Continued)
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N 10811 10348 463

Age (median [IQR]) 61.0 [54.0, 68.0] 61.0 [54.0, 68.0] 66.0 [60.0, 72.0] <0.001 71.0 [63.0, 79.

Age_group (%)
<70 8628 (79.8) 8313 (80.3) 315 (68.0) <0.001 194 (44.4)

≥70 2183 (20.2) 2035 (19.7) 148 (32.0) 243 (55.6)

Gender (%)
female 5757 (53.3) 5492 (53.1) 265 (57.2) 0.088 250 (57.2)

male 5054 (46.7) 4856 (46.9) 198 (42.8) 187 (42.8)

Marital (%)
married 8891 (82.2) 8513 (82.3) 378 (81.6) 0.778 372 (85.1)

unmarried 1920 (17.8) 1835 (17.7) 85 (18.4) 65 (14.9)

Location (%)
city 9677 (89.5) 9313 (90.0) 364 (78.6) <0.001 363 (83.1)

village 1134 (10.5) 1035 (10.0) 99 (21.4) 74 (16.9)

Smoking (%)
no smoking 6299 (58.3) 6019 (58.2) 280 (60.5) 0.348 342 (78.3)

smoking 4512 (41.7) 4329 (41.8) 183 (39.5) 95 (21.7)

Drinking (%)
drinking 3735 (34.5) 3626 (35.0) 109 (23.5) <0.001 73 (16.7)

no drinking 7076 (65.5) 6722 (65.0) 354 (76.5) 364 (83.3)

HTN (%)
N 8076 (74.7) 7921 (76.5) 155 (33.5) <0.001 191 (43.7)

Y 2735 (25.3) 2427 (23.5) 308 (66.5) 246 (56.3)

DM (%)
N 8774 (81.2) 8738 (84.4) 36 (7.8) <0.001 274 (62.7)

Y 2037 (18.8) 1610 (15.6) 427 (92.2) 163 (37.3)

CLD (%)
N 9561 (88.4) 9191 (88.8) 370 (79.9) <0.001 381 (87.2)

Y 1250 (11.6) 1157 (11.2) 93 (20.1) 56 (12.8)

HD (%)
N 9390 (86.9) 9330 (90.2) 60 (13.0) <0.001 219 (50.1)

Y 1421 (13.1) 1018 (9.8) 403 (87.0) 218 (49.9)

STK (%)
N 10561 (97.7) 10224 (98.8) 337 (72.8) <0.001 320 (73.2)

Y 250 (2.3) 124 (1.2) 126 (27.2) 117 (26.8)

CA (%)
N 10685 (98.8) 10237 (98.9) 448 (96.8) <0.001 423 (96.8)

Y 126 (1.2) 111 (1.1) 15 (3.2) 14 (3.2)

BMI (median [IQR]) 23.6 [21.2, 26.2] 23.5 [21.2, 26.1] 25.8 [23.2, 28.6] <0.001 23.6 [21.1, 25.
0
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TABLE 1 Continued

Level Overall Non-CMM CMM P Overall Non-CMM CMM P

.001 241 (55.1) 167 (59.0) 74 (48.1)
0.036

196 (44.9) 116 (41.0) 80 (51.9)

0.056 13.0 [11.9, 14.1] 13.0 [12.0, 14.1] 12.8 [11.7, 13.9] 0.198

.001 5.6 [4.8, 6.9] 5.4 [4.7, 6.6] 5.8 [5.2, 7.3] 0.002

0.566 185.0 [152.0, 226.0] 190.0 [156.5, 229.5] 176.5 [144.2, 207.8] 0.01

.001 5.4 [4.9, 6.3] 5.2 [4.8, 5.8] 6.0 [5.1, 7.6] <0.001

.001 1.2 [0.9, 1.7] 1.1 [0.8, 1.6] 1.3 [1.0, 1.8] 0.01

.001 1.3 [1.1, 1.5] 1.4 [1.1, 1.6] 1.2 [1.0, 1.4] <0.001

.001 172.8 (42.7) 178.2 (46.7) 163.0 (45.2) 0.001

0.112 86.2 [66.5, 106.3] 88.9 [71.2, 108.5] 77.0 [61.2, 100.7] <0.001

.001 5.1 [4.0, 6.2] 5.0 [4.0, 6.0] 5.2 [4.2, 6.6] 0.033

0.63 0.8 [0.7, 1.0] 0.8 [0.7, 0.9] 0.9 [0.7, 1.1] <0.001

.001 1.0 [0.8, 1.2] 0.9 [0.8, 1.1] 1.1 [0.9, 1.4] <0.001

.001 6.1 [5.7, 6.5] 5.9 [5.6, 6.2] 6.6 [6.0, 7.5] <0.001

.001 1.2 [0.8, 1.6] 1.1 [0.7, 1.5] 1.4 [1.0, 1.7] <0.001

.001 82.0 [72.6, 91.0] 82.1 [73.7, 91.0] 81.7 [70.9, 90.7] 0.474

.001 28.3 [25.2, 31.9] 27.7 [24.6, 31.2] 29.6 [26.6, 33.6] <0.001

.001 82.7 [66.3, 92.8] 86.4 [72.2, 95.4] 75.1 [51.3, 86.3] <0.001

rdiometabolic multimorbidity; METS-IR, Metabolic score for insulin resistance; CCR, creatinine-to-cystatin C ratio; HTN,
od Cell (in thousands); PLT, Platelets (10^9/L); FPG, Glucose (mmol/L); TG, Triglyceride (mmol/L); HDL-C, High-density
oglobin A1c (%); eGFR, Estimated glomerular filtration rate (mL/min/1.73 m^2).
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BMI_group (%)
<24 5827 (53.9) 5687 (55.0) 140 (30.2) <

≥24 4984 (46.1) 4661 (45.0) 323 (69.8)

