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Center for Aging Research, IRCCS INRCA, Ancona, Italy
Background: Type 2 diabetes mellitus (T2DM) is a highly prevalent non-

communicable chronic disease that substantially reduces life expectancy.

Accurate estimation of all-cause mortality risk in T2DM patients is crucial for

personalizing and optimizing treatment strategies.

Methods: This study analyzed a cohort of 554 patients (aged 40–87 years) with

diagnosed T2DM over a maximum follow-up period of 16.8 years, during which

202 patients (36%) died. Key survival-associated features were identified, and

multiple machine learning (ML) models were trained and validated to predict all-

cause mortality risk. To improve model interpretability, Shapley additive

explanations (SHAP) was applied to the best-performing model.

Results: The extra survival trees (EST) model, incorporating ten key features,

demonstrated the best predictive performance. The model achieved a C-statistic

of 0.776, with the area under the receiver operating characteristic curve (AUC)

values of 0.86, 0.80, 0.841, and 0.826 for 5-, 10-, 15-, and 16.8-year all-cause

mortality predictions, respectively. The SHAP approach was employed to

interpret the model’s individual decision-making processes.

Conclusion: The developed model exhibited strong predictive performance for

mortality risk assessment. Its clinically interpretable outputs enable potential

bedside application, improving the identification of high-risk patients and

supporting timely treatment optimization.
KEYWORDS

type 2 diabetes, all-causemortality risk, predictive model, machine learning, explainable
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1 Introduction

Diabetes mellitus (DM) is a prevalent endocrine-metabolic

disorder characterized by chronic hyperglycemia resulting from

either impaired insulin secretion or insulin resistance. The global

diabetes epidemic continues to escalate at an alarming rate,

imposing substantial strain on healthcare systems worldwide.

According to International Diabetes Federation estimates, the

worldwide prevalence of DM reached 536.6 million cases in 2021,

with projections indicating a dramatic rise to approximately 783.2

million cases by 2045 (1). Type 2 diabetes mellitus (T2DM)

represents the most prevalent form of diabetes, comprising 90-

95% of all diagnosed cases. This metabolic disorder is strongly

correlated with obesity and physical inactivity, which are among its

primary modifiable risk factors (2). Patients with T2DM exhibit

significantly elevated risks of diabetes-related complications (3) and

demonstrate higher all-cause and cause-specific mortality rates,

particularly from cardiovascular disease, when compared to both

the general population and non-diabetic individuals (4–6). Current

evidence indicates that excess mortality in diabetic patients can be

effectively reduced through optimal pharmacotherapy and lifestyle

interventions (7, 8). Accurate prediction of individual mortality risk

in T2DM therefore serves as a critical foundation for developing

personalized therapeutic approaches aimed at improving both life

expectancy and quality of life.

Current mortality risk assessment in T2DM patients

predominantly employs Cox proportional hazards regression

models (9–18). However, the Cox model has several limitations,

including its reliance on the proportional hazards assumption, its

tendency to capture primarily linear relationships, and its difficulty

handling high-dimensional data and complex variable interactions.

These shortcomings can restrict its utility with real-world datasets.

For this reason, contemporary mortality risk prediction increasingly

uses machine learning (ML) and artificial intelligence (AI)

approaches (e.g., random survival forests, neural networks), which

can process multi-dimensional data with complex, non-linear

dependencies. Several studies on T2DM have demonstrated that

ML models surpass the traditional Cox model in mortality risk

assessment (19–21).

Nevertheless, current mortality prediction models suffer from

limited transparency and interpretability, frequently functioning as

“black boxes” that compromise clinical trust and impede practical

implementation. The development of explainable AI (XAI) is

becoming increasingly vital for medical prediction (22, 23).

