:' frontiers ‘ Frontiers in Endocrinology

@ Check for updates

OPEN ACCESS

Mario Buenrostro-Jauregui,
Ibero American University, Mexico

David Garcia-Galiano,

University of Cordoba, Spain

Hans Nazarloo,

University of Virginia, United States
Santiago Camacho,

General Hospital of Mexico, Mexico

Sevara Anvarova
sevaraanvarova243@gmail.com

27 August 2025
29 October 2025
20 November 2025

Anvarova S, Narimova G, Aliyeva A,
Khalimova Z and Nasirova K (2025) Plasma
oxytocin and leptin in relation to disordered
eating: evidence from non-linear modeling
across metabolic obesity phenotypes.
Front. Endocrinol. 16:1693509.

doi: 10.3389/fendo.2025.1693509

© 2025 Anvarova, Narimova, Aliyeva, Khalimova
and Nasirova. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Endocrinology

Original Research
20 November 2025
10.3389/fendo.2025.1693509

Plasma oxytocin and leptin in
relation to disordered eating:
evidence from non-linear
modeling across metabolic
obesity phenotypes

Sevara Anvarova™, Gulchekhra Narimova®, Anna Aliyeva?,
Zamira Khalimova® and Khurshida Nasirova®

*Neuroendocrinology Department, Republican Specialized Scientific-Practical Medical Center of
Endocrinology named after acad. Ya.Kh. Turakulov, Tashkent, Uzbekistan, ?Diabetology Department,
Republican Specialized Scientific-Practical Medical Center of Endocrinology named after acad. Ya.Kh.
Turakulov, Tashkent, Uzbekistan, *SEndocrinology Department, Tashkent State Medical University,
Tashkent, Uzbekistan

Background: Obesity is heterogeneous across metabolic and behavioral
dimensions. Oxytocin, a hypothalamic neuropeptide, and leptin, an adiposity
signal, have been implicated in appetite and reward, yet their relationships with
disordered eating across metabolic obesity phenotypes remain unclear. We
examined these associations and evaluated the predictive value of oxytocin
alone versus multivariable models.

Methods: In a cross-sectional cohort of 99 adults, we assessed anthropometry,
biochemistry, oxytocin and leptin, and three validated questionnaires (EDE-Q,
DEBQ, EBA-O). Participants were classified into four metabolic obesity
phenotypes. Group differences used Kruskal-Wallis with Dunn'’s correction;
associations used Spearman correlation and OLS with HC3 robust SEs.
Predictive modeling used logistic regression with restricted cubic splines for
oxytocin and an elastic-net multivariable model (oxytocin spline + leptin, BMI,
waist circumference, HSI, VAI, and a PCA-derived EDE-Q component).
Performance was estimated via leakage-free nested cross-validation (outer 5-
fold, inner 5-fold) using out-of-fold (OOF) ROC AUC, Brier score, bootstrap Cls,
calibration, and decision-curve analysis.

Results: Oxytocin was lower and leptin higher in metabolically unhealthy obesity
(both p<0.01). Oxytocin correlated inversely with disordered-eating severity,
while leptin correlated positively. The oxytocin-only spline model achieved
OOF AUC 0.87 (95% CI 0.76-0.95; Brier 0.10). The combined elastic-net
model achieved OOF AUC 0.97 (95% Cl 0.90-1.00; Brier 0.05) and provided
significantly better discrimination than oxytocin alone (AAUC 0.11, 95% CI 0.01—
0.22; p=0.02). Using Youden's index on OOF predictions, the oxytocin-only
model's optimal operating probability (0.69) mapped to ~90.5 pg/mL (95% ClI
74.8-103.3), yielding sensitivity of 0.94 (0.87-0.99) and specificity of 0.83 (0.70—
0.95). Decision-curve analysis showed higher net benefit for multivariable
models across clinically relevant thresholds.

Conclusion: Lower oxytocin is associated with greater disordered-eating
severity, but oxytocin is most informative when integrated with metabolic and
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behavioral markers. A multivariable model substantially improved discrimination
and net benefit over oxytocin alone. The ~90.5 pg/mL value is an exploratory
operating point rather than a clinical cutoff; external validation and prospective
evaluation are needed before translation to practice.

oxytocin, leptin, disordered eating, metabolic obesity phenotypes, spline modeling,
restricted cubic splines, ROC curve analysis

Introduction

Obesity and its metabolic complications are a growing global
health crisis, contributing substantially to cardiovascular disease,
type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD) (1).
Although body mass index (BMI) remains the most common
clinical indicator, obesity is heterogeneous: some individuals with
elevated BMI are metabolically healthy, whereas others with normal
weight show marked metabolic dysfunction. This heterogeneity
underscores the need to assess obesity through both metabolic
and behavioral dimensions (2).

Disordered eating patterns—binge eating, emotional eating,
external eating, night eating—are key behavioral contributors to
excess energy intake and weight gain but are often under-
recognized in routine care (3). Psychometric tools such as the
Eating Disorder Examination Questionnaire (EDEQ), Dutch
Eating Behavior Questionnaire (DEBQ), and the Eating Behavior
Assessment for Obesity (EBA-O) can profile these behaviors in
clinical and research settings (4-6).