HB (median [IQR]) 13.6 [12.5, 14.8] 13.6 [12.5, 14.8] 13.6 [12.8, 14.8]

WBC (median [IQR]) 5.7 [4.8, 6.9] 5.7 [4.7, 6.8] 6.1 [5.3, 7.5] <

PLT (median [IQR]) 200.0 [159.0, 242.0] 200.0 [159.0, 242.0] 200.0 [158.0, 246.0]

FPG (median [IQR]) 5.3 [4.9, 5.9] 5.3 [4.9, 5.8] 6.7 [5.5, 8.5] <

TG (median [IQR]) 1.3 [0.9, 1.9] 1.3 [0.9, 1.8] 1.7 [1.2, 2.5] <

HDL-C (median [IQR]) 1.3 [1.1, 1.5] 1.3 [1.1, 1.5] 1.2 [1.0, 1.4] <

TC (median [IQR]) 181.5 [159.8, 206.2] 181.5 [159.5, 205.8] 189.6 [164.3, 213.9] <

LDL (median [IQR]) 100.8 [82.6, 119.7] 100.8 [82.6, 119.6] 103.5 [82.0, 123.4]

UA (median [IQR]) 4.8 [3.9, 5.7] 4.8 [3.9, 5.7] 5.1 [4.4, 6.2] <

Creatinine (median
[IQR])

0.8 [0.7, 0.9] 0.8 [0.7, 0.9] 0.8 [0.6, 0.9]

Cystatin_C (median
[IQR])

0.8 [0.7, 1.0] 0.8 [0.7, 0.9] 0.9 [0.8, 1.0] <

HbA1c (median [IQR]) 5.8 [5.5, 6.1] 5.8 [5.5, 6.1] 6.7 [6.0, 7.6] <

TyG (median [IQR]) 1.2 [0.9, 1.7] 1.2 [0.8, 1.7] 1.8 [1.3, 2.3] <

CCR(median [IQR]) 92.0 [80.2, 105.8] 92.3 [80.6, 106.1] 85.8 [73.8, 98.6] <

METS-IR (median
[IQR])

35.0 [30.3, 40.3] 34.8 [30.2, 40.0] 41.3 [36.1, 47.0] <

eGFR (median [IQR]) 92.6 [81.5, 100.0] 92.7 [81.7, 100.0] 89.3 [76.8, 96.5] <

CHARLS, Longitudinal Study on Health and Retirement in China; CMM, cardiometabolic multimorbidity; Non-CMM, participants without c
Hypertension; DM, Diabetes; CA, Cancer; CLD, Chronic lung disease; HD, heart disease; STK, Stroke; HB, Hemoglobin (g/dL); WBC, White Bl
lipoprotein cholesterol (mmol/L); TC, total cholesterol (mg/dL); LDL, Low density lipoprotein (mg/dL); UA, Uric acid (mg/dL); HbA1c, Hem
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significances across models. Table 2.2 provides logistic regression

analysis of the relationship between CCR and CMM based on the

clinic data. In the analysis of clinical data, CCR_per_TIR across all

models (Model 1: unadjusted; Model 2: age and gender; Model 3:

age, gender, location, marital and HTN; Model 4: fully adjusted)

had an OR of 1.00 (95% CI: 0.97–1.03, P > 0.05). Similarly, for CCR

layering, neither Q2 nor Q3 showed any significant associations

across the models (P > 0.05).
4.3 Impacts of METS-IR on CMM
occurrence

In the CHARLS database analysis (Table 3.1), for the

continuous metric METS-IR_per_TIR, Model 1 yielded an OR of

1.03 (95% CI: 1.02–1.03, P < 0.001), indicating a significant positive

link with CMM. After adjusting for age and gender (Model 2), the

OR remained elevated at 1.03 (95% CI: 1.03–1.03, P < 0.001),

suggesting independence from basic demographics. In Model 3 with

further adjustment, which included location, marital status,

smoking, drinking, hypertension (HTN), chronic lung disease

(CLD) and cancer (CA), the association remained significant at

an OR of 1.02 (95% CI: 1.02–1.02, P < 0.001), albeit with a slight

attenuation in effect size. After comprehensive adjustment for age,

gender, location, marital status, HTN, white blood cell count

(WBC), glycated hemoglobin (HbA1c), and total cholesterol (TC)

in Model 4, the OR was 1.01 (95% CI: 1.01–1.02, P < 0.001),

confirming the persistence of the significant association. For METS-

IR stratified by quantiles (Q1 as reference), Q2 in Model 1 had an

OR of 1.01 (95% CI: 1.00–1.02, P = 0.006) with variable significance,

while Q3 in Model 1 presented an OR of 1.07 (95% CI: 1.06–1.08,
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P < 0.001), maintaining consistency across models and indicating

graded risk.

In clinical data analysis (Table 3.2), for continuous METS-

IR_per_TIR, all models showed significant positive associations

with ORs ranging from 1.06 to 1.08. For stratified METS-IR, Q2 in

Model 1 had an OR of 1.11 (95% CI: 1.10–1.24, P = 0.059) and Q3 in

Model 1 displayed an OR of 1.19 (95% CI: 1.06–1.32, P = 0.002),

indicating a significant correlation between the models and

strengthening the dose-response relationship. Overall, METS-IR

was significantly associated with increased CMM risk in

both datasets.
4.4 Association between combinations of
METS-IR and CCR tertile groups and CMM

This cross-sectional study explored the impact of combinations

of METS-IR and CCR tertile groups on CMM using data from the

CHARLS database and clinical sources. In the CHARLS database

(Figure 2), various combinations showed distinct effects on CMM

across models with “High CCR and LowMETS-IR” as the reference.

