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Cardiometabolic multimorbidity
In relation to the metabolic
score for insulin resistance

and creatinine-to-cystatin C
ratio in a middle-aged and
aged population

Roushan Zhang", Jian Ma*' and Li Wang™

‘Department of Geriatric Medicine, The Second Affiliated Hospital of Chongqging Medical University,
Chongging, China, ?Department of Cardiology, The Second Affiliated Hospital of Chongging Medical
University, Chongging, China

Objective: With the aging population, cardiometabolic multimorbidity (CMM) has
become a major public health concern, increasing disease burden and impairing
quality of life. The metabolic score for insulin resistance (METS-IR) and
creatinine-to-cystatin C (CCR) are promising biomarkers linked to metabolic
dysfunction and muscle-renal status, respectively. However, their combined
effects on cardiometabolic multimorbidity (CMM), especially in both
community and hospitalized populations, remain unclear. This study aims to
explore the associations of METS-IR, CCR, and 1/CCRXMETS-IR (MRII) with CMM
using data from the China Health and Retirement Longitudinal Study (CHARLS)
and clinical sources.

Research design and methods: This cross-sectional study included 10,811
participants from the 2014-2015 CHARLS follow-up and 437 elderly inpatients
from the Second Affiliated Hospital of Chongging Medical University. CMM was
defined as the coexistence of two or more of heart disease, diabetes, and stroke.
METS-IR and CCR were calculated using standard formulas. Logistic regression
analyses with multi-model adjustment, restricted cubic spline (RCS) curves,
receiver operating characteristic (ROC) curves, and subgroup analyses were
performed to assess associations, nonlinear relationships, predictive value, and
effect modification.

Results: In both datasets, participants with CMM had higher METS-IR, older age, and
higher prevalence of metabolic risk factors. METS-IR was independently and dose-
dependently associated with increased CMM risk. CCR showed context-dependent
associations, with inverse links in partially adjusted CHARLS models but no
significance in clinical data. The “Low CCR and High METS-IR" combination and
highest quartile of MRII were consistently linked to elevated CMM risk. METS-IR had
moderate predictive value (AUC = 0.712 in CHARLS, 0.618 in clinical data),
outperforming CCR. RCS curves revealed linear associations for METS-IR and
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U-shaped patterns for CCR in CHARLS. Subgroup analyses showed heterogeneity by
age, comorbidities, and hypertension.

Conclusion: METS-IR is a robust independent predictor of CMM in both
community and hospitalized populations, while CCR’s role is context-
dependent. The MRII enhances CMM risk stratification, highlighting the value of
concurrent assessment of metabolic and muscle-renal status for CMM
prevention and personalized risk management.

cardiometabolic multimorbidity, METS-IR, CCR, MRIIl, CHARLS (ChinaHealth and
Retirement Longitudinal Study)

1 Introduction

The aging population has led to a significant increase in chronic
diseases, which in turn has elevated the prevalence of
multimorbidity (1, 2). Multimorbidity is generally defined as the
coexistence of two or more chronic diseases or disease groups (2).
Compared with single cardiovascular diseases, multimorbidity
exerts more adverse effects on human health (3). Cardiometabolic
multimorbidity (CMM), defined as having two or more physician-
diagnosed conditions like heart diseases (e.g., myocardial infarction,
coronary heart disease, angina pectoris, congestive heart failure, or
other cardiac disorders), diabetes mellitus (including impaired
glucose tolerance and elevated fasting blood glucose), and stroke,
exerts severe adverse impacts on human health (4, 5). Existing
research has explored the influence of long-term air pollution
exposure on CMM (6), as well as the links between fat-related
indices such as the triglyceride-glucose index (TyG) and lipid
accumulation product (LAP) and CMM (3, 7-9). CMM escalates
the risks of mortality (10), dementia (11, 12), and depressive
symptoms (13). It also impairs lifestyle behaviors (14) and
cognitive function (15), etc. Thus, preventing CMM effectively is
vital for cutting disease burden and enhancing patients’ quality
of life.

The metabolic score for insulin resistance (METS-IR), a clinical
surrogate marker for obesity-related insulin resistance (IR), was
developed by Mexican researchers to assess insulin sensitivity.
Recognized as a more precise way to measure insulin sensitivity,
higher METS-IR values signal greater insulin resistance and a
heightened risk of metabolic disorders (16). Studies have found
an M-shaped association between METS-IR and heart failure in
American adults (17), suggesting its potential as a marker for
predicting heart failure. A retrospective study in Gifu, Japan,
showed METS-IR levels were linked to prehypertension or
hypertension in normoglycemic individuals (18). An 8-year
longitudinal study revealed a linear dose-response between
METS-IR and cardiovascular disease risks (e.g., cardiovascular
disease, stroke, heart disease) (19).

Frontiers in Endocrinology

Serum creatinine-to-cystatin C(CCR) was used to evaluate renal
function. The ratio (serum creatinine/cystatin C multiplied by 100)
was validated by Kashani et al. in 2016 for correlating with muscle
mass, defined as the “sarcopenia index” (20). Regarded as a reliable
marker for assessing muscle mass (21), CCR predicts muscle mass
loss and sarcopenia in diseases like diabetes, tumors, and chronic
obstructive pulmonary disease (22-25). The relationships between
METS-IR, CCR, and cardiovascular diseases have been extensively
studied in community populations worldwide. These studies have
confirmed that both the CCR and METS-IR are individually
associated with CMM in community populations. However, the
combined effect of these two indices on CMM, as well as their
respective correlations with CMM in hospitalized patients, remains
unclear. This study innovatively defines the product inverse of CCR
and METS-IR (1/CCRxMETS-IR) as the “metabolic-kidney
interaction index (MRII)”. The aim of this study is to investigate
the impacts of the CCR, METS-IR and MRII on CMM in both
community and hospitalized populations in China.

2 Materials and methods
2.1 Study population

This study incorporated data from both the China Health and
Retirement Longitudinal Study (CHARLS) database and clinical
sources. The CHARLS, spearheaded by the National School of
Development at Peking University, is designed to evaluate the
health, socioeconomic, and demographic characteristics of
Chinese adults aged 45 and over. Spanning 28 provinces, it uses a
multi-stage, stratified, and clustered sampling approach. Follow-up
surveys were carried out in 2013, 2015, 2018, and 2020. Ethical
approval was granted by the Biomedical Ethics Review Committee
of Peking University (RBK00001052-11015), and all participants
provided informed consent. The data can be accessed online at
http://charls.pku.edu.cn. The research methodology and data
collection processes for CHARLS have been elaborated in existing
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literature. For this study, the third-wave follow-up data (2014-  at the Second Affiliated Hospital of Chongqing Medical University
2015) were chosen, initially including 20,967 participants. After  were enrolled between May and July, 2025. After excluding
excluding those with missing data and outliers, 10,811 participants  participants with incomplete data, 437 clinical patients were
remained in the final analysis. Regarding clinical data, 521 middle-  included in the final analysis. The inclusion and exclusion criteria
aged and elderly patients admitted to the Department of Geriatrics ~ for both samples are presented in Figures 1A, B, respectively.

A
CHARLS database in 2015 (n=21095)
\
Age <45 years old or missing age
data(n=19450)
« No available data on CMM.
« Excluded individuals with
METS_IR missing.
Exludi « Excluded individuals with CCR
xluding missing.

| « Height> 300cm.
« Weight > 200kg.
« BMI>100 kg/m2.
« Missing data on gender, marital,
location, smoking,drinking,marital,
BMI,HTN,DM,HD,STK and CA.

\
Participants were included in the
longitudinal study. (n=10811)
B

Clinic database in 2025.05-
2025.07(n=521)

Y

Age <45 years old or missing age
data(n=515)

« No available data on CMM.

« Excluded individuals with
METS_IR missing.

« Excluded individuals with CCR
missing.

| « Height> 300cm.

« Weight > 200kg.

« BMI>100 kg/m?2.

« Missing data on gender, marital,
location, smoking,drinking,marital,
BMI,HTN,DM,HD,STK and CA.

