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Introduction: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a

complex metabolic disorder and one of the leading causes of chronic liver

disease worldwide. Current diagnostic tools, such as ultrasound, lack sufficient

sensitivity for detecting early-stage disease, emphasizing the urgent need for

novel and non-invasive diagnostic strategies. Metabolomics, particularly the

profiling of volatile organic compounds (VOCs) in biofluids, has emerged as a

promising approach for biomarker discovery in metabolic diseases.

Methods: In this preliminary single-center study, serum samples were collected

from 199 participants, including 110 MAFLD patients and 89 healthy controls.

Volatile organic compounds were analyzed using gas chromatography–ion

mobility spectrometry (GC-IMS). Machine learning algorithms, including

random forest, were applied to construct diagnostic models and identify key

discriminatory metabolites. Clinical and biochemical parameters such as age,

body mass index, liver function, and lipid profiles were also compared

between groups.

Results: A total of 79 serum VOCs were detected, among which 54 showed

significant differences between MAFLD patients and controls (29 identified and

25 unidentified). The random forest model exhibited the best diagnostic

performance, achieving a test AUC of 0.941, with 86.7% sensitivity and 88.5%

specificity. Seven key VOCs were identified as important contributors to the

model, including two upregulated compounds (2-Butoxyethanol and

Cyclopentanone-D) and five downregulated compounds ((E)-3-hexenoic acid,

2-Ethylbutanal, 2-Propyl acetate, Benzaldehyde-M, and Furaneol). Notably, 2-

pentylfuran displayed significant variation across different pathological grades of

MAFLD, suggesting potential as a stage-specific biomarker.

Discussion: This study demonstrates that serum VOC profiling using GC-IMS

combined with machine learning can effectively distinguish MAFLD patients from

healthy individuals. The identified VOC signatures, particularly 2-pentylfuran,

may serve as non-invasive biomarkers for MAFLD diagnosis and staging.

However, due to the limited sample size and single-center design, these

findings require validation in larger, multi-center, and longitudinal studies to

confirm their clinical applicability, especially for early disease detection.
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1 Introduction

Metabolic dysfunction-associated fatty liver disease (MAFLD)

is a complex metabolic disorder arising from an intricate interplay

of genetic susceptibility, metabolic disturbances, and environmental

factors. An international consensus group recommended in 2020

that MAFLD should replace the historically used term “non-

alcoholic fatty liver disease” (NAFLD) (1–3). It is a leading cause

of chronic liver disease worldwide (4, 5), affecting approximately

25% of the global population. It is a common reason for abnormal

liver function tests and can account for up to 90% of cases of

asymptomatic elevation in alanine aminotransferase (ALT) and

aspartate aminotransferase (AST) levels once other causes of liver

disease are excluded (6). Substantial research shows that MAFLD

can progress to severe outcomes, including end-stage liver disease

and hepatocellular carcinoma (HCC) (7). Liver biopsy remains the

gold standard for diagnosis, but its invasiveness and associated

clinical risks limit routine use. Consequently, diagnosis typically

relies on a combination of medical history, laboratory tests, and

imaging. Ultrasound can reliably detect moderate-to-severe

steatosis and is currently the preferred imaging technique for

screening in clinical and population-based settings (8). On

ultrasound, the diffuse fatty infiltration of MAFLD often produces

a hyperechoic texture, or “bright liver.” However, MAFLD is often

asymptomatic in its early stages. When it comes to early detection,

conventional methods have limited utility, and there is an urgent

need for novel, non-invasive diagnostic methods.

Metabolomics, i.e., the systematic identification and

quantification of small-molecule metabolites (<1500 Da) in a

biological sample, offers a promising approach. The metabolome,

or the complete set of metabolites in a biological system, provides a

functional snapshot of the physiological state (9). Volatile organic

compounds (VOCs), a subset of the metabolome, have emerged as

powerful biomarkers. They can serve as non-invasive indicators of

an individual’s metabolic status, and over the past decades, the VOC

profiles of diverse biological fluids, including urine, breath, sweat,

and feces, have been linked to various physiological and

pathological states (10–13). For example, diagnostic models have

been developed to identify cholangiocarcinoma using bile VOCs

(14) and HCC using urinary VOCs (15). In addition, combining

data from different sample types, such as blood and urine, has been

shown to enhance the discriminative power and accuracy of

diagnostic models (16).