For instance, “Low CCR and High METS-IR” had a significantly

increased risk of CMM in Model 1 (OR = 1.09, 95% CI: 1.08–1.10, P

< 0.001) (Figure 2A) and remained significant in Model 2 (OR =

1.09, 95% CI: 1.07–1.11, P < 0.001) (Figure 2B). “Middle CCR and

High METS-IR” also exhibited a heightened risk, with OR of 1.06

(95% CI: 1.05–1.08, P < 0.001) in Model 1 (Figure 2A) and OR of

1.07 (95% CI: 1.05–1.08, P < 0.001) in Model 2 (Figure 2B).

Conversely, some combinations like “Middle CCR and Low

METS-IR” showed non-significant associations in multiple models.
TABLE 2.2 Logistic regression analysis of the relationship between CCR and CMM based on the clinic data.

CCR Model1 P Model2 P Model3 P Model4 P

CCR_per_TIR 1.00[0.97,1.03] 0.952 1.00[0.97,1.03] 0.925 1.00[0.97,1.03] 0.928 1.00[0.97,1.03] 0.934

CCR

Q1 ref ref ref ref

Q2 0.96[0.86,1.07] 0.491 0.99[0.89,1.01] 0.856 1.00[0.90,1.11] 0.969 0.98[0.88,1.1] 0.772

Q3 0.95[0.85,1.06] 0.329 0.97[0.86,1.01] 0.648 0.97[0.86,1.09] 0.648 0.96[0.85,1.08] 0.525
CMM, cardiometabolic multimorbidity; METS-IR, Metabolic score for insulin resistance; CCR, creatinine-to-cystatin C ratio; CI, confidence interval; CCR_per_TIR, CCR value standardized by
tertile interval width.
Charls data: Model 1: unadjusted. Model 2: adjusted for age and gender. Model 3: age, gender, location, marital status, smoking, drinking, HTN, CLD and CA. Model 4: age, gender, location,
marital status, smoking, drinking, HTN, CLD, CA, WBC, HbA1c and TC.
Clinic data: Model 1: unadjusted. Model 2: adjusted for age and gender. Model 3: age, gender, location, marital status, and HTN. Model 4: adjusted for age, gender, location, marital status, HTN,
WBC and LDL.
The logistic regression model for the latter data is the same as those models.
TABLE 2.1 Logistic regression analysis of the relationship between CCR and CMM based on the CHARLS database.

CCR Model1 P Model2 P Model3 P Model4 P

CCR_per_TIR 0.99[0.99,1.00] <0.001 1.00[0.99,1.00] 0.001 1.00[0.99,1.00] 0.01 1.00[1.00,1.00] 0.353

CCR

Q1 ref ref ref ref

Q2 0.98[0.97,0.99] <0.001 0.98[0.97,0.99] <0.001 0.99[0.98,1.00] 0.005 0.99[0.98,1.00] 0.186

Q3 0.97[0.96,0.98] <0.001 0.98[0.97,0.99] <0.001 0.98[0.97,0.99] <0.001 0.99[0.98,1.00] 0.109
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In clinical data (Figure 3), similar analyses were conducted.

For instance, “Low CCR and High METS-IR” was associated

with an elevated CMM risk, with OR of 1.36 (95% CI: 1.11–1.65,

P = 0.002) in Model 1 (Figure 3A) and OR of 1.37 (95% CI: 1.13–

1.66, P = 0.002) in Model 2 (Figure 3B). “Middle CCR and High

METS-IR” also demonstrated a significant impact, with OR of
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1.32 (95% CI: 1.08–1.62, P = 0.007) in Model 1 (Figure 3A) and

OR of 1.36 (95% CI: 1.12–1.65, P = 0.002) in Model 2

(Figure 3B). Overall, the combinations of METS-IR and CCR

tertile groups were associated with CMM occurrence, with

variations in effect sizes and significance across different

models in both datasets.
FIGURE 2

Logistic regression analysis of the relationship between combinations of CCR and METS-IR and CMM in different models based on CHARLS data (A–D).
TABLE 3.1 Logistic regression analysis of the relationship between METS-IR and CMM based on the CHARLS data.

METS-IR Model1 P Model2 P Model3 P Model4 P

METS-IR_per_TIR 1.03[1.02,1.03] <0.001 1.03[1.03,1.03] <0.001 1.02[1.02,1.02] <0.001 1.01[1.01,1.02] <0.001

METS-IR

Q1 ref ref ref ref

Q2 1.01[1.00,1.02] 0.006 1.02[1.01,1.03] <0.001 0.99[0.99,1.00] 0.052 1.00[0.99,1.01] 0.601

Q3 1.07[1.06,1.08] <0.001 1.08[1.07,1.09] <0.001 1.00[0.99,1.01] <0.001 1.03[1.02,1.04] <0.001
TABLE 3.2 Logistic regression analysis of the relationship between METS-IR and CMM based on the clinic data.

METS-IR Model1 P Model2 P Model3 P Model4 P

METS-IR_per_TIR 1.07[1.04,1.11] <0.001 1.08[1.04,1.11] <0.001 1.06[1.03,1.10] <0.001 1.06[1.03,1.10] <0.001

METS-IR

Q1 ref ref ref ref

Q2 1.11[1.0,1.24] 0.059 1.17[1.05,1.30] 0.005 1.14[1.02,1.27] 0.02 1.11[1.00,1.24] 0.051

Q3 1.19[1.06,1.32] 0.002 1.22[1.10,1.36] <0.001 1.16[1.04,1.30] 0.008 1.14[1.02,1.27] 0.024
METS-IR_per_TIR, METS-IR value standardized by tertile interval width.
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4.5 Association between MRII and CMM