A

Participants were included in the
longitudinal study. (n=437)

FIGURE 1
Flow Charts. (A) Flow chart of CHARLS participants. (B) Flow chart of clinical participants.
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2.2 Assessment of CMM events

Cardiometabolic multimorbidity (CMM) is defined as the
coexistence of two or more cardiovascular-related diseases,
including heart disease, diabetes, and stroke.

For the CHARLS database, the diagnosis of heart disease was
determined based on questionnaire responses indicating that
participants had been diagnosed by a doctor with conditions such
as heart failure, coronary heart disease, myocardial infarction, or
other heart diseases, or were taking heart disease-related
medications. Diabetes was defined as a self-reported physician’s
diagnosis or the presence of any one of the following biochemical
criteria: fasting blood glucose > 7.8 mmol/L, HbAlc > 6.0%, or
random blood glucose > 11.1 mmol/L. Additionally, individuals
taking diabetes-related medications or receiving insulin injections
were also classified as having diabetes. Stroke was identified based
on either a participant’s report of a physician-diagnosed
cerebrovascular event (such as cerebral infarction or cerebral
hemorrhage) or the use of antithrombotic or other stroke-specific
medications. In the clinical data, heart disease was primarily defined
by discharge diagnoses including coronary heart disease, heart
failure, myocardial infarction, or other heart diseases. Diabetes
was determined based on discharge diagnoses of type 1 or type 2
diabetes. Stroke was identified by discharge diagnoses of
cerebrovascular accidents such as cerebral infarction or
cerebral hemorrhage.

2.3 Assessment of METS-IR

The metabolic score for insulin resistance (METS-IR) has
become a promising indirect approach to identify insulin
resistance (IR) related to the pathophysiological elements of
metabolic syndrome (26). Current research has indicated that
METS-IR is associated with conditions like diabetes,
hypertension, obstructive sleep apnea, and kidney stones (27-30).
Instead of directly measuring insulin, METS-IR evaluates IR using
body mass index (BMI), triglycerides (TG), and fasting plasma
glucose (FPG), which makes it highly suitable for large-scale
screening and clinical application. As an indicator of insulin
resistance, a higher METS-IR value means a more severe degree
of insulin resistance, implying that the individual faces a greater
likelihood of developing metabolic disorders. The formula for
calculating METS-IR is: METS-IR = Ln [(2*FPG) + TG] x BMI
(kg/m®) + (Ln[HDL-C]). Here, FPG stands for fasting plasma
glucose (mg/dL), HDL-C is high-density lipoprotein cholesterol
(mg/dL), and TG represents triglycerides (mg/dL). In the above
formula, FPG, HDL-C and TG represent fasting plasma glucose
(mg/dL), high-density lipoprotein cholesterol (mg/dL), and
triglycerides (mg/dL), respectively.
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2.4 Assessment of CCR

The creatinine-to-cystatin C ratio (CCR) is an indicator used to
evaluate renal function. By comparing the concentrations of serum
creatinine and cystatin C, it helps assess glomerular filtration rate
(GFR) (31-34). Serum creatinine varies with body composition,
while cystatin C is widely present in nucleated cells and is less
affected by muscle mass (35). Thus, CCR can provide information
on an individual’s muscle mass and renal function and serves as a
risk factor for sarcopenia. The calculation formula of CCR is: CCR =
creatinine (mg/dL)/cystatin C (mg/L) x 100.

2.5 Covariates

Covariates included demographic and health-related variables.
Demographic characteristics encompassed age, gender,
geographical residence, and marital status. Health-related
indicators consisted of anthropometric parameters (height,
weight, and BMI), as well as medical history (stroke, heart
disease, diabetes, hypertension, chronic lung disease, and
malignant tumors). The formula for calculating BMI is: weight
(kg) divided by the square of height (m?).

Blood test data from the CHARLS database were centrally
analyzed by the Youanmen Clinical Laboratory Center of Capital
Medical University using the enzyme colorimetric method. Two
staff members from the Chinese Center for Disease Control and
Prevention were fully responsible for the storage of blood samples.
During the testing process, the laboratory used quality control
samples daily, with the intra-batch coefficient of variation not
exceeding 1.0% and the inter-batch coefficient of variation not
exceeding 1.7%. Lipid profiles including total cholesterol (TC),
low-density lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), and triglycerides (TG) were
quantified using enzymatic assays, while high-sensitivity C-
reactive protein (hsCRP) concentrations were measured by
immunoturbidimetry. The definitions of hypertension, diabetes,
and stroke were as described above, and the definitions of other
chronic diseases were determined by self-report. Laboratory
parameters from the clinical cohort were obtained from fasting
blood samples sent to the hospital laboratory on the day of
admission or the morning of the second day after admission.
Chronic disease data in the clinical data were the diseases
included in the discharge diagnosis.

3 Statistical analysis

The analysis of baseline data consists of two core parts:
descriptive statistics and inter-group comparison tests. For
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descriptive statistics, appropriate statistical measures are selected
based on the type and distribution characteristics of variables.
Normally distributed continuous variables are described using
mean * standard deviation (X + s). Skewed continuous variables
are presented as median (interquartile range) [M (P25, P75)].
Categorical variables are expressed as frequency (percentage) [n
(%)]. For inter-group comparisons, corresponding statistical tests
are applied according to variable types and distribution
characteristics. The chi-square test is used for comparing
categorical variables, and Fisher’s exact test is adopted when the
theoretical frequency is less than 5. For continuous variables, the
independent samples t-test is used if they are normally distributed
with homogeneous variances, otherwise the Mann-Whitney U test
is employed.

To ensure model robustness and avoid interference from
spurious or collinear variables, we applied two key screening
criteria: (1) only variables with a statistical significance level of P
< 0.001 were retained; (2) variables that would induce severe
multicollinearity were excluded. Subsequently, the screened
variables were merged with basic confounding variables to form
an initial variable pool for model construction. Finally, bidirectional
stepwise regression was used to iteratively optimize and determine
the final variables included in Models 1-4 for each dataset
separately. To clarify the association between CCR, METS-IR and
CMM, this study uses multi-model logistic regression analysis. First,
CCR and METS-IR are divided into 3 levels (Q1, Q2, Q3) by the
tertile method, with the lowest tertile group (Q1) as the reference
group, to evaluate the strength of association between different
groups and the risk of CMM. Based on differences in data sources,
the following regression models are constructed respectively: For
the CHARLS database: Model 1 is unadjusted for any covariates;
Model 2 is adjusted for age and gender; Model 3 is further adjusted
for location, marital status, smoking history, drinking history,
hypertension (HTN), chronic lung disease (CLD), and cancer
(CA) on the basis of Model 2; Model 4 is additionally adjusted
for white blood cell count (WBC), glycosylated hemoglobin
(HbAlc), and total cholesterol (TC) on the basis of Model 3. For
the clinical database (Clinic data): Model 1 is unadjusted for any
covariates; Model 2 is adjusted for age and gender; Model 3 is
further adjusted for location, marital status, and hypertension
(HTN) on the basis of Model 2; Model 4 is additionally adjusted
for white blood cell count (WBC) and low-density lipoprotein
cholesterol (LDL-C) on the basis of Model 3.

This study employs the MRII metric to examine its correlation
with CMM, rather than using the standard interaction term
(CCRXMETS-IR) for analysis. Biologically, 1/CCR aligns CCR’s
negative association with CMM with METS-IR’s positive
association (36-38), enabling intuitive interpretation. Meanwhile,
the Vuong test revealed that the MRII model outperformed the
CCRxMETS-IR model significantly in the CHARLS dataset, with
statistically significant differences (Supplementary Tables S1, S2).
The MRII is calculated and divided into 4 levels (Q1, Q2, Q3, Q4)
by the quartile method. With the lowest quartile group (Q1) as the
reference, the same multi-model logistic regression as mentioned
above is used to analyze its association with CMM. Meanwhile,

Frontiers in Endocrinology

10.3389/fendo.2025.1694959

restricted cubic spline (RCS) curves are used to analyze the dose-
response relationship between CCR, METS-IR and CMM, so as to
clarify whether there is a nonlinear association between them;
receiver operating characteristic (ROC) curves are plotted and the
area under the curve (AUC) is calculated to evaluate the predictive
efficacy of CCR, METS-IR and MRII for CMM, and to compare the
predictive value of different indicators.