Frameworks like Shapley additive explanations (SHAP) bridge the

gap between algorithmic output and clinical practice by elucidating

a model’s decision-making logic and identifying key predictive

features for individual patients and entire cohorts. For any given

prediction, SHAP quantifies the magnitude and direction (increased

or decreased risk) of each feature’s contribution. This capability is

paramount for validating a model’s reasoning, ensuring its

alignment with medical knowledge, and empowering clinicians to

integrate data-driven insights into personalized patient care with

confidence. While SHAP technique has been incorporated into only

two diabetes mortality prediction models to date (24, 25) –
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encompassing both type 1 and type 2 diabetes – these

implementations merely explain aggregate model behavior rather

than providing patient-specific interpretations. To bridge this

critical gap, we sought to develop a novel, interpretable AI system

capable of generating individualized explanations for long-term all-

cause mortality risk predictions in T2DM patients.
2 Materials and methods

2.1 Study population

The study sample was drawn from a previously established

cohort comprising 568 patients diagnosed with T2DM (17, 26). The

patients were recruited at the Metabolic Diseases and Diabetology

Department of IRCCS INRCA (Ancona, Italy) between May 2003

and November 2006. T2DM was diagnosed according to American

Diabetes Association (ADA) criteria, which included any of the

following: hemoglobin A1c (HbA1c) level ≥6.5%, fasting blood

glucose ≥126 mg/dL, 2-hour blood glucose ≥200 mg/dL during

oral glucose tolerance test (OGTT), or random blood glucose ≥200

mg/dL in the presence of severe diabetes symptoms (2). Inclusion

criteria for patients with diabetes were age from 40 to 87 years, a

body mass index (BMI) <40 kg/m2, ability and willingness to give

written informed consent. Exclusion criteria were: diagnosis of

diabetes other than T2DM including type 1 diabetes, latent

autoimmune diabetes in adults (LADA) or secondary diabetes;

pregnancy or lactation at enrollment; severe liver disease defined

as cirrhosis, aspartate aminotransferase (AST) or alanine

aminotransferase (ALT) levels more than three times the upper

limit of normal or total bilirubin >3 mg/dL; active malignancy or

malignancy under treatment within the previous 12 months with

the exception of treated non-melanoma skin cancers; major acute

illness at baseline such as febrile infection or hospitalization within

the previous 4 weeks; hematological disorders interfering with

HbA1c measurement including known hemoglobinopathies,

severe anemia with hemoglobin <8 g/dL, blood transfusion within

the previous 3 months or recent treatment with erythropoietin;

ongoing or recent systemic immunosuppressive therapy including

corticosteroids at a dose ≥5 mg/day prednisolone equivalent for

more than one month, biologics, disease-modifying antirheumatic

drugs or other immunomodulators within the previous 3 months;

conditions precluding the ability to provide informed consent such

as severe cognitive impairment. The study was approved by the

Institutional Review Board of IRCCS INRCA hospital (Approval

no. 34/CdB/03) and conducted in accordance with the principles

outlined in the Declaration of Helsinki.
2.2 Outcomes

All-cause mortality data were extracted from medical records

spanning enrollment through December 31, 2019. Overall survival

time was calculated from enrollment to death. For surviving

patients, follow-up duration was censored at their last recorded
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observation. The maximum follow-up period was 16.8 years (6142

days). Only three patients were lost to follow-up, at 2019, 2594, and

5422 days after baseline examination.
2.3 Covariates

Baseline information collected at enrollment included clinical

characteristics such as age, sex, anthropometric parameters,

smoking, and medical history (duration of T2DM, presence of

comorbidities and complications of diabetes, concurrent

treatments). Comorbidities included arterial hypertension and

dyslipidemia. Complications of diabetes were diabetic neuropathy,

diabetic nephropathy, diabetic retinopathy, atherosclerotic vascular

disease, and major adverse cardiovascular events (MACE). Fasting

blood samples from all participants were processed to obtain serum

and stored at −80 °C. All serum samples were screened for

hemolysis prior to analysis. In all participants, standard methods

were utilized to assess blood cell counts and biochemical

parameters. Serum biomarkers were measured using standardized

CE-IVD assays. The serum N-glycomic profile was assessed using a

validated method based on IgG purification with protein G,

enzymatic release of N-glycans by PNGase F, fluorescent labeling

with 2-aminobenzamide (2-AB), and chromatographic separation,

as previously described (27).
2.4 Prediction model development

We developed a model to predict the 16.8-year risk of all-cause

mortality in patients with T2DM. The dataset was preprocessed

before applying ML algorithms. Covariates (variables/features) with

>20% missing values were removed, along with samples missing

data for age, sex, disease duration, survival information, or

categorical features. After filtering, 123 features and 554 patients

remained. The dataset was split into training and testing sets at an

80:20 ratio through stratified random sampling based on survival

status. Data were then z-normalized using means and standard

deviations derived from the training set. Finally, remaining missing

values were imputed using the k-nearest neighbors algorithm (k=5),

which has been well-established in various studies (28, 29).