Some researchers explored VOC signatures for NAFLD using

breath and urine, each with distinct cohorts, platforms, and key

findings. Shen et al. (17) applied 10 machine learning algorithms to

341 exhaled VOCs in a large cohort (n = 1,501). They showed that
Abbreviations: MAFLD, Metabolic dysfunction-associated fatty liver disease;

VOCs, Volatile organic compounds; GC-IMS, Gas chromatography-ion mobility

spectrometry; NAFLD, Non-alcoholic fatty liver disease; FDR, False discovery

rate; RF, Random forest; SVM, Support vector machine; LDA, Linear

discriminant analysis; DT, Decision tree; KNN, K-nearest neighbors.
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adding breath VOCs to demographic and biochemical predictors

significantly improved NAFLD classification, identified specific

breath compounds (e.g., 2-propanol, acetone) as influential

features, and discussed environmental and exposure confounders

and the need for external validation. Cozzolino et al. (18) profiled

urinary VOCs in cohorts with NAFLD, type 2 diabetes, and their

coexistence. They reported a set of urinary volatiles that

discriminated disease groups and highlighting links to altered

amino acid and lipid metabolism and noted that urine VOCs may

reflect systemic metabolic changes rather than liver-specific

processes. Skarysz et al. (19) developed convolutional neural

networks to detect VOCs directly from raw GC−MS breath data,

bypassing expert-led deconvolution and demonstrating automated

detection of more compounds with high specificity and far shorter

processing time. The CNN pipeline, evaluated on 120 clinical

samples targeting 30 VOCs, outperformed conventional expert

analysis and produced robust, scalable VOC lists suitable for

rapid breath−based biomarker discovery. While these methods

have demonstrated impressive success, breathomics can be

influenced by environmental exposures, and urinary analyses may

reflect systemic rather than liver-specific metabolic changes. Indeed,

Masoodi et al. (20) reviewed metabolomics and lipidomics in

NAFLD and emphasized the need for multi-matrix validation.

They warned that the variability in sampling, analytic workflows,

and identification confidence tends to limit cross-study

comparability, and argued for orthogonal confirmation of VOC

candidates by MS-based techniques and standardization of

collection/analysis procedures. Therefore, in this study, we turned

to serum VOCs instead, which may more directly reflect hepatic

metabolic processes.

Headspace solid-phase microextraction (HS-SPME) coupled

with gas chromatography–mass spectrometry (GC-MS) has

proven to be a simple, rapid, and effective technique for analyzing

VOCs in biofluids. This approach pairs chromatographic separation

with mass spectral identification and extensive libraries for

definitive compound assignment, but for large clinical screening,

it is limited by long run times, intensive sample preparation,

reliance on operator expertise, moderate throughput, high capital

and per−sample costs, and occasional poor sensitivity or ambiguous

identification for trace, highly polar, or coeluting breath VOCs. In

contrast, gas chromatography–ion mobility spectrometry (GC

−IMS) addresses these limitations by adding an orthogonal ion

−mobility (drift−time) separation that improves resolution of

isobaric/coeluting species, thus offering enhanced sensitivity for

low−abundance metabolites, faster analyses with simpler headspace

workflows, a smaller bench−top footprint, and lower operational

burden. It can be readily integrated into clinical laboratory

workflows and is particularly suitable for a large cohort study

focusing on clinically deployable, high−throughput screening (21).

Hence, in this work, we used GC−IMS to compare serum VOC

profiles between MAFLD patients and healthy controls, to

characterize disease-related metabolic changes and construct a

novel, serum-based diagnostic model for MAFLD.
frontiersin.org
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2 Materials and methods

2.1 Study design and participants

Figure 1 illustrates the overall study design. A cohort was

recruited between September 2023 and January 2024 from the

Department of Physical Examination at Shandong Provincial
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Third Hospital. To minimize selection bias in this non-

randomized study, we enrolled consecutive, eligible patients

presenting to the hepatology clinic. Healthy controls were

recruited from routine health check-up programs and were

required to have normal liver imaging, normal liver enzyme

levels, and no history of chronic liver or metabolic disease.

