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Progress in the clinical
application of allogeneic
platelet-rich plasma for
diabetic foot treatment

Huijuan Qin, Hui Yang, Jing Wang, Dong Jiang, Yinchen Chen,
Wei Wang* and Aiping Wang*

Department of Endocrinology, Nanjing Junxie Hospital, Nanjing, China

Due to peripheral neuropathy and varying degrees of vascular disease, patients
with diabetes often suffer from foot ulcers that are challenging to heal and may
even progress to gangrene. In recent years, autologous platelet rich plasma (au-
PRP) gel has been widely used in the treatment of chronic ulcers, including
diabetes foot. However, its limitations have become increasingly evident, such as
difficulties in collecting sufficient blood from patients, deficiencies in platelet
count and/or function among individuals with diabetes, and high costs
associated with individually required equipment. Allogeneic platelet rich plasma
(al-PRP) offers similar anti-inflammatory, anti-infective, and growth promoting
effects while addressing these drawbacks. Notably, al-PRP can be mass-
produced into ready-to-use products, simplifying clinical applications and
significantly reducing costs. This article conducted a comprehensive analysis of
the application mechanism, necessity, effectiveness and safety, preparation and
application methods of al-PRP in the treatment of diabetic foot ulcers, it showed
that al-PRP has a promising application prospect in the treatment of
diabetic foot.
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Introduction

Chronic wounds, including diabetic foot ulcers, have emerged as a global health concern
due to the aging population and the rising prevalence of obesity, diabetes, and cardiovascular
diseases (1).The complexity inherent in managing chronic wounds has made promoting soft
tissue repair and wound healing a prominent research focus. According to the latest edition of
the International Diabetes Federation (IDF), approximately 537 million adults worldwide are
currently living with diabetes mellitus, a number projected to rise to 783 million by 2045 (2).
Diabetic foot and lower limb complications represent a serious chronic health issue, affecting
approximately 18.6 million people worldwide annually. Diabetic foot ulcers (DFUs) and
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amputations significantly diminish patients’ quality of life and can
even result in premature death (3). Comprehensive pathway
management of DFUs remains the best practice (4). It includes
debridement, decompression, infection control, and optimization of
metabolism and blood supply, and involves treatments such as
negative pressure wound therapy, advanced dressings, vascular
reconstruction, and flap transplantation. However, it has significant
issues of cost and accessibility barriers, failing to meet the
requirements of low cost and high feasibility.

In 1954, Kingsley first described platelet-rich plasma (PRP) as a
blood product with a significantly elevated platelet count. From the
1960s to the 1970s, the improvement of density gradient
centrifugation played a crucial role in blood component
separation, advancing the development of PRP. In 1987, PRP was
first applied in clinical treatment in cardiac surgery and
demonstrated favorable efficacy; thereafter, it was gradually
adopted in various medical fields such as oral and maxillofacial
surgery, and the management of musculoskeletal conditions related
to sports injuries. Platelet-rich plasma, a therapeutic technology in
regenerative medicine, has been applied in clinical practice.
Autologous platelet-rich plasma (au-PRP), derived from a
patient’s own whole blood, is a plasma concentrate enriched with
platelets, fibrin, bioactive proteins and varying concentrations of
leukocytes obtained through centrifugation (5),au-PRP promotes
tissue repair by enhancing microcirculation reconstruction,
inhibiting local inflammatory responses and reducing apoptosis.
However, its application is often limited among patients with
multiple comorbidities, such as thrombocytopenia or severe
infections, which can compromise the activity and effectiveness of
au-PRP. The advent of allogeneic platelet rich plasma (al-PRP)
addresses these challenges.

Derived from the platelet concentrate of healthy donor blood,
al-PRP releases a significant amount of growth factors and various
bioactive substances to support tissue repair and regeneration. In
2007, European researchers reported the first case of using
allogeneic platelet-rich plasma for treating delayed fracture union,
and this study was published in the journal Injury. Since then,
research on the application of allogeneic PRP in fields such as
refractory wounds and delayed fracture union has gradually
increased. The advantages include ease of preparation, cost-
effectiveness, and highly efficacy. This article provides a
comprehensive review of the research progress on al-PRP in the
treatment of diabetic foot ulcers.

