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Introduction: Acute decompensated heart failure (ADHF), a critical cardiovascular
emergency, is driven by a metabolic and inflammatory imbalance that serves as the
central mechanism of disease progression. This study aims to analyze the
heterogeneity of mortality risk in patients with comorbid diabetes mellitus (DM)
and HF using the C-reactive protein-triglyceride-glucose index (CTI).

Methods: This study evaluated 1,051 ADHF patients from the Jiangxi-ADHF I
cohort. The Boruta algorithm, a fully automated feature selection method, was
applied to identify key predictive variables and rank their importance. Cox
proportional hazard models were constructed to assess the association
between the CTI and 30-day mortality risk in ADHF patients, stratified by DM
status. To further elucidate the nonlinear characteristics of risk associations,
restricted cubic splines were employed to construct dose-response relationship
curves. Additionally, heatmaps were used to assess the joint association of CTI
components with mortality risk.

Results: The 30-day follow-up revealed a mortality rate of 8.3%. Through the
Boruta algorithm and multivariate Cox regression analysis, we identified CTl as a
key prognostic factor for short-term mortality risk in ADHF patients, especially in
those with comorbid DM. The restricted cubic splines model further confirmed
the linear and non-linear associations between CTI and mortality in ADHF
patients with and without DM. Additionally, heatmaps visualized the association
between CTI components and mortality: to summarize, the mortality risk is
relatively low when the triglyceride-glucose index remains within specific ranges
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(8.25-9.0 for patients with DM; 7.0-9.0 for non-DM patients) and the C-reactive
protein level is maintained below 50 mg/L. Further subgroup analyses highlighted
distinct risk modulation patterns: non-DM ADHF patients exhibited mortality risk
heterogeneity across gender, hypertension, and stroke subgroups; however, the
DM comorbid group demonstrated uniform risk profiles with no statistically
significant differences.

Discussion: This study demonstrates the clinical utility of the novel
inflammatory-metabolic index CTI in mortality risk assessment for ADHF
patients, with superior risk stratification efficacy observed in those with
DM comorbidity.
C-reactive protein-triglyceride-glucose index, diabetes mellitus, acute decompensated
heart failure, TyG index, C-reactive protein
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Introduction

Diabetes mellitus (DM) stands as a major global public health
challenge in the 21st century, imposing a growing disease burden.
According to the 2019 Epidemiology Report by the International
Diabetes Federation, the global prevalence of DM among adults
reached 9.3% and is projected to rise to 10.9% by 2045 (1). Notably,
cardiovascular complications contribute to the majority of (i.e., over
50%) mortality risk among people with DM (2). The Framingham
study indicates that the risk of developing heart failure (HF) is
significantly higher in DM patients than in non-DM individuals (3).
Epidemiological evidence reveals the prevalence of HF among DM
patients ranges from 9% to 22%, approximately fourfold higher
than in the general population (4); conversely, the prevalence of
DM among HF patients is between 10% and 47% (5). In terms of
clinical prognosis, this comorbidity profile of metabolic and
cardiovascular systems exhibits a significant superimposition of
risks for adverse outcomes. Multivariable risk prediction models
explicitly categorize DM as an independent risk factor for mortality
in HF patients (6). Population-based longitudinal studies
demonstrate that concomitant DM significantly elevates future
mortality risks in HF populations (7-11). These evidence chains
not only uncover the underlying pathological interconnections
between DM-HF comorbidity but also underscore the clinical
imperative of implementing dual intervention strategies in
clinical management.

Acute decompensated HF (ADHF) represents a critical
manifestation of cardiovascular disease. In recent years,
fundamental research has elucidated that insulin resistance (IR)
and chronic inflammation are the core pathological bases driving
ADHF pathogenesis and progression. Specifically, IR, as a key
driver of metabolic syndrome, not only directly impairs energy
metabolism but also exacerbates myocardial fibrosis and diastolic
dysfunction through pro-inflammatory cytokine release (12-14).
Notably, chronic inflammation aggravates IR states via modulating
autocrine effects in inflammatory cells and accelerating ectopic fat
deposition, thereby creating a vicious cycle (15). Within this
pathological framework, the discovery of novel biomarkers has
provided transformative tools for ADHF risk stratification and
prognostic assessment. The triglyceride-glucose (TyG) index, as a
non-invasive quantitative tool for IR, has been incorporated into
HEF risk stratification systems due to its efficient IR characterization
capability and clinical practicality (16). It has been validated as an
independent predictor of mortality risks across various HF subtypes
(17-23). Concurrently, C-reactive protein (CRP), recognized as a
core mediator of systemic inflammation (24), has expanded its
clinical significance beyond a marker for infectious diseases (25—
35). Notably, recent studies have demonstrated that a combined
assessment of metabolism and inflammation significantly enhances
the predictive efficacy of cardiovascular event risk and adverse
prognosis (36-39). This multidimensional assessment strategy not
only transcends the limitations of traditional risk stratification
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models but also provides an actionable foundation for
individualized interventions in ADHF management within the era
of precision medicine.

The combined effect of metabolism and inflammation is a key
driver in the progression of multisystem diseases (12-15). Building
upon this, Ruan et al. developed the C-reactive protein-triglyceride-
glucose index (CTI), which integrates CRP (an inflammatory marker)
and the TyG index (a surrogate for IR), and demonstrated its
independent predictive utility for mortality risk assessment (40).
Subsequent investigations further revealed significant associations
between CTI and adverse cardiocerebrovascular outcomes (41-43).
However, in high-risk populations for acute cardiovascular events,
particularly in DM-ADHF comorbid patients whose
pathophysiological characteristics are closely linked to the
metabolic-inflammatory axis, the predictive efficacy and threshold
effects of CTI for short-term (30-day) mortality risk remain
incompletely elucidated. To address this knowledge gap, this study,
based on the Jiangxi-ADHF II cohort, aims to investigate the risk
stratification capability of CTI for 30-day all-cause mortality in
ADHEF patients with and without comorbid DM, thereby providing
evidence-based guidance for precision risk management of ADHF.

