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Low-grade inflammation, both hypothalamic and systemic, sensitizes the
neuroendocrine response to osmotic stimuli whose proximate cause is chronic
underhydration common in older adults due to diminished thirst perception.
These events drive persistent vasopressin (VP) release. VP exerts antidiuretic
effects via renal V2 receptors and functions as a stress hormone through widely
expressed Vla and Vl1b receptors. These latter actions are central to
inappropriate activation of the hypothalamic-pituitary-adrenal axis observed in
aging, as VP stimulates secretion of the adrenocorticotropic hormone. The
resulting sustained elevations in circulating VP and cortisol contribute to
metabolic, renal, and cardiovascular disorders that compromise health and
lifespan in older individuals. This review reconciles the concept of
microinflammation with recent molecular insights into hypothalamic
osmosensitivity, proposing a model for the maladaptive hypersecretion of
vasopressin in advanced age. This framework may inform the development of
targeted interventions to normalize VP secretion, thereby mitigating the
metabolic, cardiovascular, and renal diseases that disproportionately affect
older adults.
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Impact of vasopressin signaling on aging

Aging is associated with neuroendocrine dysregulation manifesting by increased levels
of circulating vasopressin (VP) in a significant proportion of older adults (1-8). Elevated
plasma VP levels measured by its stable surrogate marker copeptin have been associated
with enhanced risk of cardiovascular, metabolic, and renal diseases disproportionally
affecting older people (9-12). Chronic underhydration of older adults due to blunted
thirst perception or impaired renal water conservation constitutes an obvious trigger for
sustained VP secretion since antidiuresis is the principal function of VP, also referred to as
the antidiuretic hormone (8, 13). Exaggerated VP secretion in older adults may be also
related to the low-grade systemic or hypothalamic inflammation typically developing
during aging because the major pro-inflammatory cytokines including the interleukin 13
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FIGURE 1

Vicious circle of pathophysiological events aggravating aging with
focus on the role of vasopressin. Hypothalamic microinflammation
induces sustained hyperactivity of the hypothalamic-pituitary-
adrenal axis (HPA) enhancing central and peripheral secretion of
vasopressin (VP) with ensuing sustained stimulation of the anterior
pituitary producing the adrenocorticotropic hormone (ACTH) and
adrenal glands producing cortisol. The resulting elevated levels of
VP and cortisol provoke and aggravate systemic metabolic disorders
such as diabetes mellitus, atherosclerosis, and hypertension with the
ensuing renal and multiorgan damage. Impaired renal and
cardiovascular performance lead to accumulation of toxic
metabolites in the body and systemic inflammation. The latter
aggravates the hypothalamic microinflammation by proinflammatory
cytokines and toxic metabolites disrupting the brain-blood barrier.

(IL-1B), IL-2, and IL-6 function as potent VP secretagogues (14—
24). Apart from the antidiuresis, VP acts as a stress hormone
contributing to activation of the hypothalamic-pituitary-adrenal
(HPA) axis and exerting peripheral vascular and metabolic effects
on the blood pressure and systemic glucose availability (25). While
the antidiuretic action of VP is mainly mediated via the renal
vasopressin V2 receptor (V2R), the stress-related hormone effects
depend on the V1b (V1b) and to a lesser extent on the Vla
receptor types (25, 26). Sustained HPA hyperactivity has been
closely associated with aging pathophysiology in human and
animals (27-31). VP-deficient Brattleboro rats and V1bR-
knockout mice exhibit attenuated baseline HPA activity and
blunted HPA response to various stressors suggesting a
significant role of VP in the HPA activation with potential
implications for aging (32-35). Peripheral effects of VP may
provoke insulin resistance, hyperglycemia, vasoconstriction,
hypertension, and renal damage at long term (9, 10, 25, 36, 37).
Therefore, sustained VP hypersecretion may compromise health at
multiple levels.