Neuroendocrine pathways are increasingly implicated in
disordered eating. Oxytocin—a hypothalamic neuropeptide
involved in social bonding, stress responsivity, and energy balance
—has been shown to modulate appetite, attenuate reward-driven
intake, and enhance cognitive control (7). Preclinical work suggests
oxytocin reduces caloric intake and body weight, especially under
high-fat diet or stress conditions (8). Early clinical studies indicate
intranasal oxytocin may lower energy intake, improve insulin
sensitivity, and reduce BMI in obesity and binge-eating
populations (9). In parallel, leptin—an adiposity signal often
elevated in obesity—has been linked to reward-related eating and
putative leptin resistance (10).

However, relationships between endogenous circulating
oxytocin, metabolic health, and disordered eating remain
incompletely characterized, particularly across distinct metabolic
obesity phenotypes (metabolically healthy normal weight
[MHNW], metabolically unhealthy normal weight [MUNW],
metabolically unhealthy overweight [MUOW], and metabolically
unhealthy obese [MUO]). Prior studies often treat obesity as
homogeneous, rarely test non-linear oxytocin-risk relationships,
and seldom evaluate whether oxytocin adds predictive value beyond
metabolic and behavioral measures. Data from Central Asia are
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especially scarce despite rising obesity prevalence; for example,
recent reports from Uzbekistan indicate substantial increases in
adult and adolescent obesity with implications for cardiometabolic
burden: national obesity rates have risen dramatically in recent
decades, with 27.9% of adult men and approximately 5.7% of
adolescents now classified as obese [NCD-RisC, 2024]. The 2025
World Obesity Atlas projects further increases in prevalence, with
implications for cardiometabolic disease burden and healthcare
costs (11).

In this context, the present study investigates associations
between plasma oxytocin levels, metabolic obesity markers, and
eating behavior traits across a spectrum of metabolic obesity
phenotypes in adults. We compared oxytocin and leptin
concentrations across the four predefined metabolic obesity
phenotypes (MHNW, MUNW, MUOW, and MUO). We assessed
the prevalence and severity of disordered eating using three
validated questionnaires (EDE-Q, DEBQ, and EBA-O) and
examined correlations between metabolic/hormonal parameters
and disordered eating behaviors. Additionally, we identified
independent predictors of insulin resistance and eating disorder
severity through multiple linear regression analysis. We also
explored an operating point for oxytocin derived from out-of-fold
predictions, recognizing this is not a clinical cutoff.

By integrating anthropometric, biochemical, and psychometric
data, this study offers a comprehensive view of the metabolic and
neuroendocrine underpinnings of obesity and disordered eating,
and provides novel insights into the potential therapeutic role
of oxytocin.

Materials and methods

This cross-sectional, observational study was conducted at the
Republican Specialized Scientific-Practical Medical Center of
Endocrinology named after Academician Ya. Kh. Turakulov
(Tashkent, Uzbekistan) between March and June 2025. The
design followed the STROBE recommendations for cross-
sectional research (Supplementary Table S1). Adults aged 18-65
years with a body mass index (BMI) > 18.5 kg/m? and without acute
or chronic systemic disease were eligible. Exclusion criteria included
pregnancy or lactation, psychiatric or neurological disorders,
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pharmacologic treatment affecting appetite or metabolism (e.g.,
corticosteroids, antidepressants), diabetes mellitus or other
endocrine disease, and inability to complete study procedures.
The study protocol was reviewed and approved by the Local
Bioethics Committee of the Republican Specialized Scientific-
Practical Medical Center of Endocrinology named after
Academician Turakulov (Protocol No. 2/2025, dated 12 February
2025). All procedures were performed in accordance with the
ethical principles outlined in the Declaration of Helsinki (2013
revision). Written informed consent was obtained from all
participants prior to enrollment.

Anthropometric and clinical evaluation

Measurements were obtained between 08:00 and 10:00 a.m.
after an overnight fast and bladder emptying. Body weight and
height were measured using a calibrated Seca® scale and
stadiometer, and BMI was calculated as weight (kg)/height® (m?).
Waist circumference (WC) was measured midway between the
lower rib and the iliac crest, hip circumference (HC) at the widest

part of the buttocks, and waist-to-hip ratio (WHR) as WC/HC.

Biochemical and hormonal analyses

After a fasting period > 10 h, venous blood was collected
between 08:00 and 09:00 a.m. Plasma oxytocin and leptin
concentrations were determined by competitive and sandwich
enzyme-linked immunosorbent assays (ELISA; Elabscience®,
Wuhan, China). Pre-analytical handling and assay calibration
followed standardized protocols to minimize variability (see
Supplementary Methods for full assay specifications and quality-
control parameters). Standard biochemical markers (glucose,
HbAlc, lipid profile, alanine and aspartate aminotransferases
[ALT, AST], and gammaglutamyltransferase [GGT]) were
analyzed on a HITACHI 902 automated analyzer; serum insulin
was measured by electrochemiluminescence on a COBAS e 411
analyzer (Roche Diagnostics, Germany).

Derived indices included the Homeostatic Model Assessment of
Insulin Resistance (HOMAIR) (12), Hepatic Steatosis Index (HSI)
(13), and Atherogenic Index (AI). The Visceral Adiposity Index
(VAI) was calculated using sex-specific equations incorporating
WC, BMI, triglycerides (TG), and HDL-cholesterol (HDL-C) (14).

