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Background: Type 2 diabetes mellitus (T2DM) is a highly prevalent non-
communicable chronic disease that substantially reduces life expectancy.
Accurate estimation of all-cause mortality risk in T2DM patients is crucial for
personalizing and optimizing treatment strategies.

Methods: This study analyzed a cohort of 554 patients (aged 40—-87 years) with
diagnosed T2DM over a maximum follow-up period of 16.8 years, during which
202 patients (36%) died. Key survival-associated features were identified, and
multiple machine learning (ML) models were trained and validated to predict all-
cause mortality risk. To improve model interpretability, Shapley additive
explanations (SHAP) was applied to the best-performing model.

Results: The extra survival trees (EST) model, incorporating ten key features,
demonstrated the best predictive performance. The model achieved a C-statistic
of 0.776, with the area under the receiver operating characteristic curve (AUC)
values of 0.86, 0.80, 0.841, and 0.826 for 5-, 10-, 15-, and 16.8-year all-cause
mortality predictions, respectively. The SHAP approach was employed to
interpret the model’s individual decision-making processes.

Conclusion: The developed model exhibited strong predictive performance for
mortality risk assessment. Its clinically interpretable outputs enable potential
bedside application, improving the identification of high-risk patients and
supporting timely treatment optimization.
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1 Introduction

Diabetes mellitus (DM) is a prevalent endocrine-metabolic
disorder characterized by chronic hyperglycemia resulting from
either impaired insulin secretion or insulin resistance. The global
diabetes epidemic continues to escalate at an alarming rate,
imposing substantial strain on healthcare systems worldwide.
According to International Diabetes Federation estimates, the
worldwide prevalence of DM reached 536.6 million cases in 2021,
with projections indicating a dramatic rise to approximately 783.2
million cases by 2045 (1). Type 2 diabetes mellitus (T2DM)
represents the most prevalent form of diabetes, comprising 90-
95% of all diagnosed cases. This metabolic disorder is strongly
correlated with obesity and physical inactivity, which are among its
primary modifiable risk factors (2). Patients with T2DM exhibit
significantly elevated risks of diabetes-related complications (3) and
demonstrate higher all-cause and cause-specific mortality rates,
particularly from cardiovascular disease, when compared to both
the general population and non-diabetic individuals (4-6). Current
evidence indicates that excess mortality in diabetic patients can be
effectively reduced through optimal pharmacotherapy and lifestyle
interventions (7, 8). Accurate prediction of individual mortality risk
in T2DM therefore serves as a critical foundation for developing
personalized therapeutic approaches aimed at improving both life
expectancy and quality of life.

Current mortality risk assessment in T2DM patients
predominantly employs Cox proportional hazards regression
models (9-18). However, the Cox model has several limitations,
including its reliance on the proportional hazards assumption, its
tendency to capture primarily linear relationships, and its difficulty
handling high-dimensional data and complex variable interactions.
These shortcomings can restrict its utility with real-world datasets.
For this reason, contemporary mortality risk prediction increasingly
uses machine learning (ML) and artificial intelligence (AI)
approaches (e.g., random survival forests, neural networks), which
can process multi-dimensional data with complex, non-linear
dependencies. Several studies on T2DM have demonstrated that
ML models surpass the traditional Cox model in mortality risk
assessment (19-21).

Nevertheless, current mortality prediction models suffer from
limited transparency and interpretability, frequently functioning as
“black boxes” that compromise clinical trust and impede practical
implementation. The development of explainable AI (XAI) is
becoming increasingly vital for medical prediction (22, 23).
Frameworks like Shapley additive explanations (SHAP) bridge the
gap between algorithmic output and clinical practice by elucidating
a model’s decision-making logic and identifying key predictive
features for individual patients and entire cohorts. For any given
prediction, SHAP quantifies the magnitude and direction (increased
or decreased risk) of each feature’s contribution. This capability is
paramount for validating a model’s reasoning, ensuring its
alignment with medical knowledge, and empowering clinicians to
integrate data-driven insights into personalized patient care with
confidence. While SHAP technique has been incorporated into only
two diabetes mortality prediction models to date (24, 25) -
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encompassing both type 1 and type 2 diabetes - these
implementations merely explain aggregate model behavior rather
than providing patient-specific interpretations. To bridge this
critical gap, we sought to develop a novel, interpretable Al system
capable of generating individualized explanations for long-term all-
cause mortality risk predictions in T2DM patients.