In the CHARLS database (Table 4.1), distinct effects on CMM

were observed across models for different quartile groups, with the

Q1 group of “MRII” as the reference. For the Q2 group, Model 1

yielded an OR of 1.00 (95% CI: 0.99–1.01], P = 0.838), and Model

2 showed an OR of 1.01 (95% CI: 1.00–1.02, P = 0.045). The Q3

group also exhibited elevated CMM risk. Model 1 had an OR of

1.02 (95% CI: 1.00–1.03, P = 0.005), and Model 2 presented an OR

of 1.03 (95% CI: 1.02–1.04, P < 0.001). The Q4 group
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demonstrated a significantly increased risk, with Model 1

showing an OR of 1.03 (95% CI: 1.02–1.04, P < 0.001) and

Model 2 an OR of 1.05 (95% CI: 1.04–1.06, P < 0.001). In

clinical data (Table 4.2), using the Q1 group as the reference,

both the Q2 group and the Q3 group showed non-significant

associations in the four models. However, the Q4 group

consistently indicated a heightened CMM risk. Model 1

reported an OR of 1.22 (95% CI: 1.07–1.38, P = 0.001), and

Model 2 showed an OR of 1.22 (95% CI: 1.08–1.38, P = 0.002).

Overall, quartile groupings of the “MRII” were associated with
FIGURE 3

Logistic regression analysis of the relationship between combinations of CCR and METS-IR and CMM in different models based on clinic data (A–D).
TABLE 4.1 Logistic regression analysis of the relationship between MRII and CMM based on the CHARLS data.

MRII Model Model2 Model3 Model4

MRII

Q1 ref ref ref ref

Q2 1.00[0.99,1.01] 0.838 1.01[1.00,1.02] 0.045 1.00[0.99,1.02] 0.391 1.00[0.99,1.01] 0.51

Q3 1.02[1.00,1.03] 0.005 1.03[1.02,1.04] <0.001 1.02[1.01,1.03] 0.001 1.01[1.00,1.02] 0.02

Q4 1,03[1.02,1.04] <0.001 1.05[1.04,1.06] <0.001 1.03[1.02,1.04] <0.001 1.02[1.01,1.03] 0.001
fr
TABLE 4.2 Logistic regression analysis of the relationship between MRII and CMM based on the clinical data.

MRII Model1 P Model2 P Model3 P Model4 P

MRII

Q1 ref ref ref ref

Q2 1.07[0.94,1.21] 0.318 1.10[0.97,1.24] 0.133 1.08[0.96,1.22] 0.22 1.08[0.95,1.22] 0.23

Q3 1.09[0.96,1.23] 0.2 1.10[1.07,1.25] 0.135 1.07[0.95,1.22] 0.282 1.06[0.94,1.20] 0.334

Q4 1.22[1.07,1.38] 0.002 1.22[1.08,1.38] 0.002 1.17[1.03,1.33] 0.016 1.17[1.03,1.33] 0.015
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CMM occurrence. In the CHARLS database, Q3 and Q4 groups

were linked to increased CMM risk across models. In clinical data,

the Q4 group consistently predicted a higher CMM risk.
4.6 The RCS curves of METS-IR, CCR, and
their combination for CMM

In the CHARLS database, CCR showed a U-shaped association

with CMM including the high probability (0.12–0.20) at low CCR

(near 0), a nadir (0.03–0.05) in the interval of 80–120 (validated via

piece-wise regression), and renewed increase beyond a CCR of 120

(reaching 0.12–0.13 at a CCR of 300) (Figure 4A). METS-IR

demonstrated a positive, approximately linear relationship with

CMM risk, with probabilities ranging from 0.01–0.10 at values of

20–40, and rising to 0.25–0.30 at a value of 100 (Figure 4B). In

contrast, the MRII exhibited a nonlinear “decrease-then-increase”

pattern, confirming a synergistic relationship between the two
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factors (Figure 4C). In the clinical data, the relationship between

CCR and CMM risk was a nonlinear pattern with the lowest risk

(0.30–0.35) observed at CCR values of 70–90, and higher risk

outside this range (Figure 4D). Leveraging Youden’s index, we

identified 129 as the optimal high-risk threshold for CCR, with a

specificity of 0.993 and a sensitivity of 0.032 (maximum Youden’s

index = 0.025). In contrast, METS-IR exhibited an overall

increasing trend, rising from 0.20–0.30 at values of 20–40 to

between 0.30–0.60 beyond 40 (Figure 4E). Via Youden’s index,

the optimal high-risk threshold for METS-IR was determined as

27.474, with a sensitivity of 0.721, specificity of 0.463, and a

maximum Youden’s index of 0.184. The MRII also demonstrated

a complex, fluctuating nonlinear association (Figure 4F).

Furthermore, we assessed the stability of METS-IR cut-off values

across subgroups by utilizing the Youden’s index (Figure 5). In the

clinical dataset (Figure 5B), the overall METS-IR threshold was

determined to be 27.47, demonstrating relative stability within

subgroups such as urban residents, married individuals, and non -
FIGURE 4

Restricted cubic spline curve analysis of the relationship between CCR, METS-IR, MRII and the probability of CMM: comparison of two data sets.
(A–C) In CHARLS data, CCR, METS-IR or MRII effect on probability of CMM, respectively. (D–F) In clinical data, CCR, METS-IR or MRII effect on
probability of CMM, respectively.
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drinkers (ranging from 27.47 to 28.1). Conversely, higher cut-off points

