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Introduction: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a
complex metabolic disorder and one of the leading causes of chronic liver
disease worldwide. Current diagnostic tools, such as ultrasound, lack sufficient
sensitivity for detecting early-stage disease, emphasizing the urgent need for
novel and non-invasive diagnostic strategies. Metabolomics, particularly the
profiling of volatile organic compounds (VOCs) in biofluids, has emerged as a
promising approach for biomarker discovery in metabolic diseases.

Methods: In this preliminary single-center study, serum samples were collected
from 199 participants, including 110 MAFLD patients and 89 healthy controls.
Volatile organic compounds were analyzed using gas chromatography—ion
mobility spectrometry (GC-IMS). Machine learning algorithms, including
random forest, were applied to construct diagnostic models and identify key
discriminatory metabolites. Clinical and biochemical parameters such as age,
body mass index, liver function, and lipid profiles were also compared
between groups.

Results: A total of 79 serum VOCs were detected, among which 54 showed
significant differences between MAFLD patients and controls (29 identified and
25 unidentified). The random forest model exhibited the best diagnostic
performance, achieving a test AUC of 0.941, with 86.7% sensitivity and 88.5%
specificity. Seven key VOCs were identified as important contributors to the
model, including two upregulated compounds (2-Butoxyethanol and
Cyclopentanone-D) and five downregulated compounds ((E)-3-hexenoic acid,
2-Ethylbutanal, 2-Propyl acetate, Benzaldehyde-M, and Furaneol). Notably, 2-
pentylfuran displayed significant variation across different pathological grades of
MAFLD, suggesting potential as a stage-specific biomarker.

Discussion: This study demonstrates that serum VOC profiling using GC-IMS
combined with machine learning can effectively distinguish MAFLD patients from
healthy individuals. The identified VOC signatures, particularly 2-pentylfuran,
may serve as non-invasive biomarkers for MAFLD diagnosis and staging.
However, due to the limited sample size and single-center design, these
findings require validation in larger, multi-center, and longitudinal studies to
confirm their clinical applicability, especially for early disease detection.
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1 Introduction

Metabolic dysfunction-associated fatty liver disease (MAFLD)
is a complex metabolic disorder arising from an intricate interplay
of genetic susceptibility, metabolic disturbances, and environmental
factors. An international consensus group recommended in 2020
that MAFLD should replace the historically used term “non-
alcoholic fatty liver disease” (NAFLD) (1-3). It is a leading cause
of chronic liver disease worldwide (4, 5), affecting approximately
25% of the global population. It is a common reason for abnormal
liver function tests and can account for up to 90% of cases of
asymptomatic elevation in alanine aminotransferase (ALT) and
aspartate aminotransferase (AST) levels once other causes of liver
disease are excluded (6). Substantial research shows that MAFLD
can progress to severe outcomes, including end-stage liver disease
and hepatocellular carcinoma (HCC) (7). Liver biopsy remains the
gold standard for diagnosis, but its invasiveness and associated
clinical risks limit routine use. Consequently, diagnosis typically
relies on a combination of medical history, laboratory tests, and
imaging. Ultrasound can reliably detect moderate-to-severe
steatosis and is currently the preferred imaging technique for
screening in clinical and population-based settings (8). On
ultrasound, the diffuse fatty infiltration of MAFLD often produces
a hyperechoic texture, or “bright liver.” However, MAFLD is often
asymptomatic in its early stages. When it comes to early detection,
conventional methods have limited utility, and there is an urgent
need for novel, non-invasive diagnostic methods.

Metabolomics, i.e., the systematic identification and
quantification of small-molecule metabolites (<1500 Da) in a
biological sample, offers a promising approach. The metabolome,
or the complete set of metabolites in a biological system, provides a
functional snapshot of the physiological state (9). Volatile organic
compounds (VOCs), a subset of the metabolome, have emerged as
powerful biomarkers. They can serve as non-invasive indicators of
an individual’s metabolic status, and over the past decades, the VOC
profiles of diverse biological fluids, including urine, breath, sweat,
and feces, have been linked to various physiological and
pathological states (10-13). For example, diagnostic models have
been developed to identify cholangiocarcinoma using bile VOCs
(14) and HCC using urinary VOCs (15). In addition, combining
data from different sample types, such as blood and urine, has been
shown to enhance the discriminative power and accuracy of
diagnostic models (16).