Behavioral assessment

Eating behavior was evaluated using three validated self-
report instruments:

1. the Eating Disorder Examination Questionnaire (EDE-Q
6.0), evaluating restraint, eating concern, shape concern,
and weight concern, with a global score > 2.3 indicating
clinical significance (4).
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2. the Dutch Eating Behavior Questionnaire (DEBQ),
assessing emotional, external, and restrained eating (high-
risk thresholds > 3.25 for emotional and > 3.5 for external
eating; o0 = 0.91-0.95) (5); and

. Eating Behavior Assessment for Obesity (EBA-O), which
screens for food-addiction, binge-, night, sweet-, and
hyperphagic eating patterns (cut-off > 4 indicates
pathology; Cronbach’s o = 0.88) (6);

In this study, we focus on disordered eating behaviours (DEBs)
— defined as sub-clinical or behavioural manifestations of eating
attitudes/behaviours — rather than categorical DSM-5 eating
disorder diagnoses. Participants completed questionnaires
independently under supervision of trained staff, and a clinical
psychologist reviewed responses when indicated.

Metabolic phenotyping

Participants were classified into four metabolic obesity
phenotypes (MHNW, MUNW, MUOW, MUO) according to
BMI, HOMA-IR, and HSI criteria. Cut-off definitions and
rationale are presented in Supplementary Methods (Phenotyping
Definitions section).

These phenotype definitions enabled a more precise
investigation of how plasma oxytocin levels relate to obesity,
metabolic dysfunction, and eating behavior beyond BMI alone.

Statistical analyses

All statistical analyses were conducted in Python 3.11 using
Pandas, NumPy, SciPy, Seaborn, Statsmodels, and Scikit-learn
libraries. Descriptive statistics were calculated for all variables.

Continuous variables are presented as mean * standard
deviation (SD) or median (interquartile range, IQR) according to
distribution; categorical variables are presented as frequency and
percentage. Normality was assessed using the Shapiro-Wilk test.

For between-group comparisons among the four metabolic
obesity phenotypes (MHNW, MUNW, MUOW, MUO), the
Kruskal-Wallis test was applied to continuous variables, followed
by Dunn’s post hoc test with Bonferroni correction. Spearman
correlation analysis was used to assess associations between
plasma oxytocin levels and key metabolic markers (HOMA-IR,
VAI HSI), as well as eating behavior questionnaire scores (EDE-Q,
DEBQ, EBA-O).

Multivariable models (ordinary least squares and elastic-net
logistic regression) identified independent predictors of insulin
resistance and disordered eating. All primary models were
adjusted for age and sex, with sex X oxytocin interactions tested.
Model performance was evaluated via nested cross-validation,
receiver operating characteristic (AUC), calibration, and decision-
curve analysis. Detailed specifications of model A and B, variable
transformations, and hyperparameter tuning are reported in
Supplementary Methods (Statistical Procedures section).
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All main regression models were adjusted for age and sex, and
effect modification by sex was assessed by including sex x oxytocin
interaction terms.

Menstrual phase and hormonal contraceptive use—potentially
relevant modifiers of oxytocin levels—were considered in the study
design; however, these data were not available in the present cohort
and are acknowledged as a limitation. Where available, additional
potential confounders were included in sensitivity analyses: use of
antidiabetic medications (metformin, GLP-1 receptor agonists),
smoking status, alcohol intake, and average nightly sleep duration.

All tests were two-tailed, and p-values < 0.05 were considered
statistically significant.

Results
Participant characteristics

The study included 99 participants (mean age 38.94 + 10.40
years; 76.8% female). Median BMI was 32.10 kg/m* (IQR: 23.35-
38.10), with a median body fat percentage of 36.90% (IQR: 23.38-
46.61). Central adiposity was indicated by waist circumference
(96.87 + 22.59 cm) and waist-to-hip ratio (0.83 + 0.11).

Biochemical profiles revealed median ALT, AST, and GGT
levels of 21.00, 21.00, and 36.00 U/L, respectively. Median fasting
glucose was 5.10 mmol/L (IQR: 4.73-5.84) and HbA1c 5.10% (IQR:
4.70-5.70). The lipid profile showed median total cholesterol 4.81
mmol/L (IQR: 4.10-5.80), HDL-C 1.17 mmol/L, LDL-C 2.15 mmol/
L, and triglycerides 1.15 mmol/L. Median atherogenic index
was 3.03.

HOMA-IR was elevated (median 3.51, IQR: 1.68-5.34),
alongside increased hepatic steatosis index (HSI: 43.96, IQR:
32.59-52.34) and visceral adiposity index (VAI: 3.43, IQR: 1.44-
4.81). Hormonal analysis revealed hyperleptinemia and high inter-
individual variability in oxytocin (median 37.60 pg/mL, IQR:
22.30-122.35).

Eating behavior assessments indicated high scores in weight
concern, shape concern, and restrained eating (EDE-Q) as well as
binge eating and sweet eating (EBA-O). Most variables were
nonnormally distributed (Shapiro-Wilk p < 0.05) (Table 1).

Group comparisons of metabolic and
hormonal parameters

Participants were stratified into four metabolic obesity
phenotypes: MHNW (n = 18), MUNW (n = 12), MUOW (n =
13), and MUO (n = 56). Kruskal-Wallis tests indicated significant
between-group differences in plasma oxytocin (H = 25.675, p <
0.001) and leptin (H = 46.225, p < 0.001).