Mechanism of PRP in the treatment of
DFUs

Anti-inflammatory and anti-infective
effects of PRP

Upon activation, platelets in PRP release a spectrum of mediators
that promote the recruitment and clustering of macrophages and
neutrophils. These effector cells exert direct antimicrobial actions
and concurrently shape the local inflammatory milieu (6). They also
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recognize and remove senescent or injured cells, thereby clearing focal
necrotic debris and supporting tissue repair. Macrophage-derived
TGF-B drives fibroblast proliferation and their recruitment into the
wound bed. In parallel, macrophages and neutrophils provide broad-
spectrum clearance of exogenous pathogens in infected wounds
through non-specific phagocytosis. Simultaneously, they initiate a
cascade of inflammatory responses, including cytokine and
chemokine release, upregulation of adhesion molecules, complement
activation, and recruitment of additional immune cells to the wound
site. Concurrently, macrophages polarize toward the pro-inflammatory
M1 phenotype, releasing IL-6 to amplify inflammatory signaling and
promote the clearance of necrotic tissue and cellular debris, thereby
supporting early wound debridement and defense. Furthermore,
macrophages directly influence fibroblasts by secreting growth factors
and cytokines (e.g., TGF-B, PDGF, IL-1f) that enhance fibroblast
proliferation, migration, and myofibroblast differentiation. These
signals increase extracellular matrix synthesis (collagen, fibronectin)
and promote wound contraction, thereby accelerating tissue repair and
regeneration while laying the groundwork for subsequent remodeling
(7). Neutrophils present in al-PRP can release bacteriostatic and
antimicrobial factors (e.g,, a-defensins, cathelicidins, lactoferrin) and
mobilize chemokines such as stromal cell-derived factor-1a (SDE-1a).
Alongside other blood cell components (leukocytes and monocytes),
these mediators help curtail microbial growth, modulate immune cell
trafficking, and temper excessive inflammation. As a result, al-PRP can
reduce the expression of pro-inflammatory cytokines (such as IL-1f3,
IL-6, and TNF-a), supporting a more balanced inflammatory milieu
conducive to healing (8).

The fibronectin-rich fibrillar mesh in PRP sequesters and
concentrates platelets and leukocytes, creating a provisional matrix
that prolongs and localizes the release of growth factors (e.g., PDGF,
TGF-B, VEGF) and cytokines. This scaffold not only enhances cell
adhesion and migration but also modulates immune responses by
regulating leukocyte activation, macrophage polarization, and
complement interactions, thereby fine-tuning inflammation and
supporting organized tissue repair (9). Comparative studies indicate
that rabbit platelet microbicidal proteins (PMP-1 and thrombin-
induced tPMP-1) share high sequence homology with human platelet
factor 4 (PF4/CXCL4) and adopt closely similar three-dimensional
chemokine-like folds. This structural conservation helps explain their
overlapping cationic, heparin-binding, and antimicrobial properties,
including membrane-targeting activity against bacteria. Platelets can
be activated either by vascular injury signals (thrombin and ADP) or
directly by recognition of microorganisms. This activation triggers
the release of kinases that chemotactically recruit and activate
immune cells, thereby generating inflammatory responses (10).
Huang et al. reported that in diabetic ulcer repair, persistent
macrophage activation drives elevated proinflammatory cytokines,
including TNF-a. Topical platelet-rich plasma (PRP) markedly
lowered TNF-a and IL-1 levels in diabetic rat wounds, indicating
dampened inflammation and corresponding acceleration of wound
closure (11). Moreover, immunomodulatory cues—including IL-4,
IL-13, IL-10, glucocorticoids, and immune complexes—can skew
macrophages toward an M2 phenotype. M2-polarized macrophages
exert anti-inflammatory, regulatory, and tissue-remodeling actions,
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collectively enhancing the pace of wound repair. Using an in vitro
diabetic foot model, Li et al. showed that platelet-rich plasma (PRP)
attenuates inflammatory signaling while promoting proliferative
activity in infected diabetic foot ulcers (12). The anti-infective
mechanism has been illustrated within the green box of Figure 1.