Methods
Study design and population

The subjects of this study were recruited from the Jiangxi-
ADHF cohort study. Briefly, the Jiangxi-ADHF project is an
ongoing cohort study designed to integrate multidimensional
clinical data for developing regional, standardized risk
stratification models for HF. The Jiangxi-ADHF II cohort was
conducted from January 2018 to January 2024, encompassing
3,484 patients with ADHF who met the diagnostic criteria
outlined in the then-available guidelines of the European Society
of Cardiology and the American College of Cardiology/American
Heart Association for HF. We applied the following exclusion
criteria to account for pathological heterogeneity and data
integrity. Based on considerations of pathological heterogeneity
and data integrity, subjects with the following characteristics were
excluded: (1) Exclusion of individuals with fluid and sodium
retention attributed to non-cardiac causes, including patients with
uremia, chronic kidney disease requiring hemodialysis, and liver
cirrhosis (n=273). (2) Exclusion of special treatment populations
that may interfere with autonomic nervous regulation and short-
term prognosis (including patients with pacemaker implantation
and those who underwent interventional or reperfusion therapies
within 30 days; n=223). (3) Exclusion of individuals with specific
physiological states, including malignancies, minors, and pregnancy
(n=186). (4) Exclusion of cases with missing CTI data (n=1,751).
This ultimately included 1,051 participants in the final analysis,
with the detailed screening process illustrated in Figure 1.
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Jiangxi-ADHF II Research, 3,484 subjects were selected from
January 2018 to January 2024

Excluded:

(i) CKD stage 5 or history of hemodialysis;

N=231.

(ii) Cirrhosis; N=42.

(iii) Malignant tumor; N=160.

(iv) Percutaneous coronary intervention within
the past 3 months; N=102.

(v) Under 18 years old; N=22.

(vi) Pregnancy; N=4.

(vii) Individuals whose heart rhythm is
controlled by a pacemaker; N=121.

(viii) CTI missing; N=1,751.

1,051 eligible participants were included

FIGURE 1
Flow chart for inclusion and exclusion of study participants.

Ethical approval

This study adhered strictly to international biomedical research
ethical frameworks and received systematic evaluation and approval
from the Ethics Review Committee of Jiangxi Provincial People’s
Hospital prior to implementation (Ethics Approval No: 2024-01).
In accordance with the ethical principles outlined in the Declaration
of Helsinki, informed consent was obtained from all participants or
their legal guardians for data utilization. The study’s findings are
reported in compliance with the Strengthening the Reporting of
Observational Studies in Epidemiology guidelines.

Data collection

In the clinical data acquisition phase, this study employed a dual
independent data entry-blinded verification quality control system:
two standardized-trained research assistants independently collected
demographic characteristics (gender, age), lifestyle factors (smoking
and drinking status), cardiovascular comorbidities [hypertension,
DM, stroke, coronary heart disease (CHD)], New York Heart
Association (NYHA) functional classification, vital signs (blood
pressure), and echocardiographic parameters (left ventricular
ejection fraction: LVEF). Following cross-verification between the
two datasets, validated information was included in the final analysis.
Concurrently, comorbidity diagnoses were substantiated through a
comprehensive review of patients' electronic medical records
containing specialist consultation records, medication histories, and
supporting imaging evidence.

The laboratory analysis incorporated blood sample data collected
within 24 hours of admission, with strict fasting criteria implemented
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for glucose/lipid metabolism-related indicators and liver enzyme tests
(minimum interval of 28 hours from last meal to blood sampling).
Metabolic parameters were measured using the HITACHI
LABOSPECT 008 fully automated biochemical analyzer, including
liver/kidney function markers [alanine aminotransferase (ALT),
aspartate aminotransferase (AST), creatinine (Cr), uric acid (UA)],
and glucose/lipid profiles [fasting plasma glucose (FPG), total
cholesterol, triglycerides (TG), low-density lipoprotein cholesterol
(LDL-C), high-density lipoprotein cholesterol (HDL-C)]. Blood cell
(WBC: white blood cell count; RBC: red blood cell count; PLT:
platelet count) analysis was performed using the Sysmex XN-3000 5-
part differential hematology analyzer. The HF biomarker N-Terminal
Pro-Brain Natriuretic Peptide (NT-proBNP) was quantitatively
measured via electrochemiluminescence immunoassay. CRP levels
were quantified using an immunoturbidimetric assay. All testing
protocols were monitored through standardized quality control
protocols to ensure result reliability.

Calculation of TyG index and CTI

TyG index = In [TG (mg/dL) x FPG (mg/dL)/2] (16).

CTI = CTI = 0.412 x Ln (CRP [mg/L]) + TyG index (40).
Study outcomes

This study used the time of admission for ADHF patients as the
observation starting point, with the primary outcome defined as all-

cause mortality occurring within 30 days. Outcome ascertainment
was conducted through multiple methods, including follow-up via
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mobile text messages, telephone interviews, and in-person follow-
up during outpatient or inpatient visits, all performed by medically
trained personnel. In addition to in-hospital deaths, out-of-hospital
deaths have also been systematically verified.

Missing data processing

In the current study, there are missing data for LVEF, ALT,
AST, Cr, and UA, with missing rates of 4.00%, 0.57%, 0.57%, 0.95%,
and 1.05% respectively. The detailed information is provided in
Supplementary Table 1. Analysis of the missingness pattern cross-
information diagram (Supplementary Figure 1) revealed high
correlations in missing patterns between UA and Cr, as well as
ALT and AST, suggesting these data are likely missing at random.
Conversely, LVEF demonstrated relative independence from other
missing variables, indicating its missing data might be missing
completely at random. Given the low missing proportion and the
observed independence, we used the mice package in R software to
perform multiple imputation for missing covariate information:
predictive mean matching was used for continuous variables, while
logistic regression was applied to categorical variables.