Post hoc Dunn’s tests showed that MUO had significantly lower
oxytocin compared to MHNW (p < 0.0001), MUNW (p = 0.014),
and MUOW (p = 0.037), and significantly higher leptin than all
other phenotypes (p < 0.001) (Figure 1).
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Prevalence of disordered eating behaviors

Based on validated cut-off scores, the most prevalent disordered
eating patterns were Weight Concern (57.6%) and Shape Concern
(54.5%) on the EDE-Q, followed by Binge Eating (26.3%) and Sweet
Eating (25.3%) on the EBA-O. Less common behaviors included
Hyperphagia (7.1%), Food Addiction (4.0%), and Night Eating
(3.0%). In the DEBQ subscales, Restrained Eating was present in
23.2% of participants, External Eating in 18.2%, and Emotional
Eating in 10.1% (Table 2).

Disordered eating patterns across
metabolic obesity phenotypes

Kruskal-Wallis tests indicated differences in weight concern,
shape concern, eating concern, restraint, binge eating, hyperphagia,
food addiction, night eating, and global EDE-Q (all p<0.05 after
FDR). Sweet eating was non-significant (q=0.13). Dunn’s tests
(Bonferroni-adjusted) showed MUO with higher global EDE-Q
than MHNW and MUNW (median difference +1.8, Cohen’s
d=1.0; p<0.01). MUO differed from MUOW in select subscales
(e.g., weight concern, eating concern). MHNW and MUNW
showed no differences (Supplementary Table 2; Figure 2).

Correlation analysis

A heatmap of Spearman correlation coefficients (Figure 3)
revealed strong intercorrelations among the EDE-Q subscales and
the Global EDE-Q score, reflecting the internal consistency of this
instrument. Notably, Global EDE-Q demonstrated strong positive
correlations with EE-score, EX score, RE score, EC_Score,
WC_Score, and SC_Score.

Significant associations with metabolic and hormonal variables
were also observed. Leptin levels showed robust positive correlations
with the majority of EDE-Q subscales and the global score,
indicating a relationship between higher leptin concentrations and
greater disordered eating severity. In contrast, oxytocin levels were
inversely correlated with nearly all EDE-Q domains, suggesting a
potential protective or regulatory role. BMI and glucose had modest
positive associations (r=0.30-0.45, p<0.05). HOMA-IR and HSI
correlated moderately (r=0.52, p<0.001). NAFLD risk (HSI >36)
was 78% in MUO vs. 11% in MHNW (p<0.001) and correlated with
EDE-Q global scores (r=0.41, p<0.01) (Table 3).

These results, visualized in the heatmap, highlight consistent
associations between metabolic/hormonal dysregulation and the
severity of disordered eating behaviors (Figure 3).

Multiple regression analysis

Ordinary least squares models with HC3 robust standard errors
were used to identify independent predictors of insulin resistance
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TABLE 1 Baseline characteristics of study participants.

Category Variable Value Shapiro—-Wilk p
Demographic & Anthropometric Age (years) 38.94 + 10.40 0.3362
BMI (kg/m?) 32.10 (23.35-38.10) 0.0001
Body fat (%) 36.90 (23.38-46.61) 0.0101
Height (cm) 164.00 (159.50-168.00) 0.000
Hip circumference (cm) 114.00 (99.00-130.00) 0.0447
Zﬁi‘::n ference (cm) 96.87 + 22.59 0.0525
Waist-to-hip ratio 0.83 +0.11 0.1861
Weight (kg) 86.00 (64.50-105.00) 0.000
ALT (U/L) 21.00 (16.85-31.85) 0.000
Biochemical analyses
AST (U/L) 21.00 (18.00-27.60) 0.000
GGT (U/L) 36.00 (20.00-54.15) 0.000
Glucose (mmol/L) 5.10 (4.73-5.84) 0.000
HbAlc (%) 5.10 (4.70-5.70) 0.000
Total cholesterol mmol/L 4.81 (4.10-5.80) 0.0023
HDL-C mmol/L 1.17 (1.00-1.42) 0.0001
LDL-C mmol/L 2.15 (1.90-3.01) 0.000
Triglycerides (mmol/L) 1.15 (0.80-2.07) 0.000
Indices HOMA-IR 3.51 (1.68-5.34) 0.000
Hepatic Steatosis Index (HSI) 43.96 (32.59-52.34) 0.0003
Visceral Adiposity Index (VAI) 3.43 (1.44-4.81) 0.000
Atherogenic index 3.03 (2.55-3.56) 0.000
Hormonal analyses Insulin (LU/mL) 13.18 (7.20-21.61) 0.000
Leptin (pg/mL) 1157.10 (416.95-1180.25) 0.000
Oxytocin (pg/mL) 37.60 (22.30-122.35) 0.000
DEBQ Subscales Emotional Eating (EE-score) 1.46 (0.60-2.48) 0.000
External Eating (EX-score) 2.50 (1.00-3.20) 0.000
Restrained Eating (RE-score) 2.40 (1.30-3.30) 0.000
EBA-O Subscales Binge Eating (BEscore) 1.50 (0.30-4.00) 0.000
Food Addiction (FA-score) 0.66 (0.20-2.00) 0.000
Hyperphagia (HP-score) 1.00 (0.30-2.00) 0.000
Night Eating (NEscore) 0.00 (0.00-1.00) 0.000
Sweet Eating (SEscore) 0.80 (0.70-3.90) 0.000
EDE-Q Subscales Binge Eating Frequency (episodes) 0.50 (0.00-1.42) 0.000
Eating Concern (EC-score) 2.00 (0.60-3.58) 0.000
Global EDE-Q 3.39 (1.00-3.87) 0.000
Restraint (Re-score) 1.20 (0.75-2.80) 0.000
Shape Concern (SCscore) 4.00 (2.80-4.66) 0.000
Weight Concern (WC-score) 4.50 (1.80-5.78) 0.000