Some researchers explored VOC signatures for NAFLD using
breath and urine, each with distinct cohorts, platforms, and key
findings. Shen et al. (17) applied 10 machine learning algorithms to
341 exhaled VOCs in a large cohort (n = 1,501). They showed that

Abbreviations: MAFLD, Metabolic dysfunction-associated fatty liver disease;
VOCs, Volatile organic compounds; GC-IMS, Gas chromatography-ion mobility
spectrometry; NAFLD, Non-alcoholic fatty liver disease; FDR, False discovery
rate; RF, Random forest; SVM, Support vector machine; LDA, Linear

discriminant analysis; DT, Decision tree; KNN, K-nearest neighbors.
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adding breath VOCs to demographic and biochemical predictors
significantly improved NAFLD classification, identified specific
breath compounds (e.g., 2-propanol, acetone) as influential
features, and discussed environmental and exposure confounders
and the need for external validation. Cozzolino et al. (18) profiled
urinary VOCs in cohorts with NAFLD, type 2 diabetes, and their
coexistence. They reported a set of urinary volatiles that
discriminated disease groups and highlighting links to altered
amino acid and lipid metabolism and noted that urine VOCs may
reflect systemic metabolic changes rather than liver-specific
processes. Skarysz et al. (19) developed convolutional neural
networks to detect VOCs directly from raw GC-MS breath data,
bypassing expert-led deconvolution and demonstrating automated
detection of more compounds with high specificity and far shorter
processing time. The CNN pipeline, evaluated on 120 clinical
samples targeting 30 VOCs, outperformed conventional expert
analysis and produced robust, scalable VOC lists suitable for
rapid breath-based biomarker discovery. While these methods
have demonstrated impressive success, breathomics can be
influenced by environmental exposures, and urinary analyses may
reflect systemic rather than liver-specific metabolic changes. Indeed,
Masoodi et al. (20) reviewed metabolomics and lipidomics in
NAFLD and emphasized the need for multi-matrix validation.
They warned that the variability in sampling, analytic workflows,
and identification confidence tends to limit cross-study
comparability, and argued for orthogonal confirmation of VOC
candidates by MS-based techniques and standardization of
collection/analysis procedures. Therefore, in this study, we turned
to serum VOCs instead, which may more directly reflect hepatic
metabolic processes.

Headspace solid-phase microextraction (HS-SPME) coupled
with gas chromatography-mass spectrometry (GC-MS) has
proven to be a simple, rapid, and effective technique for analyzing
VOCs in biofluids. This approach pairs chromatographic separation
with mass spectral identification and extensive libraries for
definitive compound assignment, but for large clinical screening,
it is limited by long run times, intensive sample preparation,
reliance on operator expertise, moderate throughput, high capital
and per—sample costs, and occasional poor sensitivity or ambiguous
identification for trace, highly polar, or coeluting breath VOCs. In
contrast, gas chromatography-ion mobility spectrometry (GC
—IMS) addresses these limitations by adding an orthogonal ion
—mobility (drift-time) separation that improves resolution of
isobaric/coeluting species, thus offering enhanced sensitivity for
low—abundance metabolites, faster analyses with simpler headspace
workflows, a smaller bench—top footprint, and lower operational
burden. It can be readily integrated into clinical laboratory
workflows and is particularly suitable for a large cohort study
focusing on clinically deployable, high—throughput screening (21).
Hence, in this work, we used GC-IMS to compare serum VOC
profiles between MAFLD patients and healthy controls, to
characterize disease-related metabolic changes and construct a
novel, serum-based diagnostic model for MAFLD.
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2 Materials and methods
2.1 Study design and participants
Figure 1 illustrates the overall study design. A cohort was

recruited between September 2023 and January 2024 from the
Department of Physical Examination at Shandong Provincial

Participant Recruitment

Total n=199 (MAFLD=110, HC=89)

Sept 2023 — Jan 2024

A 4

Sample Collection & VOC Detection

Fasting serum collection — GC-IMS
analysis of 79 VOCs

A\ 4
Statistical Analysis

Normality tests + t/Mann—Whitney

FDR correction: 54 significant VOCs

A 4
Machine Learning Modeling

RF, SVM, LDA, DT, KNN

7:3 train/test split + 5-fold CV

) 4
Model Evaluation

AUC, sensitivity, specificity, accuracy

RF best (AUC=0.941)

FIGURE 1
Research design schematic.

