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Background: Obesity is heterogeneous across metabolic and behavioral

dimensions. Oxytocin, a hypothalamic neuropeptide, and leptin, an adiposity

signal, have been implicated in appetite and reward, yet their relationships with

disordered eating across metabolic obesity phenotypes remain unclear. We

examined these associations and evaluated the predictive value of oxytocin

alone versus multivariable models.

Methods: In a cross-sectional cohort of 99 adults, we assessed anthropometry,

biochemistry, oxytocin and leptin, and three validated questionnaires (EDE-Q,

DEBQ, EBA-O). Participants were classified into four metabolic obesity

phenotypes. Group differences used Kruskal–Wallis with Dunn’s correction;

associations used Spearman correlation and OLS with HC3 robust SEs.

Predictive modeling used logistic regression with restricted cubic splines for

oxytocin and an elastic-net multivariable model (oxytocin spline + leptin, BMI,

waist circumference, HSI, VAI, and a PCA-derived EDE-Q component).

Performance was estimated via leakage-free nested cross-validation (outer 5-

fold, inner 5-fold) using out-of-fold (OOF) ROC AUC, Brier score, bootstrap CIs,

calibration, and decision-curve analysis.

Results:Oxytocin was lower and leptin higher in metabolically unhealthy obesity

(both p<0.01). Oxytocin correlated inversely with disordered-eating severity,

while leptin correlated positively. The oxytocin-only spline model achieved

OOF AUC 0.87 (95% CI 0.76–0.95; Brier 0.10). The combined elastic-net

model achieved OOF AUC 0.97 (95% CI 0.90–1.00; Brier 0.05) and provided

significantly better discrimination than oxytocin alone (DAUC 0.11, 95% CI 0.01–

0.22; p=0.02). Using Youden’s index on OOF predictions, the oxytocin-only

model’s optimal operating probability (0.69) mapped to ~90.5 pg/mL (95% CI

74.8–103.3), yielding sensitivity of 0.94 (0.87–0.99) and specificity of 0.83 (0.70–

0.95). Decision-curve analysis showed higher net benefit for multivariable

models across clinically relevant thresholds.

Conclusion: Lower oxytocin is associated with greater disordered-eating

severity, but oxytocin is most informative when integrated with metabolic and
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behavioral markers. A multivariable model substantially improved discrimination

and net benefit over oxytocin alone. The ~90.5 pg/mL value is an exploratory

operating point rather than a clinical cutoff; external validation and prospective

evaluation are needed before translation to practice.
KEYWORDS

oxytocin, leptin, disordered eating, metabolic obesity phenotypes, spline modeling,
restricted cubic splines, ROC curve analysis
Introduction

Obesity and its metabolic complications are a growing global

health crisis, contributing substantially to cardiovascular disease,

type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD) (1).

Although body mass index (BMI) remains the most common

clinical indicator, obesity is heterogeneous: some individuals with

elevated BMI are metabolically healthy, whereas others with normal

weight show marked metabolic dysfunction. This heterogeneity

underscores the need to assess obesity through both metabolic

and behavioral dimensions (2).

Disordered eating patterns—binge eating, emotional eating,

external eating, night eating—are key behavioral contributors to

excess energy intake and weight gain but are often under-

recognized in routine care (3). Psychometric tools such as the

Eating Disorder Examination Questionnaire (EDEQ), Dutch

Eating Behavior Questionnaire (DEBQ), and the Eating Behavior

Assessment for Obesity (EBA-O) can profile these behaviors in

clinical and research settings (4–6).

Neuroendocrine pathways are increasingly implicated in

disordered eating. Oxytocin—a hypothalamic neuropeptide

involved in social bonding, stress responsivity, and energy balance

—has been shown to modulate appetite, attenuate reward-driven

intake, and enhance cognitive control (7). Preclinical work suggests

oxytocin reduces caloric intake and body weight, especially under

high-fat diet or stress conditions (8). Early clinical studies indicate

intranasal oxytocin may lower energy intake, improve insulin

sensitivity, and reduce BMI in obesity and binge-eating

populations (9). In parallel, leptin—an adiposity signal often

elevated in obesity—has been linked to reward-related eating and

putative leptin resistance (10).

However, relationships between endogenous circulating

oxytocin, metabolic health, and disordered eating remain

incompletely characterized, particularly across distinct metabolic

obesity phenotypes (metabolically healthy normal weight

[MHNW], metabolically unhealthy normal weight [MUNW],

metabolically unhealthy overweight [MUOW], and metabolically

unhealthy obese [MUO]). Prior studies often treat obesity as

homogeneous, rarely test non-linear oxytocin–risk relationships,

and seldom evaluate whether oxytocin adds predictive value beyond

metabolic and behavioral measures. Data from Central Asia are
02
especially scarce despite rising obesity prevalence; for example,

recent reports from Uzbekistan indicate substantial increases in

adult and adolescent obesity with implications for cardiometabolic

burden: national obesity rates have risen dramatically in recent

decades, with 27.9% of adult men and approximately 5.7% of

adolescents now classified as obese [NCD-RisC, 2024]. The 2025

World Obesity Atlas projects further increases in prevalence, with

implications for cardiometabolic disease burden and healthcare

costs (11).