To investigate the impact of different population characteristics
on the association between CCR, METS-IR, MRII and CMM,
further subgroup analysis is conducted. Stratification is performed
according to key variables such as age, gender, and
hypertension status.

The analyses employed Empower® version 4.4.3.

4 Results

4.1 Based on baseline data tables for the
occurrence of CMM

This study investigated the associations of the metabolic score
for insulin resistance (METS-IR) and the creatinine-to-cystatin C
ratio (CCR) with cardiometabolic multimorbidity (CMM) using
data from the China Health and Retirement Longitudinal Study
(CHARLS) and clinical sources, and baseline data analysis was
conducted firstly (Table 1). In the CHARLS cohort (n = 10,811),
participants with CMM (n = 463) exhibited a higher age (median
66.0 vs. 61.5 years, p < 0.001) and BMI (median 25.8 vs. 23.5 kg/mz,
p < 0.001) than those without CMM (n = 10,348). The CMM group
also had a higher prevalence of hypertension (66.5% vs. 23.5%, p <
0.001), diabetes (92.2% vs. 15.6%, p < 0.001), and a higher METS-IR
(41.3 vs. 34.8, p < 0.001). In the clinical data cohort (n = 437), the
CMM subgroup (n = 154) had an older median age (75.0 vs. 69.0
years, p < 0.001), higher diabetes prevalence (76.0% vs. 16.3%, p <
0.001), and elevated METS-IR (29.8 vs. 27.9, p < 0.001) relative to
the non-CMM group (n = 283).

4.2 Impacts of CCR, METS-IR, MRIl on
CMM occurrence

Logistic regression analysis was conducted on the relationship
between CCR and CMM based on the CHARLS database
(Table 2.1). In the analysis of the CHARLS database, the
association between CCR_per_TIR and the outcome across
sequential models was as follows. Model 1 (unadjusted) yielded
an OR of 0.99 (95% CI: 0.99-1.00, P < 0.001). Model 2 yielded an
OR of 1.00 (95% CI: 0.99-1.00, P = 0.001) after adjustment for age
and gender. Model 3 (further adjusted for location, marital status,
smoking, drinking, HTN, CLD, CA) presented an OR of 1.00 (95%
CI: 0.99-1.00, P = 0.01). Model 4 (adjusted for age, gender, location,
marital, HTN, WBC and LDL) yielded an OR of 1.00 (95% CI:1.00-
1.00, P = 0.353). For CCR layering (Q1 as reference), Q2 in Model 1
had an OR of 0.98 (95% CI: 0.97-0.99, P < 0.001), Q3 in Model 1
showed an OR of 0.97 (95% CI: 0.96-0.98, P < 0.001), with varying
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TABLE 1 Baseline table.

Level Overall Non-CMM CMM P Overall Non-CMM CMM P

N 10811 10348 463 437 283 154

Age (median [IQR]) 61.0 [54.0, 68.0] 61.0 [54.0, 68.0] 66.0 [60.0, 72.0] <0.001 71.0 [63.0, 79.0] 69.0 [60.5, 77.0] 75.0 [68.0, 82.0] <0.001
<70 8628 (79.8) 8313 (80.3) 315 (68.0) <0.001 194 (44.4) 143 (50.5) 51 (33.1)

Age_group (%) 0.001
>70 2183 (20.2) 2035 (19.7) 148 (32.0) 243 (55.6) 140 (49.5) 103 (66.9)
female 5757 (53.3) 5492 (53.1) 265 (57.2) 0.088 | 250 (57.2) 168 (59.4) 82 (53.2)

Gender (%) 0.257
male 5054 (46.7) 4856 (46.9) 198 (42.8) 187 (42.8) 115 (40.6) 72 (46.8)
married 8891 (82.2) 8513 (82.3) 378 (81.6) 0.778 | 372 (85.1) 249 (88.0) 123 (79.9)

Marital (%) 0.033
unmarried 1920 (17.8) 1835 (17.7) 85 (18.4) 65 (14.9) 34 (12.0) 31 (20.1)
city 9677 (89.5) 9313 (90.0) 364 (78.6) <0.001 363 (83.1) 228 (80.6) 135 (87.7)

Location (%) 0.079
village 1134 (10.5) 1035 (10.0) 99 (21.4) 74 (16.9) 55 (19.4) 19 (12.3)
no smoking 6299 (58.3) 6019 (58.2) 280 (60.5) 0.348 | 342 (78.3) 222 (78.4) 120 (77.9)

Smoking (%) 0.996
smoking 4512 (41.7) 4329 (41.8) 183 (39.5) 95 (21.7) 61 (21.6) 34 (22.1)
drinking 3735 (34.5) 3626 (35.0) 109 (23.5) <0.001 73 (16.7) 48 (17.0) 25 (16.2)

Drinking (%) 0.952
no drinking 7076 (65.5) 6722 (65.0) 354 (76.5) 364 (83.3) 235 (83.0) 129 (83.8)
N 8076 (74.7) 7921 (76.5) 155 (33.5) <0.001 191 (43.7) 146 (51.6) 45 (29.2)

HTN (%) <0.001
Y 2735 (25.3) 2427 (23.5) 308 (66.5) 246 (56.3) 137 (48.4) 109 (70.8)
N 8774 (81.2) 8738 (84.4) 36 (7.8) <0.001 274 (62.7) 237 (83.7) 37 (24.0)

DM (%) <0.001
Y 2037 (18.8) 1610 (15.6) 427 (92.2) 163 (37.3) 46 (16.3) 117 (76.0)
N 9561 (88.4) 9191 (88.8) 370 (79.9) <0.001 381 (87.2) 246 (86.9) 135 (87.7)

CLD (%) 0.944
Y 1250 (11.6) 1157 (11.2) 93 (20.1) 56 (12.8) 37 (13.1) 19 (12.3)
N 9390 (86.9) 9330 (90.2) 60 (13.0) <0.001 219 (50.1) 203 (71.7) 16 (10.4)

HD (%) <0.001
Y 1421 (13.1) 1018 (9.8) 403 (87.0) 218 (49.9) 80 (28.3) 138 (89.6)
N 10561 (97.7) 10224 (98.8) 337 (72.8) <0.001 320 (73.2) 253 (89.4) 67 (43.5)

STK (%) <0.001
Y 250 (2.3) 124 (1.2) 126 (27.2) 117 (26.8) 30 (10.6) 87 (56.5)
N 10685 (98.8) 10237 (98.9) 448 (96.8) <0.001 423 (96.8) 272 (96.1) 151 (98.1)

CA (%) 0.415
Y 126 (1.2) 111 (1.1) 15 (3.2) 14 (3.2) 11 (3.9) 3(1.9)

BMI (median [IQR]) 23.6 [21.2, 26.2] 235 [21.2, 26.1] 25.8 [23.2, 28.6] <0.001 23.6 [21.1, 25.8] 23.4 [20.9, 26.0] 24.1 [21.6, 25.8] 0.134

(Continued)
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TABLE 1 Continued

CHARLS, Longitudinal Study on Health and Retirement in China; CMM, cardiometabolic multimorbidity; Non-CMM, participants without cardiometabolic multimorbidity; METS-IR, Metabolic score for insulin resistance; CCR, creatinine-to-cystatin C ratio; HTN,
Hypertension; DM, Diabetes; CA, Cancer; CLD, Chronic lung disease; HD, heart disease; STK, Stroke; HB, Hemoglobin (g/dL); WBC, White Blood Cell (in thousands); PLT, Platelets (10A9/L); FPG, Glucose (mmol/L); TG, Triglyceride (mmol/L); HDL-C, High-density

lipoprotein cholesterol (mmol/L); TC, total cholesterol (mg/dL); LDL, Low density lipoprotein (mg/dL); UA, Uric acid (mg/dL); HbAlc, Hemoglobin Alc (%); eGFR, Estimated glomerular filtration rate (mL/min/1.73 mA2).