As our study’s inclusion criteria aligned with the 2020 MAFLD

definition, we use the term MAFLD throughout this manuscript to

most accurately describe our patient cohort. MAFLD grade (mild,

moderate, or severe) was determined using standard ultrasound

criteria, including hepatic echogenicity, clarity of intrahepatic

vascu la ture , d iaphragm visua l i za t ion , and poster ior

beam attenuation.

2.1.1 Inclusion criteria for the MAFLD group

1. Age between 18 and 75 years.

2. Evidence of hepatic steatosis on imaging studies or

liver biopsy.

3. Presence of at least one of the following conditions:
◦ Overweight or obesity (Body Mass Index [BMI] ≥23

kg/m2 for Asians).

◦ Diagnosed type 2 diabetes mellitus.

◦ Evidence of metabolic dysfunction, defined as the

presence of at least two of the following seven traits:

a. Waist circumference: ≥90 cm (male) or ≥80

cm (female) for Asians.

b. Blood pressure: ≥130/85 mmHg, or use of

antihypertensive medication.

c. Triglycerides: ≥1.70 mmol/L, or use of lipid-

lowering medication.

d. High-density lipoprotein cholesterol (HDL-C):

<1.0 mmol/L (male) or <1.3 mmol/L (female),

or use of lipid-modifying medication.

e. Prediabetes: Fasting glucose 5.6–6.9 mmol/L,

2-hour postprandial blood glucose 7.8–11.0

mmol/L, or glycated hemoglobin (HbA1c)

5.7%–6.4%.

f. Homeostasis model assessment of insulin

resistance (HOMA-IR) index: ≥2.5.

g. High-sensitivity C-reactive protein (hs-CRP)

level: ≥2 mg/L.
2.1.2 Inclusion criteria for the healthy control
group
1. Age ≥18 years and provided voluntary written

informed consent.

2. No history of major cardiac, hepatic, renal, neurological, or

infectious disease.

3. BMI within the normal range (e.g., 18.5–22.9 kg/m2).

4. No heavy alcohol consumption, smoking, or any

substance abuse.

5. No use of medications known to affect metabolic outcomes

within the past month.

6. Not pregnant or breastfeeding.
FIGURE 1

Research design schematic.
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2.2 Sample preparation

Peripheral blood samples were collected from all participants in

the morning after an overnight fast. Samples were drawn into serum

separator tubes containing a clot activator and centrifuged at 3000g

for 10 min at 4°C within two hours of collection. The resulting

serum was transferred to a new tube and centrifuged again at

12,000g for 10 min at 4°C to remove residual cellular debris. The

final serum (supernatant) was aliquoted into cryotubes, flash-

frozen, and stored at −80°C until analysis. Each sample was

thawed no more than twice before analysis. To minimize

exogenous contamination and avoid systematic bias, blood

collection and processing were performed in a standardized

environment using identical consumables for all samples.
2.3 GC-IMS analysis of serum VOCs

For each analysis, a 200 mL serum aliquot was placed in a 20 mL

headspace vial, sealed, and incubated at 80°C for 10 min. Following

incubation, 1 mL of the headspace gas was automatically injected

into a GC-IMS system (FlavourSpec, G.A.S., Dortmund, Germany).

The system used nitrogen as both the carrier and drift gas. The

carrier gas flow was programmed as follows: 2 mL/min for 2 min,

ramped linearly to 100 mL/min over 8 min, and then held at 150

mL/min for an additional 5 min. The IMS drift gas flow was

constant at 150 mL/min. The drift tube, GC column, and inlet

temperatures were maintained at 45, 60, and 60°C, respectively.

VOC signals were characterized by their retention index (RI),

drift time (DT), and peak height (PH). Compounds were identified

by comparing their spectral features against the National Institute

of Standards and Technology (NIST) and integrated GC-IMS

library databases, and external reference standards were used

when appropriate. Peaks that could not be matched were

numbered and reported as unidentified VOCs. Peak height was

used for relative quantification across all samples.
2.4 Statistical and bioinformatic analysis

Descriptive statistics were calculated for all baseline

characteristics. Continuous variables were presented as mean ±

standard deviation (SD) or median [P25, P75] based on their

distribution, assessed using the Shapiro–Wilk test. Categorical

variables were presented as counts and percentages. For

comparisons of individual VOC concentrations between the

MAFLD and control groups, we used the independent samples t-

test for normally distributed data and the Mann–Whitney U test for

non-normally distributed data. All tests were two-sided, and

statistical significance was verified when p < 0.05.