Statistical analysis

This study utilized Free Statistics 1.7, R language 3.4.1, and
Empower(R) 2.0 software platforms for data analysis. Participants
were stratified into tertile-based groups (low, moderate, high)
according to CTI distribution. Baseline characteristics were
described following variable-specific conventions: categorical
variables as frequencies (percentages), normally distributed
continuous variables as mean * standard deviation, and non-
normally distributed continuous variables as median (interquartile
range). Between-group comparisons were conducted using chi-
square tests, one-way Analysis of Variance, Student's t-test, or non-
parametric tests as appropriate. A two-sided significance threshold of
p < 0.05 was uniformly applied for all statistical inferences.

In the feature selection phase, the Boruta algorithm was
employed to identify potential biomarkers associated with all-
cause mortality in ADHF from high-dimensional clinical data
(44). In detail, the Boruta method is based on a random forest
model and identifies statistically significant features by comparing
the importance of "real features" with that of "shadow features". The
core steps are as follows: Shadow features with the same distribution
as real features are generated (original feature values are randomly
shuffled to eliminate their real association with the outcome). Both
real and shadow features are input into the random forest model
together, and feature importance is evaluated through repeated
iterations ("Gini impurity decrease" was used as the importance
metric in this study); if the importance of a real feature is
significantly higher than that of all shadow features (assessed by
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Z-test), it is classified as an "important feature"; otherwise, it is
labeled as "unimportant” or "tentative".

To optimize model stability, a dual-stage variable screening
strategy was implemented: (1) variables exhibiting multicollinearity
were first excluded using the variance inflation factor method
(Supplementary Table 2), followed by (2) elimination of CTI
components (e.g., TG, FPG) considering underlying collinearity
concerns. Survival analysis was conducted using the Kaplan-Meier
method, generating survival curves and performing log-rank tests,
with the proportional hazards assumption visually validated. Three
progressively adjusted Cox proportional hazards models were
subsequently constructed: Model I was adjusted for demographic
parameters (gender, age, smoking, and drinking status); Model II
was further adjusted for clinical comorbidities (hypertension,
stroke, CHD), NYHA functional class, and LVEF; As the final
model, Model IIT was built upon Model II by additionally adjusting
for hematological and functional laboratory parameters, including
RBC, PLT, AST, Cr, UA, LDL-C, and NT-proBNP. All analyses
were stratified by DM comorbidity status.

To elucidate the nonlinear relationship between CTI and
prognosis, this study innovatively integrated multiple visualization
techniques. We used restricted cubic spline (RCS) curves with 4
knots at the 5th, 35th, 65th, and 95th percentiles to visualize the
dose-response relationship between CTI and mortality. The CTI
inflection points where the association changed were identified
using a recursive algorithm and piecewise Cox regression. For
the knot selection in the RCS analysis, we followed the
recommendations of Professor Harrell in Regression Modeling
Strategies (45): Four knots provide an optimal balance, ensuring
both curve smoothness and protection against overfitting, thereby
preventing a loss of precision. Five knots may be more suitable for
larger sample sizes, while 3 knots are recommended for small
samples (n < 30). We also utilized a heatmap to reveal the joint
influence of CTI components on mortality risk. This approach
intuitively displays the interplay between inflammatory and
metabolic factors in mortality risk evaluation (46).

Further subgroup analyses evaluated potential effect modifiers,
including age, gender, cardiac function (LVEF/NYHA classification),
and comorbidities (hypertension, stroke, and CHD). First, a stratified
analysis was performed to assess the association between CTI and
mortality in ADHF patients across different subpopulations. Then,
the likelihood ratio test was used to quantify the differences between
groups and determine the presence of interaction effects, with
particular attention to the differential results in patients with and
without DM.

To clarify the clinical application value of CTI, we further
compared it with the existing HF risk score, ADHERE (Acute
Decompensated Heart Failure National Registry) (47), to evaluate
its predictive performance for short-term mortality outcomes. The
evaluation metrics included the area under the curve and the net
reclassification improvement to determine its incremental
predictive value.
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Sensitivity analysis

To test the robustness of the association between CTI and
mortality, we conducted several sensitivity analyses: (1) For
external validation, we used data from the U.S. (United States)
National Health and Nutrition Examination Survey between 1998
and 2018 to analyze the association between CTI and all-cause
mortality in U.S. patients with congestive HF. (2) To control for
potential confounding by relevant medications, we adjusted for the
use of statins, sodium-glucose cotransporter-2 inhibitors, and anti-
inflammatory drugs in the multivariable model. (3) We further
distinguished the types of study outcomes and evaluated the
association between CTT and cardiovascular-specific mortality events.

Results

Baseline characteristics of the study
population are presented according to CTI
groups

This study enrolled 1,051 eligible ADHF patients, including 611
males (58.14%) and 440 females (41.86%), with a mean age of 69 years.
Clinical characteristics of the study population were stratified by CTI
tertiles (Table 1). Demographic analysis revealed a distinct gender
distribution pattern in the high CTI group (9.87-13.34), with a
significantly higher proportion of males. Comorbidity analysis
showed that patients in the high CTI group not only had
significantly elevated rates of hypertension, DM, and CHD but also
demonstrated more severe hemodynamic profiles. Baseline
characteristics of the high CTT group were further corroborated by

10.3389/fendo.2025.1689238

multi-parameter laboratory assessments. While inflammatory markers
showed significant elevations in WBC count and PLT count, metabolic
profiles revealed more pronounced glucolipid metabolic dysregulation,
along with hepatorenal dysfunction, characterized by significantly
higher levels of FPG, TG, total cholesterol, LDL-C, ALT, Cr, UA,
NT-proBNP, and lower HDL-C. Notably, patients with ADHF
exhibited a progressive upward trend in TyG index and CRP levels,
with significant between-group differences observed.