In this context, the present study investigates associations

between plasma oxytocin levels, metabolic obesity markers, and

eating behavior traits across a spectrum of metabolic obesity

phenotypes in adults. We compared oxytocin and leptin

concentrations across the four predefined metabolic obesity

phenotypes (MHNW, MUNW, MUOW, and MUO). We assessed

the prevalence and severity of disordered eating using three

validated questionnaires (EDE-Q, DEBQ, and EBA-O) and

examined correlations between metabolic/hormonal parameters

and disordered eating behaviors. Additionally, we identified

independent predictors of insulin resistance and eating disorder

severity through multiple linear regression analysis. We also

explored an operating point for oxytocin derived from out-of-fold

predictions, recognizing this is not a clinical cutoff.

By integrating anthropometric, biochemical, and psychometric

data, this study offers a comprehensive view of the metabolic and

neuroendocrine underpinnings of obesity and disordered eating,

and provides novel insights into the potential therapeutic role

of oxytocin.
Materials and methods

This cross-sectional, observational study was conducted at the

Republican Specialized Scientific-Practical Medical Center of

Endocrinology named after Academician Ya. Kh. Turakulov

(Tashkent, Uzbekistan) between March and June 2025. The

design followed the STROBE recommendations for cross-

sectional research (Supplementary Table S1). Adults aged 18–65

years with a body mass index (BMI) ≥ 18.5 kg/m² and without acute

or chronic systemic disease were eligible. Exclusion criteria included

pregnancy or lactation, psychiatric or neurological disorders,
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pharmacologic treatment affecting appetite or metabolism (e.g.,

corticosteroids, antidepressants), diabetes mellitus or other

endocrine disease, and inability to complete study procedures.

The study protocol was reviewed and approved by the Local

Bioethics Committee of the Republican Specialized Scientific-

Practical Medical Center of Endocrinology named after

Academician Turakulov (Protocol No. 2/2025, dated 12 February

2025). All procedures were performed in accordance with the

ethical principles outlined in the Declaration of Helsinki (2013

revision). Written informed consent was obtained from all

participants prior to enrollment.
Anthropometric and clinical evaluation

Measurements were obtained between 08:00 and 10:00 a.m.

after an overnight fast and bladder emptying. Body weight and

height were measured using a calibrated Seca® scale and

stadiometer, and BMI was calculated as weight (kg)/height² (m²).

Waist circumference (WC) was measured midway between the

lower rib and the iliac crest, hip circumference (HC) at the widest

part of the buttocks, and waist-to-hip ratio (WHR) as WC/HC.
Biochemical and hormonal analyses

After a fasting period ≥ 10 h, venous blood was collected

between 08:00 and 09:00 a.m. Plasma oxytocin and leptin

concentrations were determined by competitive and sandwich

enzyme-linked immunosorbent assays (ELISA; Elabscience®,

Wuhan, China). Pre-analytical handling and assay calibration

followed standardized protocols to minimize variability (see

Supplementary Methods for full assay specifications and quality-

control parameters). Standard biochemical markers (glucose,

HbA1c, lipid profile, alanine and aspartate aminotransferases

[ALT, AST], and gammaglutamyltransferase [GGT]) were

analyzed on a HITACHI 902 automated analyzer; serum insulin

was measured by electrochemiluminescence on a COBAS e 411

analyzer (Roche Diagnostics, Germany).

Derived indices included the Homeostatic Model Assessment of

Insulin Resistance (HOMAIR) (12), Hepatic Steatosis Index (HSI)

(13), and Atherogenic Index (AI). The Visceral Adiposity Index

(VAI) was calculated using sex-specific equations incorporating

WC, BMI, triglycerides (TG), and HDL-cholesterol (HDL-C) (14).
Behavioral assessment

Eating behavior was evaluated using three validated self-

report instruments:
Fron
1. the Eating Disorder Examination Questionnaire (EDE-Q

6.0), evaluating restraint, eating concern, shape concern,

and weight concern, with a global score > 2.3 indicating

clinical significance (4).
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2. the Dutch Eating Behavior Questionnaire (DEBQ),

assessing emotional, external, and restrained eating (high-

risk thresholds > 3.25 for emotional and > 3.5 for external

eating; a = 0.91–0.95) (5); and

3. Eating Behavior Assessment for Obesity (EBA-O), which

screens for food-addiction, binge-, night, sweet-, and

hyperphagic eating patterns (cut-off ≥ 4 indicates

pathology; Cronbach’s a = 0.88) (6);
In this study, we focus on disordered eating behaviours (DEBs)

— defined as sub-clinical or behavioural manifestations of eating

attitudes/behaviours — rather than categorical DSM-5 eating

disorder diagnoses. Participants completed questionnaires

independently under supervision of trained staff, and a clinical

psychologist reviewed responses when indicated.
Metabolic phenotyping

Participants were classified into four metabolic obesity

phenotypes (MHNW, MUNW, MUOW, MUO) according to

BMI, HOMA-IR, and HSI criteria. Cut-off definitions and

rationale are presented in Supplementary Methods (Phenotyping

Definitions section).

