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Development of machine
learning models for predicting
postoperative hyperglycemia
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cohort study analysis
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Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China, 4Department of
Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing
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Background: Postoperative hyperglycemia (POH) is a common metabolic

complication in non-diabetic patients undergoing surgery for gastric cancer, and

it significantly increases the risk of adverse outcomes. However, current prediction

models primarily rely on a limited set of perioperative variables and conventional

statistical methods, which often lack accuracy and generalizability. This study

aimed to develop and validate a machine learning-based model for the early

prediction of POH risk in non-diabetic patients following radical gastrectomy.

Methods: This single-center, retrospective cohort study included 393 non-

diabetic patients who underwent radical gastrectomy for gastric cancer

between March 2021 and September 2024. A total of 38 perioperative clinical

features covering preoperative, intraoperative, and early postoperative periods

were collected. The primary outcome was POH, defined as a fasting venous

plasma glucose level ≥ 7.8 mmol/L within 24 hours post-surgery. Nine machine

learning algorithms, including Support Vector Machine with a radial basis

function kernel (SVM-radial), Random Forest, XGBoost, and Logistic

Regression, were developed and compared. Model performance was evaluated

using accuracy, the area under the receiver operating characteristic curve (AUC),

recall, and F1-score. Shapley Additive Explanations (SHAP) analysis was employed

to interpret the model and identify key predictive factors.

Results: The incidence of POH was 42.7%. Among all models, the SVM-radial

model achieved the best test-set performance (AUC = 0.758, accuracy = 0.724,

F1 = 0.743, recall = 0.750, Brier score = 0.186, calibration slope = 1.07).Themodel

exhibited excellent discrimination, predictive accuracy, and probability

calibration, indicating strong generalization capabilities and potential clinical

utility. Seven key predictors were identified: operation duration, nutritional risk

score, sex, surgical approach 2 (robotic surgery), preoperative fasting blood

glucose, thrombosis risk score, and alkaline phosphatase. SHAP analysis
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confirmed the non-linear contributions of these features to POH risk and

supported their interpretability for clinical decision-making.

Conclusion: A novel machine learning-based model, utilizing multi-dimensional

perioperative features, can accurately predict the risk of POH in non-diabetic

patients with gastric cancer. The SVM-radial model demonstrated superior

predictive performance and clinical interpretability, providing a viable tool for

early risk stratification and personalized glycemic management in the

surgical setting.
KEYWORDS

postoperative hyperglycemia, non-diabetic patients, gastric cancer, machine learning,
risk prediction, perioperative management, SHAP, SVM-radial
1 Introduction

Gastric cancer is the fifth most commonly diagnosed

malignancy and the third leading cause of cancer-related death

worldwide, with approximately 1.1 million new cases and 770,000

deaths annually, representing a major global public health challenge

(1, 2). Epidemiological data indicate that Asia bears roughly 60% of

the global burden, with China exhibiting the highest incidence and

mortality rates (3). Despite advances in radical surgical techniques

and widespread adoption of multidisciplinary treatment strategies

(4), postoperative complications remain a critical determinant of

both short- and long-term outcomes, with reported incidence rates

of approximately 12% (5).

POH, a common metabolic response after radical gastrectomy,

frequently occurs in patients without pre-existing diabetes and

tends to be underestimated in clinical practice. Studies have

reported that approximately 55.5% of non-diabetic gastric cancer

patients experience postoperative blood glucose levels exceeding

126 mg/dL, with severe hyperglycemia (>200 mg/dL) occurring in

6.3% of cases (6). Compared with normoglycemic patients, those

with POH demonstrate significantly higher complication rates

(63.6% vs. 13%), as well as reduced 5-year overall survival (45%

vs. 57%) and disease-free survival (46% vs. 68%) (7, 8). The

underlying mechanisms involve stress-induced counter-regulatory

hormone release, enhanced inflammatory responses, and insulin

resistance (9, 10). Notably, non-diabetic patients with comparable

hyperglycemia exhibit worse prognoses than diabetic counterparts,

suggesting that POH may reflect more profound physiological

dysregulation (11).

Current POH risk assessment tools primarily rely on traditional

statistical models. For example, the postoperative complication

model developed by Dong et al. (12) does not specifically target

non-diabetic populations, while the logistic regression model by

Wang et al. (13) is limited to preoperative and intraoperative

variables, without incorporating critical postoperative factors.

Most existing models employ linear regression (14, 15), which is
02
inherently limited in capturing nonlinear relationships, variable

interactions, and dynamic risk profiles. Furthermore, no

standardized prediction tool tailored for POH in non-diabetic

gastric cancer patients has been established, leading to reliance on

empirical judgment in clinical practice and limiting the effectiveness

of personalized interventions.

