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Background: Postoperative hyperglycemia (POH) is a common metabolic
complication in non-diabetic patients undergoing surgery for gastric cancer, and
it significantly increases the risk of adverse outcomes. However, current prediction
models primarily rely on a limited set of perioperative variables and conventional
statistical methods, which often lack accuracy and generalizability. This study
aimed to develop and validate a machine learning-based model for the early
prediction of POH risk in non-diabetic patients following radical gastrectomy.
Methods: This single-center, retrospective cohort study included 393 non-
diabetic patients who underwent radical gastrectomy for gastric cancer
between March 2021 and September 2024. A total of 38 perioperative clinical
features covering preoperative, intraoperative, and early postoperative periods
were collected. The primary outcome was POH, defined as a fasting venous
plasma glucose level > 7.8 mmol/L within 24 hours post-surgery. Nine machine
learning algorithms, including Support Vector Machine with a radial basis
function kernel (SVM-radial), Random Forest, XGBoost, and Logistic
Regression, were developed and compared. Model performance was evaluated
using accuracy, the area under the receiver operating characteristic curve (AUC),
recall, and F1-score. Shapley Additive Explanations (SHAP) analysis was employed
to interpret the model and identify key predictive factors.

Results: The incidence of POH was 42.7%. Among all models, the SVM-radial
model achieved the best test-set performance (AUC = 0.758, accuracy = 0.724,
F1=0.743, recall = 0.750, Brier score = 0.186, calibration slope = 1.07).The model
exhibited excellent discrimination, predictive accuracy, and probability
calibration, indicating strong generalization capabilities and potential clinical
utility. Seven key predictors were identified: operation duration, nutritional risk
score, sex, surgical approach 2 (robotic surgery), preoperative fasting blood
glucose, thrombosis risk score, and alkaline phosphatase. SHAP analysis
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confirmed the non-linear contributions of these features to POH risk and
supported their interpretability for clinical decision-making.

Conclusion: A novel machine learning-based model, utilizing multi-dimensional
perioperative features, can accurately predict the risk of POH in non-diabetic
patients with gastric cancer. The SVM-radial model demonstrated superior
predictive performance and clinical interpretability, providing a viable tool for
early risk stratification and personalized glycemic management in the

surgical setting.

postoperative hyperglycemia, non-diabetic patients, gastric cancer, machine learning,
risk prediction, perioperative management, SHAP, SVM-radial

1 Introduction

Gastric cancer is the fifth most commonly diagnosed
malignancy and the third leading cause of cancer-related death
worldwide, with approximately 1.1 million new cases and 770,000
deaths annually, representing a major global public health challenge
(1, 2). Epidemiological data indicate that Asia bears roughly 60% of
the global burden, with China exhibiting the highest incidence and
mortality rates (3). Despite advances in radical surgical techniques
and widespread adoption of multidisciplinary treatment strategies
(4), postoperative complications remain a critical determinant of
both short- and long-term outcomes, with reported incidence rates
of approximately 12% (5).

POH, a common metabolic response after radical gastrectomy,
frequently occurs in patients without pre-existing diabetes and
tends to be underestimated in clinical practice. Studies have
reported that approximately 55.5% of non-diabetic gastric cancer
patients experience postoperative blood glucose levels exceeding
126 mg/dL, with severe hyperglycemia (>200 mg/dL) occurring in
6.3% of cases (6). Compared with normoglycemic patients, those
with POH demonstrate significantly higher complication rates
(63.6% vs. 13%), as well as reduced 5-year overall survival (45%
vs. 57%) and disease-free survival (46% vs. 68%) (7, 8). The
underlying mechanisms involve stress-induced counter-regulatory
hormone release, enhanced inflammatory responses, and insulin
resistance (9, 10). Notably, non-diabetic patients with comparable
hyperglycemia exhibit worse prognoses than diabetic counterparts,
suggesting that POH may reflect more profound physiological
dysregulation (11).

Current POH risk assessment tools primarily rely on traditional
statistical models. For example, the postoperative complication
model developed by Dong et al. (12) does not specifically target
non-diabetic populations, while the logistic regression model by
Wang et al. (13) is limited to preoperative and intraoperative
variables, without incorporating critical postoperative factors.
Most existing models employ linear regression (14, 15), which is
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inherently limited in capturing nonlinear relationships, variable
interactions, and dynamic risk profiles. Furthermore, no
standardized prediction tool tailored for POH in non-diabetic
gastric cancer patients has been established, leading to reliance on
empirical judgment in clinical practice and limiting the effectiveness
of personalized interventions.