were observed in subgroups including females (33.37), rural residents,

drinkers, unmarried individuals, and smokers. Additionally, the

subgroup of individuals aged 70 years or older (25.69) had a lower

cut-off point. In contrast, the CHARLS dataset (Figure 5A) presented a

substantially higher overall threshold (38.99), with subgroup thresholds

spanning from 36.49 to 39.26. Specifically, females (39.26) had a higher

threshold compared to males (37.38). The subgroup of individuals

younger than 70 years (38.99) was consistent with the overall threshold,

while the subgroup of those aged 70 years or older (36.49) had a lower

threshold. Moreover, urban residents and married individuals had

thresholds in line with 38.99, whereas rural residents, unmarried

individuals, and the subgroup of those aged 70 years or older had

lower thresholds.
4.7 Predictive value of METS-IR, CCR, and
MRII for CMM

In the CHARLS database (Figures 6A–C), receiver operating

characteristic (ROC) curve analyses (Figure 6B) showed that

METS-IR exhibited moderate-to-good discriminative ability for

CMM (area under the curve [AUC] = 0.712), while the MRII

demonstrated predictive potential (AUC = 0.704) (Figure 6C),

which also indicated that the MRII adds discriminatory power

(albeit slightly less than METS-IR alone). However, CCR had

limited predictive performance (AUC = 0.398) as a standalone

marker (Figure 6A). In clinical data (Figures 6D–F), METS-IR

retained modest predictive value for CMM (AUC = 0.618) to assist

clinical risk stratification (Figure 6E). The MRII showed moderate-

to-poor discriminative ability (AUC = 0.589), highlighting the need

to optimize multi-marker combination models (Figure 6F). In

addition, CCR demonstrated poor predictive performance (AUC
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= 0.479, near random prediction) and is not recommended as a

standalone predictor (Figure 6D).
4.8 Subgroup analysis of the effects of
CCR, METS-IR, and MRII on CMM:
comparison between CHARLS and clinical
data

In the CHARLS database, CCR had significantly heterogeneous

effects on CMM across subgroups (Figure 7A). In the cancer (CA)

subgroup, the odds ratio (OR) of CCR for CMM was 0.27 (95% CI:

0.17–0.44; P < 0.001) in individuals without cancer (N, n = 10,685)

and 0.02 (95% CI: 0.00–0.84; P = 0.040) in those with cancer (Y, n =

126). In the chronic lung disease (CLD) subgroup, the OR was 0.23

(95% CI: 0.13–0.39, P < 0.001) in individuals without CLD (N, n =

9561), and 0.40 (95% CI: 0.14–1.10, P = 0.076) in individuals with

CLD (Y, n = 1250), indicating protective effect of CCR on CMM

varies by disease background. Subgroup analyses of biochemical

indicators and demographics revealed modifying effects. For

example, different age groups exhibited varying CCR effects (< 60

years, OR = 0.29, 95% CI: 0.12–0.71, P = 0.006; 60–75 years,

OR = 0.33, 95% CI: 0.17–0.61, P < 0.001; > 75 years, OR = 0.69,

95% CI: 0.19–2.48, P = 0.565). This result indicated a positive

association between CCR and CMM. As shown in the CA subgroup

(Figure 7B), METS-IR was significantly associated with higher

CMM odds in both non-cancer (OR = 1.07, 95% CI: 1.06–1.08, P

< 0.001) and cancer (OR = 1.10, 95% CI: 1.03–1.18, P = 0.005)

participants. This positive association was consistently observed in

various subgroups (such as CLD, total cholesterol levels, and age),

although the magnitude of risk elevation varied. Notably, MRII also

demonstrated significance across these subgroups (Figure 7C).

Subgroup analyses of clinical data revealed more complex
FIGURE 5

Scatter plot of METS-IR cutoff stability across subgroups (weighted by sample size) in CHARLS data (A) and clinical data (B). The blue dots represent
the METS-IR cutoff values (derived from the Youden’s index) for different subgroups. The size of the blue dots corresponds to the sample size of
each subgroup. The red dashed line denotes the overall METS-IR cutoff value for the entire population.
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relationships among CCR, METS-IR, and MRII on CMM

(Figures 7D–F). For example, in the HTN subgroup, CCR was

not significantly associated with CMM in either normotensive (OR

= 0.58, 95% CI: 0.08–4.48, P = 0.601) or hypertensive individuals

(OR = 1.29, 95% CI: 0.34–4.94, P = 0.709) (Figure 7D). However, in
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individuals with HTN, METS-IR exhibited a significant odds ratio

(OR) of 1.07 (95% CI: 1.02–1.13, P = 0.004), highlighting the

modifying role of disease status (Figure 7E). In conclusion, the

associations of METS-IR, CCR, and MRII with CMM are

significantly modulated by subgroup characteristics.
FIGURE 6

ROC curve analysis of CCR, METS-IR, and MRII for predicting CMM: comparison between two data sets. (A–C) In CHARLS data, ROC curve of CCR,
METS-IR or MRII for predicting CMM, respectively. (D–F) In clinical data, ROC curve of CCR, METS-IR or MRII for predicting CMM, respectively.
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FIGURE 7

Subgroup analysis of the effects of CCR, METS-IR, and MRII on CMM: comparison between CHARLS and clinical data. (A–C) In CHARLS data,
subgroup analysis of CCR, METS-IR or MRII effect on CMM, respectively. (D–F) In clinical data, subgroup analysis of CCR, METS-IR or MRII effect on
CMM, respectively.
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5 Discussion

In this study, we systematically investigated the relationships

between the METS-IR, CCR, and CMM using both the CHARLS

database and clinical data, yielding comprehensive findings with

implications for clinical practice and public health. Baseline

analyses consistently demonstrated that across both datasets,

individuals with CMM were older, had a higher BMI, a higher

prevalence of metabolic risk factors (e.g., hypertension, diabetes),

and elevated METS-IR compared to non-CMM groups.