Level Overall Non-CMM CMM P Overall Non-CMM CMM P

<24 5827 (53.9) 5687 (55.0) 140 (30.2) <0.001 241 (55.1) 167 (59.0) 74 (48.1)
BMI_group (%) 0.036

224 4984 (46.1) 4661 (45.0) 323 (69.8) 196 (44.9) 116 (41.0) 80 (51.9)
HB (median [IQR]) 13.6 (12,5, 14.8] 13.6 (12,5, 14.8] 13.6 [12.8, 14.8] 0.056  13.0 [11.9, 14.1] 13.0 [12.0, 14.1] 12.8 [11.7, 13.9] 0.198
WBC (median [IQR]) 5.7 [4.8, 6.9] 57 [47, 6.8] 6.1 (5.3, 7.5] <0.001 5.6 4.8, 6.9] 5.4 (47, 6.6] 5.8 (5.2, 7.3] 0.002
PLT (median [IQR]) 2000 [159.0, 242.0] | 2000 [159.0, 242.0] | 200.0 [158.0, 246.0] 0.566 1850 [152.0,226.0] | 1900 [156.5, 229.5] 1765 [1442,207.8] | 001
FPG (median [IQR]) 5.3 (4.9, 5.9] 5.3 4.9, 5.8] 6.7 (5.5, 8.5] <0.001 54[49,6.3] 5.2 (438, 5.8] 60 [5.1,7.6] <0.001
TG (median [IQR]) 13 [09, 1.9] 1309, 18] 17 [12,2.5] <0.001 1209, 1.7] 1103, 1.6] 13 [1.0, 18] 0.01
HDL-C (median [IQR]) 13 [L1, 1.5] 13 (L1, 15] 12 (10, 1.4] <0.001 13 (L1, 1.5] 14 [L1, 16] 12 [10, 1.4] <0.001
TC (median [IQR]) 1815 [159.8,206.2] | 1815 [159.5,205.8] | 189.6 [164.3,213.9]  <0.001 172.8 (42.7) 178.2 (46.7) 163.0 (45.2) 0.001
LDL (median [IQR]) 1008 [82.6, 119.7] | 100.8 [82.6, 119.6] 103.5 [82.0, 123.4] 0.112 862 [66.5, 106.3] 88.9 [712, 108.5] 77.0 [61.2, 100.7] <0.001
UA (median [IQR]) 48 [3.9,5.7] 48 (39,57 5.1 (44, 6.2] <0.001 5.1 4.0, 6.2] 5.0 4.0, 6.0] 5.2 4.2, 6.6] 0.033
Creatinine (median
HOR) 0.8 0.7, 0.9] 0.8 0.7, 0.9] 0.8 (0.6, 0.9] 063 | 08107, 1.0] 0.8 [0.7,0.9] 09 0.7, 1.1] <0.001
E’S:]t)m—c (median 0.8 [0.7, 1.0] 0.8 0.7, 0.9] 0.9 [0.8, 1.0] <0.001 1.0 (08, 12] 09 (0.8, 1.1] 1.1 0.9, 1.4] <0.001
HbAlc (median [IQR]) 5.8 (5.5, 6.1] 58 (5.5, 6.1] 6.7 (6.0, 7.6] <0.001 6.1[57, 6.5 5.9 (5.6, 6.2] 6.6 (6.0, 7.5] <0.001
TyG (median [IQR]) 1209, 1.7] 1208, 1.7] 18[13,23] <0.001 1208, 1.6] 11[07, 15] 1410, 17] <0.001
CCR(median [IQR]) 92.0 [80.2, 105.8] 92.3 [80.6, 106.1] 85.8 [73.8, 98.6] <0.001 82.0 [72.6,91.0] 82.1 [73.7, 91.0] 81.7 [70.9, 90.7] 0.474
?g;;’m (median 35.0 [30.3, 40.3] 348 [30.2, 40.0] 413 [36.1, 47.0] <0.001 283 [252, 319] 277 [24.6, 312 29.6 [26.6, 33.6] <0.001
GFR (median [IQR]) 92.6 [81.5, 100.0] 92.7 [81.7, 100.0] 89.3 [76.8, 96.5] <0.001 82.7 [66.3, 92.8] 86.4 [72.2, 95.4] 75.1 [513, 86.3] <0.001
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TABLE 2.1 Logistic regression analysis of the relationship between CCR and CMM based on the CHARLS database.

CCR Modell P Model2 P Model3 P Model4 P
CCR_per_TIR 0.99[0.99,1.00] <0.001 1.00[0.99,1.00] 0.001 1.00[0.99,1.00] 0.01 1.00[1.00,1.00] 0.353
Q1 ref ref ref ref
CCR Q2 0.98[0.97,0.99] <0.001 0.98[0.97,0.99] <0.001 0.99[0.98,1.00] 0.005 0.99[0.98,1.00] 0.186
Q3 0.97[0.96,0.98] <0.001 0.98[0.97,0.99] <0.001 0.98[0.97,0.99] <0.001 0.99[0.98,1.00] 0.109

TABLE 2.2 Logistic regression analysis of the relationship between CCR and CMM based on the clinic data.

Modell Model2 Model3 Model4
CCR_per_TIR 1.00[0.97,1.03] 0.952 1.00[0.97,1.03] 0.925 1.00[0.97,1.03] 0.928 1.00[0.97,1.03] 0.934
Q1 ref ‘ ref ref ‘ ref
CCR Q2 0.96[0.86,1.07] ‘ 0.491 0.99[0.89,1.01] 0.856 1.00[0.90,1.11] 0.969 ‘ 0.98[0.88,1.1] 0.772
Q3 0.95[0.85,1.06] 0.329 0.97[0.86,1.01] 0.648 0.97[0.86,1.09] 0.648 ‘ 0.96[0.85,1.08] 0.525

CMM, cardiometabolic multimorbidity; METS-IR, Metabolic score for insulin resistance; CCR, creatinine-to-cystatin C ratio; CI, confidence interval; CCR_per_TIR, CCR value standardized by

tertile interval width.

Charls data: Model 1: unadjusted. Model 2: adjusted for age and gender. Model 3: age, gender, location, marital status, smoking, drinking, HTN, CLD and CA. Model 4: age, gender, location,

marital status, smoking, drinking, HTN, CLD, CA, WBC, HbAlc and TC.

Clinic data: Model 1: unadjusted. Model 2: adjusted for age and gender. Model 3: age, gender, location, marital status, and HTN. Model 4: adjusted for age, gender, location, marital status, HTN,

WBC and LDL.
The logistic regression model for the latter data is the same as those models.

significances across models. Table 2.2 provides logistic regression
analysis of the relationship between CCR and CMM based on the
clinic data. In the analysis of clinical data, CCR_per_TIR across all
models (Model 1: unadjusted; Model 2: age and gender; Model 3:
age, gender, location, marital and HTN; Model 4: fully adjusted)
had an OR of 1.00 (95% CI: 0.97-1.03, P > 0.05). Similarly, for CCR
layering, neither Q2 nor Q3 showed any significant associations
across the models (P > 0.05).

4.3 Impacts of METS-IR on CMM
occurrence

In the CHARLS database analysis (Table 3.1), for the
continuous metric METS-IR_per_TIR, Model 1 yielded an OR of
1.03 (95% CI: 1.02-1.03, P < 0.001), indicating a significant positive
link with CMM. After adjusting for age and gender (Model 2), the
OR remained elevated at 1.03 (95% CI: 1.03-1.03, P < 0.001),
suggesting independence from basic demographics. In Model 3 with
further adjustment, which included location, marital status,
smoking, drinking, hypertension (HTN), chronic lung disease
(CLD) and cancer (CA), the association remained significant at
an OR of 1.02 (95% CL: 1.02-1.02, P < 0.001), albeit with a slight
attenuation in effect size. After comprehensive adjustment for age,
gender, location, marital status, HTN, white blood cell count
(WBC), glycated hemoglobin (HbA1Ic), and total cholesterol (TC)
in Model 4, the OR was 1.01 (95% CI: 1.01-1.02, P < 0.001),
confirming the persistence of the significant association. For METS-
IR stratified by quantiles (Q1 as reference), Q2 in Model 1 had an
OR of 1.01 (95% CI: 1.00-1.02, P = 0.006) with variable significance,
while Q3 in Model 1 presented an OR of 1.07 (95% CI: 1.06-1.08,
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P < 0.001), maintaining consistency across models and indicating
graded risk.