In further sections we will outline potential triggers for
exaggerated VP secretion with particular focus on the hypothalamic
microinflammation and the low-grade systemic inflammation
accompanying aging (14, 15) (Figure 1). We will consider a
crosstalk between the osmotic and pro-inflammatory stimuli for VP
release and integrate the recently identified molecular players in
hypothalamic osmosensitivity to offer an updated model for
maladaptive VP hypersecretion in advanced aging.
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Vasopressin biosynthesis and release
in aging

VP is a hypothalamic-neurohypophyseal peptide hormone
consisting of nine amino acids. Biosynthesis of the VP precursor
takes place in magnocellular neurosecretory cells (MNCs) located
within the supraoptic (SON), paraventricular (PVN), and accessory
nuclei (AC) of hypothalamus and projecting to the posterior
pituitary for hormone release into the peripheral blood (38). VP
is also produced in a subset of hypothalamic parvocellular neurons
which release the hormone into the hypophyseal portal circulation
to potentiate the secretion of adrenocorticotropic hormone
(ACTH) by the anterior pituitary (25, 39). The VP precursor
(pre-provasopressin) contains VP at its N-terminus, the carrier
protein neurophysin-2 in the middle, and a glycopeptide copeptin
at the C-terminus (40). Proteolytic cleavage of the precursor results
in secretion of VP and copeptin in equimolar amounts so that
copeptin can serve as a surrogate marker of plasma VP levels (9).
VP promotes antidiuresis thus preventing dehydration and playing
the key role in water homeostasis (26). Accordingly, VP is secreted
in response to increased plasma osmolality or reduced blood
volume that occur during dehydration (26). Furthermore,
secretion of VP increases in response to hyperthermia and certain
pro-inflammatory cytokines. The thermal stimuli may enhance the
osmosensitivity of MNCs thereby eliciting a greater VP release in
response to smaller increments in plasma osmolality (41). Heat
stress may further lead to activation of the hypothalamic-pituitary-
adrenal (HPA) axis involving VP as a modulating hormone (25, 42,
43). Induction of VP secretion by thermal or inflammatory stress is
at least in part mediated by pro-inflammatory cytokines such as IL-
1B or IL-6 (24, 44). Inflammatory stress has been generally
associated with stimulation of VP release (24). Thus, several non-
osmotic triggers such as low blood pressure, hyperthermia, and
inflammation contribute to the regulation of VP secretion in
addition to its osmotic stimulation.

The aging process has been associated with sustained increase of
baseline plasma VP levels in a significant proportion of older adults
(1-8). Hypothalamic nuclei retain largely intact morphology during
aging but the neuroendocrine functionality of VP-producing MNCs
is altered (45, 46). Post-mortem evaluation of hypothalamic regions
in human brains from younger vs. older individuals revealed similar
VP mRNA levels but increased VP-positive cell numbers and size in
aged brains (47-49). Enlarged size of the Golgi apparatus in PVN
and SON of older (over 70 years of age) compared to younger
individuals suggested enhanced activity of MNCs in the aged
human brain as well (50). Notably, nearly intact morphology
along with structural correlates of high MNCs activity were
observed even in brain samples derived from individuals with
Alzheimer’s disease history (49, 50). Therefore, unlike the most
other brain regions, hypothalamic nuclei are resistant to the aging-
dependent neurodegenerative alterations but exhibit signs of
increased activity instead. Chronic activation of MNCs in
advanced aging may be triggered by the pro-inflammatory
signaling arising from hypothalamic microinflammation (14).
Experimental studies in transgenic animals link the hypothalamic
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microinflammation to neuroendocrine disbalance affecting health
and life span (14, 51). Pro-inflammatory cytokines including IL-1j3,
IL-2, and IL-6 were established as potent HPA activators and
triggers of the VP secretion (16-22, 52, 53). Stimulation of MNCs
by these cytokines promotes sustained peripheral VP secretion via
the posterior pituitary leading to elevated plasma VP levels. Parallel
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FIGURE 2 (Continued)

Putative effects of hypothalamic microinflammation on the
neuroendocrine hypothalamic-pituitary-adrenal axis in advanced
aging. Advanced aging is associated with enhanced hypothalamic
release of pro-inflammatory cytokines including the interleukin 1
(IL-1pB) and IL-6 by microglial cells. These interleukins enhance the
excitability of neighboring vasopressin (VP)-producing
magnocellular (MNC) and parvocellular neurosecretory cells (PNC)
in the supraoptic (SON) and paraventricular hypothalamic nuclei
(PVN). MNCs deliver an enhanced VP amount to the systemic
circulation via the posterior pituitary, whereas PNCs release more
VP along with the corticotropin releasing hormone (CRH) into the
anterior pituitary. Activation of the corticotropin-producing cells
(CCQ) residing in the anterior pituitary mediated by the vasopressin
V1b receptor (V1bR) and CRH receptor type 1 (CRHR1) leads to
enhanced secretion of the adrenocorticotropic hormone (ACTH).
ACTH and VP synergistically stimulate cortisol secretion in the
adrenal cortex via the melanocortin receptor type 2 (MC2R) and the
vasopressin Vla receptor (V1aR), respectively.