Recently, machine learning (ML) techniques have
demonstrated superior performance over conventional statistical
methods in early diagnosis and risk prediction (16). ML algorithms
offer advantages such as high-dimensional data processing,
nonlinear pattern recognition, and real-time predictive capability,
and have been effectively applied to forecast perioperative
complications including infection, thrombosis, and malnutrition
(17-19). However, the application of ML for predicting POH in
gastric cancer patients remains limited, with few high-performing
and interpretable models specifically tailored to non-
diabetic populations.

Considering the unique characteristics of Chinese gastric cancer
patients—including distinct genetic backgrounds, dietary habits,
and surgical practices—developing a locally adapted POH risk
prediction model is of significant clinical relevance.

1.1 Study hypothesis

We hypothesize that machine learning algorithms can
accurately predict POH by integrating multidimensional clinical
data, outperforming traditional statistical approaches and
identifying key risk factors. Based on this hypothesis, the present
study aims to construct a POH risk prediction model for non-
diabetic gastric cancer patients using multiple machine learning
algorithms. By incorporating preoperative, intraoperative, and early
postoperative variables, the model seeks to enable early
identification, support precise clinical stratification and targeted
interventions, and ultimately improve perioperative care and long-

term patient outcomes.
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2 Methods
2.1 Study design and patient selection

This was a single-center, retrospective cohort study based on
real-world data. Eligible patients were non-diabetic individuals who
underwent radical gastrectomy for gastric cancer at Jiangsu
Province Hospital of Chinese Medicine between March 2021 and
September 2024. The study protocol was approved by the
Institutional Ethics Committee (approval date: April 14, 2025).
Due to the retrospective nature of the study, the requirement for
informed consent was waived.

Inclusion criteria were as follows:

1. Age > 18 years;

2. Pre- or postoperative pathological diagnosis of
gastric malignancy;

3. Underwent radical gastrectomy;

4. No prior history of diabetes mellitus.

Exclusion criteria included:

1. Patients were excluded if they met any of the
following conditions;

2. had a history of other primary malignant tumors;

3. received preoperative medications affecting glucose
metabolism (e.g., corticosteroids);

4. had missing key clinical data exceeding 20%.

As shown in Figure 1, 502 patients were screened, and after
exclusions, 393 were included and randomly split into training and
test sets.

2.2 Primary outcome

In accordance with established diagnostic criteria (10, 20), POH
was defined as a fasting venous plasma glucose level > 7.8 mmol/L
within 24 hours post-surgery. This time point was selected based on
prior evidence indicating that glucose levels typically peak within 24
hours after surgery (21). Venous plasma samples were used to
minimize measurement bias compared to bedside glucose monitoring.

2.3 Data collection

Two trained researchers independently extracted patient data
from the hospital’s electronic medical record (EMR) system. A
double-entry method was used, and any discrepancies were resolved
through discussion or adjudication by a third reviewer. A total of 38
demographic and clinical variables were collected.

2.3.1 Demographic variables

Sex, age, body mass index (BMI), smoking status, alcohol
consumption, family history of diabetes.
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2.3.2 Medical history

Hypertension, coronary artery disease, history of stroke, anemia
(hemoglobin < 120 g/L for men, < 110 g/L for women), and
hypoalbuminemia (albumin < 35 g/L).

2.3.3 Preoperative laboratory data

White blood cell count, red blood cell count, hemoglobin,
platelet count, neutrophil count, lymphocyte count, aspartate
aminotransferase (AST), alanine aminotransferase (ALT), total
protein, albumin, alkaline phosphatase (ALP), y-glutamyl
transferase (GGT), total bilirubin, direct bilirubin, fasting blood
glucose(FBG), and carcinoembryonic antigen (CEA).

2.3.4 Preoperative scores

Nutritional Risk Screening 2002 (NRS2002) and Padua
Prediction Score (PPS) for venous thromboembolism (VTE) risk,
hereafter referred to as the Thrombosis Risk Score.

2.3.5 Surgical variables

Surgical Approach (laparoscopic, open, robotic), American
Society of Anesthesiologists (ASA) classification, operative
duration, intraoperative blood loss, fluid administration, and
intraoperative use of corticosteroids and anesthetic agents (e.g.,
propofol, sufentanil, lidocaine).

2.3.6 Postoperative variables
Nutritional support modality (enteral nutrition [EN],
parenteral nutrition [PN], or a combination of EN and PN).

2.4 Missing data handling

To ensure data completeness, cases with more than 20% missing
values in key variables were excluded. For the remaining cases, any
record with missing data was removed, resulting in a final dataset of
393 patients for analysis. This approach ensured that all included
cases had complete data, thereby avoiding any potential impact of
missing values on the results.

2.5 Data preprocessing

Categorical variables, such as Surgical Approach, ASA
classification, and type of nutritional support, were one-hot encoded;
multi-label features, including intraoperative anesthetic use, were
binarized; continuous variables were standardized using z-scores.