METS-IR integrates factors closely related to insulin resistance

and metabolic abnormalities, including fasting blood glucose,

triglycerides and HDL-C, which not only reflect metabolic health

but also correlate with cardiovascular risk factors like hypertension,

obesity, and dyslipidemia (17). Zhou et al. found that there is a

significant positive and nonlinear relationship between METS-IR

and CMM, regardless of adjusting for other confounding factors

(38), which is consistent with our research findings. Our logistic

regression analysis revealed that METS-IR emerged as a robust and

independent risk factor for CMM in both populations. Continuous

METS-IR showed significant positive associations with CMM

across all adjustment models. Furthermore, tertile-stratified

analysis confirmed a graded increase in risk, with the highest

tertile (Q3) consistently linked to elevated odds ratios, indicating

a clear dose-response relationship. Previous studies, through cross-

sectional and longitudinal analyses, have found that higher METS-

IR independently predicts hypertension incidence and prevalence in

older Chinese adults (39). A prospective cohort study in the 51st

Regiment of the Third Division of the Xinjiang Production and

Construction Corps linked elevated baseline insulin resistance

surrogates and their long-term trajectories to high CVD risk in

rural Xinjiang (40). In addition, data from the National Health and

Nutrition Examination Survey (2009-2018) showed that METS-IR

was significantly positively correlated with the prevalence of type 2

diabetes (28). Antonio Aznar Esquivel et al. linked METS-IR to

cardiovascular event risk factors (41). Therefore, consistent with

previous extensive research, our findings validated the effectiveness

of METS-IR in predicting cardiovascular disease risk.

In contrast, the association between CCR and CMM is more

context-dependent. In the CHARLS database, CCR was inversely

associated with CMM in unadjusted and partially adjusted models,

though significance diminished in fully adjusted models. While in

clinical data, no significant associations were observed for

continuous CCR or its tertile strata, suggesting confounding by

other factors or population-specific characteristics. However, the

context-dependent association of CCR with CMM may be

explained by several factors. Firstly, the population setting is

critical. The measure may reflect early, subclinical dysregulation

in a community cohort (CHARLS) but be confounded by acute

illness in a hospitalized clinical population. Furthermore, the

substantially smaller sample size of the clinical dataset (n = 437

vs. n = 10,811) limits statistical power to detect modest effects.

Lastly, residual confounding or effect modification by unmeasured

metabolic factors may differentially influence the association across

these distinct populations. Yulin Chen et al. showed that the
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increased CCR may predict CVD in older adults via cross-

sectional and longitudinal studies of 10,614 and 6,726 community

volunteers (37). Jang Yel Shin found low CCR independently

associated with sarcopenia and severe carotid atherosclerosis

(closely linked to stroke) in 1,577 type 2 diabetes patients (25).

Another study linked lower CCR to increased new-onset CVD risk

in middle-aged and older Chinese individuals, and restricted cubic

splines showed a significant linear relationship between the

sarcopenia index and CVD incidence (42). Honglin Sun et al.

established the weight-adjusted muscle mass index as a reliable

predictor of CMM onset and progression in Chinese middle-aged

and older adults, particularly among women (36). The results above

align with previous research confirming the connection between

CCR and CMM. While in clinical data, CCR tertiles Q2 and Q3

showed no significant associations across models, which highlighted

the complex interplay between metabolic indices and

cardiometabolic health.

Based on existing evidence, plausible pathways underlying the

relationship among METS-IR, CCR and CMM are as follows.

Firstly, CCR, a reliable marker for muscle mass and sarcopenia

(20, 21), links sarcopenia to metabolic abnormalities (oxidative

stress, chronic inflammation) (43–45), which drive CMM

components (e.g., heart disease, diabetes) by damaging vascular

endothelium and disrupting glucose/lipid metabolism (46, 47).

Secondly, insulin resistance (IR), reflected by METS-IR, drives

CMM. IR accelerates muscle loss centered around muscles

(48–50), forming a vicious cycle of low CCR (reduced glucose

processing). In the vasculature, IR directly promotes atherosclerosis

and dyslipidemia (51). Additionally, endothelial SGK-1 activation

has been identified as a mediator of IR-induced arterial stiffness

(52). Thirdly, “High METS-IR and Low CCR” creates a self-

reinforcing cycle. IR impairs muscle via inflammation and

mitochondrial dysfunction (49, 50), while muscle loss worsens IR

and amplifies CMM risk. These pathways, including oxidative

stress, inflammation, insulin signaling, and muscle-metabolism

crosstalk, provide a biological framework for the findings.

We found that lower CCR can reduce CMM risk and higher

METS-IR increases it based on CHARLS and clinical data. The

combined effects of METS-IR and CCR further clarified their

interactive role in CMM. Tertile combination analyses revealed

that “Low CCR and High METS-IR” consistently associated with

increased CMM risk in both datasets. Even after multivariable

adjustment, the MRII showed a similar trend that higher quartiles

(especially Q4) are associated with higher CMM probabilities,

indicating that their synergistic effect better captures risk than

using any single index alone. Restricted cubic spline (RCS) curves

illuminated nonlinear relationships. METS-IR showed a positive

linear association with CMM in both datasets, while CCR exhibited

a U-shaped relationship in CHARLS and a fluctuating nonlinear

pattern in clinical data. Notably, the identified CCR ‘low-risk

interval ’ (80–120) in the CHARLS cohort may lack

generalizability to hospitalized clinical patients. In the RCS

curves, the median CCR in the clinical sample is close to the

lower bound of this interval, likely due to acute illness effects on

creatinine and cystatin C levels in hospitalized individuals. Thus,
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this interval should be interpreted with caution when applied to

such clinical populations.

Predictive value assessments via ROC curves indicated that

METS-IR had moderate-to-good discriminative ability for CMM

(AUC 0.712 in CHARLS, 0.618 in clinical data), outperforming

CCR (AUC 0.479 in clinical data) and the MRII, which supports its

potential as a practical screening tool. Meanwhile, the subgroup

analyses revealed significant heterogeneity. Age, cancer status,

chronic lung disease, and hypertension altered the relationship

between CCR, METS-IR, and CMM, emphasizing the necessity of

personalized risk assessment.