Anti-bacterial effects of PRP

Prior work has shown that thrombin-induced platelet
microbicidal proteins (tPMPs) secreted by rabbit platelets
enhance the bactericidal efficacy of oxacillin and vancomycin
against Staphylococcus aureus by lowering the antibiotics’
minimum inhibitory concentrations and delaying microbial
growth. Additionally, tPMPs interact with cell surface structures
of Candida albicans, disrupting membrane integrity and impairing
fungal viability, thereby contributing to antifungal activity (13). A
randomized rat study found that PRP treatment significantly
increased macrophage colony-stimulating factor expression,
CD31, type I collagen, keratinocyte proliferation, and re-
epithelialization compared with controls. Moreover, the topical
application of PRP effectively reduced inflammation, thereby
accelerating wound healing in wounds infected with methicillin-
resistant Staphylococcus aureus (MRSA) (14). PRP has shown
antimicrobial activity against multidrug-resistant pathogens in
diabetic foot ulcers, including MRSA, ESBL-producing Klebsiella
pneumoniae, and carbapenem-resistant Pseudomonas aeruginosa.
The primary mechanism appears to involve modulation of
inflammation via the miRNA-21/PDCD4/NF-kB pathway, leading
to reduced IL-6 and TNF-a and increased IL-10 and TGF-f, which
collectively promotes an anti-inflammatory, pro-resolving
environment conducive to infection control and tissue repair (15).

In a previous animal study, Italian researchers found that an
allogeneic platelet-lysate-derived platelet-associated blood
derivative could effectively treat cows with acute and chronic
clinical mastitis caused by both Gram-positive and Gram-negative
bacteria (16). Clinical studies have revealed that in an in vivo
MRSA-infected skin wound model, al-PRP can shorten the
inflammatory cascade response, thereby accelerating the
transition to the proliferative phase of wound healing. Combining
al-PRP with B-lactam antibiotics significantly reduced MRSA
burden in infected skin wounds. The duo showed synergistic
effects by inhibiting planktonic MRSA growth and decreasing
bacterial adhesion to the wound surface, thereby enhancing
treatment efficacy for MRSA-infected wounds (17). Research
conducted in animal models and in vitro systems encompasses a
broad spectrum of investigations, yet evidence derived from human
randomized controlled trials (RCTs) remains relatively limited.

Promoting wound repair and tissue
regeneration

Cell death can be classified into type I programmed cell death
(apoptosis) and type II programmed cell death (autophagy). Type I
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programmed cell death, primarily apoptosis, is characterized by cell
membrane contraction and nuclear fragmentation. Cao et al.
concluded that high glucose inhibits cell proliferation and
migration while inducing apoptosis through ROS-dependent
activation of JNK and p38 MAPK signaling pathways. In contrast,
PRP-Exos prevents high glucose-induced apoptosis by activating the
PDGEF-BB/JAK2/STAT3/Bcl-2 signaling pathway (18). Autophagy is
a highly conserved cellular process responsible for degrading and
recycling damaged proteins, organelles, and pathogens. It plays a
critical role in the pathogenesis of various diabetic complications (19).
Wound healing in the diabetic foot is a continuous dynamic process
in which autophagy plays a crucial role, participating in every stage of
the healing process. During the initial inflammatory phase,
autophagy activation contributes to the polarization of
macrophages in the PRP to the M2 phenotype, which plays an
important role in immunosuppression and promotion of tissue
repair. During the proliferative phase, autophagy is triggered by
cellular hypoxia in wounds, which is primarily associated with the
regulation of hypoxia-activated protein tyrosine phosphatases and
AMPK signaling in endothelial cells (20). In the final remodeling
stage, autophagy promotes wound angiogenesis of endothelial cells as
well as the differentiation, proliferation and migration of
keratinocytes and fibroblasts, facilitating the completion of wound
repair and tissue reconstruction. Additionally, experimental findings
demonstrated that an increase in LC-3 protein expression,
accompanied by a higher LC-3II/LC-3I ratio, indicates an
enhanced in autophagic response in PRP-treated diabetic foot ulcer
patients (21). The yellow box in Figure 1 illustrated the mechanism by
which PRP promotes wound repair and tissue regeneration.