Recently, machine learning (ML) techniques have

demonstrated superior performance over conventional statistical

methods in early diagnosis and risk prediction (16). ML algorithms

offer advantages such as high-dimensional data processing,

nonlinear pattern recognition, and real-time predictive capability,

and have been effectively applied to forecast perioperative

complications including infection, thrombosis, and malnutrition

(17–19). However, the application of ML for predicting POH in

gastric cancer patients remains limited, with few high-performing

and interpretable models specifically tailored to non-

diabetic populations.

Considering the unique characteristics of Chinese gastric cancer

patients—including distinct genetic backgrounds, dietary habits,

and surgical practices—developing a locally adapted POH risk

prediction model is of significant clinical relevance.
1.1 Study hypothesis

We hypothesize that machine learning algorithms can

accurately predict POH by integrating multidimensional clinical

data, outperforming traditional statistical approaches and

identifying key risk factors. Based on this hypothesis, the present

study aims to construct a POH risk prediction model for non-

diabetic gastric cancer patients using multiple machine learning

algorithms. By incorporating preoperative, intraoperative, and early

postoperative variables, the model seeks to enable early

identification, support precise clinical stratification and targeted

interventions, and ultimately improve perioperative care and long-

term patient outcomes.
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2 Methods

2.1 Study design and patient selection

This was a single-center, retrospective cohort study based on

real-world data. Eligible patients were non-diabetic individuals who

underwent radical gastrectomy for gastric cancer at Jiangsu

Province Hospital of Chinese Medicine between March 2021 and

September 2024. The study protocol was approved by the

Institutional Ethics Committee (approval date: April 14, 2025).

Due to the retrospective nature of the study, the requirement for

informed consent was waived.

Inclusion criteria were as follows:
Fron
1. Age ≥ 18 years;

2. Pre- or postoperative pathological diagnosis of

gastric malignancy;

3. Underwent radical gastrectomy;

4. No prior history of diabetes mellitus.
Exclusion criteria included:
1. Patients were excluded if they met any of the

following conditions;

2. had a history of other primary malignant tumors;

3. received preoperative medications affecting glucose

metabolism (e.g., corticosteroids);

4. had missing key clinical data exceeding 20%.
As shown in Figure 1, 502 patients were screened, and after

exclusions, 393 were included and randomly split into training and

test sets.
2.2 Primary outcome

In accordance with established diagnostic criteria (10, 20), POH

was defined as a fasting venous plasma glucose level ≥ 7.8 mmol/L

within 24 hours post-surgery. This time point was selected based on

prior evidence indicating that glucose levels typically peak within 24

hours after surgery (21). Venous plasma samples were used to

minimize measurement bias compared to bedside glucosemonitoring.
2.3 Data collection

Two trained researchers independently extracted patient data

from the hospital’s electronic medical record (EMR) system. A

double-entry method was used, and any discrepancies were resolved

through discussion or adjudication by a third reviewer. A total of 38

demographic and clinical variables were collected.

2.3.1 Demographic variables
Sex, age, body mass index (BMI), smoking status, alcohol

consumption, family history of diabetes.
tiers in Endocrinology 03
2.3.2 Medical history
Hypertension, coronary artery disease, history of stroke, anemia

(hemoglobin < 120 g/L for men, < 110 g/L for women), and

hypoalbuminemia (albumin < 35 g/L).

2.3.3 Preoperative laboratory data
White blood cell count, red blood cell count, hemoglobin,

platelet count, neutrophil count, lymphocyte count, aspartate

aminotransferase (AST), alanine aminotransferase (ALT), total

protein, albumin, alkaline phosphatase (ALP), g-glutamyl

transferase (GGT), total bilirubin, direct bilirubin, fasting blood

glucose(FBG), and carcinoembryonic antigen (CEA).

2.3.4 Preoperative scores
Nutritional Risk Screening 2002 (NRS2002) and Padua

Prediction Score (PPS) for venous thromboembolism (VTE) risk,

hereafter referred to as the Thrombosis Risk Score.

2.3.5 Surgical variables
Surgical Approach (laparoscopic, open, robotic), American

Society of Anesthesiologists (ASA) classification, operative

duration, intraoperative blood loss, fluid administration, and

intraoperative use of corticosteroids and anesthetic agents (e.g.,

propofol, sufentanil, lidocaine).