Overall, these findings confirm that METS-IR is a consistent and

influential predictive factor for CMM. Although CCR is not as robust,

its interaction with METS-IR affects risk, especially when used in

combination. Differences between CHARLS and clinical datasets

likely reflect variations in population characteristics (e.g., age,

comorbidities).With the change of lifestyle, the incidence rate of

obesity and metabolic syndrome increases, thus increasing

cardiovascular risk (39). These results deepen the understanding of

cardiac metabolic risk stratification, indicating that comprehensive

METS-IR and CCR assessment can enhance CMM risk prediction

and provide information for targeted prevention strategies. However,

further longitudinal studies are warranted to confirm causal

relationships and explore underlying mechanisms, as these findings

provide a theoretical basis for early identification of high-risk groups

and personalized CMM prevention and treatment.

These findings inform clinical practice by prioritizing METS-IR as

a robust first-line tool for CMM risk stratification. It demonstrates a

clear dose-response relationship, moderate-to-good discriminative

ability, and elevated risk beyond a threshold of 40, warranting

routine monitoring in middle-aged/older adults and those with

metabolic risk factors. The utility of CCR depends on specific

circumstances. It is valuable for early risk identification in

community environments, but its reliability for hospitalized patients

is low due to acute pathology or limited sample size. The integration of

CCR and METS-IR indicators can enhance risk prediction, especially

for the “Low CCR and High METS-IR” phenotype, indicating a

synergistic effect of metabolic renal dysfunction. Personalized

assessment should account for modifiers like age, hypertension, and

chronic lung disease to guide targeted interventions (e.g., lifestyle or

pharmacotherapy) for high-risk groups, while future work should

address the limitations of cross-sectional data and pursue

standardized measurements in diverse cohorts.

This study demonstrates key strengths. Firstly, our study

integrates two different data sources, a large CHARLS cohort

representing the middle-aged and elderly population in China

and real-world clinical data, improving the universality of the

dataset, and validating the research results. Secondly, our study

employed a comprehensive analytical approach, including multi-

model logistic regression with rigorous adjustment, quantile

stratification, combined effect assessments, RCS curves for

nonlinear relationships, ROC-based predictive analyses, and
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subgroup evaluations. This approach enabled an in-depth

investigation into the roles of METS-IR and CCR in CMM.

Thirdly, focusing on both individual indices and their interactions

offers novel insights into synergistic metabolic-renal mechanisms

underlying CMM, refining cardiometabolic risk stratification.

However, there are several limitations in our current study.

Firstly, as a cross-sectional study, it is inherently limited in

establishing causal links. Longitudinal studies are necessary to

elucidate these temporal relationships. Secondly, the observed

discrepancies between CHARLS and clinical datasets, such as the

weaker associations for CCR in clinical data, may reflect population

differences (e.g., in age or comorbidity profiles) or heterogeneity in

data collection procedures, both of which could act as confounders.

Finally, residual confounding caused by unmeasured factors, such

as diet, physical activity, and medication use, cannot be eliminated.
6 Conclusion

METS-IR is a robust independent predictor of CMM in both

community and hospitalized populations, while CCR’s role is

context-dependent. Their interaction enhances CMM risk

stratification, highlighting the value of concurrent assessment of

metabolic and muscle-renal status for CMM prevention and

personalized risk management.
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20. Kashani KB, Frazee EN, Kukrálová L, Sarvottam K, Herasevich V, Young PM, et al.
Evaluating muscle mass by using markers of kidney function: development of the
sarcopenia index. Crit Care Med. (2017) 45:e23–9. doi: 10.1097/CCM.0000000000002013

21. Zheng WH, Zhu YB, Yao Y, Huang HB. Serum creatinine/cystatin C ratio as a
muscle mass evaluating tool and prognostic indicator for hospitalized patients: A meta-
analysis. Front Med (Lausanne). (2022) 9:1058464. doi: 10.3389/fmed.2022.1058464

22. Yajima T, Yajima K. Serum creatinine-to-cystatin C ratio as an indicator of
sarcopenia in hemodialysis patients. Clin Nutr ESPEN. (2023) 56:200–6. doi: 10.1016/
j.clnesp.2023.06.002

23. Tang T, Xie L, Hu S, Tan L, Lei X, Luo X, et al. Serum creatinine and cystatin C-
based diagnostic indices for sarcopenia in advanced non-small cell lung cancer. J
Cachexia Sarcopenia Muscle. (2022) 13:1800–10. doi: 10.1002/jcsm.12977
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2025.1694959/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2025.1694959/full#supplementary-material
https://doi.org/10.1186/s12916-019-1339-0
https://doi.org/10.1016/j.jacc.2018.03.022
https://doi.org/10.1186/s12933-025-02819-0
https://doi.org/10.1093/eurheartj/ehab413
https://doi.org/10.1007/s10654-019-00568-5
https://doi.org/10.1016/j.ebiom.2022.104282
https://doi.org/10.1016/j.ebiom.2022.104282
https://doi.org/10.1186/s12933-025-02667-y
https://doi.org/10.1186/s12933-025-02761-1
https://doi.org/10.1186/s12933-025-02761-1
https://doi.org/10.1002/oby.23980
https://doi.org/10.1001/jama.2015.7008
https://doi.org/10.1016/j.tjpad.2025.100164
https://doi.org/10.1093/eurheartj/ehac744
https://doi.org/10.1016/j.jamda.2019.11.028
https://doi.org/10.1016/j.jamda.2019.11.028
https://doi.org/10.1186/s12889-019-7682-4
https://doi.org/10.1016/j.lanwpc.2024.101198
https://doi.org/10.1016/j.lanwpc.2024.101198
https://doi.org/10.1186/s12933-024-02334-8
https://doi.org/10.3389/fendo.2024.1416462
https://doi.org/10.3389/fendo.2024.1416462
https://doi.org/10.3389/fendo.2022.851338
https://doi.org/10.3389/fendo.2022.851338
https://doi.org/10.3389/fendo.2023.1224967
https://doi.org/10.3389/fendo.2023.1224967
https://doi.org/10.1097/CCM.0000000000002013
https://doi.org/10.3389/fmed.2022.1058464
https://doi.org/10.1016/j.clnesp.2023.06.002
https://doi.org/10.1016/j.clnesp.2023.06.002
https://doi.org/10.1002/jcsm.12977
https://doi.org/10.3389/fendo.2025.1694959
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2025.1694959
24. Hirai K, Tanaka A, Homma T, Goto Y, Akimoto K, Uno T, et al. Serum
creatinine/cystatin C ratio as a surrogate marker for sarcopenia in patients with chronic
obstructive pulmonary disease. Clin Nutr. (2021) 40:1274–80. doi: 10.1016/
j.clnu.2020.08.010