Table 2 further stratifies the clinical baseline characteristics of
ADHF patients with or without DM. Compared to non-DM
patients, ADHF patients with comorbid DM exhibited a more
complex comorbidity network, characterized by higher
comorbidity rates of hypertension and CHD, along with more
severe cardiac dysfunction deterioration. Laboratory profiles of
patients with comorbid DM demonstrated a characteristic
metabolic dysregulation pattern: in addition to significant
elevations in WBC count, PLT count, FPG, and TG, higher levels
of ALT and Cr suggested multi-organ involvement. Critically, both
CRP and TyG index were significantly higher in DM patients.

Follow-up results

A 30-day prognostic follow-up was conducted for 1,051 ADHF
patients, during which 87 (8.3%) all-cause death events were
observed. Survival analysis based on CTI tertile grouping
demonstrated that ADHF patients in the high CTI group
exhibited significantly higher all-cause mortality compared to
those in the low and middle CTI groups (Figure 2, Log-rank p <
0.0001). Notably, this trend persisted in subgroup analyses of
patients with and without DM, with DM patients in the high CTI

TABLE 1 Summary of baseline characteristics of the study population according to the CTI tertiles group.

CTI tertiles group

Yariese Low (6.69-9.11) Moderate (9.12-9.87) High (9.87-13.34)

No. of subjects 350 350 351

Age (years) 71.00 (60.00-80.00) 71.00 (60.00-80.00) 72.00 (59.00-80.00) 0.88

Gender (n, %) 0.01
Male 187 (53.43) 199 (56.86) 225 (64.10)
Female 163 (46.57) 151 (43.14) 126 (35.90)

Comorbidities
Hypertension (n, %) 128 (36.57) 163 (46.57) 176 (50.14) <0.01
Diabetes (n, %) 46 (13.14) 90 (25.71) 145 (41.31) <0.01
Stroke (n, %) 61 (17.43) 58 (16.57) 78 (22.22) 0.12
CHD (n, %) 84 (24.00) 108 (30.86) 132 (37.61) <0.01

NYHA classification (n, %) <0.01
1 254 (72.57) 226 (64.57) 210 (59.83)
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TABLE 1 Continued

CTI tertiles group

10.3389/fendo.2025.1689238

Variabie Low (6.69-9.11) Moderate (9.12-9.87)  High (9.87-13.34)
Comorbidities

v 96 (27.43) 124 (35.43) 141 (40.17)
Drinking status (n, %) 0.28

No 312 (89.14) 317 (90.57) 325 (92.59)

Yes 38 (10.86) 33 (9.43) 26 (7.41)
Smoking status (n, %) 0.49

No 297 (84.86) 292 (83.43) 286 (81.48)

Yes 53 (15.14) 58 (16.57) 65 (18.52)
LVEF (%) 49.00 (39.00-56.75) 48.00 (38.00-56.00) 48.00 (39.00-56.50) 0.53
WBC (x10°/L) 5.50 (4.39-6.72) 6.57 (5.20-8.32) 7.60 (5.75-10.72) <0.01
RBC (x10'/L) 4.05 (3.59-4.49) 4.03 (3.57-4.56) 3.98 (3.46-4.45) 0.36
PLT (x10°/L) 146.00 (111.25-188.00) 169.00 (133.25-214.75) 182.00 (136.50-239.00) <0.01
ALT (U/L) 20.00 (13.00-32.75) 22.50 (14.00-42.00) 23.00 (14.50-44.00) <0.01
AST (U/L) 25.00 (20.00-37.00) 27.00 (20.00-40.75) 28.00 (19.00-47.00) 0.17
Cr (umol/L) 79.00 (64.00-102.00) 90.00 (73.00-125.50) 101.71 (75.00-157.00) <0.01
UA (umol/L) 398.00 (313.50-480.00) 429.50 (339.00-545.00) 440.00 (323.00-590.50) <0.01
TG (mmol/L) 0.88 (0.73-1.09) 1.18 (0.95-1.51) 1.52 (1.11-2.04) <0.01
TC (mmol/L) 3.47 (2.97-4.21) 3.80 (3.28-4.49) 3.83 (3.13-4.56) <0.01
HDL-C (mmol/L) 1.05 (0.87-1.24) 0.99 (0.79-1.19) 0.87 (0.71-1.07) <0.01
LDL-C (mmol/L) 2.04 (1.63-2.58) 2.25 (1.83-2.89) 2.30 (1.80-2.95) <0.01
FPG (mmol/L) 5.06 (1.12) 5.58 (1.35) 7.28 (3.63) <0.01
NT-proBNP (pmol/L) 3079.00 (1612.00-5205.75) 3742.50 (1858.50-6755.00) 3977.00 (1625.50-7358.50) <0.01
TyG index 8.17 (0.38) 8.56 (0.42) 9.03 (0.60) <0.01
CRP (mg/L) 2.99 (1.54-5.39) 9.50 (4.85-17.00) 41.00 (15.80-92.25) <0.01
30-day mortality (n, %) 13 (3.71) 19 (5.43) 55 (15.67) <0.01

CHD, coronary heart disease; NYHA, New York Heart Association; LVEF, left ventricular ejection fraction; WBC, white blood cell count; RBC, red blood cell count; PLT, platelet count; TG,
triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipid cholesterol; Cr, creatinine; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; NT-proBNP, N-Terminal Pro-Brain Natriuretic Peptide; UA, uric acid; FPG, fasting plasma glucose; CRP, C reactive protein; TyG, triglyceride-glucose; CTI, C-reactive

protein-triglyceride-glucose index.

group showing markedly lower survival rates than non-DM patients
(Figures 2B, C).