Data are presented as mean + SD or median (IQR) according to distribution; p-values from Shapiro-Wilk test are shown. Variables are grouped by category.
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Oxytocin and Leptin Concentrations Across Metabolic Obesity Phenotypes
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FIGURE 1

Phenotype Group

Oxytocin and leptin concentrations across metabolic obesity phenotypes. Data are shown as boxplots with medians and interquartile ranges.
Kruskal—-Wallis p-values are reported; asterisks indicate significant pairwise differences (Dunn’s test with FDR adjustment). MHNW, Metabolically
healthy normal Weight; MUNW, Metabolically unhealthy normal weight; MUOW, Metabolically unhealthy overweight MUO, Metabolically unhealthy

obesity.

(HOMA-IR) and disordered eating severity (global EDE-Q).
Candidate predictors included plasma oxytocin, leptin, body mass
index (BMI), visceral adiposity index (VAI), and eating behavior
subscales (emotional, external, restrained, food addiction, night
eating, binge eating, sweet eating, and hyperphagia). Predictors
were retained using backward elimination with a pre-specified
threshold of p < 0.10, and model assumptions were verified
through residual diagnostics (Table 4).

For HOMA-IR, the model explained 52% of variance
(adjusted R* = 0.50, F p < 0.01, VIF range 1.1- 3.5). Higher
BMI, leptin, and sweet-eating scores were associated with

higher insulin resistance, whereas restrained eating was
inversely related.

For the global EDE-Q score, the model explained 90% of
variance (adjusted R*> = 0.90, F p < 0.01, VIF < 4.0 except for
external eating =~ 8.5). Higher leptin, external eating, and sweet
eating were linked to more severe disordered eating, while food
addiction and night eating showed negative associations.

A sensitivity analysis using principal component analysis (PCA)
to replace correlated subscales reduced multicollinearity (maximum
VIF =~ 4.9) and yielded comparable estimates, confirming the
stability of the main results.

TABLE 2 Correlations between hormonal, metabolic, and behavioral variables.

Questionnaire Subscale Disordered (> cut-off) % Disordered
EDE-Q Weight Concern (WC) >4.0 57 57.6%
Shape Concern (SC) > 4.0 54 54.5%
Eating Concern (EC) >4.0 19 19.2%
Dietary Restraint (DR) >4.0 6 6.1%
EBA-O Binge Eating (BE) >4.0 26 26.3%
Sweet Eating (SE) >4.0 25 25.3%
Hyperphagia (HP) >4.0 7 7.1%
Food Addiction (FA) >4.0 4 4.0%
Questionnaire Subscale Cut-off Disordered (> cut-off) % Disordered
Night Eating (NE) >4.0 3 3.0%
DEBQ Restrained Eating (RE) >35 23 23.2%
External Eating (EX) >35 18 18.2%
Emotional Eating (EE) >3.5 10 10.1%

Data are shown as absolute numbers (n) and percentages of participants meeting the cut-off criteria.

Frontiers in Endocrinology 06

frontiersin.org


https://doi.org/10.3389/fendo.2025.1693509
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Anvarova et al.

10.3389/fendo.2025.1693509

Boxplots of Disordered Eating-Behavior Subscales by Phenotype Group
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Boxplots of significant disordered eating subscales by metabolic obesity phenotype. Scores are shown for Weight Concern (WC), Shape Concern

(SC), Eating Concern (EC), Dietary Restraint (DR), Binge Eating (BE), Hyperphagia (HP), Food Addiction (FA

). Night Eating (NE), Restrained Eating (RE),

External Eating (EX), and global Eating Disorder Examination Questionnaire (EDE-Q). Groups: MHNW — metabolically healthy normal weight; MUNW
— metabolically unhealthy normal weight. MUOW — metabolically unhealthy overweight; MUO — metabolically unhealthy obese; Horizontal lines
within boxes indicate medians; boxes denote interquartile range (IQR); whiskers indicate 1.5 X IQR; circles indicate outliers. Kruskal-Wallis p-values
were controlled for false discovery rate (FDR < 0.05), with post hoc Dunn's test for pairwise comparisons.

Predictive modeling of disordered eating
behavior

We evaluated oxytocin and related metabolic and behavioral
variables to predict elevated disordered eating (Global EDE-Q =
2.5) using a leakage-free nested 5x5 cross-validation framework. All
preprocessing (imputation, scaling, spline transformation for
oxytocin, and PCA of EDE-Q subscales) and elastic-net
hyperparameter tuning were performed within folds.

The oxytocin-only spline model achieved an AUC of 0.87 (95%
CI 0.76-0.95) and a mean Brier score of 0.10, with an optimal
threshold corresponding to an oxytocin concentration of
approximately 90.5 pg/mL (Figure 4).