25. Shin JY. Low serum creatinine to cystatin C ratio is independently associated
with sarcopenia and high carotid plaque score in patients with type 2 diabetes. Nutr
Metab Cardiovasc Dis. (2022) 32:1454–62. doi: 10.1016/j.numecd.2022.02.005

26. Bello-Chavolla OY, Almeda-Valdes P, Gomez-Velasco D, Viveros-Ruiz T, Cruz-
Bautista I, Romo-Romo A, et al. METS-IR, a novel score to evaluate insulin sensitivity,
is predictive of visceral adiposity and incident type 2 diabetes. Eur J Endocrinol. (2018)
178:533–44. doi: 10.1530/EJE-17-0883

27. Zeng J, Zhang T, Yang Y, Wang J, Zheng D, Hou Y, et al. Association between a
metabolic score for insulin resistance and hypertension: results from National Health
and Nutrition Examination Survey 2007–2016 analyses. Front Endocrinol (Lausanne).
(2024) 15:1369600. doi: 10.3389/fendo.2024.1369600

28. Hou Y, Li R, Xu Z, Chen W, Li Z, Jiang W, et al. Association of METS-IR index
with Type 2 Diabetes: A cross-sectional analysis of national health and nutrition
examination survey data from 2009 to 2018. PloS One. (2024) 19:e0308597.
doi: 10.1371/journal.pone.0308597

29. Yin H, Huang W, Yang B. Association between METS-IR index and obstructive
sleep apnea: evidence from NHANES. Sci Rep. (2025) 15:6654. doi: 10.1038/s41598-
024-84040-9

30. Shen Y, Zhu Z, Bi X, Shen Y, Shen A, Deng B, et al. Association between insulin
resistance indices and kidney stones: results from the 2015–2018 National Health and
Nutrition Examination Survey. Front Nutr. (2024) 11:1444049. doi: 10.3389/
fnut.2024.1444049

31. Hyun YY, Lee KB, Kim H, Kim Y, Chung W, Park HC, et al. Serum creatinine to
cystatin C ratio and clinical outcomes in adults with non-dialysis chronic kidney
disease. Front Nutr. (2022) 9:996674. doi: 10.3389/fnut.2022.996674

32. Chen Y, Yang B, Chen H, Chen J, Cao J, Wang H, et al. Creatinine-to-cystatin C ratio
and all-cause and cardiovascularmortality in U.S. adults with nonalcoholic fatty liver disease:
a nationwide cohort study. Front Nutr. (2025) 12:1587757. doi: 10.3389/fnut.2025.1587757

33. Li S, Lu J, Gu G, Bai W, Ye Y, Bao Y, et al. Serum creatinine-to-cystatin C ratio in
the progression monitoring of non-alcoholic fatty liver disease. Front Physiol. (2021)
12:664100. doi: 10.3389/fphys.2021.664100

34. Jung CY, Joo YS, Kim HW, Han SH, Yoo TH, Kang SW, et al. Creatinine-
cystatin C ratio and mortality in patients receiving intensive care and continuous
kidney replacement therapy: A retrospective cohort study. Am J Kidney Dis. (2021)
77:509–16.e1. doi: 10.1053/j.ajkd.2020.08.014

35. Onopiuk A, Tokarzewicz A, Gorodkiewicz E. Chapter two - cystatin C: A kidney
function biomarker. In: Makowski GS, editor. Advances in Clinical Chemistry. United
States: Elsevier (2015). p. 57–69.

36. Sun H, Wu Z, Wang G, Liu J. Normalized creatinine-to-cystatin C ratio and risk
of cardiometabolic multimorbidity in middle-aged and older adults: insights from the
China health and retirement longitudinal study. Diabetes Metab J. (2025) 49:448–61.
doi: 10.4093/dmj.2024.0100

37. Chen Y, Xu F, Li J, Bao Y. A cross-sectional and longitudinal cohort study of
creatinine-to-cystatin C ratio and cardiovascular disease risk in a middle-aged and
elderly population. Front Endocrinol (Lausanne). (2025) 16:1531394. doi: 10.3389/
fendo.2025.1531394
Frontiers in Endocrinology 18
38. Zhou C, Zhang Y, Liu X, He C, Li S. Relationship of METS-IR with
cardiometabolic multimorbidity in China: a nationwide longitudinal cohort study.
Front Nutr. (2025) 12:1518840. doi: 10.3389/fnut.2025.1518840

39. Iwabu M, Okada-Iwabu M, Yamauchi T, Kadowaki T. Adiponectin/adipoR
research and its implications for lifestyle-related diseases. Front Cardiovasc Med. (2019)
6:116. doi: 10.3389/fcvm.2019.00116

40. Wang S, Zhang X, KeermanM, Guo H, He J, Maimaitijiang R, et al. Impact of the
baseline insulin resistance surrogates and their longitudinal trajectories on
cardiovascular disease (coronary heart disease and stroke): a prospective cohort
study in rural China. Front Endocrinol (Lausanne). (2023) 14:1259062. doi: 10.3389/
fendo.2023.1259062
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