Feature selection

This study systematically identified predictors significantly
associated with 30-day all-cause mortality in ADHF patients
using the Boruta ensemble feature selection algorithm (Figure 3).
By iteratively comparing the importance scores of original features
against randomly generated "shadow features," the Boruta
algorithm ultimately confirmed 12 critical predictors of mortality

Frontiers in Endocrinology

in ADHF patients, including RBC count, NYHA classification, Cr,
HDL-C, ALT, TyG index, AST, FPG, WBC count, NT-proBNP,
CRP, and the CTI index. Notably, among all significant features, the
CTI index demonstrated the highest importance score (Z-score =~
15), significantly outperforming other variables and underscoring
its dominant role in prognostic assessment for ADHF patients. To
assess the stability of the feature selection results, we employed the
bootstrap method to generate 100 bootstrap samples. The Boruta
algorithm was run independently on each sample, and the
frequency of each feature being selected across all runs was
recorded. The results showed that the features included in our
final report were consistently selected in over 90% of the runs,
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TABLE 2 Summarize the baseline characteristics of the study population according to whether they are complicated with diabetes or not.

10.3389/fendo.2025.1689238

Variable Non-diabetic group Diabetes group P-value
No. of subjects 770 281
Age (years) 71.00 (59.00-80.00) 71.00 (60.00-80.00) 0.96
Gender (n, %) 0.61
Male 444 (57.66) 167 (59.43)
Female 326 (42.34) 114 (40.57)
Comorbidities
Hypertension (n, %) 296 (38.44) 171 (60.85) <0.01
Stroke (n, %) 138 (17.92) 59 (21.00) 0.26
CHD (n, %) 205 (26.62) 119 (42.35) <0.01
NYHA classification (n, %) <0.01
1T 528 (68.57) 162 (57.65)
v 242 (31.43) 119 (42.35)
Drinking status (n, %) 0.99
No 699 (90.78) 255 (90.75)
Yes 71 (9.22) 26 (9.25)
Smoking status (n, %) 0.70
No 639 (82.99) 236 (83.99)
Yes 131 (17.01) 45 (16.01)
LVEF (%) 49.00 (38.00-56.00) 48.00 (39.00-56.00) 0.46
WBC (x10°/L) 6.22 (4.83-7.90) 7.20 (5.60-9.50) <0.01
RBC (x10"*/L) 4.02 (3.60-4.49) 3.99 (3.47-4.50) 051
PLT (x10°/L) 157.50 (123.00-204.75) 179.00 (137.00-229.00) <0.01
ALT (U/L) 22.00 (14.00-41.00) 22.00 (13.00-37.00) 0.53
AST (U/L) 27.00 (20.00-41.75) 24.00 (19.00-37.00) <0.01
Cr (umol/L) 86.00 (68.00-119.00) 100.00 (75.00-153.00) <0.01
UA (umol/L) 420.00 (329.00-536.75) 419.00 (325.00-544.00) 0.78
TG (mmol/L) 1.09 (0.83-1.47) 1.29 (1.00-1.77) <0.01
TC (mmol/L) 3.68 (3.11-4.36) 3.79 (3.03-4.44) 0.42
HDL-C (mmol/L) 0.99 (0.78-1.19) 0.94 (0.75-1.11) <0.01
LDL-C (mmol/L) 2.20 (1.76-2.79) 2.23 (1.72-2.80) 0.80
FPG (mmol/L) 5.25 (1.08) 7.97 (3.87) <0.01
NT-proBNP (pmol/L) 3393.00 (1696.50-6339.25) 3890.00 (1718.00-6914.00) 0.28
TyG index 8.44 (0.50) 8.96 (0.64) <0.01
CRP (mg/L) 7.75 (3.19-27.04) 10.70 (4.09-33.10) 0.01
CTI 9.37 (0.81) 9.98 (0.90) <0.01
30-day mortality (n, %) 55 (7.14) 32 (11.39) 0.03

CHD, coronary heart disease; NYHA, New York Heart Association; LVEF, left ventricular ejection fraction; WBC, white blood cell count; RBC, red blood cell count; PLT, platelet count; TG,
triglyceride; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-, low-density lipid cholesterol; Cr, creatinine; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; NT-proBNP, N-Terminal Pro-Brain Natriuretic Peptide; UA, uric acid; FPG, fasting plasma glucose; CRP, C reactive protein; TyG, triglyceride-glucose; CTI, C-reactive
protein-triglyceride-glucose index.
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30-day survival curves of ADHF patients stratified by CTI tertiles (A) Total; (B) Diabetes group; (C) Non-diabetic group. ADHF: acute decompensated
heart failure; CTI: C-reactive protein-triglyceride-glucose index.
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TABLE 3 Multivariable Cox regression analysis of the associations between CTIl and 30-day mortality in patients with ADHF.

HR (95% Cl)

Independent No. of No. of cases
variable subjects (n) (n, %) Model | Model Il Model IlI
Total
CTI ‘ ‘ 2.93 (2.31, 3.71) 2.78 (2.19, 3.52) ‘ 2.68 (2.09, 3.44)
CTI tertiles
T1(Low) 350 ‘ 13 (3.71) ‘ 1.00 1.00 ‘ 1.00
T2(Moderate) 350 ‘ 19 (5.43) ‘ 1.44 (0.71, 2.92) 1.32 (0.65, 2.68) ‘ 1.01 (0.49, 2.10)
T3(High) 351 ‘ 55 (15.67) ‘ 423 (2.27, 7.89) 3.59 (1.93, 6.70) ‘ 2.84 (1.48, 5.43)
Diabetes Group
CTI ‘ ‘ 3.07 (2.19, 4.32) 3.26 (2.29, 4.63) ‘ 3.34 (2.24, 5.00)
CTI tertiles
T1(Low) 46 ‘ 1(2.17) ‘ 1.00 1.00 ‘ 1.00
T2(Moderate) 90 ‘ 4 (4.44) ‘ 2.09 (0.23, 18.92) 2.38 (0.26, 21.71) ‘ 2.10 (0.22, 19.92)
T3(High) 145 ‘ 27 (18.62) ‘ 9.40 (1.25, 70.58) 9.98 (1.32, 75.25) ‘ 8.71 (1.10, 68.74)
Non-diabetic group
CTI ‘ ‘ 2.90 (2.06, 4.09) 2.79 (1.95, 4.01) ‘ 2.62 (1.76, 3.89)
CTI tertiles
T1(Low) 304 ‘ 12 (3.95) ‘ 1.00 1.00 ‘ 1.00
T2(Moderate) 260 ‘ 15 (5.77) ‘ 1.44 (0.68, 3.09) 1.18 (0.55, 2.53) ‘ 0.76 (0.33, 1.73)
T3(High) 206 28 (13.59) ‘ 3.52 (1.78, 6.98) 2.98 (1.49, 5.97) ‘ 2.25 (1.09, 4.63)

HR, hazard ratios; CI, confidence interval; ADHF, acute decompensated heart failure; CT1, C-reactive protein-triglyceride-glucose index.