2 Materials and methods
2.1 Study population

The study sample was drawn from a previously established
cohort comprising 568 patients diagnosed with T2DM (17, 26). The
patients were recruited at the Metabolic Diseases and Diabetology
Department of IRCCS INRCA (Ancona, Italy) between May 2003
and November 2006. T2DM was diagnosed according to American
Diabetes Association (ADA) criteria, which included any of the
following: hemoglobin Alc (HbAlc) level >6.5%, fasting blood
glucose 2126 mg/dL, 2-hour blood glucose >200 mg/dL during
oral glucose tolerance test (OGTT), or random blood glucose >200
mg/dL in the presence of severe diabetes symptoms (2). Inclusion
criteria for patients with diabetes were age from 40 to 87 years, a
body mass index (BMI) <40 kg/m? ability and willingness to give
written informed consent. Exclusion criteria were: diagnosis of
diabetes other than T2DM including type 1 diabetes, latent
autoimmune diabetes in adults (LADA) or secondary diabetes;
pregnancy or lactation at enrollment; severe liver disease defined
as cirrhosis, aspartate aminotransferase (AST) or alanine
aminotransferase (ALT) levels more than three times the upper
limit of normal or total bilirubin >3 mg/dL; active malignancy or
malignancy under treatment within the previous 12 months with
the exception of treated non-melanoma skin cancers; major acute
illness at baseline such as febrile infection or hospitalization within
the previous 4 weeks; hematological disorders interfering with
HbAlc measurement including known hemoglobinopathies,
severe anemia with hemoglobin <8 g/dL, blood transfusion within
the previous 3 months or recent treatment with erythropoietin;
ongoing or recent systemic immunosuppressive therapy including
corticosteroids at a dose =5 mg/day prednisolone equivalent for
more than one month, biologics, disease-modifying antirheumatic
drugs or other immunomodulators within the previous 3 months;
conditions precluding the ability to provide informed consent such
as severe cognitive impairment. The study was approved by the
Institutional Review Board of IRCCS INRCA hospital (Approval
no. 34/CdB/03) and conducted in accordance with the principles
outlined in the Declaration of Helsinki.

2.2 Outcomes
All-cause mortality data were extracted from medical records
spanning enrollment through December 31, 2019. Overall survival

time was calculated from enrollment to death. For surviving
patients, follow-up duration was censored at their last recorded
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observation. The maximum follow-up period was 16.8 years (6142
days). Only three patients were lost to follow-up, at 2019, 2594, and
5422 days after baseline examination.

2.3 Covariates

Baseline information collected at enrollment included clinical
characteristics such as age, sex, anthropometric parameters,
smoking, and medical history (duration of T2DM, presence of
comorbidities and complications of diabetes, concurrent
treatments). Comorbidities included arterial hypertension and
dyslipidemia. Complications of diabetes were diabetic neuropathy,
diabetic nephropathy, diabetic retinopathy, atherosclerotic vascular
disease, and major adverse cardiovascular events (MACE). Fasting
blood samples from all participants were processed to obtain serum
and stored at —80 °C. All serum samples were screened for
hemolysis prior to analysis. In all participants, standard methods
were utilized to assess blood cell counts and biochemical
parameters. Serum biomarkers were measured using standardized
CE-IVD assays. The serum N-glycomic profile was assessed using a
validated method based on IgG purification with protein G,
enzymatic release of N-glycans by PNGase F, fluorescent labeling
with 2-aminobenzamide (2-AB), and chromatographic separation,
as previously described (27).