activation of vasopressinergic parvocellular neurons in PVN
enhances VP delivery to the anterior pituitary, where it
potentiates the effect of the corticotropin-releasing hormone
(CRH) in VI1bR-expressing corticotrophs thereby co-stimulating
the adrenocorticotropic hormone (ACTH) secretion (35, 53, 54).
Effects of ACTH are further supported by the V1aR-mediated co-
stimulation of the adrenal cortex leading to enhanced cortisol
secretion in response to ACTH, as reported by studies ex vivo
and in vivo (42, 55-58). Thus, the exaggerated VP secretion driven
by hypothalamic microinflammation appears to play a role in HPA
hyperactivity during aging (Figure 2).

HPA activation alongside the VP hypersecretion may be also
provoked by pro-inflammatory cytokines derived from the systemic
circulation as reported for IL-1f3 or IL-6 in human and animals (21,
59). IL-6 plasma levels tend to increase during aging, and this
cytokine plays the key role in development of the low-grade
systemic inflammation in advanced aging also known as
“inflammaging” (15, 60, 61). The reasons for elevated IL-6 plasma
levels are likely multifactorial and may combine cellular senescence,
dysregulation of immune system, and chronic diseases or metabolic
conditions prevalent in older adults (15, 62). Although IL-6 or IL-
1B cannot easily cross the intact blood-brain barrier (BBB) under
normal conditions, the circulating cytokines may signal via
circumventricular organs (CVO) placed outside the BBB thus
affecting the neuroendocrine and behavioral functions such as
thirst and VP secretion (63-67). In addition, gradual BBB
disruption associated with aging may increase the exposure of
VP-producing hypothalamic nuclei to the pro-inflammatory
cytokines from systemic circulation (8, 15, 62, 68).

Thirst vs. vasopressin secretion in
aging
Adequate hydration of the body is critical to health.

Physiological losses of water with urine, breath, sweat, and stool
are balanced via behavioral adaptations driven by thirst sensation
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and ensuing water intake (69). The urine production by the kidneys
constitutes the major route of daily water loss, disregarding atypical
conditions such as fever or very high environmental temperatures
resulting in extreme sweating (70). Intensive filtration of blood
plasma in the kidneys is mandatory for rapid excretion of excessive
or toxic water-soluble substances with the urine, whereas the
ensuing tubular reabsorption of water prevents dehydration (71).
Renal handling of water and electrolytes is under tight
neuroendocrine control executed by VP (26). In advanced aging,
water homeostasis is compromised both at the central and renal
levels (72, 73). Blunted thirst sensation and impaired renal water
conservation commonly occur in older adults leading to chronic
underhydration and provoking sustained VP secretion (72).

Plasma hyperosmolality is the dominant stimulus for induction
of both thirst and VP release, as the resultant intracellular
dehydration is life-threatening and requires prompt normalization
of the water homeostasis (26, 69). The osmosensory neurons
triggering thirst reside in the forebrain regions known as the
subfornical organ (SFO) and organum vasculosum of the lamina
terminalis (OVLT), both regions belong to CVO placed outside of the
blood-brain barrier and therefore directly exposed to changes in
plasma osmolality (74). The osmotic stimulus for VP secretion
originates from osmosensory SFO/OVLT neurons and converges
with the intrinsic osmosensitivity of MNCs (75-77). The osmotic
thresholds for thirst induction and VP release operate within a
narrow range around 284-285 mOsmol/kg H,O in young healthy
adults, as defined by several studies (8, 78, 79). Increments in plasma
osmolality above that threshold range progressively trigger release of
VP (~1 pg/ml per 1% osmolality) along with growing thirst
perception (69, 80, 81). The close temporal association between VP
release and thirst induction in young healthy adults promotes rapid
rehydration with ensuing normalization of plasma osmolality and
suppression of VP secretion.