2.6 Feature selection and model
development

2.6.1 Statistical analysis

Given the large sample size in this study (n = 393) and based on
the central limit theorem (CLT), continuous variables were assumed
to be approximately normally distributed. Continuous variables are
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presented as mean + standard deviation and compared using
independent-samples z-tests. Categorical variables are presented as
counts and percentages, and compared using %> or Fisher’s exact
tests, as appropriate. Relationships between continuous variables
were assessed using Pearson correlation analysis.

2.6.2 Data splitting

The dataset was randomly divided into a train set (75%) and a
test set (25%) using stratified sampling to preserve the distribution
of the outcome variable. The train set was used for feature selection,
model train, and hyperparameter tuning, while the test set was
reserved for the final model evaluation.

2.6.3 Feature selection

Feature selection was first performed using LASSO logistic
regression with L1 regularization (C = 0.1), retaining only
variables with non-zero coefficients. These selected variables were
then subjected to stepwise multivariate logistic regression, removing
variables with P > 0.05 to determine the significant predictors. The
coefficients of the variables selected by LASSO are presented in
Supplementary Figure S1, providing a visual representation of each
feature’s contribution to the model.

2.6.4 Machine learning models
Using the final feature set, nine machine learning models
were developed:
Logistic Regression (LR)
LASSO Logistic Regression (LR with LASSO)
k-Nearest Neighbors (KNN)
Linear Support Vector Machine (SVM linear)
the SVM-radial model
Decision Tree
Random Forest
Extreme Gradient Boosting (XGBoost)
Light Gradient Boosting Machine (LightGBM)

2.6.5 Hyperparameter tuning

Hyperparameter optimization was performed using the Optuna
framework, combining Bayesian optimization with 5-fold cross-
validation. AUC was used as the primary performance metric to
select the optimal hyperparameter set.

2.7 Model evaluation and interpretability
analysis

Model performance was evaluated using AUC, accuracy,
precision, recall, and F1 score. Receiver operating characteristic
(ROC) curves and calibration plots were generated to assess model
discrimination and calibration. Calibration performance was
further quantified using the calibration slope, and Brier score.
SHAP analysis was performed to quantify the contribution of
each predictor to the model output, thereby enhancing model
interpretability and clinical applicability.
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All data processing and model development were conducted
using Python version 3.11. All statistical tests were two-sided, and a
P value < 0.05 was considered statistically significant.

3 Results
3.1 Baseline characteristics

A total of 393 non-diabetic patients who underwent radical
gastrectomy for gastric cancer were included in the study. Of these,
294 were allocated to the train set and 99 to the test set. The overall
incidence of POH was 42.7% (168/393). As shown in Table 1, there
were no statistically significant differences in demographic or
baseline clinical characteristics between the train and test sets (all
P > 0.05), indicating that the two cohorts were comparable.

3.2 Feature selection and model
construction

From the initial 38 candidate variables, seven potential
predictors were identified through a combination of LASSO
logistic regression and multivariable analysis: operation duration,
preoperative fasting blood glucose, nutritional risk score, Sex,
thrombosis risk score, ALP, and Surgical Approach 2
(robotic surgery).

To quantify the independent association of these variables with
POH, a multivariable logistic regression analysis was performed. The
results showed that operation duration (OR: 1.011, 95% CI: 1.006-
1.016, P < 0.001), preoperative fasting blood glucose (OR: 1.328, 95%
CI: 1.011-1.745, P = 0.042), nutritional risk score (OR: 1.373, 95% CI:
1.070-1.762, P = 0.013), Sex (OR: 2.518, 95% CI: 1.399-4.532, P =
0.002), thrombosis risk score (OR: 1.289, 95% CI: 1.048-1.585, P =
0.016), ALP (OR: 1.010, 95% CI: 1.001-1.019, P = 0.036), and Surgical
Approach 2(Robotic surgery) (OR: 0.166, 95% CI: 0.039-0.709, P =
0.015) were independently associated with the occurrence of POH.

3.3 Nomogram construction and
evaluation

To facilitate clinical application of our logistic regression model,
we developed a nomogram (Figure 2). This nomogram is not a new
model, but a visual tool that translates complex regression coefficients
into an intuitive scoring system. Each predictor is assigned points
proportional to its regression coefficient, reflecting its relative impact
on the model output. Clinicians sum the points to obtain a total score,
which is then mapped to the predicted risk probability,
corresponding exactly to the model’s output. This mapping ensures
that the nomogram preserves the quantitative relationships between
the regression coefficients and the machine learning model
predictions, allowing accurate individualized risk assessment.