Frontiers in Endocrinology

03

10.3389/fendo.2025.1691853

Third Hospital. To minimize selection bias in this non-
randomized study, we enrolled consecutive, eligible patients
presenting to the hepatology clinic. Healthy controls were
recruited from routine health check-up programs and were
required to have normal liver imaging, normal liver enzyme
levels, and no history of chronic liver or metabolic disease.

As our study’s inclusion criteria aligned with the 2020 MAFLD
definition, we use the term MAFLD throughout this manuscript to
most accurately describe our patient cohort. MAFLD grade (mild,
moderate, or severe) was determined using standard ultrasound
criteria, including hepatic echogenicity, clarity of intrahepatic
vasculature, diaphragm visualization, and posterior
beam attenuation.

2.1.1 Inclusion criteria for the MAFLD group
1. Age between 18 and 75 years.
2. Evidence of hepatic steatosis on imaging studies or
liver biopsy.
3. Presence of at least one of the following conditions:
Overweight or obesity (Body Mass Index [BMI] >23
kg/m” for Asians).

o

Diagnosed type 2 diabetes mellitus.

Evidence of metabolic dysfunction, defined as the

presence of at least two of the following seven traits:
a. Waist circumference: 290 cm (male) or >80

cm (female) for Asians.

Blood pressure: 2130/85 mmHg, or use of

antihypertensive medication.

Triglycerides: >1.70 mmol/L, or use of lipid-

lowering medication.

High-density lipoprotein cholesterol (HDL-C):

<1.0 mmol/L (male) or <1.3 mmol/L (female),

or use of lipid-modifying medication.

Prediabetes: Fasting glucose 5.6-6.9 mmol/L,

2-hour postprandial blood glucose 7.8-11.0

mmol/L, or glycated hemoglobin (HbAlc)

5.7%-6.4%.

Homeostasis model assessment of insulin

resistance (HOMA-IR) index: >2.5.

High-sensitivity C-reactive protein (hs-CRP)

level: >2 mg/L.

2.1.2 Inclusion criteria for the healthy control
group
1. Age 218 years and provided voluntary written

informed consent.

. No history of major cardiac, hepatic, renal, neurological, or
infectious disease.

. BMI within the normal range (e.g,, 18.5-22.9 kg/m?).

. No heavy alcohol consumption, smoking, or any
substance abuse.

. No use of medications known to affect metabolic outcomes
within the past month.

. Not pregnant or breastfeeding.
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2.2 Sample preparation

Peripheral blood samples were collected from all participants in
the morning after an overnight fast. Samples were drawn into serum
separator tubes containing a clot activator and centrifuged at 3000g
for 10 min at 4°C within two hours of collection. The resulting
serum was transferred to a new tube and centrifuged again at
12,000g for 10 min at 4°C to remove residual cellular debris. The
final serum (supernatant) was aliquoted into cryotubes, flash-
frozen, and stored at —80°C until analysis. Each sample was
thawed no more than twice before analysis. To minimize
exogenous contamination and avoid systematic bias, blood
collection and processing were performed in a standardized
environment using identical consumables for all samples.

2.3 GC-IMS analysis of serum VOCs

For each analysis, a 200 UL serum aliquot was placed in a 20 mL
headspace vial, sealed, and incubated at 80°C for 10 min. Following
incubation, 1 mL of the headspace gas was automatically injected
into a GC-IMS system (FlavourSpec, G.A.S., Dortmund, Germany).
The system used nitrogen as both the carrier and drift gas. The
carrier gas flow was programmed as follows: 2 mL/min for 2 min,
ramped linearly to 100 mL/min over 8 min, and then held at 150
mL/min for an additional 5 min. The IMS drift gas flow was
constant at 150 mL/min. The drift tube, GC column, and inlet
temperatures were maintained at 45, 60, and 60°C, respectively.

VOC signals were characterized by their retention index (RI),
drift time (DT), and peak height (PH). Compounds were identified
by comparing their spectral features against the National Institute
of Standards and Technology (NIST) and integrated GC-IMS
library databases, and external reference standards were used
when appropriate. Peaks that could not be matched were
numbered and reported as unidentified VOCs. Peak height was
used for relative quantification across all samples.