Aging has been associated with blunted thirst perception but
increased osmotic sensitivity towards VP release (8, 45, 82-84). The
reasons for impaired thirst perception in older individuals are
multifactorial including the low-grade systemic inflammation, since
SFO and OVLT lack the blood-brain barrier and are directly exposed
to the circulating pro-inflammatory cytokines and chemokines (8, 15,
62, 72, 85). In this context, administration of human IL-1f has been
shown to suppress osmotic thirst in rats (66). Likewise,
administration of the tumor necrosis factor (TNF) has been shown
to reduce fluid intake in mice (86). However, these results were
obtained with relatively high cytokine doses and thus model the acute
inflammatory response rather than the low-grade inflammation in
advanced aging. The available data on effects of pro-inflammatory
cytokines on thirst perception in aging is still scarce. A recent study in
aged individuals reported an inverse correlation between the skin
hydration status and plasma levels of several pro-inflammatory
cytokines including TNF, IL-10, IL-1f, IL-6, and interferon vy (87).
Although the topical water content in the skin partially reflects the
global water homeostasis, serum osmolality is a more precise
indicator of the body hydration status. Evaluation of serum
cytokine profiles in healthy young vs. older adults showed no
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correlations between serum osmolality and circulating levels of IL-
1B, IL-6, or TNF in one study (88). In view of the scarcity of data,
further studies are awaited to clarify links between inflammaging and
underhydration. Independently on the underlying mechanisms,
impaired thirst perception and resultant chronic underhydration
with moderately enhanced plasma osmolality persist in a significant
proportion of older adults constituting an osmotic trigger for VP
hypersecretion (2, 3, 5-8, 89-91).

Pro-inflammatory cytokines and
vasopressin secretion in aging

The physiological task of hypothalamic cytokine signaling is to
prime the response of MNCs to stress during temporary
perturbations of homeostasis (17, 92). In contrast, sustained
exposure of hypothalamic tissue to proinflammatory cytokines
such as IL-1P, IL-6, or TNF may provoke maladaptive
morphological and functional synaptic remodeling of MNCs
resulting in their enhanced sensitivity and exaggerated response
to osmotic stress in advanced aging (14, 45, 93). Such synaptic
reorganization may be aggravated by chronic underhydration
frequently occurring in aged individuals (94). IL-1B is the key
cytokine adjusting the MNCs excitability as its local release into
SON in response to osmotic stimuli accompanies VP secretion (92,
95). Both hypothalamic neuronal and microglia cells serve as IL-13
sources, whereas the functional IL-1 receptor type 1 (IL-1R1) is
present in neuronal cells such as MNCs or vasopressinergic
parvocellular neurons but absent in microglia cells (52, 53, 92,
96). The major signaling pathways downstream of IL-1R1 include
the Nuclear Factor kappa B transcription factor (NF-kB) and
Mitogen Activated Protein Kinase (MAPK). Binding of IL-1B to
IL-1R1 triggers the canonical NF-kB signaling via inactivating
phosphorylation of the NF-kB inhibitor (IkB) provided by the
IkB kinase (also known as IKK) (97). The ensuing nuclear
translocation of NF-kB drives expression of target genes,
including interleukins and enzymes involved in prostaglandin
biosynthesis, which amplify the initial IL-1f effect on MNCs and
parvocellular VP neurons via autocrine and paracrine mechanisms
(52). Prostaglandins, in particular the prostaglandin E2 (PGE,),
affect several ion channel types via modulation of cytosolic cAMP or
Ca®* levels with the net effect of increased MNCs excitability (98).
IL-1B-induced activation of MAPK signaling may amplify
intracellular Ca®" signals critical for vesicular VP release (95, 99).
Stimulation of the p38-MAPK kinases may also promote the VP
mRNA expression via phosphorylation of the cAMP response
elements (CREB) and activator protein 1 (AP-1) (100).
Hypothalamic effects of IL-1f3 may be potentiated by induction of
the IL-6 production and release (101). IL-6 expression in PVN and
SON is induced by dehydration and the cytokine is secreted by the
posterior pituitary parallel to VP to support metabolic adaptations
to the dehydration stress (102). Administration of recombinant IL-6
to healthy volunteers or cancer patients has been shown to stimulate
VP, ACTH, and cortisol secretion suggesting that peripheral IL-6
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Putative molecular mechanisms mediating osmosensitivity in vasopressin-producing magnocellular neurosecretory cells (A) and osmosensory
circumventricular neurons (B). (A): The response of vasopressin-producing magnocellular neurosecretory cells (MNCs) to hyperosmotic stress is
mediated by the N-terminal transient receptor potential vanilloid 1 splice variant (AN-TRPV1), which activated by microtubular (#) condensation
during cell shrinkage transmitting mechanical forces for the channel activation. (B): In osmosensory neurons located in the subfornical organ (SFO)
and organum vasculosum of the lamina terminalis (OVLT), hyperosmolality activates WNK1 in part by abrogating the inhibitory action of intracellular
chloride ([Cl'T). WNK1 signals via intermediate kinases, Ste20/SPS1-related proline/alanine-rich protein kinase (SPAK) and serum/glucocorticoid
regulated kinase 1 (SGK1). The ensuing SPAK-mediated phosphorylation of the Na*-K*-2Cl" cotransporter type 1 (NKCC1) and K*-Cl" cotransporter
type 2 (KCC2) produces reciprocal effects on their activity resulting in increased [Cl]; and neuronal excitability in response to GABA. SGK1-
mediated activation of the epithelial sodium channel (ENaC) promotes a depolarizing passive Na* leak, whereas stimulation of voltage-gated
potassium channels (Kv3) enables fast and precise neuron firing. Arrows point to activation, whereas T-shaped bars indicate inhibition. Created with
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affects the HPA axis and VP secretion in human (21, 103).
Stimulation of the IL-6 receptor (IL-6R) in MNCs promotes VP
secretion via the Mitogen-Activated Protein Kinase/Extracellular
Signal Regulated Kinase (MAPK/ERK) kinase cascade (104).
Activation of the cyclooxygenase 2 (COX-2) and induction of
PGE2 synthesis is integrated in both IL-1f and IL-6 signaling
pathways and stimulates VP secretion via prostaglandin E2
receptors expressed in the hypothalamus (105, 106). TNF may
modulate VP secretion directly or via complex interactions with the
endocannabinoid system (ECS) (107-109).