In clinical data analysis (Table 3.2), for continuous METS-
IR_per_TIR, all models showed significant positive associations
with ORs ranging from 1.06 to 1.08. For stratified METS-IR, Q2 in
Model 1 had an OR of 1.11 (95% CI: 1.10-1.24, P = 0.059) and Q3 in
Model 1 displayed an OR of 1.19 (95% CI: 1.06-1.32, P = 0.002),
indicating a significant correlation between the models and
strengthening the dose-response relationship. Overall, METS-IR
was significantly associated with increased CMM risk in
both datasets.

4.4 Association between combinations of
METS-IR and CCR tertile groups and CMM

This cross-sectional study explored the impact of combinations
of METS-IR and CCR tertile groups on CMM using data from the
CHARLS database and clinical sources. In the CHARLS database
(Figure 2), various combinations showed distinct effects on CMM
across models with “High CCR and Low METS-IR” as the reference.
For instance, “Low CCR and High METS-IR” had a significantly
increased risk of CMM in Model 1 (OR = 1.09, 95% CI: 1.08-1.10, P
< 0.001) (Figure 2A) and remained significant in Model 2 (OR =
1.09, 95% CI: 1.07-1.11, P < 0.001) (Figure 2B). “Middle CCR and
High METS-IR” also exhibited a heightened risk, with OR of 1.06
(95% CI: 1.05-1.08, P < 0.001) in Model 1 (Figure 2A) and OR of
1.07 (95% CI: 1.05-1.08, P < 0.001) in Model 2 (Figure 2B).
Conversely, some combinations like “Middle CCR and Low
METS-IR” showed non-significant associations in multiple models.
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TABLE 3.1 Logistic regression analysis of the relationship between METS-IR and CMM based on the CHARLS data.
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METS-IR Modell P Model2 P Model3 P Model4 P
METS-IR_per_TIR 1.03[1.02,1.03] <0.001 1.03[1.03,1.03] <0.001 1.02[1.02,1.02] <0.001 1.01[1.01,1.02] <0.001
Q1 ref ref ref ref
METS-IR Q2 1.01[{1.00,1.02] 0.006 1.02[1.01,1.03] <0.001 0.99[0.99,1.00] 0.052 1.00[0.99,1.01] 0.601
Q3 1.07(1.06,1.08] <0.001 1.08[1.07,1.09] <0.001 1.00[0.99,1.01] <0.001 1.03[1.02,1.04] <0.001

TABLE 3.2 Logistic regression analysis of the relationship between METS-IR and CMM based on the clinic data.

Model3

Model4

METS-IR Modell Model2
METS-IR_per_TIR 1.07[1.04,1.11] <0.001 ‘ 1.08[1.04,1.11] ‘ <0.001
Q1 ref ‘ ref ‘
METS-IR Q2 ‘ 1.11[1.0,1.24] 0.059 ‘ 1.17[1.05,1.30] ‘ 0.005
Q3 ‘ 1.19[1.06,1.32] 0.002 ‘ 1.22[1.10,1.36] ‘ <0.001

1.06[1.03,1.10]

ref

1.14[1.02,1.27) ‘

1.16[1.04,1.30] ‘

<0.001

0.02

0.008

1.06[1.03,1.10]
ref
1.11[1.00,1.24]

1.14[1.02,1.27]

<0.001

0.051

0.024

METS-IR _per_TIR, METS-IR value standardized by tertile interval width.

In clinical data (Figure 3), similar analyses were conducted.
For instance, “Low CCR and High METS-IR” was associated
with an elevated CMM risk, with OR of 1.36 (95% CI: 1.11-1.65,
P =0.002) in Model 1 (Figure 3A) and OR of 1.37 (95% CI: 1.13-
1.66, P = 0.002) in Model 2 (Figure 3B). “Middle CCR and High
METS-IR” also demonstrated a significant impact, with OR of

1.32 (95% CI: 1.08-1.62, P = 0.007) in Model 1 (Figure 3A) and
OR of 1.36 (95% CI: 1.12-1.65, P = 0.002) in Model 2
(Figure 3B). Overall, the combinations of METS-IR and CCR
tertile groups were associated with CMM occurrence, with
variations in effect sizes and significance across different
models in both datasets.

A CCR and METS-IR with CMM (Model 1)
Group OR (95% CI) P value
High CCR and Low METS-R 1.00 (1.00-1.00) - [ |
Low CCR and Low METS-R 103(101-105)  <0.001 —a—
Low CCR and High METS-R 109(108-110)  <0.001 E 3
Middie CCR and Low METSIR 1.00 (0.98-1.01) oror  —-
Middle CCR and Middie METSIR 102 (1.00-1.03) 0,037 —il-
Middie CCRand High METSIR ~ 1.06(1.05-108)  <0.001 -0—
Low CCR and Middie METS-IR 1.01(1.00-1.03) 0.081 -m—
High CCR and Middie METSIR ~ 1.00 (0.99-1.02) 0548 -
High CCR and High METS-IR 105(104-107)  <0.001 -
0% 1 102 104 105 108 11 132
OR (95% CI)
C CCR and METS-IR with CMM (Model 3)
Group OR (95% CI) P value
High CCR and Low METS-R 1.00 (1.00-1.00) [ |
Low CCR and Low METS-R 1.01(1.00-1.03) 011 i
Low CCR and High METS-R 106(105-108)  <0.001 i
Middie CCRand Low METSIR 0,99 (0.98-1.01) 0430  Jl—
Middie CCR and Middle METSIR ~ 1.01 (0.99-1.02) 0.395 —
Middle CCRand HighMETSIR ~ 1.05(1.03-1.06)  <0.001 —
Low CCR and Middie METS-R 1.00(0.98-1.02) o7 —l—
High CCR and Middie METS-R 1.0 (0.99-1.02) 0.806 i
High CCR and High METS-R 104(102-105)  <0.001
0'98 1I 1:)2 1:74 l:)G 1:)8 1‘] 1‘12
OR (95% Ci)
FIGURE 2

Logistic regression analysis of the relationship between combinations of CCR and METS-IR and CMM in different models based on CHARLS data (A-D).

B CCR and METS-IR with CMM (Model 2)

Group OR(95% Cl) P value

High CCR and Low METS-IR 1.00 (1.00-1.00) [ ]

Low CCR and Low METS-R 102 (1.01-1.04) 001 i

Low CCR and High METS-R 109(1.07-141)  <0.001 ——

Middie CCR and Low METS-IR 0.99(0.98-1.01) 03 Jl—

Middle CCR and Middle METSIR 102 (1.00-1.03) 0.084 —

Middle CCRand HighMETSIR ~ 1.07 (105-1.08)  <0.001 —

Low CCR and Middie METS-R 1.00(0.98-1.02) 004 —l—

High CCR and Middie METSIR 101 (0.99-1.02) 0.303 —

High CCR and High METS-R 106(1.04-108)  <0.001 ——

0'98 1I 1:)2 1'04 1'06 1:)8 1'1 1"2
OR (95% CI)

D CCR and METS-IR with CMM (Model 4)