2.4 Statistical and bioinformatic analysis

Descriptive statistics were calculated for all baseline
characteristics. Continuous variables were presented as mean *
standard deviation (SD) or median [P25, P75] based on their
distribution, assessed using the Shapiro-Wilk test. Categorical
variables were presented as counts and percentages. For
comparisons of individual VOC concentrations between the
MAFLD and control groups, we used the independent samples t-
test for normally distributed data and the Mann-Whitney U test for
non-normally distributed data. All tests were two-sided, and
statistical significance was verified when p < 0.05.

To identify factors associated with MAFLD, we first performed
univariate logistic regression. Variables with a p-value < 0.05 were
then included in a multivariate binary logistic regression model to
identify independent factors associated with MAFLD. For VOC
feature selection, a multi-step filtering process was applied. First, we
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corrected for multiple comparisons using the Benjamini-Hochberg
false discovery rate (FDR) method, with a significance threshold of
q < 0.05. To further ensure robustness, we only retained features
that also exhibited an absolute fold change of at least 1.5 between
the MAFLD and control groups and were detected in at least 20% of
samples in either group. VOCs that met all these criteria were
selected as the final feature set for machine learning.

We developed five machine learning models to classify MAFLD
status based on the significant VOCs: random forest (RF), support
vector machine (SVM), linear discriminant analysis (LDA),
decision tree (DT), and k-nearest neighbors (KNN). The full
dataset was randomly partitioned into a training set (70%) and a
test set (30%) using stratified sampling to maintain the case-to-
control ratio. Model hyperparameters were optimized using five-
fold cross-validation within the training set. The final, optimized
models were then evaluated on the independent test set. Diagnostic
performance was evaluated using receiver operating characteristic
(ROC) analysis, and performance was assessed using the area under
the curve (AUC). To evaluate model robustness, we conducted a
sensitivity analysis by excluding participants with ages in the lowest
and highest 5% of the distribution, re-training the models, and
comparing the performance metrics with those from the full
dataset. All statistical analyses were performed using SPSS 22
(IBM, Armonk, NY, USA) and R (version 4.3.3), and the caret
and pROC packages were utilized for machine learning tasks.
Default parameters were applied unless specified otherwise.

3 Results

3.1 Baseline clinical characteristics of the
study cohort

The study cohort included 199 participants: 110 patients with
MAFLD and 89 healthy controls (HC). While the groups were
balanced for sex, height, and several laboratory parameters (total
bilirubin, creatinine, blood urea nitrogen), the MAFLD group was
significantly older and had a higher weight and BMI (p < 0.001 for
all). As detailed in Table 1, the MAFLD patients also exhibited
significant alterations in liver enzymes (ALT, AST, GGT) and lipid
profiles (TC, LDL, TG) compared to the controls.

3.2 Serum VOC profiles distinguish MAFLD
patients from healthy controls

The serum samples from all 199 participants were analyzed by
GC-IMS to generate VOC profiles. Visual inspection of the
resulting topographic plots revealed distinct differences in the
VOC signatures between the MAFLD and HC groups (Figure 2).
A total of 79 distinct VOC signals were quantified across all samples
(Supplementary Table S1). Of these, 57 showed significant
uncorrected differences between groups. After applying
Benjamini-Hochberg (FDR) correction, 54 VOCs remained
statistically significant (q < 0.05) and were selected as features for

frontiersin.org


https://doi.org/10.3389/fendo.2025.1691853
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Li et al. 10.3389/fendo.2025.1691853

TABLE 1 Patient characteristics.