The model showed robust performance: AUC = 0.734 (train set)
and 0.728 (test set), Brier score = 0.192, and calibration slope = 1.22,
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TABLE 1 summarizes the baseline characteristics of the patients.

10.3389/fendo.2025.1687745

Feature Train set (n = 294) Test set (n = 98) P value
Age, years 65.3 +11.0 64.7 £ 11.5 0.661
BMI, kg/m* 23.0+33 231 +3.1 0.717
White blood cell count (WBC), x10°/L 6.0 £3.0 59+22 0.704
Red blood cell count (RBC), x10**/L 4.0+ 0.7 4.0 + 0.6 0.854
Preoperative hemoglobin, g/L 115.8 + 26.0 118.2 +20.8 0.412
Platelet count (PLT), x10°/L 216.7 + 87.1 212.5 +82.7 0.673
Neutrophil count (NEU), x10°/L 39+26 36 %20 0.341
Lymphocyte count (LYM), x10°/L 1.4 £0.6 1.5£0.5 0.422
AST, U/L 25.0 £ 322 220 £ 122 0.364
ALT, U/L 27.1+67.8 20.6 +17.1 0.352
Total protein, g/L 82.1 + 350.4 62.6 + 6.5 0.583
Preoperative albumin, g/L 384+ 4.4 382 +4.1 0.668
ALP, U/L 852 + 388 85.5 + 30.2 0.942
GGT, U/L 372+ 1183 34.6 £ 41.2 0.835
Total bilirubin, pmol/L 10.2 + 10.2 9.6 +42 0.539
Direct bilirubin, pmol/L 2.7 +6.2 22+10 0.400
Indirect bilirubin, umol/L 7.5+52 74+ 3.6 0.838
Preoperative FBG, mmol/L 5.0+ 1.0 51%15 0.317
CEA, ng/mL 7.4 + 382 11.5 + 51.9 0.411
Operation duration, minutes 1889 + 62.3 1889 + 61.1 0.992
Intraoperative blood loss, mL 149.8 + 163.4 131.7 + 127.2 0.318
Intraoperative infusion volume, mL 1942.2 + 699.9 1987.6 + 682.2 0.576

‘ Sex, n (%) ’ 0.847
0 = Male 208 (71) 71 (72)
1 = Female 86 (29) 27 (28)

‘ Alcohol history, n (%) ‘ 1.000
0 =No 247 (84) 82 (84)
1= Yes 47 (16) 16 (16)

‘ Smoking history, n (%) ‘ 0.940
0 =No 240 (82) 81 (83)
1= Yes 54 (18) 17 (17)

‘ Family history of diabetes, n (%) ‘ 0.478
0 = No 287 (98) 94 (96)
1= Yes 7(2) 4(4)

‘ Hypertension, n (%) ‘ 1.000
0 =No 188 (64) 62 (63)
1= Yes 106 (36) 36 (37)

(Continued)
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TABLE 1 Continued

Feature Train set (n = 294) Test set (n = 98) P value
Coronary artery disease, n (%) ‘ 0.905
0=No 276 (94) 91 (93)

1= Yes 18 (6) 7.(7)

History of cerebrovascular disease, n (%) ‘ ‘ 0.661
0 = No 270 (92) 92 (94)

1= Yes 24 (8) 6 (6)

Anemia, n (%) ‘ ‘ 0.201
0 =No 184 (63) 69 (70)

1= Yes 110 (37) 29 (30)

Hypoproteinemia, n (%) ‘ ‘ 0.524
0=No 233 (79) 74 (76)

1= Yes 61 (21) 24 (24)

Surgical Approach, n (%) ‘ ‘ 0.707
0 = Laparoscopy 169 (57) 55 (56)

1 = Open surgery 111 (38) 40 (41)

2 = Robotic surgery 14 (5) 3(3)

ASA classification, n (%) ‘ ‘ 0.852
0 = Class I 1(0) 0 (0)

1 = Class I 161 (55) 56 (57)

2 = Class 111 131 (45) 42 (43)

3 = Class IV 1 (0) 0(0)

Intraoperative corticosteroid use, n (%) ‘ ‘ 0.505
0 =No 33 (11) 8(8)

1= Yes 261 (89) 90 (92)

Anesthetic drugs, n (%) ‘ ‘ 0.803
0 = Propofol 14 (5) 7(7)

0 + 1 = Propofol + Sufentanil 3(1) 0(0)

0 + 142 = Propofol + Sufentanil + Lidocaine 11 (4) 3(3)

0 + 2 = Propofol + Lidocaine 263 (89) 87 (89)

1 = Sufentanil 1 (0) 0 (0)

2 = Lidocaine 2(1) 1(1)

Nutritional support, n (%) 1.000
0=PN 289 (98) 97 (99)