Group OR(95%Cl) P value

High CCR and Low METS-R 1.00 (1.00-1.00) [ |

Low CCR and Low METS-R 1.00(0.99-1.02) 0.888 i

Low CCR and High METS-R 104(1.02-105)  <0.001 —

Middle CCR and Low METS-IR 1.00(0.98-1.01) oz —Jilk

Middle CCR and Middile METSIR 1.0 (0.99-1.02) 095 i

Middle CCRand High METSIR 105 (1.01-1.05) 0.002 —a

Low CCR and Middie METSIR 100 (0.99-1.02) 0723 i

High CCR and Middle METSIR 1.0 (0.98-1.02) 0652 —Ml—

High CCR and High METS-IR 1.04(1.00-1.04) 0.023 —Ha

r T T T T T T 1
102 104 106 108 11 112
OR (95% Cl)
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A CCR and METS-IR with CMM (Model 1) B CCR and METS-IR with CMM (Model 2)
Group OR (95% CI) P value Group OR (95% CI) P value
High CCR and Low METS-R 1.00 (1.00-1.00) - | ] High CCR and Low METS-R 1.00 (1.00-1.00) . |
Low CCR and Low METS-R 1.25(1.03-152) 0024 —B— Low CCR and Low METS-R 125 (1.03-151) 0024 ——
Low CCR and High METSR 1.36 (1.11-1.65) 0.002 —— Low CCR and High METSIR 1.37 (1.13-1.66) 0.002 ——
Middie CCR and Low METSIR 1.15(0.95-139) 0154 —— Middie CCR and Low METSR 1.16 (0.96-1.40) 0119 —u—
Middie CCR and Middie METS-R ~ 1.15 (0.95-1.40) 0149 — Middie CCR and Middie METS-R 122 (1.01-1.48) 0037 —
Middle CCRand HighMETSIR 132 (1.08-1.62) 0007 - Middie CCRandHighMETS-R 136 (1.12-1.65) 0.002 — 11—
Low CCR and Middle METS-R 1.15(0.95-139) 0166 —— Low CCR and Middie METS-R 1.13(0.93-1.36) 0225 —J—
High CCR and Middle METS-R 127 (1.05-1.55) 0016 —— High CCRand Middie METS-R 138 (1.14-1.67) 0001 —a—
High CCR and High METS-R 1.26(1.04-152) 0017 —— High CCR and High METSIR 130 (1.08-1.56) 0005 ——
0‘9 : 1‘1 1'2 1‘3 1'4 1\5 |IS 1l7 0'9 ; 1.1 1'2 1'3 1'4 |I5 |I6 (I7 |I8
OR (95% CI) OR (95% CI)
C CCR and METS-IR with CMM (Model 3) D CCR and METS-IR with CMM (Model 4)
Group OR (95% CI) P value Group OR(95% Cl) P value
High CCR and Low METSIR 1.00 (1.00-1.00) - || High CCR and Low METS-R 1.00 (1.00-1.00) - [ |
Low CCR and Low METSIR 120(0.99-145) 0061 —— Low CCR and Low METS-R 121(1.00-1.47) 0047 ——
Low CCR and High METS-R 1.31(1.08-159) 0006 —— Low CCR and High METS-R 133(1.10-162) 0,004 ——
Middie CCR and Low METS-R 1.16 (0.96-1.39) 0124 _ Middle CCR and Low METS-R 117 (0.97-1.40) 0.101 —
Middle CCR and Middie METSR ~ 1.20 (1.00-1.45) 0054 e — Middle CCR and Middle METSIR  1.20 (0.99-1.44) 0059 —
Midde CCRand HighMETS-R .29 (1.06-157) 0011 —_— Middle CCRand High METSIR ~ 1.28 (1.05-1.56) 0013 e [
Low CCR and Middie METS-R 1.13(0.93-1.36) 0221 — Low CCR and Middie METS-R 1.11(092-1.34) 0262 —J——
High CCR and Middie METSR 1.35(1.11-163) 0002 — High CCR and Middie METS-R 1.37 (1.13-1.65) 0001 — 00—
High CCR and High METS-R 123(1.02-148) 0031 T High CCR and High METS-IR 124 (1.03-150) 0023 ——
09 1 11 12 13 14 15 16 09 1 11 12 13 14 15 16 17
OR (95% CI) OR (95% Cl)

FIGURE 3
Logistic regression analysis of the relationship between combinations of CCR and METS-IR and CMM in different models based on clinic data (A-D).

TABLE 4.1 Logistic regression analysis of the relationship between MRIl and CMM based on the CHARLS data.

MRII Model Model2 Model3 Model4
Q1 ref ref ref ref
Q2 1.00[0.99,1.01] 0.838 1.01[1.00,1.02] 0.045 1.00[0.99,1.02] 0.391 1.00[0.99,1.01] 0.51
Mt Q3 1.02[1.00,1.03] 0.005 1.03[1.02,1.04] <0.001 1.02[1.01,1.03] 0.001 1.01[1.00,1.02] 0.02
Q4 1,03[1.02,1.04] <0.001 1.05[1.04,1.06] <0.001 1.03[1.02,1.04] <0.001 1.02[1.01,1.03] 0.001

TABLE 4.2 Logistic regression analysis of the relationship between MRIl and CMM based on the clinical data.

Modell Model2 Model3 Model4
‘ Q1 ref ref ‘ ‘ ref ref
‘ Q2 ‘ 1.07[0.94,1.21] 0.318 1.10[0.97,1.24] ‘ 0.133 ‘ 1.08[0.96,1.22] 0.22 1.08[0.95,1.22] 0.23
e ‘ Q3 ‘ 1.09[0.96,1.23] 0.2 1.10[1.07,1.25] ‘ 0.135 ‘ 1.07[0.95,1.22] 0.282 1.06[0.94,1.20] 0334
‘ Q4 ‘ 1.22[1.07,1.38] 0.002 1.22[1.08,1.38] ‘ 0.002 ‘ 1.17[1.03,1.33] 0.016 1.17[1.03,1.33] 0.015
4.5 Association between MRIl and CMM demonstrated a significantly increased risk, with Model 1

showing an OR of 1.03 (95% CI: 1.02-1.04, P < 0.001) and

In the CHARLS database (Table 4.1), distinct effects on CMM ~ Model 2 an OR of 1.05 (95% CI: 1.04-1.06, P < 0.001). In
were observed across models for different quartile groups, with the  clinical data (Table 4.2), using the QI group as the reference,
Q1 group of “MRII” as the reference. For the Q2 group, Model 1 both the Q2 group and the Q3 group showed non-significant
yielded an OR of 1.00 (95% CI: 0.99-1.01], P = 0.838), and Model  associations in the four models. However, the Q4 group
2 showed an OR of 1.01 (95% CI: 1.00-1.02, P = 0.045). The Q3 consistently indicated a heightened CMM risk. Model 1
group also exhibited elevated CMM risk. Model 1 had an OR of  reported an OR of 1.22 (95% CI: 1.07-1.38, P = 0.001), and
1.02 (95% CI: 1.00-1.03, P = 0.005), and Model 2 presented an OR  Model 2 showed an OR of 1.22 (95% CI: 1.08-1.38, P = 0.002).
of 1.03 (95% CI: 1.02-1.04, P < 0.001). The Q4 group  Overall, quartile groupings of the “MRII” were associated with
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Restricted cubic spline curve analysis of the relationship between CCR, METS-IR, MRII and the probability of CMM: comparison of two data sets.
(A—C) In CHARLS data, CCR, METS-IR or MRII effect on probability of CMM, respectively. (D—F) In clinical data, CCR, METS-IR or MRII effect on

probability of CMM, respectively.
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CMM occurrence. In the CHARLS database, Q3 and Q4 groups
were linked to increased CMM risk across models. In clinical data,
the Q4 group consistently predicted a higher CMM risk.

4.6 The RCS curves of METS-IR, CCR, and
their combination for CMM

In the CHARLS database, CCR showed a U-shaped association
with CMM including the high probability (0.12-0.20) at low CCR
(near 0), a nadir (0.03-0.05) in the interval of 80-120 (validated via
piece-wise regression), and renewed increase beyond a CCR of 120
(reaching 0.12-0.13 at a CCR of 300) (Figure 4A). METS-IR
demonstrated a positive, approximately linear relationship with
CMM risk, with probabilities ranging from 0.01-0.10 at values of
20-40, and rising to 0.25-0.30 at a value of 100 (Figure 4B). In
contrast, the MRII exhibited a nonlinear “decrease-then-increase”