Characteristics Healthy Control (n = 89) MAFLD (n = 110)
Sex 0.317
Male 36 (40.45%) 37 (36.64%)
Female 53 (59.55%) 73 (66.36%)
Age (years) 37.0 [28.5, 49.5] 49.0 [37.0, 60.0] <0.001
Height (cm) 166.30 [162.40, 173.50] 165.45 [159.68, 172.90] 0.270
Weight (kg) 63.40 [56.60, 72.45] 73.95 [66.10, 81.85] <0.001
BMI (kg/m?) 22.90 [21.15, 24.85] 26.45 [24.40, 29.33] <0.001
Lab test results
ALT (U/L) 15.30 [11.75, 20.35] 20.75 [15.20, 31.28] <0.001
AST (U/L) 18.70 [16.55, 21.85] 20.55 [17.50, 26.55] 0.002
GGT (U/L) 14.50 [11.30, 21.15] 22.10 [17.98, 31.90] <0.001
TBIL (umol/L) 12.60 [9.80, 17.55] 13.20 [10.08, 16.03] 0.681
TC (mmol/L) 454 [3.95, 4.88] 5.04 [4.44, 5.90] <0.001
LDL (mmol/L) 2.73 [2.43, 3.09] 3.31 [2.83, 3.79] <0.001
TG (mmol/L) 0.90 [0.68, 1.28] 1.67 [1.19, 2.41] <0.001
GLU (mmol/L) 5.20 [4.90, 5.40] 5.45 [5.20, 6.00] <0.001
Scr (umol/L) 57.50 [52.20, 65.90] 57.00 [49.78, 66.30] 0.722
UA (umol/L) 303.10 [274.10, 338.30] 364.8 [317.23, 431.65] <0.001
BUN (mmol/L) 450 [3.85, 5.60] 475 [4.20, 5.50] 0.303

SData are expressed as count (ratio) or median [P25, P75]. ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transferase; TBIL, total bilirubin; TC, total

cholesterol; LDL, low-density lipoprotein; TG, triglycerides; GLU, glucose; Scr, serum creatinine; UA, uric acid; BUN, blood urea nitrogen.

FIGURE 2

Healthy

measurement run/sec[min)

MAFLD

drfit time / RIP relative

GC-IMS maps of serum VOCs in MAFLD patients (n = 110) and healthy controls (n = 89). The X-axis denotes retention index (a.u.), and the Y-axis
denotes drift time (ms). Peak heights were logl0-transformed, medians calculated per VOC across samples, then min—max normalized to [0, 1] for
plotting. Color scale indicates normalized peak height (a.u.), with darker colors representing higher abundance.
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developing machine learning models (Supplementary Table S2).
Some peaks were unidentified due to the current limitations of GC-
IMS reference libraries, but they demonstrated consistent group
differences and were thus retained for model construction.

3.3 Machine learning models achieve high
diagnostic accuracy

Five machine learning models were trained using the 54
significant VOC features, which included 33 identified and 21
identified compounds, and the diagnostic performance of the
models was evaluated on an independent test set. Table 2 shows
that the RF model demonstrated the best performance, achieving an
AUC of 0.941 on the test set, with an accuracy of 87.5%, sensitivity
of 86.7%, and specificity of 88.5%. The SVM model also showed
excellent performance (test set AUC = 0.927), whereas the LDA,
DT, and GLM models were less effective. Figure 3 shows the ROC
curves of all the models on the test set. Figure 4 shows the confusion
matrix of the RF model on the test set.

To identify the most influential biomarkers among the 54
significant VOCs, we calculated, for each VOC, the Gini
coefficient of its peak—height distribution across all 199 subjects
and then ranked features by their importance in the top-performing
RF model. The analysis revealed seven key VOCs that contributed
most significantly to the model’s predictive power (Figure 5).
Among them, two compounds were upregulated (2-
butoxyethanol, cyclopentanone-D) and five were downregulated
((E)-3-hexenoic acid, 2-ethylbutanal, 2-propyl acetate,
benzaldehyde-M, furaneol) in the MAFLD group. Figure 6
visualizes the distinct expression patterns of these top
compounds. A sensitivity analysis that excluded age outliers
confirmed the robustness of this VOC signature.

TABLE 2 Diagnostic performance of machine learning models.

Model® RF SVM LDA DT GLM
CV_AUC 0.936 0.896 0.83 0.848 0.692
Test_AUC 0.941 0.927 0.876 0.878 0.764
Acc_0.5 0.875 0.875 0.857 0.839 0.804
Sens_0.5 0.867 0.867 0.867 0.833 0.867
Spec_0.5 0.885 0.885 0.846 0.846 0.731
Thr_Youden 0.566 0.598 0.347 0.850 0.496
Acc_Youden 0.875 0.875 0.875 0.857 0.804
Sens_Youden 0.833 0.833 0.900 0.800 -
Spec_Youden 0.923 0.923 0.846 0.923 -

