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Introduction

Type 1 diabetes (T1D) is caused by the autoimmune destruction of pancreatic b−cells,
creating a lifelong need for exogenous insulin and glucose monitoring (1). Despite

therapeutic advances in T1D, cardiovascular disease (CVD) remains high in this

population with up to 45% developing ≥2 CVD risk factors within ten years after

diagnosis (1, 2). Additionally, CVD-related mortality remains approximately twice as

high in T1D compared to the general population, even when glycemic targets are achieved

(3, 4). Individualized medical nutrition therapy (MNT) is a pillar for improving glycemic

outcomes, promoting adequate growth, and reducing or delaying the development of

chronic complications (such as CVD) and comorbidities (such as dyslipidemia or

hypertension) in persons with T1D (5). MNT delivered by a registered dietitian is

associated with improved cardiometabolic markers, including a 1.0-1.9% reduction in

HbA1c in people living with T1D (5). In practice, MNT for T1D management has focused

on carbohydrates as the main contributor to postprandial glycemic fluctuations, but

compelling evidence and practice guidelines suggest that MNT should additionally

incorporate broader eating patterns, food preferences, cultural practices, relationships

with food and body, culinary skills, and food security to optimize health for people living

with diabetes (5–7). In this commentary, we discuss the evolution of MNT for T1D

management and opportunities to revise nutritional guidelines to reflect recent therapeutic

advances and improve outcomes beyond glucose management, including those related to

cardiometabolic risk and quality of life.
The road so far: the evolution of MNT for T1D
management

Although MNT has transformed over the past century, it has always been a cornerstone

of T1D management (Figure 1). Before the discovery of insulin, life expectancy after T1D

diagnosis was estimated to be less than three years (8). MNT primarily took the form of
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carbohydrate restriction (as low as 10g of carbohydrates per day or

≤10% of daily caloric intake) to delay mortality associated with T1D

(9). In some cases, high fat diets (i.e., up to 80% caloric intake from

fats) and intermittent fasting regimens (i.e., once a week complete

fast with just water or bouillon) were also recommended to manage

glucosuria and prolong life expectancy (10, 11). Other more drastic

measures like prolonged fasting (up to ten days) and hypocaloric

diets were effective in reducing ketoacidosis and glucosuria but were

not sustainable as they resulted in significant nutrient deficiencies,

starvation, and eventual death (10, 12).

With the discovery of insulin in the early 1920s, recommended

carbohydrate intake was increased to 40 to 70% of daily intake (9).

Specifically, recommendations for people with T1D were to follow

fixed diet plans to match carbohydrate intake to insulin doses

administered (13). By the mid-20th century, and as insulin

formulations and glucose monitoring developed to better reflect

physiological responses to nutrient intake, a carbohydrate exchange

system (1 exchange = 10 to 16 grams of carbohydrates) was

proposed (14). People with T1D were prescribed a fixed number

of insulin units which dictated the number and distribution of

recommended carbohydrate exchanges to consume to approach

euglycemia. The exchange system allowed people with T1D to

choose from a variety of carbohydrate sources while matching

carbohydrate amounts to their prescribed insulin dosing (15).

The development of intensive insulin therapy (i.e., three or

more daily injections of insulin) and capillary blood glucose meters

transformed T1D management (15). People with T1D could
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monitor their glycemia at home and match their insulin dose to

their carbohydrate intake instead of having to rigidly adhere to

predetermined carbohydrate amounts based on a fixed insulin dose.

Before this, glucose monitoring relied on urine tests as blood

glucose monitoring strips only became available in 1965 for use

in the clinic and 1980s for at home use (16). This advancement

provided added flexibility in what, when, and how to eat (15).

Specifically, in the 1990s carbohydrate counting (CC, i.e., counting

the number of carbohydrates found in food and using this value to

estimate prandial insulin needs) became a topic of interest in the

US, solidified with the Diabetes Control and Complications Trial

results (15).

Although CC has remained a mainstay of the dietary

management of T1D, its efficacy is equivocal, and unintended

effects on diabetes distress and disordered eating are of concern

(17). While some studies showed improvement in HbA1c values

(standard mean difference [95%CI]: -0.51 [-0.83, -019] %) when

insulin dosing was combined with precise CC and was compared to

standard diabetes education (16), evidence for CC superiority is less

clear when compared to other dietary approaches of matching

insulin to food intake (-0.31 [-0.99, 1.61]%) such as glycemic

index or fixed carbohydrate amounts (18). Discrepancies between

insulin doses estimated using CC and postprandial glycemic

responses can be accounted for by both dietary and non-dietary

factors including fiber and other macronutrients, previous physical

activity, and time of day (7, 19–21). CC is complex, takes time,

requires nutritional literacy and numerical skills, and is generally
FIGURE 1

The road so far and beyond: medical nutrition therapy in type 1 diabetes.
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inaccurate, especially when estimating carbohydrate intake from