We performed feature selection on the training data to remove

weakly predictive variables using four approaches: mutual

information, spatially uniform reliefF, and minimum redundancy-

maximum relevance (each retaining the top 50% of ranked

features), plus univariate Cox regression (Benjamini-Hochberg-

adjusted p-values <0.05). The final feature set combined the

intersection of these methods’ outputs, further refined through

model-specific forward selection. To prevent data leakage and

overfitting, feature selection was performed exclusively on the

training set, with each resulting feature subset evaluated using a

5-fold cross-validation procedure.

Nine ML algorithms were used to predict the risk of all-cause

mortality: multivariate Cox proportional hazards model with ridge

penalty (CoxPH), random survival forest (RSF), extra survival trees
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(EST), component-wise gradient boosting (CWGB), gradient-

boosted regression trees (GBRT), extreme gradient boosting

survival embeddings (XGBSE), and three artificial neural

networks – Cox proportional hazards deep neural network

(DeepSurv), case-control Cox regression model (CoxCC), and

piecewise constant hazard model (PCHazard). Gradient boosting

models and neural networks were trained using an early stopping

procedure. For training neural networks, the Adam optimization

algorithm was applied.

Model hyperparameters were tuned on the training set using a

multivariate tree-structured Parzen estimator. The total number of

optimization trials was 100. The best trial with the optimal

combination of hyperparameters was defined using the 5-fold

stratified cross-validation procedure on the training dataset. Key

hyperparameters included those that regularize model complexity

and counteract overfitting, such as the L2 penalty for Cox

regression, tree depth in survival forests, dropout in neural

networks, and others. The full list of tunable hyperparameters is

provided in Supplementary Table 1. Model performance was

evaluated using Harrell’s concordance index (C-index) as the

primary metric. We additionally conducted time-dependent

receiver operating characteristic curve (ROC) analysis to calculate

area under the curve (AUC) values and assessed calibration via the

Integrated Brier Score (IBS). Following feature selection and

hyperparameter optimization, the best models were trained on

the full training set and subsequently used to predict mortality

risk scores for individuals in the testing set.

We performed both global and local interpretability analysis of

the optimal model using Shapley additive explanations (SHAP),

with all surviving patients from the training dataset serving as the

background distribution for SHAP value computation. All

modeling workflows – including development, evaluation, and

interpretation – were implemented in Python 3.11.7 and R 4.3.2.
2.5 Statistical analysis

We compared survival groups (alive vs. deceased) using Mann-

Whitney U tests for continuous variables and c² tests for categorical
variables, with statistical significance set at Benjamini-Hochberg-

adjusted p-values <0.05 (two-sided). Survival analysis between risk

groups (stratified by median predicted risk scores from training

data) employed Kaplan-Meier estimation and log-rank testing.
3 Results

3.1 Cohort analysis

After preprocessing, the final dataset included 554 patients (302

male, 252 female) with a median age of 67 years (interquartile range,

IQR 61-72) at baseline. The median T2DM duration was 14 years

(IQR 7-21, range 1-54). During the 16.8-year follow-up, 202 deaths

occurred (40 within 5 years, 94 within 10 years, 178 within 15

years), with deceased patients showing median survival of 10.6 years
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(IQR 6.3-13.6). Among 352 survivors, only 3 patients were lost to

follow-up. Comparative analysis of 123 baseline characteristics

revealed 36 statistically significant differences between surviving

and deceased patients (see Supplementary Table 2).
3.2 Development of the model for
predicting mortality risk

Feature selection identified 16 variables consistently ranked as

important across all four methods. Notably, three features – age, N-

terminal prohormone of brain natriuretic peptide (NT-proBNP),

and high-sensitivity troponin I (hs-cTnI) – overlapped with a

previously published Cox model from the same dataset (17). We

additionally incorporated three prognostic factors from this model,

hemoglobin A1c (HbA1c), C-reactive protein (hs-CRP), and soluble

suppression of tumorigenicity 2 (sST2) (17), and obtained an

intermediary set of 19 features for ML, Supplementary Table 2.

Then, for each of the nine ML models, we performed forward

feature selection to identify the optimal subset from the 19

candidate features. The hyperparameters of each model were fine-

tuned for every tested feature subset to maximize C-index. The

evaluation results are summarized in Table 1, while an expanded set

of performance metrics, along with optimal hyperparameters and

selected feature lists, are provided in Supplementary Table 3.