2.3.6 Postoperative variables
Nutritional support modality (enteral nutrition [EN],

parenteral nutrition [PN], or a combination of EN and PN).
2.4 Missing data handling

To ensure data completeness, cases with more than 20%missing

values in key variables were excluded. For the remaining cases, any

record with missing data was removed, resulting in a final dataset of

393 patients for analysis. This approach ensured that all included

cases had complete data, thereby avoiding any potential impact of

missing values on the results.
2.5 Data preprocessing

Categorical variables, such as Surgical Approach, ASA

classification, and type of nutritional support, were one-hot encoded;

multi-label features, including intraoperative anesthetic use, were

binarized; continuous variables were standardized using z-scores.
2.6 Feature selection and model
development

2.6.1 Statistical analysis
Given the large sample size in this study (n = 393) and based on

the central limit theorem (CLT), continuous variables were assumed

to be approximately normally distributed. Continuous variables are
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presented as mean ± standard deviation and compared using

independent-samples z-tests. Categorical variables are presented as

counts and percentages, and compared using c² or Fisher’s exact

tests, as appropriate. Relationships between continuous variables

were assessed using Pearson correlation analysis.

2.6.2 Data splitting
The dataset was randomly divided into a train set (75%) and a

test set (25%) using stratified sampling to preserve the distribution

of the outcome variable. The train set was used for feature selection,

model train, and hyperparameter tuning, while the test set was

reserved for the final model evaluation.

2.6.3 Feature selection
Feature selection was first performed using LASSO logistic

regression with L1 regularization (C = 0.1), retaining only

variables with non-zero coefficients. These selected variables were

then subjected to stepwise multivariate logistic regression, removing

variables with P > 0.05 to determine the significant predictors. The

coefficients of the variables selected by LASSO are presented in

Supplementary Figure S1, providing a visual representation of each

feature’s contribution to the model.

2.6.4 Machine learning models
Using the final feature set, nine machine learning models

were developed:

Logistic Regression (LR)

LASSO Logistic Regression (LR with LASSO)

k-Nearest Neighbors (KNN)

Linear Support Vector Machine (SVM linear)

the SVM-radial model

Decision Tree

Random Forest

Extreme Gradient Boosting (XGBoost)

Light Gradient Boosting Machine (LightGBM)

2.6.5 Hyperparameter tuning
Hyperparameter optimization was performed using the Optuna

framework, combining Bayesian optimization with 5-fold cross-

validation. AUC was used as the primary performance metric to

select the optimal hyperparameter set.
2.7 Model evaluation and interpretability
analysis

Model performance was evaluated using AUC, accuracy,

precision, recall, and F1 score. Receiver operating characteristic

(ROC) curves and calibration plots were generated to assess model

discrimination and calibration. Calibration performance was

further quantified using the calibration slope, and Brier score.

SHAP analysis was performed to quantify the contribution of

each predictor to the model output, thereby enhancing model

interpretability and clinical applicability.
Frontiers in Endocrinology 04
All data processing and model development were conducted

using Python version 3.11. All statistical tests were two-sided, and a

P value ≤ 0.05 was considered statistically significant.
3 Results

3.1 Baseline characteristics

A total of 393 non-diabetic patients who underwent radical

gastrectomy for gastric cancer were included in the study. Of these,

294 were allocated to the train set and 99 to the test set. The overall

incidence of POH was 42.7% (168/393). As shown in Table 1, there

were no statistically significant differences in demographic or

baseline clinical characteristics between the train and test sets (all

P > 0.05), indicating that the two cohorts were comparable.
3.2 Feature selection and model
construction

From the initial 38 candidate variables, seven potential

predictors were identified through a combination of LASSO

logistic regression and multivariable analysis: operation duration,

preoperative fasting blood glucose, nutritional risk score, Sex,

thrombosis risk score, ALP, and Surgical Approach 2

(robotic surgery).

To quantify the independent association of these variables with

POH, a multivariable logistic regression analysis was performed. The

results showed that operation duration (OR: 1.011, 95% CI: 1.006–

1.016, P < 0.001), preoperative fasting blood glucose (OR: 1.328, 95%

CI: 1.011–1.745, P = 0.042), nutritional risk score (OR: 1.373, 95% CI:

1.070–1.762, P = 0.013), Sex (OR: 2.518, 95% CI: 1.399–4.532, P =

0.002), thrombosis risk score (OR: 1.289, 95% CI: 1.048–1.585, P =

0.016), ALP (OR: 1.010, 95% CI: 1.001–1.019, P = 0.036), and Surgical

Approach 2(Robotic surgery) (OR: 0.166, 95% CI: 0.039–0.709, P =

0.015) were independently associated with the occurrence of POH.
3.3 Nomogram construction and
evaluation

To facilitate clinical application of our logistic regression model,

we developed a nomogram (Figure 2). This nomogram is not a new

model, but a visual tool that translates complex regression coefficients

into an intuitive scoring system. Each predictor is assigned points

proportional to its regression coefficient, reflecting its relative impact

on the model output. Clinicians sum the points to obtain a total score,

which is then mapped to the predicted risk probability,

corresponding exactly to the model’s output. This mapping ensures

that the nomogram preserves the quantitative relationships between

the regression coefficients and the machine learning model

predictions, allowing accurate individualized risk assessment.