2.4 Prediction model development

We developed a model to predict the 16.8-year risk of all-cause
mortality in patients with T2DM. The dataset was preprocessed
before applying ML algorithms. Covariates (variables/features) with
>20% missing values were removed, along with samples missing
data for age, sex, disease duration, survival information, or
categorical features. After filtering, 123 features and 554 patients
remained. The dataset was split into training and testing sets at an
80:20 ratio through stratified random sampling based on survival
status. Data were then z-normalized using means and standard
deviations derived from the training set. Finally, remaining missing
values were imputed using the k-nearest neighbors algorithm (k=5),
which has been well-established in various studies (28, 29).

We performed feature selection on the training data to remove
weakly predictive variables using four approaches: mutual
information, spatially uniform reliefF, and minimum redundancy-
maximum relevance (each retaining the top 50% of ranked
features), plus univariate Cox regression (Benjamini-Hochberg-
adjusted p-values <0.05). The final feature set combined the
intersection of these methods’ outputs, further refined through
model-specific forward selection. To prevent data leakage and
overfitting, feature selection was performed exclusively on the
training set, with each resulting feature subset evaluated using a
5-fold cross-validation procedure.

Nine ML algorithms were used to predict the risk of all-cause
mortality: multivariate Cox proportional hazards model with ridge
penalty (CoxPH), random survival forest (RSF), extra survival trees
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(EST), component-wise gradient boosting (CWGB), gradient-
boosted regression trees (GBRT), extreme gradient boosting
survival embeddings (XGBSE), and three artificial neural
networks - Cox proportional hazards deep neural network
(DeepSurv), case-control Cox regression model (CoxCC), and
piecewise constant hazard model (PCHazard). Gradient boosting
models and neural networks were trained using an early stopping
procedure. For training neural networks, the Adam optimization
algorithm was applied.

Model hyperparameters were tuned on the training set using a
multivariate tree-structured Parzen estimator. The total number of
optimization trials was 100. The best trial with the optimal
combination of hyperparameters was defined using the 5-fold
stratified cross-validation procedure on the training dataset. Key
hyperparameters included those that regularize model complexity
and counteract overfitting, such as the L2 penalty for Cox
regression, tree depth in survival forests, dropout in neural
networks, and others. The full list of tunable hyperparameters is
provided in Supplementary Table 1. Model performance was
evaluated using Harrell’s concordance index (C-index) as the
primary metric. We additionally conducted time-dependent
receiver operating characteristic curve (ROC) analysis to calculate
area under the curve (AUC) values and assessed calibration via the
Integrated Brier Score (IBS). Following feature selection and
hyperparameter optimization, the best models were trained on
the full training set and subsequently used to predict mortality
risk scores for individuals in the testing set.

We performed both global and local interpretability analysis of
the optimal model using Shapley additive explanations (SHAP),
with all surviving patients from the training dataset serving as the
background distribution for SHAP value computation. All
modeling workflows - including development, evaluation, and
interpretation — were implemented in Python 3.11.7 and R 4.3.2.

2.5 Statistical analysis

We compared survival groups (alive vs. deceased) using Mann-
Whitney U tests for continuous variables and y tests for categorical
variables, with statistical significance set at Benjamini-Hochberg-
adjusted p-values <0.05 (two-sided). Survival analysis between risk
groups (stratified by median predicted risk scores from training
data) employed Kaplan-Meier estimation and log-rank testing.

3 Results
3.1 Cohort analysis

After preprocessing, the final dataset included 554 patients (302
male, 252 female) with a median age of 67 years (interquartile range,
IQR 61-72) at baseline. The median T2DM duration was 14 years
(IQR 7-21, range 1-54). During the 16.8-year follow-up, 202 deaths
occurred (40 within 5 years, 94 within 10 years, 178 within 15
years), with deceased patients showing median survival of 10.6 years
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(IQR 6.3-13.6). Among 352 survivors, only 3 patients were lost to
follow-up. Comparative analysis of 123 baseline characteristics
revealed 36 statistically significant differences between surviving
and deceased patients (see Supplementary Table 2).