Among all models, the EST model demonstrated superior

performance in both cross-validation and the test dataset. On the

training data, cross-validation yielded a C-index of 0.751 and a

16.8-year AUC of 0.791. When evaluated on the test dataset, the

EST model achieved a C-index of 0.776 and a 16.8-year AUC of

0.826, further confirming its robustness. Additionally, IBS of 0.1

indicates good calibration.

The optimal EST model was trained using ten key variables: age,

number of complications, NT-proBNP, triglycerides, creatinine, hs-

CRP, RDW-SD, apolipoprotein A1, disease duration, and the

relative abundance of a specific serum N-glycan structure –

NA3F, a triantennary, a-1,3 core-fucosylated, branched N-glycan
Frontiers in Endocrinology 04
derived from glycoproteins. Survival curves of the high-risk and

low-risk groups are shown in Figures 1A, B. In both the training and

test datasets, overall survival was significantly longer in the low-risk

group, as confirmed by the log-rank test (p-values < 0.05).

The developed prediction model demonstrated robust

performance for both medium- and long-term mortality risk

predictions, with time-dependent AUC values consistently

exceeding 0.8 for forecast periods beyond five years (Figure 1C).

Specifically, the test dataset achieved AUCs of 0.86, 0.80, and 0.84 at

5, 10, and 15 years, respectively. However, for time intervals shorter

than five years, we observed a notable discrepancy between the test

dataset AUC and those derived from both the training dataset and

cross-validation. This discrepancy stems from two key factors. First,

the model was explicitly optimized for 16.8-year mortality risk

prediction, resulting in reduced reliability for short-term forecasts.

Second, the dataset contained only 40 patients who died within the

first five years of follow-up, leading to overly limited training data

and potential bias in early-term predictions.
3.3 Interpretation of a model predicting
mortality risk

We analyzed SHAP values to interpret the contribution of the

ten selected features in predicting 16.8-year mortality risk among

patients with T2DM. This global explainability analysis of the EST

model quantified the relative importance of each feature in the

model’s predictions. Figure 2A presents the mean absolute SHAP

values, representing the average contribution magnitude of each

feature to the model’s predictions. Age, number of complications,

and disease duration emerged as the strongest predictors of

mortality risk, followed by laboratory biomarkers. Figure 2B

illustrates the directional effects of these features, where positive

SHAP values correspond to increased mortality risk and negative

values indicate protective effects. Notably, apolipoprotein A1

showed an inverse relationship with 16.8-year mortality risk,

where elevated levels were associated with reduced mortality
TABLE 1 C-index scores of ML models predicting all-cause mortality in patients with type 2 diabetes.

Model Number of selected features C-index, cross-validation C-index, train C-index, test

EST 10 0.7511 0.7697 0.7763

DeepSurv 13 0.7509 0.7676 0.7638

CoxCC 12 0.7486 0.7631 0.7449

CoxPH 10 0.7485 0.7515 0.7468

CWGB 12 0.7451 0.7509 0.7407

RSF 8 0.7441 0.7636 0.7415

PCHazard 19 0.7428 0.7705 0.6814

XGBSE 10 0.7424 0.7903 0.7369

GBRT 11 0.7367 0.8283 0.7205
Models are ranked in descending order of the C-index score calculated using cross-validation. EST, extra survival trees; DeepSurv, Cox proportional hazards deep neural network; CoxCC, case-
control Cox regression model; CoxPH, multivariate Cox proportional hazards model with ridge penalty; CWGB, component-wise gradient boosting; RSF, random survival forest; PCHazard,
piecewise constant hazard model; XGBSE, extreme gradient boosting survival embeddings; GBRT, gradient-boosted regression trees.
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FIGURE 1

Analysis of the predictive model for all-cause mortality in patients with type 2 diabetes. (A) and (B) Kaplan–Meier survival curves for the low-risk and
high-risk groups in the train and test datasets, respectively. Patients were stratified into risk groups based on the median predicted risk score derived
from the training dataset. The log-rank test was used to compare survival between the low- and high-risk groups. (C) Time-dependent AUC over
the observation period. The AUC values calculated obtained from cross-validation are presented as the mean (green dots) ± standard deviation (light
green area).
FIGURE 2