The model showed robust performance: AUC = 0.734 (train set)

and 0.728 (test set), Brier score = 0.192, and calibration slope = 1.22,
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TABLE 1 summarizes the baseline characteristics of the patients.

Feature Train set (n = 294) Test set (n = 98) P value

Age, years 65.3 ± 11.0 64.7 ± 11.5 0.661

BMI, kg/m² 23.0 ± 3.3 23.1 ± 3.1 0.717

White blood cell count (WBC), ×109/L 6.0 ± 3.0 5.9 ± 2.2 0.704

Red blood cell count (RBC), ×10¹²/L 4.0 ± 0.7 4.0 ± 0.6 0.854

Preoperative hemoglobin, g/L 115.8 ± 26.0 118.2 ± 20.8 0.412

Platelet count (PLT), ×109/L 216.7 ± 87.1 212.5 ± 82.7 0.673

Neutrophil count (NEU), ×109/L 3.9 ± 2.6 3.6 ± 2.0 0.341

Lymphocyte count (LYM), ×109/L 1.4 ± 0.6 1.5 ± 0.5 0.422

AST, U/L 25.0 ± 32.2 22.0 ± 12.2 0.364

ALT, U/L 27.1 ± 67.8 20.6 ± 17.1 0.352

Total protein, g/L 82.1 ± 350.4 62.6 ± 6.5 0.583

Preoperative albumin, g/L 38.4 ± 4.4 38.2 ± 4.1 0.668

ALP, U/L 85.2 ± 38.8 85.5 ± 30.2 0.942

GGT, U/L 37.2 ± 118.3 34.6 ± 41.2 0.835

Total bilirubin, μmol/L 10.2 ± 10.2 9.6 ± 4.2 0.539

Direct bilirubin, μmol/L 2.7 ± 6.2 2.2 ± 1.0 0.400

Indirect bilirubin, μmol/L 7.5 ± 5.2 7.4 ± 3.6 0.838

Preoperative FBG, mmol/L 5.0 ± 1.0 5.1 ± 1.5 0.317

CEA, ng/mL 7.4 ± 38.2 11.5 ± 51.9 0.411

Operation duration, minutes 188.9 ± 62.3 188.9 ± 61.1 0.992

Intraoperative blood loss, mL 149.8 ± 163.4 131.7 ± 127.2 0.318

Intraoperative infusion volume, mL 1942.2 ± 699.9 1987.6 ± 682.2 0.576

Sex, n (%) 0.847

0 = Male 208 (71) 71 (72)

1 = Female 86 (29) 27 (28)

Alcohol history, n (%) 1.000

0 = No 247 (84) 82 (84)

1 = Yes 47 (16) 16 (16)

Smoking history, n (%) 0.940

0 = No 240 (82) 81 (83)

1 = Yes 54 (18) 17 (17)

Family history of diabetes, n (%) 0.478

0 = No 287 (98) 94 (96)

1 = Yes 7 (2) 4 (4)

Hypertension, n (%) 1.000

0 = No 188 (64) 62 (63)

1 = Yes 106 (36) 36 (37)

(Continued)
F
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TABLE 1 Continued

Feature Train set (n = 294) Test set (n = 98) P value

Coronary artery disease, n (%) 0.905

0 = No 276 (94) 91 (93)

1 = Yes 18 (6) 7 (7)

History of cerebrovascular disease, n (%) 0.661

0 = No 270 (92) 92 (94)

1 = Yes 24 (8) 6 (6)

Anemia, n (%) 0.201

0 = No 184 (63) 69 (70)

1 = Yes 110 (37) 29 (30)

Hypoproteinemia, n (%) 0.524

0 = No 233 (79) 74 (76)

1 = Yes 61 (21) 24 (24)

Surgical Approach, n (%) 0.707

0 = Laparoscopy 169 (57) 55 (56)

1 = Open surgery 111 (38) 40 (41)

2 = Robotic surgery 14 (5) 3 (3)

ASA classification, n (%) 0.852

0 = Class I 1 (0) 0 (0)

1 = Class II 161 (55) 56 (57)

2 = Class III 131 (45) 42 (43)

3 = Class IV 1 (0) 0 (0)

Intraoperative corticosteroid use, n (%) 0.505

0 = No 33 (11) 8 (8)

1 = Yes 261 (89) 90 (92)

Anesthetic drugs, n (%) 0.803

0 = Propofol 14 (5) 7 (7)

0 + 1 = Propofol + Sufentanil 3 (1) 0 (0)