These phenotype definitions enabled a more precise

investigation of how plasma oxytocin levels relate to obesity,

metabolic dysfunction, and eating behavior beyond BMI alone.
Statistical analyses

All statistical analyses were conducted in Python 3.11 using

Pandas, NumPy, SciPy, Seaborn, Statsmodels, and Scikit-learn

libraries. Descriptive statistics were calculated for all variables.

Continuous variables are presented as mean ± standard

deviation (SD) or median (interquartile range, IQR) according to

distribution; categorical variables are presented as frequency and

percentage. Normality was assessed using the Shapiro–Wilk test.

For between-group comparisons among the four metabolic

obesity phenotypes (MHNW, MUNW, MUOW, MUO), the

Kruskal–Wallis test was applied to continuous variables, followed

by Dunn’s post hoc test with Bonferroni correction. Spearman

correlation analysis was used to assess associations between

plasma oxytocin levels and key metabolic markers (HOMA-IR,

VAI, HSI), as well as eating behavior questionnaire scores (EDE-Q,

DEBQ, EBA-O).

Multivariable models (ordinary least squares and elastic-net

logistic regression) identified independent predictors of insulin

resistance and disordered eating. All primary models were

adjusted for age and sex, with sex × oxytocin interactions tested.

Model performance was evaluated via nested cross-validation,

receiver operating characteristic (AUC), calibration, and decision-

curve analysis. Detailed specifications of model A and B, variable

transformations, and hyperparameter tuning are reported in

Supplementary Methods (Statistical Procedures section).
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All main regression models were adjusted for age and sex, and

effect modification by sex was assessed by including sex × oxytocin

interaction terms.

Menstrual phase and hormonal contraceptive use—potentially

relevant modifiers of oxytocin levels—were considered in the study

design; however, these data were not available in the present cohort

and are acknowledged as a limitation. Where available, additional

potential confounders were included in sensitivity analyses: use of

antidiabetic medications (metformin, GLP-1 receptor agonists),

smoking status, alcohol intake, and average nightly sleep duration.

All tests were two-tailed, and p-values < 0.05 were considered

statistically significant.
Results

Participant characteristics

The study included 99 participants (mean age 38.94 ± 10.40

years; 76.8% female). Median BMI was 32.10 kg/m² (IQR: 23.35–

38.10), with a median body fat percentage of 36.90% (IQR: 23.38–

46.61). Central adiposity was indicated by waist circumference

(96.87 ± 22.59 cm) and waist-to-hip ratio (0.83 ± 0.11).

Biochemical profiles revealed median ALT, AST, and GGT

levels of 21.00, 21.00, and 36.00 U/L, respectively. Median fasting

glucose was 5.10 mmol/L (IQR: 4.73–5.84) and HbA1c 5.10% (IQR:

4.70–5.70). The lipid profile showed median total cholesterol 4.81

mmol/L (IQR: 4.10–5.80), HDL-C 1.17 mmol/L, LDL-C 2.15 mmol/

L, and triglycerides 1.15 mmol/L. Median atherogenic index

was 3.03.

HOMA-IR was elevated (median 3.51, IQR: 1.68–5.34),

alongside increased hepatic steatosis index (HSI: 43.96, IQR:

32.59–52.34) and visceral adiposity index (VAI: 3.43, IQR: 1.44–

4.81). Hormonal analysis revealed hyperleptinemia and high inter-

individual variability in oxytocin (median 37.60 pg/mL, IQR:

22.30–122.35).

Eating behavior assessments indicated high scores in weight

concern, shape concern, and restrained eating (EDE-Q) as well as

binge eating and sweet eating (EBA-O). Most variables were

nonnormally distributed (Shapiro–Wilk p < 0.05) (Table 1).
Group comparisons of metabolic and
hormonal parameters

Participants were stratified into four metabolic obesity

phenotypes: MHNW (n = 18), MUNW (n = 12), MUOW (n =

13), and MUO (n = 56). Kruskal–Wallis tests indicated significant

between-group differences in plasma oxytocin (H = 25.675, p <

0.001) and leptin (H = 46.225, p < 0.001).

Post hoc Dunn’s tests showed that MUO had significantly lower

oxytocin compared to MHNW (p < 0.0001), MUNW (p = 0.014),

and MUOW (p = 0.037), and significantly higher leptin than all

other phenotypes (p < 0.001) (Figure 1).
Frontiers in Endocrinology 04
Prevalence of disordered eating behaviors

Based on validated cut-off scores, the most prevalent disordered

eating patterns were Weight Concern (57.6%) and Shape Concern

(54.5%) on the EDE-Q, followed by Binge Eating (26.3%) and Sweet

Eating (25.3%) on the EBA-O. Less common behaviors included

Hyperphagia (7.1%), Food Addiction (4.0%), and Night Eating

(3.0%). In the DEBQ subscales, Restrained Eating was present in

23.2% of participants, External Eating in 18.2%, and Emotional

Eating in 10.1% (Table 2).
Disordered eating patterns across
metabolic obesity phenotypes