3.2 Development of the model for
predicting mortality risk

Feature selection identified 16 variables consistently ranked as
important across all four methods. Notably, three features — age, N-
terminal prohormone of brain natriuretic peptide (NT-proBNP),
and high-sensitivity troponin I (hs-cTnl) - overlapped with a
previously published Cox model from the same dataset (17). We
additionally incorporated three prognostic factors from this model,
hemoglobin Alc (HbAlc), C-reactive protein (hs-CRP), and soluble
suppression of tumorigenicity 2 (sST2) (17), and obtained an
intermediary set of 19 features for ML, Supplementary Table 2.

Then, for each of the nine ML models, we performed forward
feature selection to identify the optimal subset from the 19
candidate features. The hyperparameters of each model were fine-
tuned for every tested feature subset to maximize C-index. The
evaluation results are summarized in Table 1, while an expanded set
of performance metrics, along with optimal hyperparameters and
selected feature lists, are provided in Supplementary Table 3.
Among all models, the EST model demonstrated superior
performance in both cross-validation and the test dataset. On the
training data, cross-validation yielded a C-index of 0.751 and a
16.8-year AUC of 0.791. When evaluated on the test dataset, the
EST model achieved a C-index of 0.776 and a 16.8-year AUC of
0.826, further confirming its robustness. Additionally, IBS of 0.1
indicates good calibration.

The optimal EST model was trained using ten key variables: age,
number of complications, NT-proBNP, triglycerides, creatinine, hs-
CRP, RDW-SD, apolipoprotein Al, disease duration, and the
relative abundance of a specific serum N-glycan structure -
NA3F, a triantennary, a-1,3 core-fucosylated, branched N-glycan

10.3389/fendo.2025.1689312

derived from glycoproteins. Survival curves of the high-risk and
low-risk groups are shown in Figures 1A, B. In both the training and
test datasets, overall survival was significantly longer in the low-risk
group, as confirmed by the log-rank test (p-values < 0.05).

The developed prediction model demonstrated robust
performance for both medium- and long-term mortality risk
predictions, with time-dependent AUC values consistently
exceeding 0.8 for forecast periods beyond five years (Figure 1C).
Specifically, the test dataset achieved AUCs of 0.86, 0.80, and 0.84 at
5, 10, and 15 years, respectively. However, for time intervals shorter
than five years, we observed a notable discrepancy between the test
dataset AUC and those derived from both the training dataset and
cross-validation. This discrepancy stems from two key factors. First,
the model was explicitly optimized for 16.8-year mortality risk
prediction, resulting in reduced reliability for short-term forecasts.
Second, the dataset contained only 40 patients who died within the
first five years of follow-up, leading to overly limited training data
and potential bias in early-term predictions.

3.3 Interpretation of a model predicting
mortality risk

We analyzed SHAP values to interpret the contribution of the
ten selected features in predicting 16.8-year mortality risk among
patients with T2DM. This global explainability analysis of the EST
model quantified the relative importance of each feature in the
model’s predictions. Figure 2A presents the mean absolute SHAP
values, representing the average contribution magnitude of each
feature to the model’s predictions. Age, number of complications,
and disease duration emerged as the strongest predictors of
mortality risk, followed by laboratory biomarkers. Figure 2B
illustrates the directional effects of these features, where positive
SHAP values correspond to increased mortality risk and negative
values indicate protective effects. Notably, apolipoprotein Al
showed an inverse relationship with 16.8-year mortality risk,
where elevated levels were associated with reduced mortality

TABLE 1 C-index scores of ML models predicting all-cause mortality in patients with type 2 diabetes.