2 = EN+PN 5(2) 1(1)

:\:\lu;gzlggg;’r:]sl((yscreenlng 2002 0.840
Score 0 4(1) 0(0)

Score 1 158 (54) 57 (58)

(Continued)
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TABLE 1 Continued

Feature

Train set (n = 294)

Test set (n = 98)

10.3389/fendo.2025.1687745

P value

Nutritional risk screening 2002 (NRS2002),

.84
n (%) 0.840
Score 2 85 (29) 25 (26)
Score 3 20 (7) 7(7)
Score 4 16 (5) 6 (6)
Score 5 11 (4) 3(3)
Thromboembolism risk score (Padua
o 0.802
score), n (%)
Score 0 3(1) 0 (0)
Score 1 4 (1) 1(1)
Score 2 7(2) 2(2)
Score 3 48 (16) 14 (14)
Score 4 80 (27) 35 (36)
Score 5 87 (30) 28 (29)
Score 6 51 (17) 15 (15)
Score 7 14 (5) 3(3)
Study design: Single-center, retrospective cohort study
Patients undergoing radical gastrectomy
for gastric cancer (Mar 2021-Sep 2024)
Initial cohort: n = 502
Excluded:
* Age < 18 years
« Non-malignant gastric disease
« Prior diabetes mellitus
* Missing >20% key variables
Final study population
(n=393)
Training set (75%) Testing set (25%)
(n=294) (n=98)
FIGURE 1

Flowchart of patient enrollment and inclusion/exclusion criteria.
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FIGURE 2
Nomogram for predicting the risk of POH risk in non-diabetic gastric cancer patients.

indicating good agreement between predicted and observed
outcomes. Decision curve analysis confirmed that the nomogram
provides significant clinical net benefit across a wide range of
threshold probabilities (Supplementary Figure S2).

3.4 Machine learning model performance
analysis

A comprehensive comparison of the performance across nine
machine learning models is presented in Table 2. Overall, ensemble
algorithms based on trees demonstrated outstanding performance

on the train dataset, with Random Forest, XGBoost, and Decision
Tree models all achieving perfect AUC (1.0), while LightGBM
attained an impressive AUC of 0.987. However, such near-perfect
train set performance often implies overfitting risks—models may
have learned specific noise within the data rather than generalizable
patterns. Figure 3 displays the ROC curves for all nine ML models
on both the training and test datasets, providing a visual
comparison of their discriminative performance and potential
overfitting patterns.

To address this, we further strengthened internal validation,
focusing on model stability and generalization capability. Taking
the SVM-radial basis function model as an example, we conducted

TABLE 2 Performance comparison of different machine learning models in train and test datasets.

Train Train Train Test Test Test Brier Calibration P—value.
Test F1 (SVM-radial
AUC accuracy recall AUC accuracy recall score slope
vs Model)
SVM-radial 0.802 0.735 0.761 0.805 0.758 0.724 0.743 0.75 0.186 1.07 —
Logistic 0.734 0.667 0.686 0.695 0.728 0.714 0731 0.731 0.192 122 0593
Regression
Random Forest 1 1 1 1 0.727 0.684 0.705 0.712 0.212 1.945 0.668
SVM linear 0.736 0.697 0.719 0.74 0.716 0.694 0.717 0.731 0.215 1.848 0.433
LR with LASSO 0.721 0.653 0.662 0.649 0.715 0.673 0.673 0.635 0.218 1.699 0.429
KNN 0.825 0.738 0.754 0.766 0.709 0.643 0.646 0.615 0.223 1.784 0.516
XGBoost 1 1 1 1 0.644 0.643 0.673 0.692 0.273 1.947 0.071
LightGBM 0.987 0.942 0.945 0.948 0.627 0.582 0.617 0.635 0.26 2.089 0.024
Decision Tree 1 1 1 1 0.579 0.582 0.61 0.615 0.418 0.551 0.008
Frontiers in Endocrinology 08 frontiersin.org
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A Training Set ROC Curves

B Test Set ROC Curves

Sensitivity (TPR)

— LR (AUG = 0.733)

—— LR with LASSO (AUC = 0.724)
—— KN (AUC = 0.829)

—— SWN linear (AUC = 0.735)
—— SVM radial (AUC = 0.793)
—— Decision Tree (AUC = 1.000)
—— XGBoost (AUC = 1.000)

—— Random Forest (AUC = 1.000)
—— LightGBM (AUC = 0.990)

Sensitivity (TPR)

—— LR (AUC = 0.736)
—— LR with LASSO (AUC = 0.729)
—— KNN (AUC = 0.715)

—— SVM linear (AUC = 0.721)
—— SWN radial (AUC = 0.775)
—— Decision Tree (AUC = 0.539)
~—— XGBoost (AUC = 0.718)

—— Random Forest (AUC = 0.799)
~—— LightGBM (AUC = 0.666)

02

0.0

08 1.0

04 06
1-Specificity (FPR)

FIGURE 3
ROC curves for machine learning models on (A) train set and (B) test set.