To identify factors associated with MAFLD, we first performed

univariate logistic regression. Variables with a p-value < 0.05 were

then included in a multivariate binary logistic regression model to

identify independent factors associated with MAFLD. For VOC

feature selection, a multi-step filtering process was applied. First, we
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corrected for multiple comparisons using the Benjamini–Hochberg

false discovery rate (FDR) method, with a significance threshold of

q < 0.05. To further ensure robustness, we only retained features

that also exhibited an absolute fold change of at least 1.5 between

the MAFLD and control groups and were detected in at least 20% of

samples in either group. VOCs that met all these criteria were

selected as the final feature set for machine learning.

We developed five machine learning models to classify MAFLD

status based on the significant VOCs: random forest (RF), support

vector machine (SVM), linear discriminant analysis (LDA),

decision tree (DT), and k-nearest neighbors (KNN). The full

dataset was randomly partitioned into a training set (70%) and a

test set (30%) using stratified sampling to maintain the case-to-

control ratio. Model hyperparameters were optimized using five-

fold cross-validation within the training set. The final, optimized

models were then evaluated on the independent test set. Diagnostic

performance was evaluated using receiver operating characteristic

(ROC) analysis, and performance was assessed using the area under

the curve (AUC). To evaluate model robustness, we conducted a

sensitivity analysis by excluding participants with ages in the lowest

and highest 5% of the distribution, re-training the models, and

comparing the performance metrics with those from the full

dataset. All statistical analyses were performed using SPSS 22

(IBM, Armonk, NY, USA) and R (version 4.3.3), and the caret

and pROC packages were utilized for machine learning tasks.

Default parameters were applied unless specified otherwise.
3 Results

3.1 Baseline clinical characteristics of the
study cohort

The study cohort included 199 participants: 110 patients with

MAFLD and 89 healthy controls (HC). While the groups were

balanced for sex, height, and several laboratory parameters (total

bilirubin, creatinine, blood urea nitrogen), the MAFLD group was

significantly older and had a higher weight and BMI (p < 0.001 for

all). As detailed in Table 1, the MAFLD patients also exhibited

significant alterations in liver enzymes (ALT, AST, GGT) and lipid

profiles (TC, LDL, TG) compared to the controls.
3.2 Serum VOC profiles distinguish MAFLD
patients from healthy controls

The serum samples from all 199 participants were analyzed by

GC-IMS to generate VOC profiles. Visual inspection of the

resulting topographic plots revealed distinct differences in the

VOC signatures between the MAFLD and HC groups (Figure 2).

A total of 79 distinct VOC signals were quantified across all samples

(Supplementary Table S1). Of these, 57 showed significant

uncorrected differences between groups. After applying

Benjamini–Hochberg (FDR) correction, 54 VOCs remained

statistically significant (q < 0.05) and were selected as features for
frontiersin.org
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E 2FIGUR

GC-IMS maps of serum VOCs in MAFLD patients (n = 110) and healthy controls (n = 89). The X-axis denotes retention index (a.u.), and the Y-axis
denotes drift time (ms). Peak heights were log10-transformed, medians calculated per VOC across samples, then min–max normalized to [0, 1] for
plotting. Color scale indicates normalized peak height (a.u.), with darker colors representing higher abundance.
TABLE 1 Patient characteristics.

Characteristics Healthy Control (n = 89) MAFLD (n = 110) p-value

Sex 0.317

Male 36 (40.45%) 37 (36.64%)

Female 53 (59.55%) 73 (66.36%)