Number of selected features

EST 10 0.7511
DeepSurv 13 0.7509
CoxCC 12 0.7486
CoxPH 10 0.7485
CWGB 12 0.7451
RSF 8 0.7441
PCHazard 19 0.7428
XGBSE 10 0.7424
GBRT 11 0.7367

C-index, cross-validation C-index, train C-index, test
0.7697 0.7763
0.7676 0.7638
0.7631 0.7449
0.7515 0.7468
0.7509 0.7407
0.7636 0.7415
0.7705 0.6814
0.7903 0.7369
0.8283 0.7205

Models are ranked in descending order of the C-index score calculated using cross-validation. EST, extra survival trees; DeepSurv, Cox proportional hazards deep neural network; CoxCC, case-
control Cox regression model; CoxPH, multivariate Cox proportional hazards model with ridge penalty; CWGB, component-wise gradient boosting; RSF, random survival forest; PCHazard,

piecewise constant hazard model; XGBSE, extreme gradient boosting survival embeddings; GBRT, gradient-boosted regression trees.
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FIGURE 1

Analysis of the predictive model for all-cause mortality in patients with type 2 diabetes. (A) and (B) Kaplan—Meier survival curves for the low-risk and
high-risk groups in the train and test datasets, respectively. Patients were stratified into risk groups based on the median predicted risk score derived
from the training dataset. The log-rank test was used to compare survival between the low- and high-risk groups. (C) Time-dependent AUC over
the observation period. The AUC values calculated obtained from cross-validation are presented as the mean (green dots) + standard deviation (light
green area).
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FIGURE 2

Global explanation of feature contributions to model predictions. (A) Feature importance ranking based on mean absolute SHAP values across all
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showing the directional relationship between feature values and model outputs. Individual points represent SHAP values for each feature-participant
combination, with color intensity indicating feature values (red: high, blue: low).
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probability. The remaining nine features demonstrate positive
associations with predicted mortality risk. However, it should be
emphasized that while SHAP analysis reveals these important
feature-prediction relationships, it does not imply causation - it
only identifies associations between variables and model outputs.

64 years
0.125 . .
o4 A
0.100 ]
: oy, "
2°H. s
0.075 2 S
= e .
8 i 8L
g, 0050 se
T o © O
22 g8
2 0.025 a5
< * <?
& 58
0.000 £
2
-0.025
-0.050
40 50 60 70 80
Age
0.14
100 ng/L
0.12
.
.
0.10 e I
= ° =
S, 0.08 2
“a
82 25
T o ©
€ oos :é
<t <
& 0.04 »
0.02
0.00
-0.02
0 1000 2000 3000
NT-proBNP
0.10 1.0 mg/dL
.
° .
0.08 ¢ .
P
= . I =3
8,006 ol o &%
oc . Lo
EX e /. 28
% » g8
0.04 O 5
%5 £
= I
2] U)f(l
0.02
d
0.00 =
b I | I
05 1.0 15 20 25 3.0
Creatinine

0.03

0.02

SHAP value for
Triglycerides

0.00

-0.01

FIGURE 3

200 400 800

Triglycerides

600

0.08

o
o
=y

o
o
B

2
o
N

=
o
S

—-0.02

4 2 3 4
Number of complications

o
=)
b

o
o
@

=]
o
N

o
o
~

o
=3
S

160 mg/dL

—-0.02

50

100 150 200 300

Apolipoprotein A1

0.04

SHAP value for
Disease duration
o
o
N

10.3389/fendo.2025.1689312

For each feature, we determined thresholds at which SHAP
values change sign (Figure 3). In individuals older than 64, the
predicted probability of mortality increased. An increase in
complication number was associated with an increased
probability of mortality. The mortality risk increases when