Model I adjusted for gender, age, drinking status, and smoking status.

Model II adjusted for model I + hypertension, stroke, CHD, NYHA classification, and LVEF.

Model III adjusted for: Model 1T + RBC, PLT, AST, Cr, UA, LDL-C, and NT-proBNP.

which fully demonstrates that they are not the result of random
fluctuations but rather important features with a robust association
with the outcome variable.

Association between CTIl and 30-day
mortality in ADHF patients across overall,
DM, and non-DM populations

Multivariable Cox proportional hazards model analyses
(Table 3) revealed a significant positive association between CTI
and 30-day all-cause mortality risk in ADHF patients. The
prognostic assessment of CTI as a continuous variable
demonstrated robustness across three adjusted models: in the
base model (adjusted for demographic characteristics), each 1-
unit increase in CTI was associated with a 193% elevated
mortality risk [Hazard ratios (HR): 2.93: 2.31, 3.71]. Subsequent
adjustment for comorbidities and cardiac function (NYHA
classification and LVEF) attenuated the HR to 2.78 (2.19, 3.52).
In the fully adjusted model (Model III) incorporating hematological
parameters, CTI remained significantly and positively associated
with mortality risk (HR: 2.68: 2.09, 3.44). CTlI-stratified analysis
further highlighted its risk gradient effect: compared to the low CTI

Frontiers in Endocrinology

group, patients in the high CTI group exhibited a 184% increased
mortality risk (HR: 2.84: 1.48, 5.43).

Notably, the CTI-associated mortality risk was significantly
higher in DM patients. Specifically, each 1-unit increase in CTI
corresponded to an elevated mortality risk in patients with
comorbid ADHF and DM (HR: 3.34: 2.24, 5.00) compared to
non-DM ADHF patients (HR: 2.62: 1.76, 3.89). When stratified
by CTI tertiles, this glucose metabolism-dependent risk disparity
became more pronounced: ADHF patients with DM in the high
CTI group exhibited an 8.71-fold increased mortality risk compared
to the low CTI group; significantly exceeding the 2.25-fold risk
observed in non-DM patients.

Dose-response association between CTI
and 30-day mortality in ADHF patients
across overall, DM, and non-DM
populations

This study employed RCS analysis to further elucidate the dose-
response association between CTI and 30-day all-cause mortality in
ADHF patients (Figure 4). After adjusting for confounding factors,
including demographic characteristics, comorbidities, cardiac
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Fitting the dose-response relationship between CTIl and 30-day all-cause mortality in ADHF patients with 4 knots restricted cubic spline. ADHF:
acute decompensated heart failure; CTI: C-reactive protein-triglyceride-glucose index.

function, and hematological parameters, a significant obtuse-angled
nonlinear association between CTI and 30-day all-cause mortality
was observed in the overall population (P for nonlinearity = 0.02).
The inflection point value was calculated as 9.83 using recursive
algorithms (Table 4), suggesting a potential threshold effect in the risk
model. Specifically, when CTI < 9.83, ADHF patients exhibited a
gradual increase in 30-day all-cause mortality risk (HR: 1.10: 0.64,
1.91). However, when CTI > 9.83, the risk curve steepened
dramatically (HR: 3.37: 2.55, 4.46), with a 3.06-fold higher risk
increment compared to the low-CTI segment (P for likelihood
ratio test < 0.01).

The study further evaluated the dose-response association
between CTI and 30-day all-cause mortality risk in ADHF
patients with and without DM. Results demonstrated a nonlinear
association between CTI and all-cause mortality risk in non-DM

TABLE 4 The result of the two-piecewise Cox regression model.

Independent variable HR (95%Cl) P-value
Total
The inflection point of CTI 9.83
<9.83 1.10 (0.64, 1.91) 0.73
>9.83 3.37 (2.55, 4.46) <0.01
P for likelihood test <0.01
Non-diabetic group
The inflection point of CTI 10.04
<10.04 0.88 (0.50, 1.56) 0.66
> 10.04 10.31 (5.02, 21.18) <0.01

P for likelihood test <0.01

HR, hazard ratios; CI, confidence interval; CTI, C-reactive protein-triglyceride-glucose index.
Adjusted for gender, age, drinking status, smoking status, hypertension, stroke, CHD, NYHA
classification, LVEF, RBC, PLT, AST, Cr, UA, LDL-C, and NT-proBNP.
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ADHEF patients (P for nonlinearity < 0.01), with an inflection point
at 10.04 (Table 4). Notably, the high-CTI group exhibited a steeper
risk escalation (HR: 10.31 vs. 0.88, P for likelihood ratio test < 0.01).
In stark contrast, among ADHF patients with DM, CTI
demonstrated a positive linear association with all-cause mortality
risk (P for nonlinearity = 0.72).

Exploratory analysis of the combined
association between TyG and CRP
(components of CTIl) and 30-day mortality
in ADHF patients across overall, DM, and
non-DM populations

Based on the adjustment strategy of Model III, we identified the
potential interactive association between CTT components (TyG index
and CRP) and 30-day mortality risk in ADHF patients using heatmaps.
As shown in Figure 5, for the total population, the mortality risk is
lowest (indicated by the darker blue band) when the TyG index
remains between 7.5 and 9 and the CRP level is maintained below
50 mg/L. Notably, this association trend exhibits distinct patterns
between patients with and without DM. For DM patients, the
mortality risk is in a relatively low range when the TyG index is
approximately between 8.25 and 9.0; for non-DM patients, the
mortality risk is in a relatively low range when the TyG index is
approximately between 7.0 and 9.0. Overall, the TyG index exerted a
dominant effect on mortality risk in ADHF patients, while CRP further
amplified the risk by modulating the effect intensity of TyG index.