Age (years) 37.0 [28.5, 49.5] 49.0 [37.0, 60.0] <0.001

Height (cm) 166.30 [162.40, 173.50] 165.45 [159.68, 172.90] 0.270

Weight (kg) 63.40 [56.60, 72.45] 73.95 [66.10, 81.85] <0.001

BMI (kg/m2) 22.90 [21.15, 24.85] 26.45 [24.40, 29.33] <0.001

Lab test results

ALT (U/L) 15.30 [11.75, 20.35] 20.75 [15.20, 31.28] <0.001

AST (U/L) 18.70 [16.55, 21.85] 20.55 [17.50, 26.55] 0.002

GGT (U/L) 14.50 [11.30, 21.15] 22.10 [17.98, 31.90] <0.001

TBIL (µmol/L) 12.60 [9.80, 17.55] 13.20 [10.08, 16.03] 0.681

TC (mmol/L) 4.54 [3.95, 4.88] 5.04 [4.44, 5.90] <0.001

LDL (mmol/L) 2.73 [2.43, 3.09] 3.31 [2.83, 3.79] <0.001

TG (mmol/L) 0.90 [0.68, 1.28] 1.67 [1.19, 2.41] <0.001

GLU (mmol/L) 5.20 [4.90, 5.40] 5.45 [5.20, 6.00] <0.001

Scr (µmol/L) 57.50 [52.20, 65.90] 57.00 [49.78, 66.30] 0.722

UA (µmol/L) 303.10 [274.10, 338.30] 364.8 [317.23, 431.65] <0.001

BUN (mmol/L) 4.50 [3.85, 5.60] 4.75 [4.20, 5.50] 0.303
F
rontiers in Endocrinology
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§Data are expressed as count (ratio) or median [P25, P75]. ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transferase; TBIL, total bilirubin; TC, total
cholesterol; LDL, low-density lipoprotein; TG, triglycerides; GLU, glucose; Scr, serum creatinine; UA, uric acid; BUN, blood urea nitrogen.
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developing machine learning models (Supplementary Table S2).

Some peaks were unidentified due to the current limitations of GC-

IMS reference libraries, but they demonstrated consistent group

differences and were thus retained for model construction.
3.3 Machine learning models achieve high
diagnostic accuracy

Five machine learning models were trained using the 54

significant VOC features, which included 33 identified and 21

identified compounds, and the diagnostic performance of the

models was evaluated on an independent test set. Table 2 shows

that the RF model demonstrated the best performance, achieving an

AUC of 0.941 on the test set, with an accuracy of 87.5%, sensitivity

of 86.7%, and specificity of 88.5%. The SVM model also showed

excellent performance (test set AUC = 0.927), whereas the LDA,

DT, and GLM models were less effective. Figure 3 shows the ROC

curves of all the models on the test set. Figure 4 shows the confusion

matrix of the RF model on the test set.

To identify the most influential biomarkers among the 54

significant VOCs, we calculated, for each VOC, the Gini

coefficient of its peak−height distribution across all 199 subjects

and then ranked features by their importance in the top-performing

RF model. The analysis revealed seven key VOCs that contributed

most significantly to the model’s predictive power (Figure 5).

Among them, two compounds were upregulated (2-

butoxyethanol, cyclopentanone-D) and five were downregulated

((E)-3-hexenoic acid, 2-ethylbutanal, 2-propyl acetate,

benzaldehyde-M, furaneol) in the MAFLD group. Figure 6

visualizes the distinct expression patterns of these top

compounds. A sensitivity analysis that excluded age outliers

confirmed the robustness of this VOC signature.
Frontiers in Endocrinology 06
3.4 Association of VOCs with clinical
parameters and disease severity

We next explored the association between the 33 identified

significant VOCs and clinical parameters within the cohort.

Numerous VOCs were significantly correlated with demographic

factors such as sex and age (Figure 7). Notably, when analyzing the

relationship with disease severity as determined by ultrasound, we

found that the abundance of 2-pentyl furan varied significantly

across mild, moderate, and severe stages of MAFLD (p < 0.05). This

suggests that 2-pentyl furan may be a potential biomarker for

monitoring MAFLD progression.
4 Discussion

VOC-based diagnostic model offers advantages such as

convenient sampling, rapid detection, non-invasiveness, high

patient acceptability, and the possibility of repeated sampling for

dynamic monitoring (22, 23). This study demonstrates that a serum

VOC-based signature, coupled with machine learning, can

distinguish patients with MAFLD from healthy individuals with

high accuracy. Current modalities of MAFLD diagnosis like

ultrasound have limited sensitivity for early-stage disease, and our

VOC-based model offers a promising, non-invasive alternative. The

RF model, our top-performing algorithm, achieved an excellent

AUC of 0.941, suggesting that serum VOCs reflect distinct

metabolic perturbations in MAFLD. By identifying key VOCs

linked to MAFLD, this work not only provides a potential

diagnostic tool but also offers insights into the underlying

pathophysiology of the disease.