The multivariable elastic-net model, which included oxytocin
spline, leptin, BMI, waist circumference, HSI, VAI, and a PCA-
derived EDE-Q component, achieved AUC = 0.97 (95% CI 0.90-
1.00) and Brier = 0.05, significantly improving discrimination
compared with the oxytocin-only model (AAUC = 0.11, 95% CI
0.01-0.22; p = 0.02; Supplementary Tables S3, S4; Figure 5).

Random Forest and Gradient Boosting models demonstrated
comparable AUCs but poorer calibration slopes. Decision-curve
analysis (Figure 6) showed that the combined model provided the
highest net clinical benefit across threshold probabilities (0.10-
0.80). At the cohort prevalence (0.64) and the Youden-optimal
threshold (0.77), the combined model maintained a clearly positive
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net benefit, supporting its potential clinical utility for identifying
individuals at elevated risk of disordered eating.

Bayesian hierarchical sensitivity analysis confirmed the stability
of the principal associations across alternative prior strengths and
likelihood formulations. Posterior estimates for oxytocin ( = 0.9,
95% Crl: 0.75-1.04) and leptin ( = —0.4, 95% CrI: —0.51 to —0.28)
remained consistent across all models, with R* = 1.00 for all
parameters. These findings reinforce the robustness of the
primary results and indicate that the observed effects are not
sensitive to prior specification or sampling variability.

Discussion
Main findings

This cross-sectional study examined links between circulating
oxytocin, leptin, metabolic dysfunction, and disordered-eating
behaviors across metabolic obesity phenotypes, with all primary
models adjusted for age and sex and sexxoxytocin interactions
tested. The central finding is a robust inverse association
between plasma oxytocin and eating-disorder severity (EDE-Q
global, r = -0.734, p < 0.001), alongside consistent positive
associations for leptin and adiposity indices. Allowing for non-
linearity, spline modeling suggested a risk nadir above ~90 pg/mL; below
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FIGURE 3

Heatmap of Spearman correlation coefficients between metabolic/hormonal parameters and eating behavior scores.
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TABLE 3 Regression models predicting HOMA-IR and EDE-Q Global score.

EDE-Q Variable Oxytocin (pg/mL) Leptin (ng/mL) BMI (kg/m?) Glucose (mmol/L)
EE-score r=-0.582 r=0.684 r = 0.450 r=20.278
p < 0.001 p < 0.001 p < 0.001 p = 0.006
EX score r = -0.665 r=0.847 r = 0.549 r=0.291
p < 0.001 p < 0.001 p < 0.001 p = 0.004
RE score r =-0.669 r=20.733 r = 0.355 r =0.355
p < 0.001 p < 0.001 p < 0.001 p < 0.001
FA score r=-0.368 r=0.593 r=0.551 r=0.312
p < 0.001 p < 0.001 p < 0.001 p = 0.002
NE score r=-0.261 r=0.336 r=0.298
p = 0.010 p = 0.001 p = 0.003
BE score r=-0.442 r=0.601 r = 0443 r =0.296
p < 0.001 p < 0.001 p < 0.001 p = 0.003
SE score r =-0.344 r = 0451 r=0.364
p = 0.001 p < 0.001 p < 0.001
HP score r=-0.551 r=0.591 r=0414 r=0.297
p < 0.001 p < 0.001 p < 0.001 p = 0.003
EC Score r=-0.585 r=20.761 r = 0.496 r =0.380
p < 0.001 p < 0.001 p < 0.001 p < 0.001
(Continued)
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TABLE 3 Continued

10.3389/fendo.2025.1693509

EDE-Q Variable Oxytocin (pg/mL) Leptin (ng/mL) BMI (kg/m?) Glucose (mmol/L)
‘WC Score r = -0.662 r = 0.880 r=0.612 r =0.310
p < 0.001 p < 0.001 p < 0.001 p = 0.002
SC Score r = -0.667 r=0.776 r=0.325 r=0.262
p < 0.001 p < 0.001 p = 0.001 p =0.010
Global EDE-Q r=-0.734 r=0919 r = 0.505 r =0.290
p < 0.001 p < 0.001 p < 0.001 p = 0.004

~90.5 pg/mL the model’s predicted probability of EDE-Q = 2.5 exceeded
50%. This operating point is exploratory and not a clinical cut-off.

Construct validity of the proposed model

To establish construct validity, we examined interrelationships
among hormonal, metabolic, and behavioral indicators. HOMA-IR
and the hepatic steatosis index (HSI) showed a moderate positive
correlation (r = 0.52, p < 0.001), consistent with previous reports
linking insulin resistance to NAFLD risk in obesity [13.14]. Both
indices were markedly elevated in metabolically unhealthy
phenotypes, particularly MUO compared with MHNW (median
HSI difference +15.4, Cohen’s d = 1.2; p < 0.01). NAFLD-risk

TABLE 4 Summary of Bayesian modeling performance metrics.

prevalence (HSI > 36) reached ~78% in MUO versus ~11% in
MHNW (p < 0.001). Importantly, HSI correlated with disordered-
eating severity (r = 0.41 for EDE-Q global, p < 0.01), indicating that
behavioral pathology parallels metabolic deterioration.