9 years
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Dependence of SHAP values on ten features in the model. SHAP dependence scatter plots for (A) age, (B) number of complications, (C) disease
duration, (D) NT-proBNP, (E) RDW-SD, (F) N-glycan NA3F, (G) creatinine, (H) apolipoprotein A1, (I) hs-CRP, and (J) triglycerides. The blue curves
are constructed using a locally weighted scatterplot smoothing (LOWESS) algorithm. Feature values are presented in their original scale for

interpretability, though the model utilized normalized values internally.
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patients have had T2DM for more than 9 years. As for laboratory
parameters, the values contributing to an increased risk of mortality
included: NT-proBNP >100 ng/L, RDW-SD >42.3 fL, N-
glycanNA3F >2.7%, creatinine >1.0 mg/dL, apolipoprotein Al
<160 mg/dL, hs-CRP > 3.6 mg/L, and triglyceride >120 mg/dL.
SHAP analysis identifies data-driven associations, not causal
relationships. Consequently, the thresholds it produces for
predictors reflect changes in the model’s predicted risk and are
not substitutes for established clinical guidelines.

SHAP values were also used to explain the model’s decision-
making process for individual predictions. Figure 4A displays the
local explainability plot for a long-term survivor (alive after 16.8
years) with a favorable predicted mortality probability (20.9%). All
ten clinical factors contributed to risk reduction, with most
important influences being relatively younger age, absence of
diabetic complications, and low RDW-SD and creatinine values.
The mirror image emerges in Figure 4B, which explains the
prediction for a deceased patient (death occurring 4.4 years post-
examination), with a concerning 68.8% mortality risk. All features
contributed to an increased risk, the strongest risk drivers were
levels of creatinine and NT-proBNP, advanced age, and the burden
of four diabetes-related complications.

Quality metrics demonstrate that our model exhibits strong
predictive performance, consistently assigning lower risk scores to
survivors and higher risk scores to deceased patients. However,

FIGURE 4

10.3389/fendo.2025.1689312

certain cases may show significant prediction errors (either
overestimation or underestimation of risk). In these instances,
local explanation methods prove valuable for identifying the
specific features responsible for these discrepancies. Figure 4C
displays the SHAP waterfall plot for a survivor with an
unexpectedly high predicted mortality probability (60.3%). The
analysis reveals that the elevated risk prediction was primarily
driven by advanced age, elevated creatinine levels, presence of two
diabetes-related complications, increased RDW-SD and triglyceride
values, prolonged disease duration, and higher NT-proBNP
concentration. In turn, Figure 4D illustrates the SHAP analysis
for a deceased patient (death occurring 10.6 years post-
examination) where the model had predicted a low mortality
probability (23.6%). The following factors contributed to this
underestimation: younger age, shorter disease duration, lack of
complications, lower levels of NT-proBNP, N-glycan NA3F, and
RDW-SD.

While the precise reasons for these discrepancies remain
unclear due to limited patient data, several potential explanations
exist. The extended 16.8-year prediction window following baseline
measurements introduces numerous unaccounted variables that
could influence outcomes, including development of new
complications or comorbidities, changes in treatment adherence,
lifestyle modifications, and other unreported clinical factors.
Nevertheless, the model’s strong performance in long-term
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16.8-year mortality probability

16.8-year mortality probability

Local explanation of individual predictions using SHAP waterfall plots. Four representative cases are shown. (A) A survivor (alive after 16.8 years) with
low predicted mortality risk (20.9%), (B) a deceased patient (death occurring 4.4 years post-examination) with high predicted risk (68.8%), (C) a
survivor with high predicted risk (60.3%), (D) a deceased patient (death occurring 10.6 years post-examination) with low predicted risk (23.6%). The
y-axis displays features ranked by their increasing predictive influence from bottom to top. Feature values are presented in their original scale for
interpretability, though the model utilized normalized values internally. The x-axis represents the 16.8-year mortality probability. The prediction
originates from the baseline probability E[f(X)] derived from the training set and subsequently modifies based on each feature's contribution. Each
colored bar illustrates a feature's directional effect on the model's output: blue bars signify protective (risk-reducing) factors, while red bars denote
hazardous (risk-increasing) factors.
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predictions suggests these confounding factors have relatively
modest effects overall.