A key strength of our study is the robustness of the VOC signal.

Although the MAFLD and control groups had a significant age

disparity, a sensitivity analysis excluding age extremes confirmed

that the model’s performance was not driven by this demographic

difference. Thus, the identified VOC signature must genuinely

reflect disease-related metabolic changes. However, our findings

should be interpreted with caution, since this work was a

preliminary, single-center study with a limited sample size.
4.1 Comparison with existing literature and
the novel contributions of this work

Our findings align with a growing body of research

demonstrating the utility of VOCs as biomarkers in various

diseases. For example, Hu et al. found a close relationship

between urinary VOC metabolites and increased systemic

inflammation, with smokers being more susceptible (24). This

finding underscores the link between VOCs and inflammation—a

key driver of MAFLD progression—and highlights the importance

of accounting for lifestyle factors like smoking in metabolomic

studies. Li et al. utilized GC-IMS to analyze VOC variations and

explored the potential application of VOCs in the phenotypic

detection of Carbapenem-Resistant Klebsiella pneumoniae
TABLE 2 Diagnostic performance of machine learning models.

Model§ RF SVM LDA DT GLM

CV_AUC 0.936 0.896 0.83 0.848 0.692

Test_AUC 0.941 0.927 0.876 0.878 0.764

Acc_0.5 0.875 0.875 0.857 0.839 0.804

Sens_0.5 0.867 0.867 0.867 0.833 0.867

Spec_0.5 0.885 0.885 0.846 0.846 0.731

Thr_Youden 0.566 0.598 0.347 0.850 0.496

Acc_Youden 0.875 0.875 0.875 0.857 0.804

Sens_Youden 0.833 0.833 0.900 0.800 –

Spec_Youden 0.923 0.923 0.846 0.923 –
§RF, random forest; SVM, support vector machine; LDA, linear discriminant analysis; DT,
decision tree; KNN. k-nearest neighbors. Metrics include area under the receiver operating
characteristic curve (AUC), accuracy (Acc), sensitivity (Sens), and specificity (Spec) at default
(0.5) and Youden’s index thresholds (Thr). All results reflect the diagnostic performance of
binary classification between MAFLD and healthy control groups. The model performance
was evaluated by cross-validation (CV) and using independent test sets.
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(CRKP) strains (25). Previous studies also examined the use of

VOCs as diagnostic biomarkers for esophageal cancer (26),

pancreatic cancer (27), prostate cancer (28), esophageal

adenocarcinoma (29), HCC (15), and colorectal cancer (30). A

number of studies have investigated the diagnostic value of VOCs in

liver disease (31), particularly in breath-based analyses.

Breathomics approaches have been explored for HCC, cirrhosis,

and MAFLD (32), with some technologies even advancing toward

commercialization (e.g., VOC-based breath analyzers) (33, 34).

The combination of VOCs and machine learning has been

deployed successfully in various scenarios. Fu et al. developed a

machine learning model using urinary VOC metabolites and

demographic data to predict cardiovascular disease risk (35).

Their Random Forest model achieved a high predictive accuracy

(AUC = 0.8143), which reflects our findings of the RF model and

shows the power of combining metabolomic data with machine

learning for risk stratification in complex metabolic diseases. While

their model was effective, our serum-based approach in a hepatic

disease context yielded an even higher AUC (0.941 vs. 0.814),

highlighting the strong, tissue-proximal signal captured from

serum. Thomas et al. (36) reported that machine learning analysis

of exhaled VOC profiles can non-invasively detect cirrhosis and

portal hypertension, thus offering a promising biomarker strategy
Frontiers in Endocrinology 07
for liver disease. Patnaik et al. (37) conducted a pilot study where

they measured breath concentrations of isoprene, limonene, and

dimethyl sulfide before and after exercise and used machine

learning regression to predict liver−function scores. These studies

all validate the overall approach.