SRF, random forest; SVM, support vector machine; LDA, linear discriminant analysis; DT,
decision tree; KNN. k-nearest neighbors. Metrics include area under the receiver operating
characteristic curve (AUC), accuracy (Acc), sensitivity (Sens), and specificity (Spec) at default
(0.5) and Youden’s index thresholds (Thr). All results reflect the diagnostic performance of
binary classification between MAFLD and healthy control groups. The model performance
was evaluated by cross-validation (CV) and using independent test sets.
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3.4 Association of VOCs with clinical
parameters and disease severity

We next explored the association between the 33 identified
significant VOCs and clinical parameters within the cohort.
Numerous VOCs were significantly correlated with demographic
factors such as sex and age (Figure 7). Notably, when analyzing the
relationship with disease severity as determined by ultrasound, we
found that the abundance of 2-pentyl furan varied significantly
across mild, moderate, and severe stages of MAFLD (p < 0.05). This
suggests that 2-pentyl furan may be a potential biomarker for
monitoring MAFLD progression.

4 Discussion

VOC-based diagnostic model offers advantages such as
convenient sampling, rapid detection, non-invasiveness, high
patient acceptability, and the possibility of repeated sampling for
dynamic monitoring (22, 23). This study demonstrates that a serum
VOC-based signature, coupled with machine learning, can
distinguish patients with MAFLD from healthy individuals with
high accuracy. Current modalities of MAFLD diagnosis like
ultrasound have limited sensitivity for early-stage disease, and our
VOC-based model offers a promising, non-invasive alternative. The
RF model, our top-performing algorithm, achieved an excellent
AUC of 0.941, suggesting that serum VOCs reflect distinct
metabolic perturbations in MAFLD. By identifying key VOCs
linked to MAFLD, this work not only provides a potential
diagnostic tool but also offers insights into the underlying
pathophysiology of the disease.

A key strength of our study is the robustness of the VOC signal.
Although the MAFLD and control groups had a significant age
disparity, a sensitivity analysis excluding age extremes confirmed
that the model’s performance was not driven by this demographic
difference. Thus, the identified VOC signature must genuinely
reflect disease-related metabolic changes. However, our findings
should be interpreted with caution, since this work was a
preliminary, single-center study with a limited sample size.

4.1 Comparison with existing literature and
the novel contributions of this work

Our findings align with a growing body of research
demonstrating the utility of VOCs as biomarkers in various
diseases. For example, Hu et al. found a close relationship
between urinary VOC metabolites and increased systemic
inflammation, with smokers being more susceptible (24). This
finding underscores the link between VOCs and inflammation—a
key driver of MAFLD progression—and highlights the importance
of accounting for lifestyle factors like smoking in metabolomic
studies. Li et al. utilized GC-IMS to analyze VOC variations and
explored the potential application of VOCs in the phenotypic
detection of Carbapenem-Resistant Klebsiella pneumoniae
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ROC curves of the five models on the test set.

(CRKP) strains (25). Previous studies also examined the use of
VOCs as diagnostic biomarkers for esophageal cancer (26),
pancreatic cancer (27), prostate cancer (28), esophageal
adenocarcinoma (29), HCC (15), and colorectal cancer (30). A
number of studies have investigated the diagnostic value of VOCs in
liver disease (31), particularly in breath-based analyses.
Breathomics approaches have been explored for HCC, cirrhosis,
and MAFLD (32), with some technologies even advancing toward
commercialization (e.g., VOC-based breath analyzers) (33, 34).
The combination of VOCs and machine learning has been
deployed successfully in various scenarios. Fu et al. developed a
machine learning model using urinary VOC metabolites and
demographic data to predict cardiovascular disease risk (35).
Their Random Forest model achieved a high predictive accuracy
(AUC = 0.8143), which reflects our findings of the RF model and
shows the power of combining metabolomic data with machine
learning for risk stratification in complex metabolic diseases. While
their model was effective, our serum-based approach in a hepatic
disease context yielded an even higher AUC (0.941 vs. 0.814),
highlighting the strong, tissue-proximal signal captured from
serum. Thomas et al. (36) reported that machine learning analysis
of exhaled VOC profiles can non-invasively detect cirrhosis and
portal hypertension, thus offering a promising biomarker strategy

Frontiers in Endocrinology

for liver disease. Patnaik et al. (37) conducted a pilot study where
they measured breath concentrations of isoprene, limonene, and
dimethyl sulfide before and after exercise and used machine
learning regression to predict liver—function scores. These studies
all validate the overall approach.