These convergent associations support the validity of our
phenotype classifications and confirm that the measured
constructs behave as theoretically expected—oxytocin levels
decline, leptin and metabolic-risk indices rise, and eating-disorder
symptomatology intensifies across worsening metabolic states. The
persistence of these associations after adjustment for age, sex, and
BMI further demonstrates discriminant validity, suggesting that
oxytocin reflects neurobehavioral regulation beyond adiposity
alone. Moreover, this internal consistency enhances the reliability
of model inputs and contributes to superior discrimination (AAUC

Model A — HOMA-IR (R?=0.52; adj R*=0.50; N = 99; all VIF<5).

Predictor B 95% CI (lower) 95% CI (upper) B (standardized)
Intercept -1.8766 -2.6823 -1.0709 — <0.01
Leptin

0.0027 0.0006 0.0048 0337 0.01
(pg/mL)
BMI

0.1385 0.0979 0.179 0.468 <0.01
(kg/m?)
RE score -0.7255 -1.4371 -0.0139 -0.27 0.05
SE score 03075 0.0664 05486 0221 0.01

Model B — Global EDE-Q (R?=0.904; adj R?=0.896; N = 99; Max VIF ~ 8.46 for EX)

Predictor B 95% CI (lower) 95% ClI (upper) B (standardized)

Intercept -0.5367 -0.7329 -0.3404 - <0.01
Leptin

(pg/mL) 0.0023 0.0017 0.0029 0.626 <0.01
EE score 0.2286 -0.0207 0478 0.183 0.07
EX score 05185 0.1422 0.8948 0411 <0.01
FA score -0.2193 -0.3805 -0.0582 -0.18 <0.01
NE score -0.1877 -0.3233 -0.0521 -0.163 <0.01
BE score -0.0996 -0.2035 0.0042 -0.154 0.06
SE score 0.1043 0.0273 0.1813 0.163 <0.01

Methods: OLS with HC3 robust SE; backward elimination threshold p=0.10. Coefficients (B) with 511 95% CI, standardized 3, and p-values (two decimals).
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Predicted probability vs. oxytocin (spline)
with Youden threshold and oxytocin cutoff
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FIGURE 4

100 150 200
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Predicted probability of EDE-Q > 2.5 as a function of plasma oxytocin from a restrictedcubic-spline logistic model (solid line) with 95% bootstrap ClI
(shaded). The horizontal dotted line shows the Youden-optimal probability threshold (p* = 0.69); the vertical dashed line shows the corresponding
oxytocin cutoff (90.5 pg/mL, 95% CI 74.8-103.3). Rug ticks denote observed positives (top) and negatives (bottom). Threshold and CI were derived
from out-of-fold predictions and bootstrap mapping, respectively. the Youden threshold and its mapped oxytocin value represent an exploratory
operating point derived from out-of-fold predictions; they are not intended as a clinical decision cutoff and would require external validation and

prospective evaluation.
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ROC curves from nested cross-validation (OOF). The oxytocin-only spline model achieved AUC 0.87 (95% CI 0.76-0.95), Brier 0.10; the combined
model achieved AUC 0.97 (95% CI 0.90- 1.00), Brier 0.05. Dots mark Youden-optimal operating points (oxytocin-only: p~ * 0.69, sensitivity 0.94,
specificity 0.83; combined: p~ * 0.77, sensitivity 0.98, specificity 0.92). Curves and metrics are based on OOF predictions. Dots mark the Youden-
optimal operating points with 95% Cls (bootstrap, OOF): oxytocin-only — sens 0.94 (0.87-0.99), spec 0.83 (0.70-0.95); combined — sens 0.98

(0.95-1.00), spec 0.92 (0.82-1.00).".
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Decision-curve analysis (OOF predictions)
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FIGURE 6

Decision-curve analysis based on out-of-fold predictions. Net benefit is plotted against threshold probability for classifying Global EDE-Q > 2.5. The
combined multivariable model (Elastic-Net) and Random Forest deliver the highest net benefit across 0.10-0.80, with Gradient Boosting close behind; the
oxytocin-only spline model provides lower benefit at higher thresholds. “Treat-all” and “treat-none” strategies are shown for reference. The vertical dotted
line marks the cohort prevalence (0.64). The red dot marks the Youden-optimal operating point for the combined model (p* = 0.77 from the OOF ROC),

where sensitivity and specificity are jointly maximized.

= 0.11) and net clinical benefit in decision-curve analysis,
underscoring incremental validity of the combined oxytocin-
leptin model for metabolicbehavioral risk stratification.

Integration with existing literature

The positive association of leptin with disordered-eating indices
is compatible with leptin resistance in obesity, where elevated leptin
fails to suppress appetite and reward-driven intake (15).
Experimental work indicates that oxytocin can reduce hedonic
food intake, dampen reward-related neural responses, and
enhance cognitive control in obesity and binge-eating disorder
(7, 9, 10), aligning with our inverse oxytocin-EDE-Q association.
Context-dependence may help explain heterogeneity in metabolic
studies: population-based data have linked oxytocin positively with
components of the metabolic syndrome, whereas inverse
associations appear in dysglycemic or high-risk subgroups
(16, 17). Such discrepancies suggest effects that vary with
metabolic state, sex, and co-regulatory hormones (10). In our
data, no consistent sexxoxytocin interaction was detected.