Ferroptosis is a newly identified form of programmed cell death
that is distinct from autophagy and apoptosis. It has been found that
GPX4 and SLC7AIll are two key factors associated with the
upstream signaling pathway of ferroptosis. Excessive production
of ROS in a high-glucose environment reduces the content and
activity of GPX4, leading to the accumulation of lipid peroxides and
thus leading to lipid peroxidation in the cell membrane and the
consequent damage. Ultimately, this results in the occurrence of
diabetic foot repair disorders. AI-PRP promotes angiogenesis and
repair in ulcer wounds by regulating the expression of ferroptosis-
related signature factors. The underlying mechanism involves
increasing the protein expression of GPX4 and SLC7All,
promoting the regeneration and repair of skin tissues and vessels
in ulcer wounds, thereby accelerating wound healing (22).

Promotes tissue repair and regeneration

Reconstruction of microcirculation in the DFUs
Abnormalities in angiogenesis and extracellular matrix
remodeling contribute to the impaired wound healing process in
diabetes. Firstly, when PRP is applied to treat diabetic foot wounds,
the high concentration of platelets in PRP rapidly aggregates at the
wound site, promoting vasoconstriction and forming platelet thrombi
at the damaged vessels. Secondly, platelets activate the coagulation
system, forming a fibrin network that serves as a scaffold for wound
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healing. Simultaneously, they release various growth factors,
including platelet-derived growth factor (PDGF), transforming
growth factor (TGF), insulin-like growth factor, epidermal growth
factor (EGF), and vascular endothelial growth factor (VEGF) (23).
Neovascularization and restoration of local perfusion rely on the
proliferation and migration of vascular endothelial cells, a process
strongly driven by VEGF signaling. VEGF upregulates factors such as
SDF-1a and its receptor CXCR4, enhancing endothelial chemotaxis
and recruitment. Through these pathways, VEGF promotes
endothelial infiltration into extracellular matrix-like scaffolds (e.g.,
collagen gels), supports angiogenesis, and indirectly facilitates
osteogenesis by improving vascular supply, delivering progenitor
cells, and modulating osteogenic signaling in the healing
environment (24). VEGFR exists in several isoforms (primarily
VEGFR-1/Flt-1, VEGFR-2/KDR, and VEGFR-3). Among VEGF
ligands, VEGF-A is the key driver of angiogenesis in chronic
wounds, such as diabetic foot ulcers, mainly via VEGFR-2 signaling
to stimulate endothelial proliferation, migration, and permeability
(25, 26). In addition, PDGF released from platelets, and secreted by
activated macrophages, serves as a crucial mitogenic factor. It plays a
role in promoting mural cell remodeling and vascular maturation (27,
28). PRP delivers a spectrum of growth factors that directly and
indirectly drive neovascularization, boost cellular proliferation, and
collectively hasten wound closure.

In an in vitro healing assay, the interaction between platelets
and certain plasma proteins in al-PRP strongly stimulates
endothelial cell sprouting and induces angiogenesis (29). Animal
studies show that wounds treated with lyophilized activated
leukocyte—-rich PRP (al-PRP) exhibit markedly increased
neovascularization compared with controls. This effect is partly
attributable to the high VEGF content in PRP, which promotes
endothelial proliferation and enhances vascular permeability to
regulate vasculogenesis and angiogenesis. In addition, multiple
growth factors in PRP act synergistically to further drive vascular
formation (30).

Promotion of fibroblast proliferation and
extracellular matrix synthesis in the DFUs

PRP plays a key role in the formation of the extracellular matrix
(ECM), a three-dimensional polymer network composed of various
proteins and other components. The ECM not only provides
support for the tissue but also facilitates cell adhesion and
migration, both of which are critical for the wound healing
process. Matrix metalloproteinases (MMPs) are essential for ECM
remodeling. Matrix metalloproteinases (MMPs) degrade damaged
ECM components, facilitate cell migration, and promote the
formation of new tissue. These processes are essential for wound
closure and effective tissue repair (31). PRP-enriched EGF, in
combination with up-regulated EGFR, promotes DNA and RNA
repair, enhances protein synthesis, and stimulates epithelial cell
growth, playing a vital role in wound repair. The TGF-B/Smad
signaling pathway may induce the onset of epithelial mesenchymal
transition by regulating fibroblast proliferation, migration, and by
promoting the expression of collagen formation. Simultaneously,
the application of PRP reduced the expression level of TNF-ot and
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stimulated the production of substantial collagen fibers, thereby
promoting the healing of chronic wounds in diabetic foot. Studies
have shown that an increased release of endogenous MMPs
inhibitor (TIMP) from the stroma results in inhibition of MMPs
synthesis. A decrease in the MMPs/TIMP ratio prolongs the
degradation of the trabecular cellular matrix, extracellular matrix,
and growth factors, thereby creating a favorable environment for
wound healing (32).