10-fold cross-validation on the train set. Results revealed consistent
performance across folds, with an average AUC of 0.737 + 0.074,
average accuracy of 0.717 + 0.063, and average recall of 0.811 +
0.124. This stable and balanced performance indicates the SVM
model strikes a favorable equilibrium between fitting capability and
generalization ability, thereby alleviating concerns about overfitting.

However, the true test of the model lies in the independent test
set. test results revealed that the SVM-radial basis function model
demonstrated the strongest generalization ability, achieving the
highest AUC (0.758) and exhibiting robust discriminatory power.
Conversely, models that performed perfectly on the train set (such
as the decision tree, with a test AUC of 0.579) showed a significant
decline in performance on the test set, once again reflecting their
overfitting issues.

In clinical predictive applications, recall serves as a critical
metric for evaluating a model’s ability to identify all high-risk
patients. As shown in Table 2, the SVM-radial basis function
model also achieved the highest recall (0.75) on the test set,
particularly crucial in early-stage risk screening scenarios
emphasizing high sensitivity.

Finally, we employed the DeLong test to compare the AUC
differences between each model and the SVM-radial basis function
model (column of Table 2). Results indicate no statistically
significant difference between the SVM model and other high-
performing models (e.g., Logistic Regression, p=0.593). Considering
the SVM model’s highest AUC and recall on the test set alongside
its stable cross-validation performance, it was ultimately selected as
the optimal predictive model. This choice achieves the best
equilibrium between discriminative capability and sensitivity
towards high-risk patients.

3.5 Model explainability analysis

To conduct an in-depth analysis and validate the internal
decision-making mechanisms of the optimal SVM model,
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we employed the SHAP framework for interpretability analysis
(Figure 4).

The global feature importance plot (SHAP Summary Plot) on
the left indicates that Operation Duration exerts the most
significant influence on model predictions, followed sequentially
by Nutritional Risk Score, Sex, Thrombosis Risk Score, ALP, and
FBG. The dependency plot indicates that high-value samples
(yellowish color) correspond to positive SHAP values for these
features, suggesting that longer operation duration, higher
nutritional and thrombosis risk scores, and elevated ALP and
preoperative blood glucose levels significantly increase the
predicted risk of POH. Conversely, SHAP values for Surgical
Approach 2 cluster in the negative region, suggesting a potential
protective effect within the model.

The SHAP Dependence Plots on the right further reveal local
patterns and clinical threshold characteristics in the model’s
predictions. Results indicate that POH risk does not increase
linearly but undergoes abrupt changes at critical thresholds:
SHAP values rise significantly when operating time exceeds 180
minutes or nutritional/thrombotic risk scores reach >4 points.
Additionally, the model identified a risk threshold range for
preoperative fasting blood glucose: risk begins to increase when
FBG > 4.87 mmol/L and rises sharply beyond 8.12 mmol/L.

Overall, SHAP analysis validated the model’s predictive logic as
highly consistent with clinical understanding, while quantifying the
intensity and thresholds of key risk factors. This significantly
enhances the model’s interpretability and clinical utility.

3.6 SVM model decision curve and risk
stratification

To translate the SVM-radial model’s predictions into a clinically
actionable tool, we developed a risk stratification system based on
the model’s performance on the test set. ROC curves analysis
demonstrated the model’s favorable discriminatory capability,
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with an AUC of 0.758 (Figure 5A). The optimal statistical threshold
determined by Youden’s index was a predicted probability of 0.507.

Furthermore, decision curve analysis (DCA) was conducted to
assess clinical net benefit (Figure 5B). DCA results indicated
positive clinical net benefit within the threshold probability range
of 0.36 to 0.71.

Based on the aforementioned analysis, a three-tier risk
stratification was established: low risk (< 0.30), intermediate risk
(0.30-0.60), and high risk (= 0.60).

4 Discussion

In this study, we constructed and validated a machine learning
model for predicting POH based on real-world clinical data from
393 non-diabetic patients undergoing radical gastrectomy. Among
nine machine learning algorithms, the SVM-radial model
demonstrated the highest predictive performance. SHAP
interpretability analysis identified seven key predictors: operative
duration, nutritional risk score (NRS), Sex, Surgical Approach type
2, preoperative fasting blood glucose, thrombotic risk score,
and ALP.