fresh and non-prepackaged foods which are the basis of a healthy

diet (19, 22–24). Additionally, parallel to the general population

(25), low diet quality remains a persistent challenge for people with

T1D and has implications for both glycemic outcomes and

downstream cardiometabolic risk, thus supporting the need to

shift from a carbohydrate-centric approach to target overall diet

quality (26, 27). Current national and international guidelines state

that there is no one ideal diet approach for MNT in T1D; however,

dietary patterns that are rich in sources of fiber and unsaturated

fatty acids such as whole grains, vegetables, and lean protein, and

low in added sugars and sodium, have consistently been associated

with improved cardiometabolic health outcomes, including

glycemia (5, 7, 28, 29). Specifically, dietary patterns rich in fiber

(daily average 35 grams) have been associated with lower HbA1c

(mean difference [95%CI]: -0.18 [-0.30, -0.07]%), LDL cholesterol

(−0.17 [−0.27, −0.08]mmol/L), triglycerides (−0.16 [−0.23, −0.09]

mmol/L), and Body Mass Index (−0.36 [-0.55, −0.16]) compared to

dietary patterns lower in fiber (daily average 19 grams) in persons

with diabetes (30). Similar trends have been observed in youth (<18

years of age) with T1D. In a recent study with 120 youth

participants with T1D, those reporting dietary patterns rich in

ultra-processed foods had a 3.5 higher odds of having higher

HbA1c levels (31). Meeting nutritional guidelines remains

challenging for many. In a sample with 291 families of children

with T1D aged 8–18 years, the average eating patterns had less than

half the recommended amount of fruits, vegetables, whole grains,

nuts and seeds (source of 17% of energy intake) while 48% of daily

energy intake came from refined-grain products, desserts, chips,

and sweetened beverages (32). These trends are especially

concerning given the rising prevalence of overweight/obesity in

the T1D population, with overweight and obesity affecting 35% and

20% of adults with T1D respectively, increasing the risk of insulin

resistance and CVD (33).

Additionally, the psychological burden associated with T1D

such as the fear of hypoglycemia and the demands of precise CC

increases the risk of developing disordered eating behaviors (5, 34,

35). The demands for precise CC to match insulin dosing can also

increase meal-related anxiety and disturb intuitive eating and

satiety/hunger signaling (36). Specifically, behaviors such as

under-bolusing or omitting insulin to lose weight are prevalent in

people with T1D, with prevalence rates up to 40% in youth and 20%

in adults (37). Although limited, the current evidence supports the

theory of an association between disordered eating and T1D

management outcomes. In a cross-sectional analysis with 151

adolescents, participants in the “at risk for disordered eating”

group had lower diet quality compared to teens who were in the

low-risk group (38). Disordered eating has also been linked to

higher HbA1c levels, higher risk of ketoacidosis, and chronic T1D

complications (5, 39). Thus, nutrition interventions for healthful

eating should be mindful of the heightened disordered eating risk

in T1D.
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The road ahead: proposed strategies
for adapting MNT to contemporary
clinical care

Automated insulin delivery (AID) is now the standard of care as

per international guidelines for youth and adults with T1D (40, 41).

These systems increase time in target glucose range (TIR; i.e., 70–

180 mg/dL) by 10.9% [9.4, 12.4] and reduce HbA1c by 0.37% [-0.49,

-0.29] compared to non-automated insulin administration

modalities (42). Currently available AID systems can ease some of

the burden associated with mealtime management in T1D and

could potentially reduce the need for precise CC while maintaining

glycemic targets. Accordingly, the iLet™ system was designed to

reduce diabetes burden and thus only allows users to indicate meal

type and relative size (“usual,” “more,” or “less”) but not specific

carbohydrate amounts, and decreased HbA1c from 7.9% to 7.3%

and improved TIR from 51% to 65% in 219 youth and adults

relative to injections, non-automated insulin pumps and hybrid

closed-loop (43, 44). In another study, adolescents using

Medtronic’s MiniMed™ 780G AID system maintained higher

TIR (80% at 12 months follow-up) when employing carbohydrate

counting versus simplified meal announcements, although those

using simplified announcements still achieved TIR within

recommended targets (73% at 12 months) (45). In a crossover

design using the CamAPS™ system, Laesser et al. found no

difference in TIR between a simplified meal announcement (69.9

± 12.4%) and CC (70.7 ± 13.0%) (p=0.48) (46). Another team of

investigators found that up to 20 grams of unannounced

carbohydrates could be consumed with the MiniMed™ 780G

system without significant differences in postprandial glucose

compared to when the 20 grams were announced (TIR: 70.8% vs.

70.3% and time above range (TAR; i.e., >180 mg/dL): 27.6% vs.