Global explanation of feature contributions to model predictions. (A) Feature importance ranking based on mean absolute SHAP values across all
participants. Features are ordered vertically by their relative impact on model predictions, with the most influential at the top. (B) SHAP summary plot
showing the directional relationship between feature values and model outputs. Individual points represent SHAP values for each feature-participant
combination, with color intensity indicating feature values (red: high, blue: low).
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probability. The remaining nine features demonstrate positive

associations with predicted mortality risk. However, it should be

emphasized that while SHAP analysis reveals these important

feature-prediction relationships, it does not imply causation – it

only identifies associations between variables and model outputs.
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For each feature, we determined thresholds at which SHAP

values change sign (Figure 3). In individuals older than 64, the

predicted probability of mortality increased. An increase in

complication number was associated with an increased

probability of mortality. The mortality risk increases when
FIGURE 3

Dependence of SHAP values on ten features in the model. SHAP dependence scatter plots for (A) age, (B) number of complications, (C) disease
duration, (D) NT-proBNP, (E) RDW-SD, (F) N-glycan NA3F, (G) creatinine, (H) apolipoprotein A1, (I) hs-CRP, and (J) triglycerides. The blue curves
are constructed using a locally weighted scatterplot smoothing (LOWESS) algorithm. Feature values are presented in their original scale for
interpretability, though the model utilized normalized values internally.
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patients have had T2DM for more than 9 years. As for laboratory

parameters, the values contributing to an increased risk of mortality

included: NT-proBNP >100 ng/L, RDW-SD >42.3 fL, N-

glycanNA3F >2.7%, creatinine >1.0 mg/dL, apolipoprotein A1

<160 mg/dL, hs-CRP > 3.6 mg/L, and triglyceride >120 mg/dL.

SHAP analysis identifies data-driven associations, not causal

relationships. Consequently, the thresholds it produces for

predictors reflect changes in the model’s predicted risk and are

not substitutes for established clinical guidelines.

SHAP values were also used to explain the model’s decision-

making process for individual predictions. Figure 4A displays the

local explainability plot for a long-term survivor (alive after 16.8

years) with a favorable predicted mortality probability (20.9%). All

ten clinical factors contributed to risk reduction, with most

important influences being relatively younger age, absence of

diabetic complications, and low RDW-SD and creatinine values.

The mirror image emerges in Figure 4B, which explains the

prediction for a deceased patient (death occurring 4.4 years post-

examination), with a concerning 68.8% mortality risk. All features

contributed to an increased risk, the strongest risk drivers were

levels of creatinine and NT-proBNP, advanced age, and the burden

of four diabetes-related complications.

Quality metrics demonstrate that our model exhibits strong

predictive performance, consistently assigning lower risk scores to

survivors and higher risk scores to deceased patients. However,
Frontiers in Endocrinology 07
certain cases may show significant prediction errors (either

overestimation or underestimation of risk). In these instances,

local explanation methods prove valuable for identifying the

specific features responsible for these discrepancies. Figure 4C

displays the SHAP waterfall plot for a survivor with an

unexpectedly high predicted mortality probability (60.3%). The

analysis reveals that the elevated risk prediction was primarily

driven by advanced age, elevated creatinine levels, presence of two

diabetes-related complications, increased RDW-SD and triglyceride

values, prolonged disease duration, and higher NT-proBNP

concentration. In turn, Figure 4D illustrates the SHAP analysis

for a deceased patient (death occurring 10.6 years post-

examination) where the model had predicted a low mortality

probability (23.6%). The following factors contributed to this

underestimation: younger age, shorter disease duration, lack of

complications, lower levels of NT-proBNP, N-glycan NA3F, and

RDW-SD.

While the precise reasons for these discrepancies remain

unclear due to limited patient data, several potential explanations

exist. The extended 16.8-year prediction window following baseline

measurements introduces numerous unaccounted variables that

could influence outcomes, including development of new

complications or comorbidities, changes in treatment adherence,

lifestyle modifications, and other unreported clinical factors.