0 + 1+2 = Propofol + Sufentanil + Lidocaine 11 (4) 3 (3)

0 + 2 = Propofol + Lidocaine 263 (89) 87 (89)

1 = Sufentanil 1 (0) 0 (0)

2 = Lidocaine 2 (1) 1 (1)

Nutritional support, n (%) 1.000

0 = PN 289 (98) 97 (99)

2 = EN+PN 5 (2) 1 (1)

Nutritional risk screening 2002
(NRS2002), n (%)

0.840

Score 0 4 (1) 0 (0)

Score 1 158 (54) 57 (58)

(Continued)
F
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TABLE 1 Continued

Feature Train set (n = 294) Test set (n = 98) P value

Nutritional risk screening 2002 (NRS2002),
n (%)

0.840

Score 2 85 (29) 25 (26)

Score 3 20 (7) 7 (7)

Score 4 16 (5) 6 (6)

Score 5 11 (4) 3 (3)

Thromboembolism risk score (Padua
score), n (%)

0.802

Score 0 3 (1) 0 (0)

Score 1 4 (1) 1 (1)

Score 2 7 (2) 2 (2)

Score 3 48 (16) 14 (14)

Score 4 80 (27) 35 (36)

Score 5 87 (30) 28 (29)

Score 6 51 (17) 15 (15)

Score 7 14 (5) 3 (3)
F
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FIGURE 1

Flowchart of patient enrollment and inclusion/exclusion criteria.
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indicating good agreement between predicted and observed

outcomes. Decision curve analysis confirmed that the nomogram

provides significant clinical net benefit across a wide range of

threshold probabilities (Supplementary Figure S2).
3.4 Machine learning model performance
analysis

A comprehensive comparison of the performance across nine

machine learning models is presented in Table 2. Overall, ensemble

algorithms based on trees demonstrated outstanding performance
Frontiers in Endocrinology 08
on the train dataset, with Random Forest, XGBoost, and Decision

Tree models all achieving perfect AUC (1.0), while LightGBM

attained an impressive AUC of 0.987. However, such near-perfect

train set performance often implies overfitting risks—models may

have learned specific noise within the data rather than generalizable

patterns. Figure 3 displays the ROC curves for all nine ML models

on both the training and test datasets, providing a visual

comparison of their discriminative performance and potential

overfitting patterns.

To address this, we further strengthened internal validation,

focusing on model stability and generalization capability. Taking

the SVM-radial basis function model as an example, we conducted
FIGURE 2

Nomogram for predicting the risk of POH risk in non-diabetic gastric cancer patients.
TABLE 2 Performance comparison of different machine learning models in train and test datasets.

Model
Train
AUC

Train
accuracy

Train
F1

Train
recall

Test
AUC

Test
accuracy

Test F1
Test
recall

Brier
score

Calibration
slope

P-value
(SVM-radial
vs Model)

SVM-radial 0.802 0.735 0.761 0.805 0.758 0.724 0.743 0.75 0.186 1.07 —

Logistic
Regression

0.734 0.667 0.686 0.695 0.728 0.714 0.731 0.731 0.192 1.22 0.593

Random Forest 1 1 1 1 0.727 0.684 0.705 0.712 0.212 1.945 0.668

SVM linear 0.736 0.697 0.719 0.74 0.716 0.694 0.717 0.731 0.215 1.848 0.433

LR with LASSO 0.721 0.653 0.662 0.649 0.715 0.673 0.673 0.635 0.218 1.699 0.429

KNN 0.825 0.738 0.754 0.766 0.709 0.643 0.646 0.615 0.223 1.784 0.516

XGBoost 1 1 1 1 0.644 0.643 0.673 0.692 0.273 1.947 0.071

LightGBM 0.987 0.942 0.945 0.948 0.627 0.582 0.617 0.635 0.26 2.089 0.024

Decision Tree 1 1 1 1 0.579 0.582 0.61 0.615 0.418 0.551 0.008
f
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10-fold cross-validation on the train set. Results revealed consistent

performance across folds, with an average AUC of 0.737 ± 0.074,

average accuracy of 0.717 ± 0.063, and average recall of 0.811 ±

0.124. This stable and balanced performance indicates the SVM

model strikes a favorable equilibrium between fitting capability and

generalization ability, thereby alleviating concerns about overfitting.

However, the true test of the model lies in the independent test

set. test results revealed that the SVM-radial basis function model

demonstrated the strongest generalization ability, achieving the

highest AUC (0.758) and exhibiting robust discriminatory power.

Conversely, models that performed perfectly on the train set (such

as the decision tree, with a test AUC of 0.579) showed a significant

decline in performance on the test set, once again reflecting their

overfitting issues.