Our work offers several unique contributions. First, unlike most
prior MAFLD research that focused on exhaled breath or urine, we
analyzed serum VOCs (17, 18). This sample matrix may more
directly reflect endogenous hepatic metabolism and is less
susceptible to confounding from environmental or dietary
exposures (22). Second, our use of GC-IMS provided a rapid and
highly sensitive platform suitable for clinical workflows (38). Third,
by comparing multiple machine learning algorithms, we not only
identified RF as the optimal model for this dataset but also
demonstrated consistent discriminatory signals present in the
VOC data, as even simpler models like GLM showed significant,
albeit lower, performance (Test AUC = 0.764). This multi-model
approach enhances the credibility of our findings compared to
studies relying on a single algorithm. Finally, our model’s high
performance (AUC = 0.941) suggests it has the potential to
complement or even surpass traditional non-invasive markers like
liver enzymes and lipid profiles, which may overlap between healthy
and diseased states.
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FIGURE 4
Confusion matrix of the RF model on the test set.

4.2 Biological and clinical interpretation of
key VOCs

The VOC signature we identified reflects key metabolic
hallmarks of MAFLD pathogenesis, including oxidative stress,
disrupted lipid metabolism, and inflammation, as schematically
illustrated in Figure 8. Our feature importance analysis identified
seven VOCs with the highest discriminatory power, and their
putative biological origins align with these processes. Our feature
importance analysis identified seven VOCs with the highest
discriminatory power. The VOC signature we identified dovetails
with the hallmarks of MAFLD—oxidative stress, disrupted lipid
oxidation, and altered xenobiotic processing. Of these seven key
VOCs, 2-butoxyethanol is a CYP-metabolized solvent derivative,

Benzaldehyde-M

and its upregulation in MAFLD patients likely reflects enhanced
hepatic detoxification activity in steatotic livers. The upregulation of
cyclopentanone-D, a ketone byproduct of fatty-acid B-oxidation
overload, reveals mitochondrial stress and lipid catabolism
disruption. The downregulation of (E)-3-hexenoic acid and 2-
ethylbutanal, both of which are o,B-unsaturated aldehydes
formed during ®-6 lipid peroxidation, may indicate modified
peroxidation flux or enhanced hepatic trapping/adduct formation.
The downregulation of 2-propyl acetate and benzaldehyde-M,
which are esters and aromatic aldehydes partly generated by the
gut microbiome and amino acid metabolism, suggests dysbiosis and
impaired hepatic clearance. Finally, the downregulation of furaneol,
a furanone linked to Maillard/carbohydrate fermentation
byproducts, may signal altered gut-liver crosstalk and glycation
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FIGURE 5

The top seven VOCs contributing most significantly to the predictive power of the random forest model. The bars represent the Gini coefficient
calculated from the peak height of the respective VOC across all 199 patients. The seven selected VOCs all satisfy Gini coefficient > 3.
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Comparison of the relative abundance (normalized peak height) of seven significantly altered VOCs between the Health and MAFLD groups.
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Data are shown as mean + SEM. *p < 0.05, **p < 0.01, ***p < 0.001.
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stress handling. Together, these patterns show that MAFLD
involves not only lipid accumulation but also increased oxidative
damage, impaired mitochondrial function, and changes in both
host— and microbiome—derived volatile metabolites.

Interestingly, we observed significant associations between
specific VOCs and demographic factors (Figure 6). Fifteen VOCs
showed sex-specific differences, and six were correlated with age.
For example, nonanal increased with age, which underscores
cumulative lipid peroxidation and oxidative damage in MAFLD.
Similarly, the sex-related difference in the ketone metabolite
cyclopentanone-D may stem from hormonal regulation of
mitochondrial fatty acid B-oxidation, thus suggesting that sex-
specific metabolic pathways are involved in MAFLD. 2-Pentyl
furan, highlighted in our analysis (Figure 8A) and known as an
autoxidation product derived from linoleic acid (a polyunsaturated
fatty acid), provides a direct link to lipid peroxidation and oxidative
stress pathways implicated in MAFLD progression (Figure 8B). The
most clinically relevant finding was its significant association with
MAFLD severity graded by ultrasound. This correlation suggests
that serum levels of 2-pentyl furan could potentially serve as a non-
invasive biomarker for monitoring disease progression (Figure 8C)
or stratifying patients based on severity, which would address a key
unmet need in clinical practice. However, since we did not perform
a parallel analysis of these demographic associations in the healthy
control group, it remains unclear whether these effects are disease-
specific or simply reflect baseline population variations.