POH was defined in this study as fasting blood glucose > 7.8
mmol/L within 24 hours postoperatively. This definition may
underestimate transient hyperglycemia induced by intraoperative
or postoperative stress responses, thereby introducing potential
misclassification bias. Fasting blood glucose was selected due to
its standardizable measurement, high clinical feasibility, and relative
independence from other perioperative confounders. Future studies
may consider incorporating continuous or point-of-care glucose
monitoring to more comprehensively reflect intraoperative and
immediate postoperative glycemic dynamics (22).

To our knowledge, this represents the first study applying
machine learning methods to predict POH risk in non-diabetic
gastric cancer patients. By integrating 38 perioperative features—
encompassing baseline characteristics, physiological indicators,
surgical variables, and early postoperative data—we constructed a
dynamic, multidimensional predictive framework capable of
capturing the complexity of POH pathogenesis, surpassing
traditional logistic regression models (23). Furthermore, we
compared nine machine learning algorithms and optimized
model parameters through five-fold cross-validation, ensuring
scientific rigor and model stability. Concurrently, we subjected
the optimal model to performance test via ten-fold cross-
validation (10-fold CV) to validate its robustness and
generalization capability. This aligns with recent literature
indicating machine learning methods outperform traditional
logistic regression in modelling perioperative complications such
as surgical infections, acute kidney injury, and sepsis (17-19). By
focusing on predicting POH risk in non-diabetic gastric cancer
patients, this study complements and extends existing machine
learning-based risk prediction frameworks.

On the test set, the SVM model achieved a high recall (0.75) while
maintaining solid AUC (0.758), F1 score (0.743), and accuracy
(0.724). In clinical practice, a high recall is particularly important,

Frontiers in Endocrinology

11

10.3389/fendo.2025.1687745

as it maximizes the identification of high-risk POH patients and
reduces the likelihood of missed diagnoses (24). The nonlinear
mapping capability of SVM-RBF enables it to capture complex
feature interactions more accurately, thereby improving the
discrimination of critical patients. By contrast, although the
random forest showed perfect performance on the training set
(AUC = 1.0, F1 = 1.0, recall=1.0), its performance on the test set
dropped noticeably (AUC = 0.727, F1 = 0.705, recall=0.712),
suggesting overfitting. While Miet et al. reported strong

performance of random forest in predicting sepsis-associated severe
acute kidney injury (sAKI), this method still exhibited overfitting in
our dataset (25), indicating that model performance can be
influenced by dataset-specific characteristics and clinical context,
and should be evaluated accordingly. Therefore, in this clinical
setting, recall is a more appropriate metric for model selection than
AUC or Fl, since the clinical consequences of missing high-risk
patients far outweigh those of misclassifying low-risk patients.
Selecting SVM as the optimal model based on test set recall is both
reasonable and ensures sensitive identification of high-risk patients
while maintaining overall predictive performance.

To translate SVM model predictive performance into a
clinically actionable tool, we propose a three-tier risk
management strategy based on predicted probabilities and
Decision Curve Analysis (DCA) results (26). Decision curve
analysis (DCA) showed that the clinically effective range of the
model was approximately 0.36-0.71; however, to facilitate clinical
memorization and ease of implementation, thereby improving
operational feasibility, and to better balance sensitivity and
specificity, thereby ensuring patient safety, we selected 0.30 and
0.60 as the risk stratification thresholds.

Low risk (<0.30): Within this probability range, the clinical net
benefit of model-guided interventions is limited; thus, conventional
management strategies represent a reasonable resource
allocation choice.

Moderate risk (0.30-0.60): This core range demonstrates
significant clinical net benefit over baseline strategies and
encompasses the optimal Youden index threshold (0.507). Extended
monitoring periods for closer observation are recommended.

High risk (=0.60): Patients within this range exhibit substantially
elevated event probability, necessitating enhanced clinical surveillance
and intensive postoperative glucose monitoring.

This model-based, clinically optimized risk stratification
method facilitates the allocation of limited healthcare resources
towards medium-to-high-risk patients. It constitutes a clinically
quantifiable and actionable risk management framework, whose
potential for improving resource allocation efficiency has been
validated in other clinical settings (27).

Among all predictors, duration of surgery represents a
significant independent risk factor for POH (28). Prolonged
surgical stress elevates catecholamine levels, intensifies
gluconeogenesis and glycogenolysis, and induces pro-
inflammatory cytokine release. These mechanisms collectively
exacerbate insulin resistance and glycemic dysregulation (29, 30).
Perioperative malnutrition constitutes an intervenable risk factor
associated with adverse surgical outcomes (31). The positive SHAP
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distribution of NRS scores indicates that malnourished patients are
more susceptible to stress-induced metabolic disorders, potentially
linked to impaired B-cell function and reduced peripheral glucose
utilization (32). Previous studies have also highlighted that
malnutrition increases the risk of postoperative complications and
is independently associated with poorer survival rates in cancer
patients (33). The findings of this study further support the
necessity of preoperative nutritional screening and intervention.