Kruskal–Wallis tests indicated differences in weight concern,

shape concern, eating concern, restraint, binge eating, hyperphagia,

food addiction, night eating, and global EDE-Q (all p<0.05 after

FDR). Sweet eating was non-significant (q=0.13). Dunn’s tests

(Bonferroni-adjusted) showed MUO with higher global EDE-Q

than MHNW and MUNW (median difference +1.8, Cohen’s

d≈1.0; p<0.01). MUO differed from MUOW in select subscales

(e.g., weight concern, eating concern). MHNW and MUNW

showed no differences (Supplementary Table 2; Figure 2).
Correlation analysis

A heatmap of Spearman correlation coefficients (Figure 3)

revealed strong intercorrelations among the EDE-Q subscales and

the Global EDE-Q score, reflecting the internal consistency of this

instrument. Notably, Global EDE-Q demonstrated strong positive

correlations with EE-score, EX score, RE score, EC_Score,

WC_Score, and SC_Score.

Significant associations with metabolic and hormonal variables

were also observed. Leptin levels showed robust positive correlations

with the majority of EDE-Q subscales and the global score,

indicating a relationship between higher leptin concentrations and

greater disordered eating severity. In contrast, oxytocin levels were

inversely correlated with nearly all EDE-Q domains, suggesting a

potential protective or regulatory role. BMI and glucose had modest

positive associations (r≈0.30–0.45, p<0.05). HOMA-IR and HSI

correlated moderately (r≈0.52, p<0.001). NAFLD risk (HSI ≥36)

was 78% in MUO vs. 11% in MHNW (p<0.001) and correlated with

EDE-Q global scores (r=0.41, p<0.01) (Table 3).

These results, visualized in the heatmap, highlight consistent

associations between metabolic/hormonal dysregulation and the

severity of disordered eating behaviors (Figure 3).
Multiple regression analysis

Ordinary least squares models with HC3 robust standard errors

were used to identify independent predictors of insulin resistance
frontiersin.org
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TABLE 1 Baseline characteristics of study participants.

Category Variable Value Shapiro–Wilk p

Demographic & Anthropometric Age (years) 38.94 ± 10.40 0.3362

BMI (kg/m²) 32.10 (23.35–38.10) 0.0001

Body fat (%) 36.90 (23.38–46.61) 0.0101

Height (cm) 164.00 (159.50–168.00) 0.000

Hip circumference (cm) 114.00 (99.00–130.00) 0.0447

Waist
circumference (cm)

96.87 ± 22.59 0.0525

Waist-to-hip ratio 0.83 ± 0.11 0.1861

Weight (kg) 86.00 (64.50–105.00) 0.000

Biochemical analyses
ALT (U/L) 21.00 (16.85–31.85) 0.000

AST (U/L) 21.00 (18.00–27.60) 0.000

GGT (U/L) 36.00 (20.00–54.15) 0.000

Glucose (mmol/L) 5.10 (4.73–5.84) 0.000

HbA1c (%) 5.10 (4.70–5.70) 0.000

Total cholesterol mmol/L 4.81 (4.10–5.80) 0.0023

HDL-C mmol/L 1.17 (1.00–1.42) 0.0001

LDL-C mmol/L 2.15 (1.90–3.01) 0.000

Triglycerides (mmol/L) 1.15 (0.80–2.07) 0.000

Indices HOMA-IR 3.51 (1.68–5.34) 0.000

Hepatic Steatosis Index (HSI) 43.96 (32.59–52.34) 0.0003

Visceral Adiposity Index (VAI) 3.43 (1.44–4.81) 0.000

Atherogenic index 3.03 (2.55–3.56) 0.000

Hormonal analyses Insulin (mU/mL) 13.18 (7.20–21.61) 0.000

Leptin (pg/mL) 1157.10 (416.95–1180.25) 0.000

Oxytocin (pg/mL) 37.60 (22.30–122.35) 0.000

DEBQ Subscales Emotional Eating (EE-score) 1.46 (0.60–2.48) 0.000

External Eating (EX-score) 2.50 (1.00–3.20) 0.000

Restrained Eating (RE-score) 2.40 (1.30–3.30) 0.000

EBA-O Subscales Binge Eating (BEscore) 1.50 (0.30–4.00) 0.000

Food Addiction (FA-score) 0.66 (0.20–2.00) 0.000

Hyperphagia (HP-score) 1.00 (0.30–2.00) 0.000

Night Eating (NEscore) 0.00 (0.00–1.00) 0.000

Sweet Eating (SEscore) 0.80 (0.70–3.90) 0.000

EDE-Q Subscales Binge Eating Frequency (episodes) 0.50 (0.00–1.42) 0.000

Eating Concern (EC-score) 2.00 (0.60–3.58) 0.000

Global EDE-Q 3.39 (1.00–3.87) 0.000

Restraint (Re-score) 1.20 (0.75–2.80) 0.000

Shape Concern (SCscore) 4.00 (2.80–4.66) 0.000

Weight Concern (WC-score) 4.50 (1.80–5.78) 0.000
F
rontiers in Endocrinology
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Data are presented as mean ± SD or median (IQR) according to distribution; p-values from Shapiro–Wilk test are shown. Variables are grouped by category.
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(HOMA-IR) and disordered eating severity (global EDE-Q).