In clinical predictive applications, recall serves as a critical

metric for evaluating a model’s ability to identify all high-risk

patients. As shown in Table 2, the SVM-radial basis function

model also achieved the highest recall (0.75) on the test set,

particularly crucial in early-stage risk screening scenarios

emphasizing high sensitivity.

Finally, we employed the DeLong test to compare the AUC

differences between each model and the SVM-radial basis function

model (column of Table 2). Results indicate no statistically

significant difference between the SVM model and other high-

performing models (e.g., Logistic Regression, p=0.593). Considering

the SVM model’s highest AUC and recall on the test set alongside

its stable cross-validation performance, it was ultimately selected as

the optimal predictive model. This choice achieves the best

equilibrium between discriminative capability and sensitivity

towards high-risk patients.
3.5 Model explainability analysis

To conduct an in-depth analysis and validate the internal

decision-making mechanisms of the optimal SVM model,
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we employed the SHAP framework for interpretability analysis

(Figure 4).

The global feature importance plot (SHAP Summary Plot) on

the left indicates that Operation Duration exerts the most

significant influence on model predictions, followed sequentially

by Nutritional Risk Score, Sex, Thrombosis Risk Score, ALP, and

FBG. The dependency plot indicates that high-value samples

(yellowish color) correspond to positive SHAP values for these

features, suggesting that longer operation duration, higher

nutritional and thrombosis risk scores, and elevated ALP and

preoperative blood glucose levels significantly increase the

predicted risk of POH. Conversely, SHAP values for Surgical

Approach 2 cluster in the negative region, suggesting a potential

protective effect within the model.

The SHAP Dependence Plots on the right further reveal local

patterns and clinical threshold characteristics in the model’s

predictions. Results indicate that POH risk does not increase

linearly but undergoes abrupt changes at critical thresholds:

SHAP values rise significantly when operating time exceeds 180

minutes or nutritional/thrombotic risk scores reach ≥4 points.

Additionally, the model identified a risk threshold range for

preoperative fasting blood glucose: risk begins to increase when

FBG > 4.87 mmol/L and rises sharply beyond 8.12 mmol/L.

Overall, SHAP analysis validated the model’s predictive logic as

highly consistent with clinical understanding, while quantifying the

intensity and thresholds of key risk factors. This significantly

enhances the model’s interpretability and clinical utility.
3.6 SVM model decision curve and risk
stratification

To translate the SVM-radial model’s predictions into a clinically

actionable tool, we developed a risk stratification system based on

the model’s performance on the test set. ROC curves analysis

demonstrated the model’s favorable discriminatory capability,
FIGURE 3

ROC curves for machine learning models on (A) train set and (B) test set.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1687745
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2025.1687745
FIGURE 4

SHAP interpretability analysis of the optimal SVM model. Left: SHAP Summary Plot. The vertical axis ranks all predictors from highest to lowest global
importance (mean absolute SHAP value); the horizontal axis displays SHAP values, quantifying each feature’s contribution to each prediction. Positive
values indicate a push towards Postoperative hyperglycemia (POH = 1), while negative values indicate a push towards normal blood glucose. The
color of each point indicates the magnitude of the corresponding feature value in that sample (defined by the color bar on the right: yellow/green
denotes high values, purple/blue denotes low values). Right: SHAP Dependence Plots. Each subplot displays the raw feature value on the x-axis and
its SHAP value on the y-axis. The color of each point indicates the sample’s actual outcome: yellow denotes hyperglycemia (Outcome=1), purple
denotes no hyperglycemia (Outcome=0).
FIGURE 5

SVM-radial basis function model predictive performance evaluation: ROC and DCA. (A) ROC curve showing the optimal threshold (Youden index =
0.507) and AUC = 0.758. (B) DCA illustrating clinical net benefit compared with "treat-all" and "treat-none" strategies.
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with an AUC of 0.758 (Figure 5A). The optimal statistical threshold

determined by Youden’s index was a predicted probability of 0.507.

Furthermore, decision curve analysis (DCA) was conducted to

assess clinical net benefit (Figure 5B). DCA results indicated

positive clinical net benefit within the threshold probability range

of 0.36 to 0.71.

Based on the aforementioned analysis, a three-tier risk

stratification was established: low risk (< 0.30), intermediate risk

(0.30–0.60), and high risk (≥ 0.60).
4 Discussion

In this study, we constructed and validated a machine learning

model for predicting POH based on real-world clinical data from

393 non-diabetic patients undergoing radical gastrectomy. Among

nine machine learning algorithms, the SVM-radial model

demonstrated the highest predictive performance. SHAP

interpretability analysis identified seven key predictors: operative

duration, nutritional risk score (NRS), Sex, Surgical Approach type

2, preoperative fasting blood glucose, thrombotic risk score,

and ALP.