In a wound model of diabetic mice treated with al-PRP, Masson
trichrome staining showed increased collagen homogeneity and
density, while nuclear staining indicated a significant increase in the
number of proliferating cells. In vitro, the combination of
micronized allogeneic dermis and al-PRP stimulated fibroblast. In
vivo, al-PRP alone or combination with micronized dermis
increased wound tissue hemostasis and proliferation (33).

Regulation of peripheral nerve in the DFUs

The high concentration of growth factors in PRP not only
stimulates cell proliferation but also significantly inducing the
synthesis of neurotrophic factors. Among these, VEGF plays a
critical role in promoting neuronal survival and axon growth. IGF-
1 stimulates protein synthesis in neurons, glial cells and Schwann
cells. It acts synergistically with VEGF to promote neuronal axon
growth. The EGF receptor and its ligands play a role in regulating the
response to nerve injury. PDGF promotes the proliferation of human
adipose-derived stem cells through activation of the ERK1/2, PI3K/
Akt, and JNK signaling pathways, thereby contributing to nerve
regeneration. In addition, the high concentration of growth factors in
PRP significantly enhances the proliferation and migration of
Schwann cells. These Schwann cells connect with nerve stumps to
form Biingner’s bands, facilitating axonal regeneration by secreting
various active substances, including neurotrophic factors. During the
mature stage of nerve regeneration, Schwann cells differentiate into
myelin sheaths. Additionally, brain-derived neurotrophic factor
(BDNF), present in PRP even at low concentrations, promotes
neuronal survival and differentiation while contributing to the
maintenance of vascular stability (34). The regulation of peripheral
nerves has beendescribed in the gray box of Figure 1.

BDNF and Krox20 are genes associated with nerve regeneration
and repair of damaged peripheral nerves. The increased expression
of BDNF and Krox20 following al-PRP intervention indicates that
al-PRP plays a significant role in enhancing nerve regeneration,
particularly in cases of axonal degeneration (35). The regulation of
peripheral nerves has been described in the gray box of Figure 1.

Necessity, efficacy and safety of al-PRP in
the DFUs

Necessity of al-PRP in the DFUs

Diabetic foot ulcers are frequently linked to peripheral
neuropathy, vascular dysfunction, inadequate tissue perfusion,
microcirculatory impairment, an accumulation of senescent cells,
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and reduced proliferative capacity of resident cells. This state is
marked by attenuated cellular responsiveness to signaling cues.
When compounded by external insults—such as trauma, infection,
or sustained pressure—it predisposes to refractory wounds and the
development of chronic, non-healing ulcers. Delayed healing in
diabetic foot wounds markedly elevates the risk of soft tissue and
osteal infection, thereby increasing rates of amputation and
mortality. These risks underscore an urgent need for therapies
that accelerate wound closure and support tissue repair and
regeneration. The application of au-PRP is also contraindicated in
a significant subset of patients due to comorbidities including
hematological disorders, active severe infection, malignancy, and
end-organ dysfunction. Practical limitations, such as the procedural
costs and logistical challenges of point-of-care preparation, further
impede its broad clinical adoption. As a result, the advantages of al-
PRP become increasingly evident. A significant safety advantage of
al-PRP lies in its local mode of application, which typically prevents
entry into the systemic circulation and minimizes the risk of
immunogenic reactions. The activation process induces structural
and molecular modifications in the platelets, further attenuating
their immunogenic potential. Furthermore, al-PRP is fully degraded
and absorbed at the application site within weeks, effectively
precluding the risk of a chronic immune response. The sourcing
of allogeneic blood from regulated blood banks, which adhere to
rigorous screening and collection standards, additionally mitigates
the risk of transfusion-transmitted infections. Beyond its favorable
safety profile, al-PRP exerts potent regenerative effects by
promoting key wound healing processes, including angiogenesis,
fibroblast proliferation, and collagen deposition. From a clinical
standpoint, al-PRP offers considerable logistical and economic
advantages. Its off-the-shelf availability streamlines preparation,
enhances cost-effectiveness, and facilitates efficient integration
into standard wound care protocols (36).