Chronic overexposure of MNCs to the aforementioned pro-
inflammatory cytokines likely occurs in advanced aging due to
hypothalamic microinflammation and systemic inflammaging (14,
15). These cytokines have been reported to reduce the threshold for
MNCs depolarization via effects on several ion channel types. IL-1
has been shown to stimulate osmosensitive non-selective cation
channels thus leading to influx of Ca**, Na*, and K* and increased
excitability of MNCs (52, 92, 110). Although the identity of these
channels remains to be clarified, members of the transient receptor
potential vanilloid family (TRPV) emerge as appropriate candidates
(77, 111-113). A functional N-terminal TRPV1 splice variant (AN-
TRPV1) expressed in MNCs has been identified as a stretch-
inactivated channel relevant for the intrinsic osmosensitivity of
MNCs (114). Mechanical forces occurring during hyperosmotic
stress and cell shrinkage are likely transduced on AN-TRPV1 via its
C-terminal interaction with tubulin (115) (Figure 3A). Activation of
AN-TRPV1 and the resulting Ca** influx induce the membrane
depolarization with ensuing exocytotic VP release (114). The
microtubular remodeling upon hyperosmotic stress further
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promotes the exocytotic membrane insertion of AN-TRPV1-
containing vesicles via activation of the phospholipase C delta 1
(PLC31), as shown in mouse and rat MNCs (116). Thus, the initial
AN-TRPV1-mediated calcium influx appears to trigger a positive
feedback loop via PLCS1 to amplify the AN-TRPV1 activity and
MNC excitability upon sustained osmotic stress (117). According to
this mechanism, IL-1f3 may sensitize the VP-producing MNCs thus
causing stronger VP secretion in response to smaller increments in
plasma osmolality, as has been reported in older adults (6, 8). The
excitability of MNCs may be further potentiated by IL-6 since its
increased hypothalamic expression in aged rat brains was linked to
exaggerated VP release in response to immune challenge (118). The
underlying molecular pathways and ion channels remain to be
specified but may involve TRPV members or paracrine modulation
of gap junction proteins in the surrounding astroglia (118-120). IL-
6 receptor (IL-6R) is expressed in astrocytes also expressing the
connexin 43 (Cx43), a gap junctional protein affecting the VP
release via astrocyte-dependent uptake of neurotransmitters and
neuropeptides and release of gliotransmitters (120-122).