POH was defined in this study as fasting blood glucose ≥ 7.8

mmol/L within 24 hours postoperatively. This definition may

underestimate transient hyperglycemia induced by intraoperative

or postoperative stress responses, thereby introducing potential

misclassification bias. Fasting blood glucose was selected due to

its standardizable measurement, high clinical feasibility, and relative

independence from other perioperative confounders. Future studies

may consider incorporating continuous or point-of-care glucose

monitoring to more comprehensively reflect intraoperative and

immediate postoperative glycemic dynamics (22).

To our knowledge, this represents the first study applying

machine learning methods to predict POH risk in non-diabetic

gastric cancer patients. By integrating 38 perioperative features—

encompassing baseline characteristics, physiological indicators,

surgical variables, and early postoperative data—we constructed a

dynamic, multidimensional predictive framework capable of

capturing the complexity of POH pathogenesis, surpassing

traditional logistic regression models (23). Furthermore, we

compared nine machine learning algorithms and optimized

model parameters through five-fold cross-validation, ensuring

scientific rigor and model stability. Concurrently, we subjected

the optimal model to performance test via ten-fold cross-

validation (10-fold CV) to validate its robustness and

generalization capability. This aligns with recent literature

indicating machine learning methods outperform traditional

logistic regression in modelling perioperative complications such

as surgical infections, acute kidney injury, and sepsis (17–19). By

focusing on predicting POH risk in non-diabetic gastric cancer

patients, this study complements and extends existing machine

learning-based risk prediction frameworks.

On the test set, the SVMmodel achieved a high recall (0.75) while

maintaining solid AUC (0.758), F1 score (0.743), and accuracy

(0.724). In clinical practice, a high recall is particularly important,
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as it maximizes the identification of high-risk POH patients and

reduces the likelihood of missed diagnoses (24). The nonlinear

mapping capability of SVM-RBF enables it to capture complex

feature interactions more accurately, thereby improving the

discrimination of critical patients. By contrast, although the

random forest showed perfect performance on the training set

(AUC = 1.0, F1 = 1.0, recall=1.0), its performance on the test set

dropped noticeably (AUC = 0.727, F1 = 0.705, recall=0.712),

suggesting overfitting. While Miet et al. reported strong

performance of random forest in predicting sepsis-associated severe

acute kidney injury (sAKI), this method still exhibited overfitting in

our dataset (25), indicating that model performance can be

influenced by dataset-specific characteristics and clinical context,

and should be evaluated accordingly. Therefore, in this clinical

setting, recall is a more appropriate metric for model selection than

AUC or F1, since the clinical consequences of missing high-risk

patients far outweigh those of misclassifying low-risk patients.

Selecting SVM as the optimal model based on test set recall is both

reasonable and ensures sensitive identification of high-risk patients

while maintaining overall predictive performance.

To translate SVM model predictive performance into a

clinically actionable tool, we propose a three-tier risk

management strategy based on predicted probabilities and

Decision Curve Analysis (DCA) results (26). Decision curve

analysis (DCA) showed that the clinically effective range of the

model was approximately 0.36–0.71; however, to facilitate clinical

memorization and ease of implementation, thereby improving

operational feasibility, and to better balance sensitivity and

specificity, thereby ensuring patient safety, we selected 0.30 and

0.60 as the risk stratification thresholds.

Low risk (<0.30): Within this probability range, the clinical net

benefit of model-guided interventions is limited; thus, conventional

management strategies represent a reasonable resource

allocation choice.

Moderate risk (0.30–0.60): This core range demonstrates

significant clinical net benefit over baseline strategies and

encompasses the optimal Youden index threshold (0.507). Extended

monitoring periods for closer observation are recommended.

High risk (≥0.60): Patients within this range exhibit substantially

elevated event probability, necessitating enhanced clinical surveillance

and intensive postoperative glucose monitoring.

This model-based, clinically optimized risk stratification

method facilitates the allocation of limited healthcare resources

towards medium-to-high-risk patients. It constitutes a clinically

quantifiable and actionable risk management framework, whose

potential for improving resource allocation efficiency has been

validated in other clinical settings (27).

Among all predictors, duration of surgery represents a

significant independent risk factor for POH (28). Prolonged

surgical stress elevates catecholamine levels, intensifies

gluconeogenesis and glycogenolysis, and induces pro-

inflammatory cytokine release. These mechanisms collectively

exacerbate insulin resistance and glycemic dysregulation (29, 30).

Perioperative malnutrition constitutes an intervenable risk factor

associated with adverse surgical outcomes (31). The positive SHAP
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distribution of NRS scores indicates that malnourished patients are

more susceptible to stress-induced metabolic disorders, potentially

linked to impaired b-cell function and reduced peripheral glucose

utilization (32). Previous studies have also highlighted that

malnutrition increases the risk of postoperative complications and

is independently associated with poorer survival rates in cancer

patients (33). The findings of this study further support the

necessity of preoperative nutritional screening and intervention.