Subgroup analysis stratified by DM and
non-DM populations

In ADHEF patients with and without DM, we further conducted
stratified interaction analyses based on age, gender, LVEF, NYHA
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protein; TyG index: triglyceride-glucose index; ADHF: acute decompensated heart failure.

classification, and comorbidities (Table 5). The results revealed that
in non-DM patients, the association between CTI and prognosis
exhibited significant interaction effects in gender subgroups,
hypertension subgroups, and stroke subgroups. Specifically, the
association between CTI levels and all-cause mortality risk was
stronger in male patients than in females (P for interaction = 0.03).
Moreover, the mortality risk was further elevated in subgroups with
comorbid hypertension or stroke (All P for interaction < 0.05).
Notably, among patients with comorbid DM, the prognostic value
of CTI demonstrated no subgroup differences, with risk associations
remaining consistent across all subgroups (All P for interaction
> 0.05).

Comparative performance of the CTl and
ADHERE models in mortality prediction

As shown in Supplementary Table 3, we compared the
predictive performance of the CTI model and the ADHERE
model. The study results indicated that the area under the curve
of the CTI model was 0.73, which was significantly higher than the
0.64 of the ADHERE model (Delong P < 0.05). Continuous net
reclassification analysis showed that the CTI model achieved a
significant net improvement compared with the ADHERE model,
with a net reclassification improvement of 0.18 (P < 0.05).

Sensitivity analysis

The validation results in the cohort of U.S. patients with
congestive HF further revealed a positive association between CTI
and all-cause mortality, reproducing the core findings of this study
(Supplementary Table 4). In addition, even after further adjusting
for statins, sodium-glucose cotransporter-2 inhibitors, and anti-
inflammatory drugs, the main conclusions of this study remained
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robust (Supplementary Table 5). Finally, the analysis based on
cardiovascular-specific mortality yielded results consistent with
those of all-cause mortality, further supporting the robustness of
the study findings (Supplementary Table 6).

Discussion

Based on the Jiangxi-ADHF II cohort study, CTI was confirmed
as an independent risk factor for 30-day all-cause mortality in
ADHF patients, with its risk assessment value being more
pronounced among those with comorbid DM. Notably, heatmaps
further demonstrated that the prognostic impact of CTI
components exhibited distinct risk patterns between ADHF
patients with and without DM.

This study focuses on the complex role of multimorbidity and
its clinical translational value, with particular emphasis on the joint
lethal effects of HF-DM comorbidity (6-11, 48). The findings
demonstrate a significant positive correlation between CTI and
short-term mortality risk in ADHF patients, with the risk gradient
further amplified in those with comorbid DM. This suggests that
metabolic-inflammatory interactions may exacerbate clinical
deterioration in comorbid states. This finding aligns closely with
the cross-disease risk prediction value of CTI as a systemic
biological marker: Xu et al. demonstrated a linear positive
correlation between CTT and CHD risk in cardiovascular research
(43), while Huo's team and Tang's team independently revealed its
positive association with stroke risk across different cohorts (41, 42).
In oncology cohorts, Shi et al. reported that elevated CTT conferred
a 225% increased 90-day mortality risk in gastrointestinal cancer
patients (49), and the INSCOC cancer cachexia cohort further
showed that each 1-standard deviation increase in CTI elevated
short-term mortality risk by 22% (50). Additional studies have
identified significant associations between CTI and multisystem
endocrine-metabolic/immune regulatory disorders (51-55),
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TABLE 5 Stratified analysis showed the relationship between CTI and
30-day mortality in patients with ADHF in different age, gender, NYHA
classification, LVEF and whether combined with hypertension/stroke/
CHD.

HR (95% CI)

Subgroup Diabetes Non-diabetic
group group
Gender
Male 412 (241, 7.06) 3.58 (2.19, 5.87)
Female 262 (148, 4.64) 1.47 (0.78, 2.76)

P for interaction 0.24 0.03

Age (years)

19-70 2.59 (1.29, 5.17) 2.70 (1.49, 4.88)

71-99 4.24 (2.51, 7.18) 2.82 (1.67, 4.76)

P for interaction 0.9587 0.91
NYHA classification

III 3.02 (1.47, 6.21) 3.37 (1.81, 6.28)

v 3.48 (2.19, 5.52) 2.25 (1.39, 3.65)

P for interaction 0.74 0.30
LVEF

<50% 3.72 (1.88, 7.37) 2.33 (1.36, 3.99)

=>50% 3.31 (2.02, 5.42) 2.87 (1.66, 4.95)

P for interaction 0.77 0.59

Hypertension

Yes 3.52 (2.20, 5.64) 6.27 (2.74, 14.36)

No 3.01 (1.58, 5.72) 1.96 (1.25, 3.09)

P for interaction 0.67 <0.01
Stroke

Yes 3.48 (1.96, 6.18) 7.01 (2.72, 18.07)

No 3.24 (1.93, 5.44) 2.10 (1.37, 3.24)

P for interaction 0.85 0.02
CHD

Yes 2.80 (1.89, 4.16) 2.40 (1.19, 4.83)

No 3.54 (2.17, 5.77) 2.71 (1.71, 4.30)

P for interaction 0.69 0.77

HR, hazard ratios; CI, confidence interval; CTI, C-reactive protein-triglyceride-glucose index;
ADHF, acute decompensated heart failure; CHD, coronary heart disease; NYHA, New York
Heart Association; LVEF, left ventricular ejection fraction.