4 Discussion

In this study, we developed an explainable AI model using the
EST algorithm to predict 16.8-year all-cause mortality risk in
patients with T2DM. In the test dataset, our model demonstrated
strong predictive performance across all time horizons, with AUC
values of 0.86 (5-year), 0.80 (10-year), 0.841 (15-year), and 0.826
(16.8-year) for all-cause mortality prediction. The overall
concordance index (C-index) reached 0.776, with excellent
calibration (IBS = 0.1). Notably, this represents a significant
improvement over the previously developed Cox regression-based
nomogram when evaluated on the same dataset (17).

The final model variables incorporated age, number of
complications, disease duration, NT-proBNP, RDW-SD, N-glycan
NA3F, creatinine, apolipoprotein Al, hs-CRP, and triglycerides.
These variables have been previously employed in various
combinations across 15 existing mortality prediction studies (9-
21, 24, 25). Age consistently appeared in all 15 models. While no
studies directly included number of complications as a variable,
several incorporated specific complications (10, 11, 15, 18, 19, 24).
Among other predictors, triglycerides featured in seven models (10,
12, 15, 19-21, 25), diabetes duration in five (13-15, 24, 25),
creatinine in three (16, 21, 25), hs-CRP in two (17, 21), and NT-
proBNP in one model (17). Notably, sex — which was selected in all
studies except one (12), did not in our study.

Our model combines ML-driven accuracy with SHAP-based
interpretability, revealing both global feature importance and
directional effects on 16.8-year mortality risk. Interpretability has
direct clinical implications. Global SHAP profiles clarify which
variables consistently drive long-term mortality risk, while local
explanations highlight the main contributors for each individual
prediction. This information may help physicians identify
modifiable factors, prioritize follow-up, and communicate risk
more transparently with patients. Recent evidence shows that
SHAP-based explanations, particularly when presented in a
clinically oriented format, can improve trust, acceptance, and
usability in medical decision-making (30). Our results demonstrate
that while elevated apolipoprotein Al decreases predicted risk, the
other nine features (e.g., age, creatinine) show positive associations —
all consistent with established T2DM mortality relationships.

In older people with diabetes, additional factors such as
increased diabetes complications, polypharmacy, physical and
mental frailty are present, contributing to an increase in the
number of deaths (31-33). A higher number of diabetes-related
complications significantly correlates with increased mortality risk
(34). Similarly, the risk of all-cause mortality and cardiovascular
disease mortality significantly increases with T2DM duration
(35, 36).

Our model appears to capture dimensions of risk that extend
beyond traditional clinical predictors, integrating emerging
concepts such as residual inflammatory risk (RIR) (37) and
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organ-specific ageotyping (38). Elevated hs-CRP levels, which
contributed to increased mortality risk in our model, are
consistent with the notion of RIR and its clinical relevance in
cardiovascular prevention. The SHAP-derived threshold is
consistent with previously proposed cut-offs for cardiovascular
risk (39), reinforcing the role of low-grade inflammation as a
relevant prognostic factor in T2DM. In the context of T2DM,
biological aging can be seen as the accelerated decline of organ
systems, partly driven by chronic low-grade inflammation, while
residual risk refers to the mortality risk that persists despite good
control of glucose, lipids, and blood pressure. Large-scale
epidemiological evidence confirms that even when all
conventional risk factors are within target ranges, patients with
T2DM continue to face a substantially higher risk of death and
cardiovascular events compared to the general population (40).
These concepts are consistent with the theory of inflammaging,
where chronic inflammation contributes to the excess risk observed
in diabetes and may explain why conventional risk factor
management does not fully normalize prognosis (37, 41). The
selection of both conventional and non-conventional biomarkers
by the model is consistent with this broader perspective. We
recognize, however, that these interpretations are conceptual and
were not directly tested within our study; they are intended to
provide a framework for understanding the potential mechanisms
underlying the observed predictive performance.