Candidate predictors included plasma oxytocin, leptin, body mass

index (BMI), visceral adiposity index (VAI), and eating behavior

subscales (emotional, external, restrained, food addiction, night

eating, binge eating, sweet eating, and hyperphagia). Predictors

were retained using backward elimination with a pre-specified

threshold of p < 0.10, and model assumptions were verified

through residual diagnostics (Table 4).

For HOMA-IR, the model explained 52% of variance

(adjusted R² = 0.50, F p < 0.01, VIF range 1.1– 3.5). Higher

BMI, leptin, and sweet-eating scores were associated with
Frontiers in Endocrinology 06
higher insulin resistance, whereas restrained eating was

inversely related.

For the global EDE-Q score, the model explained 90% of

variance (adjusted R² = 0.90, F p < 0.01, VIF < 4.0 except for

external eating ≈ 8.5). Higher leptin, external eating, and sweet

eating were linked to more severe disordered eating, while food

addiction and night eating showed negative associations.

A sensitivity analysis using principal component analysis (PCA)

to replace correlated subscales reduced multicollinearity (maximum

VIF ≈ 4.9) and yielded comparable estimates, confirming the

stability of the main results.
FIGURE 1

Oxytocin and leptin concentrations across metabolic obesity phenotypes. Data are shown as boxplots with medians and interquartile ranges.
Kruskal–Wallis p-values are reported; asterisks indicate significant pairwise differences (Dunn’s test with FDR adjustment). MHNW, Metabolically
healthy normal Weight; MUNW, Metabolically unhealthy normal weight; MUOW, Metabolically unhealthy overweight MUO, Metabolically unhealthy
obesity.
TABLE 2 Correlations between hormonal, metabolic, and behavioral variables.

Questionnaire Subscale Cut-off Disordered (≥ cut-off) % Disordered

EDE-Q Weight Concern (WC) ≥ 4.0 57 57.6%

Shape Concern (SC) ≥ 4.0 54 54.5%

Eating Concern (EC) ≥ 4.0 19 19.2%

Dietary Restraint (DR) ≥ 4.0 6 6.1%

EBA-O Binge Eating (BE) ≥ 4.0 26 26.3%

Sweet Eating (SE) ≥ 4.0 25 25.3%

Hyperphagia (HP) ≥ 4.0 7 7.1%

Food Addiction (FA) ≥ 4.0 4 4.0%

Questionnaire Subscale Cut-off Disordered (≥ cut-off) % Disordered

Night Eating (NE) ≥ 4.0 3 3.0%

DEBQ Restrained Eating (RE) ≥ 3.5 23 23.2%

External Eating (EX) ≥ 3.5 18 18.2%

Emotional Eating (EE) ≥ 3.5 10 10.1%
Data are shown as absolute numbers (n) and percentages of participants meeting the cut-off criteria.
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Predictive modeling of disordered eating
behavior

We evaluated oxytocin and related metabolic and behavioral

variables to predict elevated disordered eating (Global EDE-Q ≥

2.5) using a leakage-free nested 5×5 cross-validation framework. All

preprocessing (imputation, scaling, spline transformation for

oxytocin, and PCA of EDE-Q subscales) and elastic-net

hyperparameter tuning were performed within folds.

The oxytocin-only spline model achieved an AUC of 0.87 (95%

CI 0.76–0.95) and a mean Brier score of 0.10, with an optimal

threshold corresponding to an oxytocin concentration of

approximately 90.5 pg/mL (Figure 4).

The multivariable elastic-net model, which included oxytocin

spline, leptin, BMI, waist circumference, HSI, VAI, and a PCA-

derived EDE-Q component, achieved AUC = 0.97 (95% CI 0.90–

1.00) and Brier = 0.05, significantly improving discrimination

compared with the oxytocin-only model (DAUC = 0.11, 95% CI

0.01–0.22; p = 0.02; Supplementary Tables S3, S4; Figure 5).

Random Forest and Gradient Boosting models demonstrated

comparable AUCs but poorer calibration slopes. Decision-curve

analysis (Figure 6) showed that the combined model provided the

highest net clinical benefit across threshold probabilities (0.10–

0.80). At the cohort prevalence (0.64) and the Youden-optimal

threshold (0.77), the combined model maintained a clearly positive
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net benefit, supporting its potential clinical utility for identifying

individuals at elevated risk of disordered eating.