4.3 Rationale for the machine learning
approach

The superior performance of the RF model (Test AUC = 0.941)
in our study can be attributed to its ability to handle high-
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dimensional data and model complex, non-linear relationships
between variables without overfitting (39). By building an
ensemble of decision trees, RF effectively reduces noise and
automatically selects the most important predictive features (40).
In contrast, DT is prone to overfitting and had a lower performance
(Test AUC = 0.878), although it is simple to interpret (41). The
SVM model also performed well (Test AUC = 0.927), as it is well-
suited for high-dimensional data with small sample sizes, although
it can be computationally intensive (42). The strong performance of
these advanced algorithms, compared to the simpler GLM (Test
AUC = 0.764), highlights the importance of capturing non-linear
interactions among VOCs for accurate MAFLD diagnosis.

4.4 Limitations and future directions

This study has several limitations. First, the single-center design
and relatively small sample size (n = 199) limit the generalizability
of our findings. Second, the cross-sectional design prevents us from
establishing a causal relationship between VOC changes and
MAFLD progression. Third, our diagnosis and staging of MAFLD
were based on ultrasound rather than liver biopsy, the gold
standard. This prevents us from distinguishing between simple
steatosis and the more aggressive non-alcoholic steatohepatitis
(NASH). Fourth, several significant VOCs could not be identified
due to the limited library coverage of GC-IMS, which hinders a
complete biological interpretation. Finally, the demographic
analysis was restricted to the MAFLD group, and we did not fully
disentangle disease-specific effects from normal
population variance.

Building on this work, future research should focus on several
key areas.
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Schematic overview linking key VOCs to MAFLD pathogenesis. (A) Selected significant VOCs identified in this study, with 2-pentyl furan highlighted
due to its association with disease severity. Chemical structures represent examples from the list. (B) These VOCs are putatively linked to core
metabolic disturbances in MAFLD, including oxidative stress, altered lipid metabolism, and inflammation. (C) These metabolic changes contribute to
the progression of liver damage from simple fatty change (steatosis) through fatty hepatitis (steatohepatitis) to fibrosis.
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4.4.1 Clinical validation

Large-scale, multi-center, prospective studies are the highest
priority. These studies should include diverse populations and use
histopathology to confirm diagnoses, allowing for the validation of
VOCs as biomarkers for both early detection and staging (i.e.,
steatosis vs. NASH vs. fibrosis). Longitudinal studies are also needed
to track changes in serum VOCs over time in target populations.

4.4.2 Mechanistic insight

Mechanistic studies are needed to understand the biological
origins of the key VOCs identified. Combining metabolomics with
other omics data (e.g., transcriptomics, proteomics) can help
elucidate specific pathways (e.g., lipid metabolism, inflammation,
gut-liver axis signaling) that are disrupted in MAFLD.

4.4.3 Technological advancement

Continued optimization of VOC detection technologies and
exploration of advanced machine learning algorithms, like deep
learning, will further enhance model performance. Future studies
can also benefit from integrating GC-IMS with GC-MS for more
comprehensive compound annotation.
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4.4.4 Multimodal diagnostics

Research should explore how to integrate VOC profiling with
existing diagnostic tools (ultrasound, blood tests, FibroScan) to
create a more powerful, multi-modal strategy for MAFLD
management, as such an approach should improve diagnostic
accuracy and support personalized treatment decisions.

5 Conclusions

In summary, this study demonstrates that a serum VOC
signature, when analyzed by machine learning, can accurately
distinguish patients with MAFLD from healthy controls. Our
model demonstrated high diagnostic performance and identified
several promising biomarkers potentially linked to disease severity.
However, the findings are constrained by the study’s single-center
design and lack of histopathological validation. Further validation
in large, prospective cohorts is required to confirm the clinical
utility of this approach for the early detection and management
of MAFLD.
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