NT-proBNP, a validated cardiac biomarker, captured the
contribution of subclinical myocardial stress in our model.
Beyond its role in diagnostics and management of heart failure,
elevated levels also reflect chronic hemodynamic strain and
myocardial remodeling, indicating cardiac aging, and aligning
with our broader hypothesis that progressive cardiac dysfunction
may represent an expression of biological aging mechanisms in
T2DM (41).

Creatinine, a conventional marker of renal function, may serve
as a proxy for biological aging of the kidney. While glomerular
filtration rate physiologically declines with age, patients with T2DM
experience an accelerated reduction, reflecting premature renal
dysfunction (42). This renal trajectory often parallels that of the
heart, as the interplay between cardiac and renal aging is well
established and clinically recognized in the context of cardiorenal
syndromes (43).

Red cell distribution width-standard deviation (RDW-SD), a
measure of anisocytosis, also emerged as a relevant predictor.
Although traditionally used in the evaluation of anemia, elevated
RDW has been associated with cardiovascular events and mortality
(44). Chronically elevated RDW is increasingly regarded as a
marker of bone marrow stress, potentially reflecting impaired
erythropoiesis in the setting of chronic inflammation and
immune activation. In this context, it may capture hematopoietic
system dysfunction driven by systemic processes common in T2DM
and provide prognostic information beyond traditional organ-
specific biomarkers, representing a hematopoietic expression of
biological aging.

Together, creatinine, NT-proBNP, and RDW-SD represent
complementary markers capturing multidimensional risk
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pathways in T2DM: organ-specific dysfunction (kidney, heart) and
systemic inflammation. Elevated levels of these markers identify
patients facing a confluence of organ damage and systemic
deterioration, which likely contributes to their poorer long-
term outcomes.

Lipid-related biomarkers such as triglycerides and
apolipoprotein Al (ApoAl) were also retained in the model and
showed opposing associations with mortality risk. Elevated
triglyceride levels are a hallmark of insulin resistance and
atherogenic dyslipidemia, and their association with
cardiovascular and all-cause mortality has been consistently
observed in patients with T2DM (45). ApoAl, the main
apolipoprotein component of high-density lipoprotein (HDL)
particles, was inversely associated with mortality risk in our
model. Reduced circulating levels of ApoAl have been associated
with increased risk of incident diabetes (46) as well as with
cardiovascular events in large general population cohorts (47),
although its prognostic value has not been clearly demonstrated
in diabetic populations. In this context, both triglycerides and
ApoAl may act as complementary indicators of residual lipid-
related risk, particularly relevant in patients receiving statin therapy,
as was the case for the vast majority of our cohort.

N-glycan NA3F was associated with metabolic and
inflammatory features in T2DM (27). Although the biological role
of this structure remains elusive, its inclusion may reflect broader
N-glycan remodeling processes linked to aging, immune regulation,
or glycoprotein turnover, underscoring the potential of serum
glycomics to capture latent biological signals beyond
conventional biomarkers.

Limitations of our study include a moderate sample size, its
origin from a single medical center, and Italian ancestry of patients
might restrict the generalizability of the findings. Information
regarding the specific causes of death and some potential
predictors, such as diet and physical exercise was not available.
Only one imputation method was used to handle missing data;
employing additional methods could potentially improve model
quality. Although the model’s performance was assessed through
both cross-validation and an independent internal testing dataset, a
suitable external validation dataset was unavailable. These
limitations should be considered when interpreting the results of
our study.

5 Conclusion

In conclusion, this study presents a novel ML model that
predicts the risk of 16.8-year all-cause mortality in patients with
T2DM, utilizing ten clinical and laboratory parameters. Taken
together, the model variables reflect a multidimensional construct
of long-term risk in T2DM, incorporating diverse but
interconnected processes related to biological aging, residual
inflammation, and subclinical organ dysfunction. Their influence
on individual patient predictions is disclosed by the local
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explanation SHAP method, which has not been done previously
in existing all-cause mortality prediction models for patients with
T2DM. Thus, our explainable model can be potentially used as an
additional tool in the examination of patients with T2DM.
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