Bayesian hierarchical sensitivity analysis confirmed the stability

of the principal associations across alternative prior strengths and

likelihood formulations. Posterior estimates for oxytocin (b ≈ 0.9,

95% CrI: 0.75–1.04) and leptin (b ≈ −0.4, 95% CrI: −0.51 to −0.28)

remained consistent across all models, with Rˆ = 1.00 for all

parameters. These findings reinforce the robustness of the

primary results and indicate that the observed effects are not

sensitive to prior specification or sampling variability.
Discussion

Main findings

This cross-sectional study examined links between circulating

oxytocin, leptin, metabolic dysfunction, and disordered-eating

behaviors across metabolic obesity phenotypes, with all primary

models adjusted for age and sex and sex×oxytocin interactions

tested. The central finding is a robust inverse association

between plasma oxytocin and eating-disorder severity (EDE-Q

global, r = –0.734, p < 0.001), alongside consistent positive

associations for leptin and adiposity indices. Allowing for non-

linearity, spline modeling suggested a risk nadir above ~90 pg/mL; below
FIGURE 2

Boxplots of significant disordered eating subscales by metabolic obesity phenotype. Scores are shown for Weight Concern (WC), Shape Concern
(SC), Eating Concern (EC), Dietary Restraint (DR), Binge Eating (BE), Hyperphagia (HP), Food Addiction (FA), Night Eating (NE), Restrained Eating (RE),
External Eating (EX), and global Eating Disorder Examination Questionnaire (EDE-Q). Groups: MHNW — metabolically healthy normal weight; MUNW
— metabolically unhealthy normal weight. MUOW — metabolically unhealthy overweight; MUO — metabolically unhealthy obese; Horizontal lines
within boxes indicate medians; boxes denote interquartile range (IQR); whiskers indicate 1.5 × IQR; circles indicate outliers. Kruskal–Wallis p-values
were controlled for false discovery rate (FDR < 0.05), with post hoc Dunn’s test for pairwise comparisons.
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FIGURE 3

Heatmap of Spearman correlation coefficients between metabolic/hormonal parameters and eating behavior scores.
TABLE 3 Regression models predicting HOMA-IR and EDE-Q Global score.

EDE-Q Variable Oxytocin (pg/mL) Leptin (ng/mL) BMI (kg/m²) Glucose (mmol/L)

EE-score r = –0.582
p < 0.001

r = 0.684
p < 0.001

r = 0.450
p < 0.001

r = 0.278
p = 0.006

EX score r = –0.665
p < 0.001

r = 0.847
p < 0.001

r = 0.549
p < 0.001

r = 0.291
p = 0.004

RE score r = –0.669
p < 0.001

r = 0.733
p < 0.001

r = 0.355
p < 0.001

r = 0.355
p < 0.001

FA score r = –0.368
p < 0.001

r = 0.593
p < 0.001

r = 0.551
p < 0.001

r = 0.312
p = 0.002

NE score r = –0.261
p = 0.010

r = 0.336
p = 0.001

r = 0.298
p = 0.003

—

BE score r = –0.442
p < 0.001

r = 0.601
p < 0.001

r = 0.443
p < 0.001

r = 0.296
p = 0.003

SE score r = –0.344
p = 0.001

r = 0.451
p < 0.001

—
r = 0.364
p < 0.001

HP score r = –0.551
p < 0.001

r = 0.591
p < 0.001

r = 0.414
p < 0.001

r = 0.297
p = 0.003

EC Score r = –0.585
p < 0.001

r = 0.761
p < 0.001

r = 0.496
p < 0.001

r = 0.380
p < 0.001

(Continued)
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~90.5 pg/mL themodel’s predicted probability of EDE-Q ≥ 2.5 exceeded

50%. This operating point is exploratory and not a clinical cut-off.
Construct validity of the proposed model

To establish construct validity, we examined interrelationships

among hormonal, metabolic, and behavioral indicators. HOMA-IR

and the hepatic steatosis index (HSI) showed a moderate positive

correlation (r ≈ 0.52, p < 0.001), consistent with previous reports

linking insulin resistance to NAFLD risk in obesity [13.14]. Both

indices were markedly elevated in metabolically unhealthy

phenotypes, particularly MUO compared with MHNW (median

HSI difference +15.4, Cohen’s d = 1.2; p < 0.01). NAFLD-risk
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prevalence (HSI ≥ 36) reached ~78% in MUO versus ~11% in

MHNW (p < 0.001). Importantly, HSI correlated with disordered-

eating severity (r = 0.41 for EDE-Q global, p < 0.01), indicating that

behavioral pathology parallels metabolic deterioration.

These convergent associations support the validity of our

phenotype classifications and confirm that the measured

constructs behave as theoretically expected—oxytocin levels

decline, leptin and metabolic-risk indices rise, and eating-disorder

symptomatology intensifies across worsening metabolic states. The

persistence of these associations after adjustment for age, sex, and

BMI further demonstrates discriminant validity, suggesting that

oxytocin reflects neurobehavioral regulation beyond adiposity

alone. Moreover, this internal consistency enhances the reliability

of model inputs and contributes to superior discrimination (DAUC
TABLE 3 Continued

EDE-Q Variable Oxytocin (pg/mL) Leptin (ng/mL) BMI (kg/m²) Glucose (mmol/L)

WC Score r = –0.662
p < 0.001

r = 0.880
p < 0.001

r = 0.612
p < 0.001

r = 0.310
p = 0.002

SC Score r = –0.667
p < 0.001

r = 0.776
p < 0.001

r = 0.325
p = 0.001

r = 0.262
p = 0.010

Global EDE-Q r = –0.734
p < 0.001

r = 0.919
p < 0.001

r = 0.505
p < 0.001

r = 0.290
p = 0.004
TABLE 4 Summary of Bayesian modeling performance metrics.