Our work offers several unique contributions. First, unlike most

prior MAFLD research that focused on exhaled breath or urine, we

analyzed serum VOCs (17, 18). This sample matrix may more

directly reflect endogenous hepatic metabolism and is less

susceptible to confounding from environmental or dietary

exposures (22). Second, our use of GC-IMS provided a rapid and

highly sensitive platform suitable for clinical workflows (38). Third,

by comparing multiple machine learning algorithms, we not only

identified RF as the optimal model for this dataset but also

demonstrated consistent discriminatory signals present in the

VOC data, as even simpler models like GLM showed significant,

albeit lower, performance (Test AUC = 0.764). This multi-model

approach enhances the credibility of our findings compared to

studies relying on a single algorithm. Finally, our model’s high

performance (AUC = 0.941) suggests it has the potential to

complement or even surpass traditional non-invasive markers like

liver enzymes and lipid profiles, which may overlap between healthy

and diseased states.
FIGURE 3

ROC curves of the five models on the test set.
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4.2 Biological and clinical interpretation of
key VOCs

The VOC signature we identified reflects key metabolic

hallmarks of MAFLD pathogenesis, including oxidative stress,

disrupted lipid metabolism, and inflammation, as schematically

illustrated in Figure 8. Our feature importance analysis identified

seven VOCs with the highest discriminatory power, and their

putative biological origins align with these processes. Our feature

importance analysis identified seven VOCs with the highest

discriminatory power. The VOC signature we identified dovetails

with the hallmarks of MAFLD—oxidative stress, disrupted lipid

oxidation, and altered xenobiotic processing. Of these seven key

VOCs, 2-butoxyethanol is a CYP-metabolized solvent derivative,
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and its upregulation in MAFLD patients likely reflects enhanced

hepatic detoxification activity in steatotic livers. The upregulation of

cyclopentanone-D, a ketone byproduct of fatty-acid b-oxidation
overload, reveals mitochondrial stress and lipid catabolism

disruption. The downregulation of (E)-3-hexenoic acid and 2-

ethylbutanal, both of which are a,b-unsaturated aldehydes

formed during w-6 lipid peroxidation, may indicate modified

peroxidation flux or enhanced hepatic trapping/adduct formation.

The downregulation of 2-propyl acetate and benzaldehyde-M,

which are esters and aromatic aldehydes partly generated by the

gut microbiome and amino acid metabolism, suggests dysbiosis and

impaired hepatic clearance. Finally, the downregulation of furaneol,

a furanone linked to Maillard/carbohydrate fermentation

byproducts, may signal altered gut–liver crosstalk and glycation
FIGURE 5

The top seven VOCs contributing most significantly to the predictive power of the random forest model. The bars represent the Gini coefficient
calculated from the peak height of the respective VOC across all 199 patients. The seven selected VOCs all satisfy Gini coefficient ≥ 3.
RF model on the test set.
FIGURE 4

Confusion matrix of the
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FIGURE 6

Comparison of the relative abundance (normalized peak height) of seven significantly altered VOCs between the Health and MAFLD groups.
(A) Benzaldehyde-M, (B) Furaneol, (C) 2-Butoxyethanol, (D) Cyclopentanone-D, (E) 2-Ethylbutanal, (F) (E)-3-Hexenoic acid, and (G) 2-Propyl acetate.
Data are shown as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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stress handling. Together, these patterns show that MAFLD

involves not only lipid accumulation but also increased oxidative

damage, impaired mitochondrial function, and changes in both

host− and microbiome−derived volatile metabolites.

Interestingly, we observed significant associations between

specific VOCs and demographic factors (Figure 6). Fifteen VOCs

showed sex-specific differences, and six were correlated with age.

For example, nonanal increased with age, which underscores

cumulative lipid peroxidation and oxidative damage in MAFLD.

Similarly, the sex-related difference in the ketone metabolite

cyclopentanone-D may stem from hormonal regulation of

mitochondrial fatty acid b-oxidation, thus suggesting that sex-

specific metabolic pathways are involved in MAFLD. 2-Pentyl

furan, highlighted in our analysis (Figure 8A) and known as an

autoxidation product derived from linoleic acid (a polyunsaturated

fatty acid), provides a direct link to lipid peroxidation and oxidative

stress pathways implicated in MAFLD progression (Figure 8B). The

most clinically relevant finding was its significant association with

MAFLD severity graded by ultrasound. This correlation suggests

that serum levels of 2-pentyl furan could potentially serve as a non-

invasive biomarker for monitoring disease progression (Figure 8C)

or stratifying patients based on severity, which would address a key

unmet need in clinical practice. However, since we did not perform

a parallel analysis of these demographic associations in the healthy

control group, it remains unclear whether these effects are disease-

specific or simply reflect baseline population variations.
4.3 Rationale for the machine learning
approach

The superior performance of the RF model (Test AUC = 0.941)

in our study can be attributed to its ability to handle high-
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dimensional data and model complex, non-linear relationships

between variables without overfitting (39). By building an

ensemble of decision trees, RF effectively reduces noise and

automatically selects the most important predictive features (40).