27.1%, respectively) (47). However, larger amounts of

carbohydrates (≥40 grams) resulted in significantly higher

glycemic excursions when meals were not announced, such that

TAR was 15-20% higher compared to when an announcement was

made (47). Thus, certain AID systems allow users to achieve

reasonable glycemic outcomes using a less burdensome

carbohydrate announcement approach, but larger carbohydrate

intakes may necessitate greater user input. Additionally, current

evidence supports the glycemic impact of protein and fat on

postprandial glycemia thus further complicating mixed-meal

management in T1D. Recent literature reviews found that both

protein and fat contribute to postprandial glycemic excursions by

extending their duration and amplifying their magnitude (48, 49).

Current guidelines recommend meal-time insulin adjustments for

mixed meals to account for fat and protein content by modifying

both dose and delivery of the insulin bolus (5, 7). Thus, parallel to

the dual-wave boluses used with non-automated insulin pumps that

improved postprandial glycaemia in high-fat, high-protein and low-

GI meals (50), the CamAPS FX system includes a setting for “slowly
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absorbed meals” and the DBLG1-Diabeloop system offers a “high-

fat meal” option (51). Overall, while AID systems reduce the burden

of precise CC, meal announcements and a general understanding of

glycemic effects of macronutrients remain important for safety and

effective self-management, and thus continue to be part of the

MNT. The relationships between dietary composition of meals and

glycemia fluctuations are complex and vary widely between and

within individuals owing to a multitude of clinical and

sociodemographic factors (5). These complex interactions require

the integration of multi-modal personal data to provide effective

eating decision support tools for AID systems (52, 53). In order to

progress the development of such tools, machine learning

approaches which can automatically identify complex relationships

in data should be explored. One study, proposed an eating decision

support model that accounts for clinical characteristics, physical

activity, insulin, glycemia, and eating behavior data in order to

provide adolescents with T1D with meal timing and macronutrient

composition recommendations to optimize TIR (52). The

investigators’ (A.CS. and E.M-D.) propose the model as a

foundation to build a mobile health application or integrate with

an AID system depending on the individual’s access to diabetes

technology (52). However, translation of these findings to clinical

practice faces a multitude of challenges spanning issues related to

affordability and access, potential for sensor or pump malfunction,

cybersecurity and privacy concerns, data management,

standardization and interoperability across devices, regulatory

constraints, pharmacokinetic and pharmacodynamic constraints of

available insulin formulations, and provider skills or bias (54).

A recent review catalogued the impact of AID systems on eating

behaviors, including limited evidence from four qualitative and

three quantitative studies (55). The available evidence revealed that

AID systems reduce eating-related stress and increase confidence

around food in people with T1D. However, some users reported

increasing portion sizes and the intake of energy-dense foods,

suggesting that the benefits of added food flexibility, increased

quality of life, and reduced mealtime burden afforded by AID

may be offset by the trend to consume more discretionary foods

(55). Although the authors did not report on overall changes in diet

quality, these results invite speculation that AID systems lead to

changes in dietary patterns (55). As AID moves towards fully

closed-loop systems that no longer require CC for every meal,

nutrition education can increasingly focus on diet quality, variety,

eating behaviors, and individualized meal patterns aligned with

healthful eating principles (56). This shift to emphasize healthy

eating patterns associated with reduction in cardiometabolic risk

factors is especially important given the rising rates of overweight,

obesity, and insulin resistance in T1D (57).

In addition to advancements in insulin delivery, preliminary

data on adjunctive therapies like glucagon-like peptide 1 receptor

agonists (GLP-1 RA) for T1D management are promising (57, 58).

A recent review found an average reduction in HbA1c of 0.21%
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[-0.26, -0.17] and significant weight loss averaging 3.78 kg [-4.39,

-3.71] with the use of GLP-1 RA (59). The delayed gastric emptying

effect of GLP-1 RA could particularly benefit fully closed AID

systems by creating better alignment between the delayed timing of

exogenous insulin action and carbohydrate absorption (58). This

mechanism mirrors the advantages seen with mixed meals

containing fiber, complex carbohydrates, protein and fat, which

can provide AID systems more time to respond compared to high-

glycemic index or refined carbohydrate meals that cause rapid

glucose spikes. While GLP-1RAs remain off-label for T1D, real-

world adoption is growing, often with the prescription for obesity as

an additional diagnosis. The percentage of US adults with T1D

prescribed GLP-1RAs increased from 0.3% in 2010 to 6.6% in 2023

(60). Emerging evidence suggests potential for complementary

benefits when combining these pharmacological approaches with

advanced AID technologies (58).
Conclusion

Current nutritional recommendations should evolve in the

context of recent therapeutic advancements in AID systems and

adjunctive to insulin medications. As such future research is needed

to design, evaluate, and implement new MNT models to meet the

evolving realities of T1D management. Given AID’s ability to

compensate for inaccuracies in CC, nutritional guidance should

pivot from a sole focus on precise carbohydrate quantification

toward practical dietary principles emphasizing overall nutritional

quality. The goal is not to eliminate education around the impact of

carbohydrates and other macronutrients on glycemic excursions,

but to propose a more comprehensive approach that also offers

cardiometabolic protection and that can be individualized, thus

empowering people with T1D to make healthier food choices

without added cognitive burden or stress.
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