Model A — HOMA-IR (R²=0.52; adj R²=0.50; N = 99; all VIF<5).

Predictor B 95% CI (lower) 95% CI (upper) b (standardized) p-value

Intercept -1.8766 -2.6823 -1.0709 — <0.01

Leptin
(pg/mL)

0.0027 0.0006 0.0048 0.337 0.01

BMI
0.1385 0.0979 0.179 0.468 <0.01

(kg/m²)

RE score -0.7255 -1.4371 -0.0139 -0.27 0.05

SE score 0.3075 0.0664 0.5486 0.221 0.01
Model B — Global EDE-Q (R²=0.904; adj R²=0.896; N = 99; Max VIF ≈ 8.46 for EX)

Predictor B 95% CI (lower) 95% CI (upper) b (standardized) p-value

Intercept -0.5367 -0.7329 -0.3404 — <0.01

Leptin
(pg/mL)

0.0023 0.0017 0.0029 0.626 <0.01

EE score 0.2286 -0.0207 0.478 0.183 0.07

EX score 0.5185 0.1422 0.8948 0.411 <0.01

FA score -0.2193 -0.3805 -0.0582 -0.18 <0.01

NE score -0.1877 -0.3233 -0.0521 -0.163 <0.01

BE score -0.0996 -0.2035 0.0042 -0.154 0.06

SE score 0.1043 0.0273 0.1813 0.163 <0.01
Methods: OLS with HC3 robust SE; backward elimination threshold p=0.10. Coefficients (B) with 511 95% CI, standardized b, and p-values (two decimals).
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FIGURE 4

Predicted probability of EDE-Q ≥ 2.5 as a function of plasma oxytocin from a restrictedcubic-spline logistic model (solid line) with 95% bootstrap CI
(shaded). The horizontal dotted line shows the Youden-optimal probability threshold (p* = 0.69); the vertical dashed line shows the corresponding
oxytocin cutoff (90.5 pg/mL, 95% CI 74.8–103.3). Rug ticks denote observed positives (top) and negatives (bottom). Threshold and CI were derived
from out-of-fold predictions and bootstrap mapping, respectively. the Youden threshold and its mapped oxytocin value represent an exploratory
operating point derived from out-of-fold predictions; they are not intended as a clinical decision cutoff and would require external validation and
prospective evaluation.
FIGURE 5

ROC curves from nested cross-validation (OOF). The oxytocin-only spline model achieved AUC 0.87 (95% CI 0.76–0.95), Brier 0.10; the combined
model achieved AUC 0.97 (95% CI 0.90– 1.00), Brier 0.05. Dots mark Youden-optimal operating points (oxytocin-only: pˆ * 0.69, sensitivity 0.94,
specificity 0.83; combined: pˆ * 0.77, sensitivity 0.98, specificity 0.92). Curves and metrics are based on OOF predictions. Dots mark the Youden-
optimal operating points with 95% CIs (bootstrap, OOF): oxytocin-only — sens 0.94 (0.87–0.99), spec 0.83 (0.70–0.95); combined — sens 0.98
(0.95–1.00), spec 0.92 (0.82–1.00).”.
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= 0.11) and net clinical benefit in decision-curve analysis,

underscoring incremental validity of the combined oxytocin–

leptin model for metabolicbehavioral risk stratification.
Integration with existing literature

The positive association of leptin with disordered-eating indices

is compatible with leptin resistance in obesity, where elevated leptin

fails to suppress appetite and reward-driven intake (15).

Experimental work indicates that oxytocin can reduce hedonic

food intake, dampen reward-related neural responses, and

enhance cognitive control in obesity and binge-eating disorder

(7, 9, 10), aligning with our inverse oxytocin–EDE-Q association.

Context-dependence may help explain heterogeneity in metabolic

studies: population-based data have linked oxytocin positively with

components of the metabolic syndrome, whereas inverse

associations appear in dysglycemic or high-risk subgroups

(16, 17). Such discrepancies suggest effects that vary with

metabolic state, sex, and co-regulatory hormones (10). In our

data, no consistent sex×oxytocin interaction was detected.
Interpretation of the non-linear pattern
and predictive modeling

The oxytocin–risk curve showed a non-monotonic (U-shaped)

profile: risk was highest at low concentrations, minimized around ~90–

100 pg/mL, and rose again at extreme values amid wide uncertainty

bands. Mechanistically, very low oxytocin may reflect impaired

synthesis/release, whereas unusually high peripheral levels could
Frontiers in Endocrinology 11
represent compensatory secretion to chronic metabolic or

psychosocial stress; both remain hypotheses requiring mechanistic

work. From a prediction standpoint, flexible specification and

multivariable context clearly helped: in leakage-free nested cross-

validation, an oxytocin-only spline model achieved AUC ~0.87 (95%

CI 0.76–0.95) with mean Brier ~0.10, while a combined model

(oxytocin spline + leptin, BMI, waist circumference, HSI, VAI, and a

PCA-derived EDE-Q component) reached AUC ~0.97 (95% CI 0.90–

1.00) with Brier ~0.05. A paired bootstrap on out-of-fold predictions

showed DAUC ≈ 0.11 (95% CI 0.01–0.22; p≈0.02) favoring the

combined model. Calibration was acceptable for the oxytocin-only

model (recalibration intercept ~0.09; slope ~1.03) and suggested the

combined model would benefit from recalibration prior to deployment

(intercept ~−0.95; slope ~1.87). Decision-curve analysis showed greater

net benefit for multivariable models across clinically relevant

thresholds, supporting potential utility for triage or referral.
Potential mechanisms