pattern, confirming a synergistic relationship between the two
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factors (Figure 4C). In the clinical data, the relationship between
CCR and CMM risk was a nonlinear pattern with the lowest risk
(0.30-0.35) observed at CCR values of 70-90, and higher risk
outside this range (Figure 4D). Leveraging Youden’s index, we
identified 129 as the optimal high-risk threshold for CCR, with a
specificity of 0.993 and a sensitivity of 0.032 (maximum Youden’s
index = 0.025). In contrast, METS-IR exhibited an overall
increasing trend, rising from 0.20-0.30 at values of 20-40 to
between 0.30-0.60 beyond 40 (Figure 4E). Via Youden’s index,
the optimal high-risk threshold for METS-IR was determined as
27.474, with a sensitivity of 0.721, specificity of 0.463, and a
maximum Youden’s index of 0.184. The MRII also demonstrated
a complex, fluctuating nonlinear association (Figure 4F).
Furthermore, we assessed the stability of METS-IR cut-off values
across subgroups by utilizing the Youden’s index (Figure 5). In the
clinical dataset (Figure 5B), the overall METS-IR threshold was
determined to be 27.47, demonstrating relative stability within
subgroups such as urban residents, married individuals, and non -
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drinkers (ranging from 27.47 to 28.1). Conversely, higher cut-off points
were observed in subgroups including females (33.37), rural residents,
drinkers, unmarried individuals, and smokers. Additionally, the
subgroup of individuals aged 70 years or older (25.69) had a lower
cut-oft point. In contrast, the CHARLS dataset (Figure 5A) presented a
substantially higher overall threshold (38.99), with subgroup thresholds
spanning from 36.49 to 39.26. Specifically, females (39.26) had a higher
threshold compared to males (37.38). The subgroup of individuals
younger than 70 years (38.99) was consistent with the overall threshold,
while the subgroup of those aged 70 years or older (36.49) had a lower
threshold. Moreover, urban residents and married individuals had
thresholds in line with 38.99, whereas rural residents, unmarried
individuals, and the subgroup of those aged 70 years or older had
lower thresholds.

4.7 Predictive value of METS-IR, CCR, and
MRII for CMM

In the CHARLS database (Figures 6A-C), receiver operating
characteristic (ROC) curve analyses (Figure 6B) showed that
METS-IR exhibited moderate-to-good discriminative ability for
CMM (area under the curve [AUC] = 0.712), while the MRII
demonstrated predictive potential (AUC = 0.704) (Figure 6C),
which also indicated that the MRII adds discriminatory power
(albeit slightly less than METS-IR alone). However, CCR had
limited predictive performance (AUC = 0.398) as a standalone
marker (Figure 6A). In clinical data (Figures 6D-F), METS-IR
retained modest predictive value for CMM (AUC = 0.618) to assist
clinical risk stratification (Figure 6E). The MRII showed moderate-
to-poor discriminative ability (AUC = 0.589), highlighting the need
to optimize multi-marker combination models (Figure 6F). In
addition, CCR demonstrated poor predictive performance (AUC
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= 0.479, near random prediction) and is not recommended as a
standalone predictor (Figure 6D).

4.8 Subgroup analysis of the effects of
CCR, METS-IR, and MRIl on CMM:
comparison between CHARLS and clinical
data

In the CHARLS database, CCR had significantly heterogeneous
effects on CMM across subgroups (Figure 7A). In the cancer (CA)
subgroup, the odds ratio (OR) of CCR for CMM was 0.27 (95% CI:
0.17-0.44; P < 0.001) in individuals without cancer (N, n = 10,685)
and 0.02 (95% CI: 0.00-0.84; P = 0.040) in those with cancer (Y, n =
126). In the chronic lung disease (CLD) subgroup, the OR was 0.23
(95% CI: 0.13-0.39, P < 0.001) in individuals without CLD (N, n =
9561), and 0.40 (95% CI: 0.14-1.10, P = 0.076) in individuals with
CLD (Y, n = 1250), indicating protective effect of CCR on CMM
varies by disease background. Subgroup analyses of biochemical
indicators and demographics revealed modifying effects. For
example, different age groups exhibited varying CCR effects (< 60
years, OR = 0.29, 95% CI: 0.12-0.71, P = 0.006; 60-75 years,
OR = 0.33, 95% CI: 0.17-0.61, P < 0.001; > 75 years, OR = 0.69,
95% CI: 0.19-2.48, P = 0.565). This result indicated a positive
association between CCR and CMM. As shown in the CA subgroup
(Figure 7B), METS-IR was significantly associated with higher
CMM odds in both non-cancer (OR = 1.07, 95% CI: 1.06-1.08, P
< 0.001) and cancer (OR = 1.10, 95% CI: 1.03-1.18, P = 0.005)
participants. This positive association was consistently observed in
various subgroups (such as CLD, total cholesterol levels, and age),
although the magnitude of risk elevation varied. Notably, MRII also
demonstrated significance across these subgroups (Figure 7C).
Subgroup analyses of clinical data revealed more complex

frontiersin.org


https://doi.org/10.3389/fendo.2025.1694959
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Zhang et al. 10.3389/fendo.2025.1694959
ROC curve of CCR for predicting CMM (AUC = 0.398 ) ROC curve of CCR for predicting CMM (AUC = 0.479 )
o | o |
@ | @ |
S o
© | e |
o S
G k3
H 3
< | = |
=] =]
2 ba
o 7 o
o | o |
S S
T T T T T T T T ¥ T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 06 08 1.0
1 - Specificity 1 - Specificity
ROC curve of METS_IR for predicting CMM (AUC = 0.712 ) ROC curve of METS_IR for predicting CMM (AUC = 0.618 )
o | o
@ | @ 4
o ]
o | o |
S S
k3 k3
2 2
2] %
= = |
S =]
o~ | o
S o
e | =
o o 7
T T T T T T T T T T T T
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity 1 - Specificity
ROC curve of MRII for predicting CMM (AUC = 0.704 ) ROC curve of MRII for predicting CMM (AUC = 0.589 )
e e |
@ 4 ®
S =
© | o |
S =
z =
2 z
= 2
2 2
& )
< <
=] =
o~ o
S c
= e 4
S =
T T T T T T T T T T T T
0.0 0.2 0.4 06 08 1.0 0.0 0.2 04 06 08 1.0
1 - Specificity 1 - Specificity
FIGURE 6

ROC curve analysis of CCR, METS-IR, and MRII for predicting CMM: comparison between two data sets. (A—C) In CHARLS data, ROC curve of CCR,
METS-IR or MRII for predicting CMM, respectively. (D—F) In clinical data, ROC curve of CCR, METS-IR or MRII for predicting CMM, respectively.

relationships among CCR, METS-IR, and MRII on CMM
(Figures 7D-F). For example, in the HTN subgroup, CCR was
not significantly associated with CMM in either normotensive (OR
= 0.58, 95% CI: 0.08-4.48, P = 0.601) or hypertensive individuals
(OR =1.29,95% CI: 0.34-4.94, P = 0.709) (Figure 7D). However, in
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individuals with HTN, METS-IR exhibited a significant odds ratio
(OR) of 1.07 (95% CI: 1.02-1.13, P = 0.004), highlighting the
modifying role of disease status (Figure 7E). In conclusion, the
associations of METS-IR, CCR, and MRII with CMM are
significantly modulated by subgroup characteristics.
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5 Discussion

In this study, we systematically investigated the relationships
between the METS-IR, CCR, and CMM using both the CHARLS
database and clinical data, yielding comprehensive findings with
implications for clinical practice and public health. Baseline
analyses consistently demonstrated that across both datasets,
individuals with CMM were older, had a higher BMI, a higher
prevalence of metabolic risk factors (e.g., hypertension, diabetes),
and elevated METS-IR compared to non-CMM groups.

METS-IR integrates factors closely related to insulin resistance
and metabolic abnormalities, including fasting blood glucose,
triglycerides and HDL-C, which not only reflect metabolic health
but also correlate with cardiovascular risk factors like hypertension,
obesity, and dyslipidemia (17). Zhou et al. found that there is a
significant positive and nonlinear relationship between METS-IR
and CMM, regardless of adjusting for other confounding factors
(38), which is consistent with our research findings. Our logistic
regression analysis revealed that METS-IR emerged as a robust and
independent risk factor for CMM in both populations. Continuous
METS-IR showed significant positive associations with CMM
across all adjustment models. Furthermore, tertile-stratified
analysis confirmed a graded increase in risk, with the highest
tertile (Q3) consistently linked to elevated odds ratios, indicating
a clear dose-response relationship. Previous studies, through cross-
sectional and longitudinal analyses, have found that higher METS-
IR independently predicts hypertension incidence and prevalence in
older Chinese adults (39). A prospective cohort study in the 51st
Regiment of the Third Division of the Xinjiang Production and
Construction Corps linked elevated baseline insulin resistance
surrogates and their long-term trajectories to high CVD risk in
rural Xinjiang (40). In addition, data from the National Health and
Nutrition Examination Survey (2009-2018) showed that METS-IR
was significantly positively correlated with the prevalence of type 2
diabetes (28). Antonio Aznar Esquivel et al. linked METS-IR to
cardiovascular event risk factors (41). Therefore, consistent with
previous extensive research, our findings validated the effectiveness
of METS-IR in predicting cardiovascular disease risk.