In addition to the effects on MNCs excitability, the pro-
inflammatory cytokines may affect the upstream osmosensory SFO/
OVLT neurons projecting to vasopressin-secreting MNCs, as
excitatory effects of IL-1f and TNF were documented in rodent
CVO neurons (65, 123). Like in MNCs, studies in rats showed that
IL-1P promotes depolarization of SFO neurons by activation of non-
selective cation channels (64). The sensitivity of SFO/OVLT neurons
to hyperosmotic stress is at least partially mediated by the with-no-
lysine kinase 1 (WNK1), which detects molecular crowding during
cell shrinkage thus acting as an intracellular osmolality sensor (124).
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Recent studies in mice link WNK1 activation to the VP secretion in
response to plasma hyperosmolality (76, 125). WNKI1 may affect
neuronal excitability by modulation of several ion channels and
transporters via intermediate kinases such as the STE20/SPS1-
related proline/alanine-rich kinase (SPAK), the oxidative stress
responsive kinase 1 (OSR1), or the serum- and glucocorticoid-
inducible kinase 1 (SGK1) (126, 127). SPAK and OSRI are
homologous kinases targeting members of the electroneutral
cation-coupled chloride cotransporters (CCC) family (128).
Electrophysiological studies in rodent neurons showed that the
Na'-K*-2Cl" cotransporter type 1 (NKCC1) acts as a chloride
importer, whereas the K*-Cl™ cotransporter type 2 (KCC2) is the
major chloride exporter in mature neurons (129). Their functional
interplay determines the intracellular Cl™ concentration [Cl];,
neuronal excitability, and the type of response to the y-
aminobutyric acid (GABA)-induced signaling, i.e. inhibitory or
excitatory (130). Both NKCC1 and KCC2 are substrates for
phosphorylation by SPAK/OSRI with opposing functional effects:
activating for NKCCI but inhibitory for KCC2 (131, 132). Thus, the
WNKI1-SPAK/OSRI signaling may lead to intracellular chloride
accumulation (Figure 3B). Since GABA, receptor is a ligand-gated
chloride channel, high [CI']; suppress an inhibitory while provoking
an excitatory effect of the GABAergic signaling, depending on the
neuron type. A tonic inhibitory effect of GABA-signaling on the VP
secretion has been observed in vivo and in cell culture (133, 134). In
contrast, other animal studies report an excitatory effect of GABA on
the VP release especially under certain pathophysiological conditions
such as sustained hyperosmotic stress, diabetes, or hypertension
(135-140). This switch may be related to enhanced NKCCl1
activity and suppressed KCC2 function in MNCs and/or
osmosensory SFO/OVLT neurons (137-140). Since diabetes,
hypertension, and enhanced plasma osmolality due to
underhydration are prevalent in older adults, these factors are likely
to contribute to VP hypersecretion in advanced aging. Notably, these
pathophysiological conditions are generally accompanied by
sustained increases in circulating IL-1f3, IL-6, TNF levels (141-144).

Apart from SPAK/OSR1, WNKI may affect VP secretion via
SGK1 (126). WNKI activates SGK1 thus preventing ubiquitination
and degradation of the epithelial sodium channel (ENaC), whereas
ENaC activity has been shown to reduce the threshold for MCNs
depolarization in rodents (115, 126, 145). ENaC is further expressed
in the osmosensitive SFO/OVLT neurons and may be involved in
their activation upon hypernatremia (146). Studies in rodents and
observations in human suggest that ENaC activity may contribute
to enhanced VP secretion in response to high dietary salt intake
(115, 147-151). High-threshold voltage-gated potassium channels
(Kv3) belong to the downstream targets of the WNK1-SGK1
signaling as well (76, 125, 152, 153). Their WNK1-induced
activation has been shown to support the repetitive firing in
mouse osmosensory circumventricular neurons thus stimulating
VP release via respective projections to MNCs (Figure 3B). IL-1B
and IL-6 have been reported to stimulate ENaC in epithelial cells
but the respective effects in neurons have received only minor
attention so far (154, 155). Likewise, effects on these cytokines on
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Kv3 channels have not been extensively studied in the
neuronal context.