Interpretation of the non-linear pattern
and predictive modeling

The oxytocin-risk curve showed a non-monotonic (U-shaped)
profile: risk was highest at low concentrations, minimized around ~90-
100 pg/mL, and rose again at extreme values amid wide uncertainty
bands. Mechanistically, very low oxytocin may reflect impaired
synthesis/release, whereas unusually high peripheral levels could
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represent compensatory secretion to chronic metabolic or
psychosocial stress; both remain hypotheses requiring mechanistic
work. From a prediction standpoint, flexible specification and
multivariable context clearly helped: in leakage-free nested cross-
validation, an oxytocin-only spline model achieved AUC ~0.87 (95%
CI 0.76-0.95) with mean Brier ~0.10, while a combined model
(oxytocin spline + leptin, BMI, waist circumference, HSI, VAL and a
PCA-derived EDE-Q component) reached AUC ~0.97 (95% CI 0.90-
1.00) with Brier ~0.05. A paired bootstrap on out-of-fold predictions
showed AAUC = 0.11 (95% CI 0.01-0.22; p=0.02) favoring the
combined model. Calibration was acceptable for the oxytocin-only
model (recalibration intercept ~0.09; slope ~1.03) and suggested the
combined model would benefit from recalibration prior to deployment
(intercept ~—0.95; slope ~1.87). Decision-curve analysis showed greater
net benefit for multivariable models across clinically relevant
thresholds, supporting potential utility for triage or referral.

Potential mechanisms

Oxytocin’s protective association against disordered eating may be
mediated by actions on hypothalamic and mesolimbic circuits
governing appetite and reward (7, 18). Experimental data show
blunted activity in reward-related regions to palatable cues after
oxytocin administration (19, 20). Interactions with leptin signaling are
plausible given convergent hypothalamic pathways regulating energy
balance (10). Beyond central effects, modulation of the gut-brain axis is
a candidate mechanism: Lactobacillus reuteri has been shown to
increase endogenous oxytocin and improve metabolic parameters
(21). Whether such approaches could shift oxytocin into a lower-risk
range and reduce disordered-eating risk remains to be tested.
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Strengths and limitations

Strengths include phenotype-stratified analyses, rigorous
control for confounding, flexible modeling of oxytocin, and
leakage-free nested cross-validation with bootstrap uncertainty,
calibration assessment, and decision-curve analysis. However,
several important limitations must be acknowledged.

First, the cross-sectional design precludes causal inference;
observed associations may reflect reverse causality or unmeasured
confounding. Second, plasma oxytocin, while measured under
standardized conditions, may not accurately represent central
oxytocin activity due to blood-brain barrier dynamics and known
assay variability, particularly in ELISA measurements (22). Third, the
modest, geographically localized sample limits generalizability and
increases the risk of model overfitting, especially given the high
number of predictors relative to sample size. Small subgroup sizes
(e.g, MHNW n = 18, MUNW n = 12, MUOW n = 13) further reduced
statistical power for between-group comparisons. The MHNW group’s
BMI (median 23.8, IQR 23.4-24.8) clustered near the upper normal-
weight range, potentially biasing comparisons with metabolically
unhealthy phenotypes. In addition, the predominance of female
participants (76.8%) may reduce generalizability to males.
Nevertheless, Bayesian sensitivity analyses employing alternative
prior distributions and likelihood functions yielded nearly identical
posterior estimates, confirming the stability of the main effects despite
these constraints (Supplementary Table S4). Fourth, while we adjusted
for age and sex, and tested sex x oxytocin interaction, menstrual phase,
hormonal contraceptive use, and other endocrine modifiers were not
available and are noted as limitations. Finally, lifestyle factors
(medications such as metformin and GLP-1 receptor agonists,
smoking, alcohol, sleep) were only partially available and thus could
not be included consistently in all models. The proposed oxytocin
threshold of approximately 90.5 pg/mL was derived statistically from
the present dataset and has not been externally validated; it should thus
be interpreted as exploratory and hypothesis-generating rather than
clinically definitive.

Clinical and research implications

Oxytocin appears informative but is most useful when combined
with metabolic and behavioral context. Our multivariable model
improved discrimination and net benefit over oxytocin alone,
suggesting a path toward pragmatic risk stratification in obesity care.
Future work should prioritize (i) external validation and calibration
transfer, (i) mechanistic studies of the non-linear association, including
potential sex-specific effects, and (iii) interventional studies to test
whether modifying oxytocin-related pathways (pharmacologic or
microbiome-targeted) can reduce disordered-eating severity and
improve metabolic outcomes.
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Future directions

Longitudinal studies should evaluate whether baseline oxytocin
predicts the onset or persistence of disordered eating and whether
interventions—pharmacological, behavioral, or microbiome-
targeted— can modify oxytocin trajectories and clinical outcomes.
Randomized controlled trials of intranasal oxytocin in metabolic
obesity should incorporate metabolic phenotype stratification, sex-
specific analyses, and neuroimaging to clarify central mechanisms.
Validation of non-linear associations in larger, more diverse cohorts
will be essential before clinical thresholds can be proposed.

Conclusion

Our findings suggest that circulating oxytocin, particularly when
modeled non-linearly and adjusted for key confounders, is associated
with disordered eating severity across metabolic obesity phenotypes.
The identification of an approximate 90.5 pg/mL threshold offers a
hypothesis-generating insight into potential biomarker use, but its
clinical application awaits external validation. Integrating oxytocin
with metabolic and behavioral markers could enhance early
identification of high-risk individuals and inform personalized
intervention strategies.
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