In contrast, the association between CCR and CMM is more
context-dependent. In the CHARLS database, CCR was inversely
associated with CMM in unadjusted and partially adjusted models,
though significance diminished in fully adjusted models. While in
clinical data, no significant associations were observed for
continuous CCR or its tertile strata, suggesting confounding by
other factors or population-specific characteristics. However, the
context-dependent association of CCR with CMM may be
explained by several factors. Firstly, the population setting is
critical. The measure may reflect early, subclinical dysregulation
in a community cohort (CHARLS) but be confounded by acute
illness in a hospitalized clinical population. Furthermore, the
substantially smaller sample size of the clinical dataset (n = 437
vs. n = 10,811) limits statistical power to detect modest effects.
Lastly, residual confounding or effect modification by unmeasured
metabolic factors may differentially influence the association across
these distinct populations. Yulin Chen et al. showed that the
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increased CCR may predict CVD in older adults via cross-
sectional and longitudinal studies of 10,614 and 6,726 community
volunteers (37). Jang Yel Shin found low CCR independently
associated with sarcopenia and severe carotid atherosclerosis
(closely linked to stroke) in 1,577 type 2 diabetes patients (25).
Another study linked lower CCR to increased new-onset CVD risk
in middle-aged and older Chinese individuals, and restricted cubic
splines showed a significant linear relationship between the
sarcopenia index and CVD incidence (42). Honglin Sun et al.
established the weight-adjusted muscle mass index as a reliable
predictor of CMM onset and progression in Chinese middle-aged
and older adults, particularly among women (36). The results above
align with previous research confirming the connection between
CCR and CMM. While in clinical data, CCR tertiles Q2 and Q3
showed no significant associations across models, which highlighted
the complex interplay between metabolic indices and
cardiometabolic health.

Based on existing evidence, plausible pathways underlying the
relationship among METS-IR, CCR and CMM are as follows.
Firstly, CCR, a reliable marker for muscle mass and sarcopenia
(20, 21), links sarcopenia to metabolic abnormalities (oxidative
stress, chronic inflammation) (43-45), which drive CMM
components (e.g., heart disease, diabetes) by damaging vascular
endothelium and disrupting glucose/lipid metabolism (46, 47).
Secondly, insulin resistance (IR), reflected by METS-IR, drives
CMM. IR accelerates muscle loss centered around muscles
(48-50), forming a vicious cycle of low CCR (reduced glucose
processing). In the vasculature, IR directly promotes atherosclerosis
and dyslipidemia (51). Additionally, endothelial SGK-1 activation
has been identified as a mediator of IR-induced arterial stiffness
(52). Thirdly, “High METS-IR and Low CCR” creates a self-
reinforcing cycle. IR impairs muscle via inflammation and
mitochondrial dysfunction (49, 50), while muscle loss worsens IR
and amplifies CMM risk. These pathways, including oxidative
stress, inflammation, insulin signaling, and muscle-metabolism
crosstalk, provide a biological framework for the findings.

We found that lower CCR can reduce CMM risk and higher
METS-IR increases it based on CHARLS and clinical data. The
combined effects of METS-IR and CCR further clarified their
interactive role in CMM. Tertile combination analyses revealed
that “Low CCR and High METS-IR” consistently associated with
increased CMM risk in both datasets. Even after multivariable
adjustment, the MRII showed a similar trend that higher quartiles
(especially Q4) are associated with higher CMM probabilities,
indicating that their synergistic effect better captures risk than
using any single index alone. Restricted cubic spline (RCS) curves
illuminated nonlinear relationships. METS-IR showed a positive
linear association with CMM in both datasets, while CCR exhibited
a U-shaped relationship in CHARLS and a fluctuating nonlinear
pattern in clinical data. Notably, the identified CCR ‘low-risk
interval’ (80-120) in the CHARLS cohort may lack
generalizability to hospitalized clinical patients. In the RCS
curves, the median CCR in the clinical sample is close to the
lower bound of this interval, likely due to acute illness effects on
creatinine and cystatin C levels in hospitalized individuals. Thus,
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this interval should be interpreted with caution when applied to
such clinical populations.

Predictive value assessments via ROC curves indicated that
METS-IR had moderate-to-good discriminative ability for CMM
(AUC 0.712 in CHARLS, 0.618 in clinical data), outperforming
CCR (AUC 0.479 in clinical data) and the MRII, which supports its
potential as a practical screening tool. Meanwhile, the subgroup
analyses revealed significant heterogeneity. Age, cancer status,
chronic lung disease, and hypertension altered the relationship
between CCR, METS-IR, and CMM, emphasizing the necessity of
personalized risk assessment.

Overall, these findings confirm that METS-IR is a consistent and
influential predictive factor for CMM. Although CCR is not as robust,
its interaction with METS-IR affects risk, especially when used in
combination. Differences between CHARLS and clinical datasets
likely reflect variations in population characteristics (e.g., age,
comorbidities).With the change of lifestyle, the incidence rate of
obesity and metabolic syndrome increases, thus increasing
cardiovascular risk (39). These results deepen the understanding of
cardiac metabolic risk stratification, indicating that comprehensive
METS-IR and CCR assessment can enhance CMM risk prediction
and provide information for targeted prevention strategies. However,
further longitudinal studies are warranted to confirm causal
relationships and explore underlying mechanisms, as these findings
provide a theoretical basis for early identification of high-risk groups
and personalized CMM prevention and treatment.

These findings inform clinical practice by prioritizing METS-IR as
a robust first-line tool for CMM risk stratification. It demonstrates a
clear dose-response relationship, moderate-to-good discriminative
ability, and elevated risk beyond a threshold of 40, warranting
routine monitoring in middle-aged/older adults and those with
metabolic risk factors. The utility of CCR depends on specific
circumstances. It is valuable for early risk identification in
community environments, but its reliability for hospitalized patients
is low due to acute pathology or limited sample size. The integration of
CCR and METS-IR indicators can enhance risk prediction, especially
for the “Low CCR and High METS-IR” phenotype, indicating a
synergistic effect of metabolic renal dysfunction. Personalized
assessment should account for modifiers like age, hypertension, and
chronic lung disease to guide targeted interventions (e.g., lifestyle or
pharmacotherapy) for high-risk groups, while future work should
address the limitations of cross-sectional data and pursue
standardized measurements in diverse cohorts.

This study demonstrates key strengths. Firstly, our study
integrates two different data sources, a large CHARLS cohort
representing the middle-aged and elderly population in China
and real-world clinical data, improving the universality of the
dataset, and validating the research results. Secondly, our study
employed a comprehensive analytical approach, including multi-
model logistic regression with rigorous adjustment, quantile
stratification, combined effect assessments, RCS curves for
nonlinear relationships, ROC-based predictive analyses, and
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subgroup evaluations. This approach enabled an in-depth
investigation into the roles of METS-IR and CCR in CMM.
Thirdly, focusing on both individual indices and their interactions
offers novel insights into synergistic metabolic-renal mechanisms
underlying CMM, refining cardiometabolic risk stratification.
However, there are several limitations in our current study.
Firstly, as a cross-sectional study, it is inherently limited in
establishing causal links. Longitudinal studies are necessary to
elucidate these temporal relationships. Secondly, the observed
discrepancies between CHARLS and clinical datasets, such as the
weaker associations for CCR in clinical data, may reflect population
differences (e.g., in age or comorbidity profiles) or heterogeneity in
data collection procedures, both of which could act as confounders.
Finally, residual confounding caused by unmeasured factors, such
as diet, physical activity, and medication use, cannot be eliminated.

6 Conclusion

METS-IR is a robust independent predictor of CMM in both
community and hospitalized populations, while CCR’s role is
context-dependent. Their interaction enhances CMM risk
stratification, highlighting the value of concurrent assessment of
metabolic and muscle-renal status for CMM prevention and
personalized risk management.
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