Efficacy and safety of al-PRP applied to the
DFUs

Significantly superior to normal dressings
Twenty-four healthy dogs were selected and randomly divided
into two groups to establish an abdominal wall defect repair model.
The control group received repair using only Damour, while the other
group underwent repair with Damour combined with al-PRP. These
results showed that dogs treated with al-PRP not only had no hernia
recurrence but also exhibited significantly more neovascularization
and milder intra-abdominal adhesions. Histological and molecular
evaluations further confirmed that after al-PRP treatment, there were
significant improvements in collagen deposition and
neovascularization, as well as the overexpression of genes related to
angiogenesis and myofibroblast proliferation (37). In a controlled
clinical trial comprising 100 subjects, wounds treated with al-PRP
demonstrated markedly accelerated healing rates, reduced time to
closure, and superior wound contraction compared to those receiving
conventional topical fibrinogen and thrombin therapy. These
findings suggest that al-PRP may promote a more robust and
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efficient regenerative process (38). In another study, a 20-week
follow-up of 24 patients treated with al-PRP and conventional wet
dressings revealed a significant reduction in the longitudinal and
transverse diameters of the wounds in the al-PRP group compared to
the control group. By the end of the follow-up period, the healing rate
in the al-PRP group was significantly higher, and the wounds healed
at a noticeably faster pace compared to the control group (39).
Further studies indicated that al-PRP accelerated the healing of foot
wounds even at a 6-month follow-up, with no significant differences
based on the subjects’ age, gender, blood pressure, smoking or non-
smoking status (40). A meta-analysis revealed that the use of al-PRP
resulted in a significantly higher rate of complete wound healing in
diabetic foot ulcers compared to the control group (OR: 6.19; 95% CI:
2.32-16.56; P < 0.001). Importantly, no increase in adverse effects was
observed, highlighting its safety and efficacy (41). The findings from
the study suggest that al-PRP offers significant advantages in the
clinical management of diabetic foot compared to ordinary dressings.

Equivalent results compared to au-PRP

In the animal experiment, 24 healthy adult healthy white rabbits
were selected and randomly divided into four groups. One group
served as al-PRP donor, while the remaining three groups were
designated as experimental groups. In the experiment, the surgical
wounds on the left side of the rabbits were treated with saline, while
the right side was treated with Au-PRP, Al-PRP, and xenogeneic
PRP, respectively. The wounds were monitored and evaluated over
a period of 17 days. The results demonstrated that the wounds on
the right side achieved complete re-epithelialization, with a
significantly higher percentage of wound contraction compared to
the contralateral side (42). To evaluate the clinical applicability of
autologous leukocyte- and platelet-rich plasma (al-PRP), a study
enrolled 75 subjects who received either al-PRP or au-PRP for
wound management. He et al. reported no significant difference in
platelet concentration between the two treatment groups, with both
significantly accelerating ulcer healing. This trial was the first to
demonstrate the feasibility of substituting au-PRP with al-PRP in
the treatment of DFUs confirming both the efficacy and safety of al-
PRP as a comparably effective alternative. Furthermore, within the
initial two weeks of treatment, the al-PRP group exhibited a
significantly higher rate of granulation tissue proliferation
compared to the au-PRP group, indicating a promotive role of al-
PRP in the early phase of wound granulation (43).

Although there are numerous animal studies and in vitro studies,
evidence from human randomized controlled trials (RCTs), as well as
large-scale, multicenter trials, is relatively limited. There is an urgent
need for standardized preparation procedures for al-PRP, multicenter
RCTs, and cost-effectiveness studies.

Method of preparation and application of
al-PRP

The preparation methods of PRP have not yet been
standardized. Currently, there are several methods for its
preparation: One-step centrifugation method, Two-step
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Mechanism of PRP.

centrifugation method, Manual density gradient centrifugation
method and the Automated kit-based method. The characteristics
of different preparation methods are described in the Table 1.