Sex differences also exerted a significant influence, consistent

with prior studies (34): male patients exhibited approximately

double the risk of POH compared to females. This may relate to

the protective role of estrogen in glucose metabolism (35), though

the underlying mechanisms warrant further investigation.

Preoperative fasting blood glucose serves as a strong predictor

of POH, reflecting underlying metabolic stress and insufficient b-
cell reserve prior to surgery, thereby elevating the risk of

postoperative metabolic imbalance (36, 37). Additionally,

thrombotic risk scores and ALP levels demonstrated significant

predictive value. Elevated thrombotic risk scores not only indicate a

hypercoagulable state but may also reflect systemic inflammation

and activation of the coagulation axis. This pro-inflammatory state

may prompt immune cells to release substantial inflammatory

mediators, such as tumor necrosis factor-a (TNF-a). These

mediators could inhibit downstream signaling of insulin receptor

substrate-1 (IRS-1) by activating serine kinases including JNK and

IKK, leading to impaired glucose utilization in peripheral tissues—

insulin resistance. Concurrently, ALP is a recognized clinical

marker for hepatic or skeletal disorders. As the central organ for

glucose metabolism, impaired liver function may disrupt regulation

of gluconeogenesis and glycogenolysis, thereby destabilizing blood

glucose homeostasis. This suggests that thrombotic risk and ALP

levels may interact via inflammatory-metabolic pathways to

increase the risk of POH (38–40).

Notably, Surgical Approach 2 (robotic surgery) exhibited a

negative SHAP distribution in the model, suggesting it may

confer a protective effect. This finding may relate to the reduced

trauma and lighter intraoperative stress associated with robotic

surgery. Existing research indicates that robotic surgery results in

less intraoperative blood loss and lower postoperative levels of C-

reactive protein (CRP), a sensitive inflammatory marker linked to

cardiovascular disease. CRP also exhibits a negative correlation with

insulin sensitivity. It may therefore be inferred that robotic surgery,

by reducing postoperative inflammation, could be associated with

diminished insulin resistance, thereby facilitating the maintenance

and restoration of postoperative metabolic homeostasis. Future

studies could further compare the effects of different Surgical

Approaches on perioperative metabolic homeostasis, providing

guidance for optimizing surgical technique selection (41, 42).

Growing evidence indicates that POH in non-diabetic patients

is independently associated with increased postoperative

complication risk (43) and may adversely affect recovery by

promoting metabolic and inflammatory dysregulation (44, 45).

Nevertheless, this phenomenon is frequently overlooked in

clinical practice, with postoperative glucose monitoring in non-

diabetic patients remaining markedly inadequate (6). Early
Frontiers in Endocrinology 12
identification of POH risk facilitates the implementation of

preventive interventions, enhances metabolic stress tolerance, and

promotes postoperative recovery. Recognizing modifiable risk

factors—such as nutritional status and surgery-related parameters

—also provides a basis for risk prevention and control at the public

health level.

This study has several limitations. First, as a single-center

retrospective study with a limited sample size (n = 393) and

fasting glucose measured only at 24 hours postoperatively, the

generalizability of the findings may be limited. In addition, the

model is applicable only to non-diabetic gastric cancer patients and

lacks external validation; although internal stability was assessed

through train-test splitting and 10-fold cross-validation, this may

still be insufficient to ensure its applicability across different

hospitals, regions, and ethnic populations. Similar machine

learning studies predicting surgical complications also emphasize

the necessity of external validation to confirm model utility across

diverse populations (46).Therefore, future studies should perform

external validation in multicenter cohorts encompassing diverse

regions and ethnic groups to evaluate the model’s broader

generalizability and performance.

Moreover, the model has the potential to be implemented as an

online calculator or mobile application, enabling clinicians to assess

postoperative hyperglycemia risk in real time based on preoperative

patient characteristics. Integration with hospital information

systems or electronic medical records could facilitate automated

risk evaluation. Finally, the application of the model could inform

clinical workflows, such as determining the intensity of

postoperative glucose monitoring and the timing or dosing of

insulin intervention, thereby optimizing perioperative

management and improving patient outcomes.
5 Conclusion

This study successfully developed the first machine learning-

based prediction model for POH in non-diabetic gastric cancer

patients. The SVM-radial algorithm demonstrated superior

predictive performance and identified seven critical risk factors,

offering new insights into the pathogenesis of POH. The proposed

model may facilitate early risk stratification and individualized

management strategies, ultimately improving perioperative care

and long-term outcomes.
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