Note: Models adjusted for the same covariates as in model IIT (Table 2), except for the
stratification variable.

collectively suggesting CTI's strong generalizability as a trans-
disease risk stratification tool.

This study employed Cox regression models, combined with RCS,
and heatmaps, to systematically elucidate the joint effects of the CTT and
its components (TyG index and CRP) on all-cause mortality risk in
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ADHEF patients with DM comorbidity. Among ADHF patients with
comorbid DM, CTI demonstrated a significant nonlinear positive
association with 30-day all-cause mortality risk (P for non-linearity =
0.02), manifesting as a threshold effect; whereas in non-DM ADHF
patients, a linearly increasing risk pattern was observed (P for non-
linearity = 0.72). The heatmap results further elucidated: We found that
the lowest mortality risk occurred when the TyG index was within a
certain range concurrently with a CRP level under 50 mg/L, a pattern
consistent in both DM and non-DM patients. This finding is closely
aligned with the theoretical threshold of metabolic homeostasis in
chronic diseases (56-64). Notably, the longitudinal CRP gradient
effect demonstrated a linear association, with all-cause mortality risk
in ADHF patients progressively increasing alongside rising CRP levels.
Furthermore, when comparing ADHF patients with DM to those
without DM, the former exhibited relatively higher CRP levels under
equivalent mortality risk. This discrepancy may be attributed to the DM
microenvironment, which potentially amplifies inflammatory signaling
transduction efficiency through increased accumulation of advanced
glycation end-products (65). At the level of interaction between the TyG
index and CRP, joint effect analysis revealed that the TyG index exerted
a dominant effect on mortality risk, while CRP further amplified this
risk by modulating the magnitude of the TyG index's effect. Specifically,
when the TyG index exceeded 9 and CRP levels progressively increased,
patients exhibited a significantly elevated 30-day mortality risk
compared to baseline levels. This joint effect may stem from the
vicious cycle formed between TyG index-induced IR and CRP-
mediated chronic inflammation. This cycle escalates mortality risk
through multiple pathways, including disrupting myocardial energy
metabolism and exacerbating mitochondrial dysfunction (12-15).

This study further revealed population heterogeneity in the
association between CTI and 30-day all-cause mortality risk in
ADHF patients through subgroup analysis. Specifically, among
ADHF patients without DM, CTI-related mortality risk
demonstrated gender- and comorbidity-specific stratification
characteristics: male patients exhibited significantly higher mortality
risk compared to females, and this risk was further elevated in
patients with comorbid hypertension or stroke. Previous studies
have consistently validated the survival advantage of female HF
patients, with this gender-based benefit persisting across different
ejection fraction subtypes (66, 67). The underlying mechanisms can
be elucidated from multiple dimensions: Biologically, analyses of
sample data revealed that male patients exhibit significantly higher
median CTI values compared to females, which may be attributed to
male-specific visceral fat accumulation patterns and the
cardioprotective effects of estrogen in females (68, 69). Behaviorally,
adverse lifestyle factors such as smoking and drinking consumption
habits are more prevalent in males compared to females, which
further exacerbates the risk of future adverse events (70-72). In terms
of comorbidity modification effects, patients with comorbid
hypertension or stroke exhibit higher CTI levels. This phenomenon
might be driven by enhanced IR and systemic inflammation
associated with comorbid conditions (73-76). Additionally, the
comorbid states of hypertension or stroke inherently contribute to
further elevated mortality risk (77-79).
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The value of this study lies in providing a novel and actionable
strategy for the clinical management of ADHF. Owing to its
simplicity and cost-effectiveness, the CTI possesses significant
advantages for clinical translation (40-43). We advocate for its
systematic integration at the frontline of patient management to
establish an evidence-based risk stratification system. The core
applications include: embedding an automated CTI assessment
module in the information system to achieve early warning and
precise intervention for high-risk ADHF patients; meanwhile,
integrating it with mature risk models or Artificial Intelligence-
assisted systems to enable dynamic, intelligent mortality risk
prediction, thereby paving the way for smarter clinical pathways.

Strengths and limitations

This study represents a positive association between CTI and all-
cause mortality risk in ADHF patients, and further reveals that DM
comorbidity significantly amplifies this correlation. Additionally,
through the heatmap visualization analysis, we have further
investigated the relationship between CTI components (TyG index
and CRP) and mortality risk. These findings on cross-domain
biomarkers offer a new framework for personalizing risk
management in ADHF, informing clinical decision-making.

The study has several limitations: (1) As a regional observational
cohort study, the generalizability of findings may be limited by
regional and ethnic constraints, necessitating validation in large-
scale multicenter cohorts before broader extrapolation; (2) Although
multiple confounders have been corrected for, unmeasured residual
confounders may still affect the effect estimates; (3) The dynamic
impacts of metabolic-modulating medications on TyG index and CRP
levels were not quantitatively assessed, which may result in systematic
underestimation of the true exposure-outcome associations. (4) Since
CRP is not a routine test for HF patients, a large number of cases with
missing CRP data were consequently excluded from our analysis. This
may have introduced selection bias and could affect the
generalizability of the results. This limitation requires further
validation in future studies. (5) While 30-day follow-up effectively
captures acute-phase events, it may underestimate the time-dependent
associations between metabolic dysfunction, inflammation, and long-
term prognosis. Future studies should employ extended follow-up
duration with dynamic predictive modeling to elucidate longitudinal
effect trajectories, and incorporate additional study outcomes (such as
readmission rates) to enhance the applicability of the findings.

Conclusion

This study supports the clinical value of CTI as a novel
biomarker for short-term mortality in ADHF patients and
elucidates the enhancing effect of DM comorbidity on this
positive association. Further heatmap analyses suggest that
controlling TyG and CRP levels in ADHF patients, particularly
those with DM comorbidity, may significantly reduce short-term
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all-cause mortality. These findings underscore the pivotal role of the
metabolic-inflammatory pathway in ADHF progression, offering
valuable references for early risk stratification and targeted
therapeutic interventions in ADHF management.
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