In contrast, DT is prone to overfitting and had a lower performance

(Test AUC = 0.878), although it is simple to interpret (41). The

SVM model also performed well (Test AUC = 0.927), as it is well-

suited for high-dimensional data with small sample sizes, although

it can be computationally intensive (42). The strong performance of

these advanced algorithms, compared to the simpler GLM (Test

AUC = 0.764), highlights the importance of capturing non-linear

interactions among VOCs for accurate MAFLD diagnosis.
4.4 Limitations and future directions

This study has several limitations. First, the single-center design

and relatively small sample size (n = 199) limit the generalizability

of our findings. Second, the cross-sectional design prevents us from

establishing a causal relationship between VOC changes and

MAFLD progression. Third, our diagnosis and staging of MAFLD

were based on ultrasound rather than liver biopsy, the gold

standard. This prevents us from distinguishing between simple

steatosis and the more aggressive non-alcoholic steatohepatitis

(NASH). Fourth, several significant VOCs could not be identified

due to the limited library coverage of GC-IMS, which hinders a

complete biological interpretation. Finally, the demographic

analysis was restricted to the MAFLD group, and we did not fully

d i s e n t a n g l e d i s e a s e - s p e c ifi c e ff e c t s f r om no rma l

population variance.

Building on this work, future research should focus on several

key areas.
FIGURE 7

Associations between VOCs and pathological factors. Color intensity reflects −log10(p-value). Numbers colored in white denote statistically
significant entries.
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4.4.1 Clinical validation
Large-scale, multi-center, prospective studies are the highest

priority. These studies should include diverse populations and use

histopathology to confirm diagnoses, allowing for the validation of

VOCs as biomarkers for both early detection and staging (i.e.,

steatosis vs. NASH vs. fibrosis). Longitudinal studies are also needed

to track changes in serum VOCs over time in target populations.

4.4.2 Mechanistic insight
Mechanistic studies are needed to understand the biological

origins of the key VOCs identified. Combining metabolomics with

other omics data (e.g., transcriptomics, proteomics) can help

elucidate specific pathways (e.g., lipid metabolism, inflammation,

gut–liver axis signaling) that are disrupted in MAFLD.

4.4.3 Technological advancement
Continued optimization of VOC detection technologies and

exploration of advanced machine learning algorithms, like deep

learning, will further enhance model performance. Future studies

can also benefit from integrating GC-IMS with GC-MS for more

comprehensive compound annotation.
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4.4.4 Multimodal diagnostics
Research should explore how to integrate VOC profiling with

existing diagnostic tools (ultrasound, blood tests, FibroScan) to

create a more powerful, multi-modal strategy for MAFLD

management, as such an approach should improve diagnostic

accuracy and support personalized treatment decisions.
5 Conclusions

In summary, this study demonstrates that a serum VOC

signature, when analyzed by machine learning, can accurately

distinguish patients with MAFLD from healthy controls. Our

model demonstrated high diagnostic performance and identified

several promising biomarkers potentially linked to disease severity.

However, the findings are constrained by the study’s single-center

design and lack of histopathological validation. Further validation

in large, prospective cohorts is required to confirm the clinical

utility of this approach for the early detection and management

of MAFLD.
FIGURE 8

Schematic overview linking key VOCs to MAFLD pathogenesis. (A) Selected significant VOCs identified in this study, with 2-pentyl furan highlighted
due to its association with disease severity. Chemical structures represent examples from the list. (B) These VOCs are putatively linked to core
metabolic disturbances in MAFLD, including oxidative stress, altered lipid metabolism, and inflammation. (C) These metabolic changes contribute to
the progression of liver damage from simple fatty change (steatosis) through fatty hepatitis (steatohepatitis) to fibrosis.
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