Sex differences also exerted a significant influence, consistent
with prior studies (34): male patients exhibited approximately
double the risk of POH compared to females. This may relate to
the protective role of estrogen in glucose metabolism (35), though
the underlying mechanisms warrant further investigation.

Preoperative fasting blood glucose serves as a strong predictor
of POH, reflecting underlying metabolic stress and insufficient 3
cell reserve prior to surgery, thereby elevating the risk of
postoperative metabolic imbalance (36, 37). Additionally,
thrombotic risk scores and ALP levels demonstrated significant
predictive value. Elevated thrombotic risk scores not only indicate a
hypercoagulable state but may also reflect systemic inflammation
and activation of the coagulation axis. This pro-inflammatory state
may prompt immune cells to release substantial inflammatory
mediators, such as tumor necrosis factor-o. (TNF-o). These
mediators could inhibit downstream signaling of insulin receptor
substrate-1 (IRS-1) by activating serine kinases including JNK and
IKK, leading to impaired glucose utilization in peripheral tissues—
insulin resistance. Concurrently, ALP is a recognized clinical
marker for hepatic or skeletal disorders. As the central organ for
glucose metabolism, impaired liver function may disrupt regulation
of gluconeogenesis and glycogenolysis, thereby destabilizing blood
glucose homeostasis. This suggests that thrombotic risk and ALP
levels may interact via inflammatory-metabolic pathways to
increase the risk of POH (38-40).

Notably, Surgical Approach 2 (robotic surgery) exhibited a
negative SHAP distribution in the model, suggesting it may
confer a protective effect. This finding may relate to the reduced
trauma and lighter intraoperative stress associated with robotic
surgery. Existing research indicates that robotic surgery results in
less intraoperative blood loss and lower postoperative levels of C-
reactive protein (CRP), a sensitive inflammatory marker linked to
cardiovascular disease. CRP also exhibits a negative correlation with
insulin sensitivity. It may therefore be inferred that robotic surgery,
by reducing postoperative inflammation, could be associated with
diminished insulin resistance, thereby facilitating the maintenance
and restoration of postoperative metabolic homeostasis. Future
studies could further compare the effects of different Surgical
Approaches on perioperative metabolic homeostasis, providing
guidance for optimizing surgical technique selection (41, 42).

Growing evidence indicates that POH in non-diabetic patients
is independently associated with increased postoperative
complication risk (43) and may adversely affect recovery by
promoting metabolic and inflammatory dysregulation (44, 45).
Nevertheless, this phenomenon is frequently overlooked in
clinical practice, with postoperative glucose monitoring in non-
diabetic patients remaining markedly inadequate (6). Early
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identification of POH risk facilitates the implementation of
preventive interventions, enhances metabolic stress tolerance, and
promotes postoperative recovery. Recognizing modifiable risk
factors—such as nutritional status and surgery-related parameters
—also provides a basis for risk prevention and control at the public
health level.

This study has several limitations. First, as a single-center
retrospective study with a limited sample size (n = 393) and
fasting glucose measured only at 24 hours postoperatively, the
generalizability of the findings may be limited. In addition, the
model is applicable only to non-diabetic gastric cancer patients and
lacks external validation; although internal stability was assessed
through train-test splitting and 10-fold cross-validation, this may
still be insufficient to ensure its applicability across different
hospitals, regions, and ethnic populations. Similar machine
learning studies predicting surgical complications also emphasize
the necessity of external validation to confirm model utility across
diverse populations (46).Therefore, future studies should perform
external validation in multicenter cohorts encompassing diverse
regions and ethnic groups to evaluate the model’s broader
generalizability and performance.

Moreover, the model has the potential to be implemented as an
online calculator or mobile application, enabling clinicians to assess
postoperative hyperglycemia risk in real time based on preoperative
patient characteristics. Integration with hospital information
systems or electronic medical records could facilitate automated
risk evaluation. Finally, the application of the model could inform
clinical workflows, such as determining the intensity of
postoperative glucose monitoring and the timing or dosing of
insulin intervention, thereby optimizing perioperative
management and improving patient outcomes.

5 Conclusion

This study successfully developed the first machine learning-
based prediction model for POH in non-diabetic gastric cancer
patients. The SVM-radial algorithm demonstrated superior
predictive performance and identified seven critical risk factors,
offering new insights into the pathogenesis of POH. The proposed
model may facilitate early risk stratification and individualized
management strategies, ultimately improving perioperative care
and long-term outcomes.
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