Circadian VP secretion in aging

Healthy young adults exhibit a diurnal VP secretion pattern
resulting in higher circulating VP levels at night and lower hormone
levels during the day (156). The normal circadian rhythm of VP
secretion is blunted in older people (157). Thus, insufficient rise of
plasma VP levels at night may be involved in nocturia frequently
reported by older people (157). Impaired renal response to the
hormone may contribute to nocturia as well (73). Furthermore, VP
is an established inducer of the ACTH secretion, which in turn
stimulates production and secretion of the cortisol and aldosterone
(158). The blunted circadian pattern of VP secretion may
secondarily affect the diurnal rhythm of aldosterone or cortisol
secretion in older individuals (159). Aldosterone secretion is also
controlled by the renin-angiotensin system (RAS) activity but this
regulatory pathway exhibits a gradual dissociation in advanced
aging (160). Intact circadian pattern of the HPA neuroendocrine
axis is crucial to global body metabolism, performance, and ability
to elicit adequate stress responses (29, 161). VP is critically involved
in maintaining the circadian rhythmic via its central and peripheral
effects (162). The age-related circadian rhythm flattening results in
decreased diurnal peaks but enhanced basal secretion of VP and
cortisol which have been increasingly recognized as
pathophysiological factors underlying diverse metabolic, renal,
and cardiovascular disorders such as diabetes mellitus,
atherosclerosis, or chronic kidney disease (163, 164). Notably, IL-
1P has been shown to disrupt the pancreatic circadian rhythm with
implications in the pathophysiology of diabetes mellitus (165). IL-
1B-induced deterioration of the circadian rhythm has been also
reported in articular cartilage during osteoarthritis (166).
Characterization of IL-6-deficient mice revealed a role of IL-6 in
the regulation of clock genes and behavioral rhythms of rest and
activity (167). IL-6 secretion follows a biphasic circadian pattern in
healthy young adults and is involved in the sleep/awake rhythm in
human (168). Chronically elevated plasma IL-6 levels in cancer
patients were associated with blunted diurnal variations in HPA
activity (169). Taken together, sustained overexposure of the
vasopressinergic system to pro-inflammatory cytokines because of
hypothalamic microinflammation of inflammaging may contribute
to flattening of the circadian VP secretion pattern but this
assumption needs further experimental verification.

Therapeutic prospects for targeting
VP signaling in aging

Elevated levels of circulating VP frequently occur in older adults
because of chronic underhydration and maladaptive alterations in
sensitivity and strength of the neuroendocrine response to
hyperosmotic stress, the latter may be related to hypothalamic
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microinflammation and systemic inflammaging (8, 14, 15, 62).
Excessive and prolonged VP signaling has been implicated in
cardiovascular, metabolic, and renal diseases (9, 37, 170, 171).
Lifestyle modifications such as regular physical activity, adequate
hydration, and metabolic dietary therapies can prolong health and life
span in older adults. Pharmacological approaches retarding aging
processes have been actively investigated in the recent decades.

Water supplementation

Water supplementation to provide an adequate water intake is
the obvious step towards prevention of dehydration and its negative
consequences such as chronic stimulation of the VP system in older
people. Indeed, several studies documented reduction of circulating
VP levels in adults of different ages and health status receiving daily
water supplementation, as judged by evaluation of the surrogate VP
marker copeptin (172-175). Moreover, an adequate hydration and
reduction of plasma copeptin levels were associated with improved
glucose metabolism (172, 174, 175). However, excessive water intake
bears a risk of euvolemic hyponatremia in older individuals since the
aged kidney is limited in its capacity to excrete water (176). Therefore,
a balanced water and electrolyte intake and regular monitoring of
blood electrolytes is recommended in older individuals.

Physical exercise

Sedentary lifestyle during aging has been associated with
increased incidence of cardiovascular and metabolic diseases such
as hypertension, obesity, or diabetes, whereas regular physical
activity mitigates these risks in part by suppressing the
inflammaging (177, 178). Systematic aerobic training reduces the
baseline levels of circulating IL-13, IL-6 and TNF, ie. the pro-
inflammatory cytokines potentially contributing to sustained VP
hypersecretion in advanced aging (178, 179). With respect to VP,
physical exercise causes acute transient increases in plasma VP and
copeptin levels both in younger and older individuals (180-182).
These increases reflect the body response to acute physical stress
and serve to maintain the water homeostasis. Although elevated
VP/copeptin levels are typically accompanied by enhanced IL-1f
and IL-6 levels during physical exercise, the exercise-induced VP
release appears to be largely independent on these cytokines (181,
183). In contrast, resting VP levels remain unchanged during
periods of systematic physical activity, as has been demonstrated
in older men and women assigned to endurance exercise (184).
Since regular physical activity exerts beneficial effects on the
circadian rhythm in older individuals it is tempting to speculate
that physical training may stabilize the circadian VP secretion
pattern as well (185, 186). Taken together, regular, age-matched
physical activity of moderate intensity represents a valuable non-
pharmacological intervention promoting healthier aging (187).
Habitual aerobic exercise has been shown to ameliorate the HPA
hyperactivity in older individuals although the impact of VP herein
remains to be clarified (188, 189).
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Targeting inflammation