Nevertheless, the model’s strong performance in long-term
FIGURE 4

Local explanation of individual predictions using SHAP waterfall plots. Four representative cases are shown. (A) A survivor (alive after 16.8 years) with
low predicted mortality risk (20.9%), (B) a deceased patient (death occurring 4.4 years post-examination) with high predicted risk (68.8%), (C) a
survivor with high predicted risk (60.3%), (D) a deceased patient (death occurring 10.6 years post-examination) with low predicted risk (23.6%). The
y-axis displays features ranked by their increasing predictive influence from bottom to top. Feature values are presented in their original scale for
interpretability, though the model utilized normalized values internally. The x-axis represents the 16.8-year mortality probability. The prediction
originates from the baseline probability E[f(X)] derived from the training set and subsequently modifies based on each feature's contribution. Each
colored bar illustrates a feature's directional effect on the model's output: blue bars signify protective (risk-reducing) factors, while red bars denote
hazardous (risk-increasing) factors.
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predictions suggests these confounding factors have relatively

modest effects overall.
4 Discussion

In this study, we developed an explainable AI model using the

EST algorithm to predict 16.8-year all-cause mortality risk in

patients with T2DM. In the test dataset, our model demonstrated

strong predictive performance across all time horizons, with AUC

values of 0.86 (5-year), 0.80 (10-year), 0.841 (15-year), and 0.826

(16.8-year) for all-cause mortality prediction. The overall

concordance index (C-index) reached 0.776, with excellent

calibration (IBS = 0.1). Notably, this represents a significant

improvement over the previously developed Cox regression-based

nomogram when evaluated on the same dataset (17).

The final model variables incorporated age, number of

complications, disease duration, NT-proBNP, RDW-SD, N-glycan

NA3F, creatinine, apolipoprotein A1, hs-CRP, and triglycerides.

These variables have been previously employed in various

combinations across 15 existing mortality prediction studies (9–

21, 24, 25). Age consistently appeared in all 15 models. While no

studies directly included number of complications as a variable,

several incorporated specific complications (10, 11, 15, 18, 19, 24).

Among other predictors, triglycerides featured in seven models (10,

12, 15, 19–21, 25), diabetes duration in five (13–15, 24, 25),

creatinine in three (16, 21, 25), hs-CRP in two (17, 21), and NT-

proBNP in one model (17). Notably, sex – which was selected in all

studies except one (12), did not in our study.

Our model combines ML-driven accuracy with SHAP-based

interpretability, revealing both global feature importance and

directional effects on 16.8-year mortality risk. Interpretability has

direct clinical implications. Global SHAP profiles clarify which

variables consistently drive long-term mortality risk, while local

explanations highlight the main contributors for each individual

prediction. This information may help physicians identify

modifiable factors, prioritize follow-up, and communicate risk

more transparently with patients. Recent evidence shows that

SHAP-based explanations, particularly when presented in a

clinically oriented format, can improve trust, acceptance, and

usability in medical decision-making (30). Our results demonstrate

that while elevated apolipoprotein A1 decreases predicted risk, the

other nine features (e.g., age, creatinine) show positive associations –

all consistent with established T2DM mortality relationships.

In older people with diabetes, additional factors such as

increased diabetes complications, polypharmacy, physical and

mental frailty are present, contributing to an increase in the

number of deaths (31–33). A higher number of diabetes-related

complications significantly correlates with increased mortality risk

(34). Similarly, the risk of all-cause mortality and cardiovascular

disease mortality significantly increases with T2DM duration

(35, 36).

Our model appears to capture dimensions of risk that extend

beyond traditional clinical predictors, integrating emerging

concepts such as residual inflammatory risk (RIR) (37) and
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organ-specific ageotyping (38). Elevated hs-CRP levels, which

contributed to increased mortality risk in our model, are

consistent with the notion of RIR and its clinical relevance in

cardiovascular prevention. The SHAP-derived threshold is

consistent with previously proposed cut-offs for cardiovascular

risk (39), reinforcing the role of low-grade inflammation as a

relevant prognostic factor in T2DM. In the context of T2DM,

biological aging can be seen as the accelerated decline of organ

systems, partly driven by chronic low-grade inflammation, while

residual risk refers to the mortality risk that persists despite good

control of glucose, lipids, and blood pressure. Large-scale

epidemiological evidence confirms that even when all

conventional risk factors are within target ranges, patients with

T2DM continue to face a substantially higher risk of death and

cardiovascular events compared to the general population (40).