Our diabetic foot center has established a specific preparation
protocol (Figure 2), and the preparation of al-PRP differs slightly
from that of au-PRP. For al-PRP, Type AB healthy blood donors are
selected, and a single platelet treatment volume of approximately
250-300 ml is obtained using blood center equipment. Platelet

TABLE 1 Comparison of different PRP preparation technologies.

PRP preparation
methods

Centrifugal force (xg)

(min)

Centrifugation time

plasma is divided into 4.5 ml portions and frozen at —20°C for later
use. Procoagulant is made by mixing thrombin and a calcium salt
solution in a specific ratio, with each 0.5 ml portion also frozen at
—-20°C. Thawed platelet plasma and the procoagulant are then
mixed at a 9:1 ratio to form platelet gel.

Despite the variety of preparation methods, a standardized
quality evaluation system for PRP has yet to be established. This
calls for cross-disciplinary collaboration among clinical, testing, and

Platelet
concentration (x10°/
L) that of whole blood

Disadvantages

One-step centrifugation

800-120
method

1st centrifugation: 1500-2000;
2nd centrifugation: 800-1200

Two-step centrifugation
method

400-600 (fc dient
Manual density gradient (for gradien

. X formation); 800-1000 (for 20-30
centrifugation method K
platelet separation)
Automated kit-based method 900-1500 10-20

Ist: 10-15; 2nd: 5-10

1. Low platelet recovery rate
2. Poor concentration

3. High risk of red blood cell
contamination

1. High risk of red blood cell
contamination

2. High dependence on
operator proficiency

3. Increased contamination risk

1. Complex operation and high
43 reagent cost
2. Long processing cycle

3. Potential medium residue

1. High cost 2. Limited
parameter flexibility 3. Batch-
to-batch variability of kits
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Brief flow chart of platelet-rich plasma preparation.

FIGURE 3
Practical application of platelet-rich plasma in diabetes foot ulcer.

materials engineering departments to address this need and
improve PRP preparation standards, thereby guiding
clinical translation.

Indications and contraindications for the
use of al-PRP in the DFUs

The guidelines recommend platelet concentrate products as a
safe and effective therapy for chronic wounds, including vascular
ulcers and pressure ulcers. These products promote granulation
tissue growth and re-epithelialization in chronic wounds, making
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them a preferable option compared to traditional conventional
wound treatment (44). AI-PRP is mainly applied to wounds
where necrotic tissue has been removed, tissue hypoperfusion has
been addressed, and infection is under control. Contraindications
mainly include: (1) hemoglobin level lower than 10 g/dL; (2) the
presence of a tumor or metastatic disease in the wound; (3)
hemodynamic instability; (4) sepsis, septicemia; (5) severe local
infection. Although extensive literature exists on the application of
al-PRP, the absence of large-scale, multi-center, prospective, and
high-quality randomized controlled trials (RCTs) highlights the
need for further refinement. Specifically, the extraction,
preparation, and application protocols for al-PRP require
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standardization and strengthening to ensure consistency and
reliability in clinical practice.

Practical application of al-PRP in the DFUs

A 61-year-old male patient with diabetes mellitus (disease
duration: 19 years) was admitted to the Diabetic Foot Center of
our hospital due to a heel ulcer caused by chapping, which had
failed to heal for 4 months. At the initial stage of the lesion, there
was an ulceration with a diameter of approximately 1 cm,
accompanied by exudation. Subsequently, the ulceration enlarged
to a 3 cm x 3 cm wound. The patient was classified as Grade 1
according to the Wagner Classification System. Despite receiving
routine treatments such as dressing changes and antibiotics at
another hospital, the ulceration still failed to heal.

Al-PRP was applied three times a week for four weeks, during
which significant wound shrinkage was observed, ultimately leading
to healing. Below are the recorded photos documenting the
progress. The patient’s consent was obtained for this case. This
process is illustrated in Figure 3.

Conclusion

In summary, al-PRP technology plays a role in the treatment of
diabetic foot ulcer wounds. However, clinical studies focusing on al-
PRP and its combined treatments remain relatively limited, and its
full potential has yet to be realized. Therefore, further
multidisciplinary research is essential to advance the understanding
and application of al-PRP, with the goal of establishing a more
comprehensive and effective clinical treatment framework.
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