Oxytocin’s protective association against disordered eating may be

mediated by actions on hypothalamic and mesolimbic circuits

governing appetite and reward (7, 18). Experimental data show

blunted activity in reward-related regions to palatable cues after

oxytocin administration (19, 20). Interactions with leptin signaling are

plausible given convergent hypothalamic pathways regulating energy

balance (10). Beyond central effects, modulation of the gut–brain axis is

a candidate mechanism: Lactobacillus reuteri has been shown to

increase endogenous oxytocin and improve metabolic parameters

(21). Whether such approaches could shift oxytocin into a lower-risk

range and reduce disordered-eating risk remains to be tested.
FIGURE 6

Decision-curve analysis based on out-of-fold predictions. Net benefit is plotted against threshold probability for classifying Global EDE-Q ≥ 2.5. The
combined multivariable model (Elastic-Net) and Random Forest deliver the highest net benefit across 0.10–0.80, with Gradient Boosting close behind; the
oxytocin-only spline model provides lower benefit at higher thresholds. “Treat-all” and “treat-none” strategies are shown for reference. The vertical dotted
line marks the cohort prevalence (0.64). The red dot marks the Youden-optimal operating point for the combined model (p* = 0.77 from the OOF ROC),
where sensitivity and specificity are jointly maximized.
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Strengths and limitations

Strengths include phenotype-stratified analyses, rigorous

control for confounding, flexible modeling of oxytocin, and

leakage-free nested cross-validation with bootstrap uncertainty,

calibration assessment, and decision-curve analysis. However,

several important limitations must be acknowledged.

First, the cross-sectional design precludes causal inference;

observed associations may reflect reverse causality or unmeasured

confounding. Second, plasma oxytocin, while measured under

standardized conditions, may not accurately represent central

oxytocin activity due to blood–brain barrier dynamics and known

assay variability, particularly in ELISA measurements (22). Third, the

modest, geographically localized sample limits generalizability and

increases the risk of model overfitting, especially given the high

number of predictors relative to sample size. Small subgroup sizes

(e.g., MHNWn = 18, MUNWn = 12, MUOWn = 13) further reduced

statistical power for between-group comparisons. TheMHNW group’s

BMI (median 23.8, IQR 23.4–24.8) clustered near the upper normal-

weight range, potentially biasing comparisons with metabolically

unhealthy phenotypes. In addition, the predominance of female

participants (76.8%) may reduce generalizability to males.

Nevertheless, Bayesian sensitivity analyses employing alternative

prior distributions and likelihood functions yielded nearly identical

posterior estimates, confirming the stability of the main effects despite

these constraints (Supplementary Table S4). Fourth, while we adjusted

for age and sex, and tested sex × oxytocin interaction, menstrual phase,

hormonal contraceptive use, and other endocrine modifiers were not

available and are noted as limitations. Finally, lifestyle factors

(medications such as metformin and GLP-1 receptor agonists,

smoking, alcohol, sleep) were only partially available and thus could

not be included consistently in all models. The proposed oxytocin

threshold of approximately 90.5 pg/mL was derived statistically from

the present dataset and has not been externally validated; it should thus

be interpreted as exploratory and hypothesis-generating rather than

clinically definitive.
Clinical and research implications

Oxytocin appears informative but is most useful when combined

with metabolic and behavioral context. Our multivariable model

improved discrimination and net benefit over oxytocin alone,

suggesting a path toward pragmatic risk stratification in obesity care.

Future work should prioritize (i) external validation and calibration

transfer, (ii) mechanistic studies of the non-linear association, including

potential sex-specific effects, and (iii) interventional studies to test

whether modifying oxytocin-related pathways (pharmacologic or

microbiome-targeted) can reduce disordered-eating severity and

improve metabolic outcomes.
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Future directions

Longitudinal studies should evaluate whether baseline oxytocin

predicts the onset or persistence of disordered eating and whether

interventions—pharmacological, behavioral, or microbiome-

targeted— can modify oxytocin trajectories and clinical outcomes.

Randomized controlled trials of intranasal oxytocin in metabolic

obesity should incorporate metabolic phenotype stratification, sex-

specific analyses, and neuroimaging to clarify central mechanisms.

Validation of non-linear associations in larger, more diverse cohorts

will be essential before clinical thresholds can be proposed.
Conclusion

Our findings suggest that circulating oxytocin, particularly when

modeled non-linearly and adjusted for key confounders, is associated

with disordered eating severity across metabolic obesity phenotypes.

The identification of an approximate 90.5 pg/mL threshold offers a

hypothesis-generating insight into potential biomarker use, but its

clinical application awaits external validation. Integrating oxytocin

with metabolic and behavioral markers could enhance early

identification of high-risk individuals and inform personalized

intervention strategies.
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