These concepts are consistent with the theory of inflammaging,

where chronic inflammation contributes to the excess risk observed

in diabetes and may explain why conventional risk factor

management does not fully normalize prognosis (37, 41). The

selection of both conventional and non-conventional biomarkers

by the model is consistent with this broader perspective. We

recognize, however, that these interpretations are conceptual and

were not directly tested within our study; they are intended to

provide a framework for understanding the potential mechanisms

underlying the observed predictive performance.

NT-proBNP, a validated cardiac biomarker, captured the

contribution of subclinical myocardial stress in our model.

Beyond its role in diagnostics and management of heart failure,

elevated levels also reflect chronic hemodynamic strain and

myocardial remodeling, indicating cardiac aging, and aligning

with our broader hypothesis that progressive cardiac dysfunction

may represent an expression of biological aging mechanisms in

T2DM (41).

Creatinine, a conventional marker of renal function, may serve

as a proxy for biological aging of the kidney. While glomerular

filtration rate physiologically declines with age, patients with T2DM

experience an accelerated reduction, reflecting premature renal

dysfunction (42). This renal trajectory often parallels that of the

heart, as the interplay between cardiac and renal aging is well

established and clinically recognized in the context of cardiorenal

syndromes (43).

Red cell distribution width-standard deviation (RDW-SD), a

measure of anisocytosis, also emerged as a relevant predictor.

Although traditionally used in the evaluation of anemia, elevated

RDW has been associated with cardiovascular events and mortality

(44). Chronically elevated RDW is increasingly regarded as a

marker of bone marrow stress, potentially reflecting impaired

erythropoiesis in the setting of chronic inflammation and

immune activation. In this context, it may capture hematopoietic

system dysfunction driven by systemic processes common in T2DM

and provide prognostic information beyond traditional organ-

specific biomarkers, representing a hematopoietic expression of

biological aging.

Together, creatinine, NT-proBNP, and RDW-SD represent

complementary markers capturing multidimensional risk
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pathways in T2DM: organ-specific dysfunction (kidney, heart) and

systemic inflammation. Elevated levels of these markers identify

patients facing a confluence of organ damage and systemic

deterioration, which likely contributes to their poorer long-

term outcomes.

Lipid-related biomarkers such as triglycerides and

apolipoprotein A1 (ApoA1) were also retained in the model and

showed opposing associations with mortality risk. Elevated

triglyceride levels are a hallmark of insulin resistance and

atherogenic dysl ipidemia, and their association with

cardiovascular and all-cause mortality has been consistently

observed in patients with T2DM (45). ApoA1, the main

apolipoprotein component of high-density lipoprotein (HDL)

particles, was inversely associated with mortality risk in our

model. Reduced circulating levels of ApoA1 have been associated

with increased risk of incident diabetes (46) as well as with

cardiovascular events in large general population cohorts (47),

although its prognostic value has not been clearly demonstrated

in diabetic populations. In this context, both triglycerides and

ApoA1 may act as complementary indicators of residual lipid-

related risk, particularly relevant in patients receiving statin therapy,

as was the case for the vast majority of our cohort.

N-glycan NA3F was associated with metabolic and

inflammatory features in T2DM (27). Although the biological role

of this structure remains elusive, its inclusion may reflect broader

N-glycan remodeling processes linked to aging, immune regulation,

or glycoprotein turnover, underscoring the potential of serum

glycomics to capture latent biological signals beyond

conventional biomarkers.

Limitations of our study include a moderate sample size, its

origin from a single medical center, and Italian ancestry of patients

might restrict the generalizability of the findings. Information

regarding the specific causes of death and some potential

predictors, such as diet and physical exercise was not available.

Only one imputation method was used to handle missing data;

employing additional methods could potentially improve model

quality. Although the model’s performance was assessed through

both cross-validation and an independent internal testing dataset, a

suitable external validation dataset was unavailable. These

limitations should be considered when interpreting the results of

our study.
5 Conclusion

In conclusion, this study presents a novel ML model that

predicts the risk of 16.8-year all-cause mortality in patients with

T2DM, utilizing ten clinical and laboratory parameters. Taken

together, the model variables reflect a multidimensional construct

of long-term risk in T2DM, incorporating diverse but

interconnected processes related to biological aging, residual

inflammation, and subclinical organ dysfunction. Their influence

on individual patient predictions is disclosed by the local
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explanation SHAP method, which has not been done previously

in existing all-cause mortality prediction models for patients with

T2DM. Thus, our explainable model can be potentially used as an

additional tool in the examination of patients with T2DM.
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