Derangement of VP signaling in advanced age is closely related
with microinflammation of the hypothalamic tissue and increased
production of pro-inflammatory cytokines such as IL-1p and IL-6
(14). Both cytokines are non-osmotic VP secretagogues (17, 18, 21,
190). Peripheral IL-1B or IL-6 induction in response to
inflammation affects VP release as well, since these cytokines are
able to disrupt the blood-brain barrier permeability and penetrate
into the hypothalamic region (17, 67). IL-6 plasma levels tend to
increase with aging independent on confounding factors such as
major inflammatory diseases, whereas the circadian pattern of IL-6
secretion is flattened in older adults (61, 168, 191). The low-grade
systemic inflammation promotes cellular senescence and metabolic
disorders in aging (61). A growing repertoire and increasing
availability of clinically approved IL-6 signaling inhibitors hold
promise for retardation of aging-associated systemic and
hypothalamic inflammatory processes triggering the inappropriate
VP secretion (192). The extending clinical data pool from older
individuals receiving IL-6 inhibiting drugs for treatment of
autoimmune and inflammatory disorders may shed light on the
utility of this strategy to manage age-related dysregulation in the VP
system. Apart from pharmacological interventions, regular physical
activity, especially aerobic exercise, has been established as a potent
anti-inflammatory strategy to retard inflammaging (187).

Selective Vl1a or V1b receptor antagonists

While the urinary concentration depends on the renal V2
receptors, the unfavorable metabolic and vascular effects of VP in
older adults are largely mediated by activation of the V1a and V1b
receptors (25, 26, 36). Thus, antagonizing either Vla or V1b
receptor could improve the body metabolism while preserving the
antidiuretic VP action critical to adequate hydration. The
therapeutic potential of V1a and V1b antagonists is burgeoning,
although none of them has been tested in the clinical settings of
aging and metabolic diseases (193). Conivaptan, a dual antagonist
to the V1a and V2 receptor types, has been approved for correction
of euvolemic and hypervolemic hyponatremia similar to the
selective V2 receptor antagonist tolvaptan (194, 195). A selective
Vla receptor antagonist balovaptan has been tested in patients with
autism spectrum disorders (196). Selective suppression of the V1b
receptor showed promising preclinical results in the field of
neurologic stress-related disorders (197). Nevertheless, the
available experimental data strongly suggests that targeting Vla
or V1b signaling bears therapeutic potential for improved
management of the aging-related pathophysiology (25, 36).

WNK-SPAK inhibitors

In view of the newly established role of the WNK1-SPAK/OSR1
signaling in hypothalamic osmosensitivity, selective pharmacological
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interventions in this pathway bear potential to blunt the excessive VP
secretion in advanced aging (125). Inhibitors of SPAK and WNK
kinases have been developed and showed therapeutic potential in
animal models of hypertension and cystic fibrosis, although their
utility in human requires further validation (198, 199). WNKI fulfils
multiple functions in immune cell biology ranging from the cell
volume and motility to the regulation of cytokine production and
pyroptosis (200). WNK inhibitors have been shown to exert toxic
effects on the natural killer (NK) cells which may limit their
therapeutic potential due to increased risk of malignancy (201).
The cytotoxic effects of WNK inhibitors on the NK cells are likely
mediated by disruption of the WNKI-OSR1 signaling, whereas
selective inhibitors of SPAK downstream of WNKI1 may have
milder toxicity (201). Interestingly, WNK-dependent immunologic
effects involve the mechanistic target of rapamycin (mTOR), whereas
mTOR inhibitors have been shown to promote health and longevity
in various animal models of aging (202). The mTOR signaling has
been further shown to mediate some cell biological effects of VP such
as autophagy inhibition (203). Therefore, beneficial effects of mTOR
inhibitors may be partially related to improved cell metabolism due to
disruption of the VP signaling.

Conclusions and perspectives

Increasing recognition of the hypothalamic microinflammation
and systemic inflammaging as significant factors driving
maladaptive neuroendocrine processes such as VP hypersecretion
in aging opens new perspectives for targeted lifestyle and
pharmacological interventions. Recent progress in identification
of molecular networks governing the physiological VP secretion
adds to the choice of potential candidates for pharmacological
targeting of the VP system. The emerging solutions include anti-
cytokine therapies, selective inhibitors of V1a or V1b receptors, and
suppression of the WNK1-SPAK signaling.
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