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Novel variants associated with
premature ovarian insufficiency
in Russian adolescents
Polina Tsabai*, Zaira Kumykova, Victoria Averkova,
Nadezhda Pavlova, Dmitry Maslennikov, Anna Bolshakova,
Zalina Batyrova, Tamara Kolpakova, Andrey Bystritskiy,
Natalia Karetnikova, Alexey Ekimov, Andrey Goltsov,
Maria Kuznetsova, Anna Turchinets, Irina Mukosey,
Taisiya Kochetkova, Igor Sadelov, Jekaterina Shubina,
Elena Uvarova, Svetlana Yureneva, Dmitry Trofimov
and Gennady Sukhikh

National Medical Research Center for Obstetrics, Gynecology and Perinatology named after
Academician V.I.Kulakov of Ministry of Health of Russian Federation, Moscow, Russia
Introduction:While variants in hundreds of genes have been linked to premature

ovarian insufficiency (POI), monogenic disorders account for fewer than half of

idiopathic POI cases in adolescents with 46,XX karyotype. This highlights the

need for the further genetic investigation across diverse populations.

Patients and methods: We recruited 63 Russian patients diagnosed with 46,XX

POI before age 18. All underwent FMR1 premutation testing and whole-exome

sequencing (WES). Copy number variation (CNV) analysis was conducted onWES

data. Segregation studies by Sanger sequencing were performed where samples

from the patients’ relatives were available.

Results: We identified variants in 15 genes in 38% of the cohort, including 13

causative genes (FMR1, DCAF17, FOXL2, STAG3, TP63, BNC1, CPEB1, NOBOX,

LMNA, FSHR, SPIDR, MCM8, EIF2B2) and 2 candidate genes (MYRF, LATS1). 3.2%

of patients carried an FMR1 premutation. WES detected causative single

nucleotide variants (SNVs) in 15 patients (17.5% of the cohort). CNV analysis

increased the diagnostic yield to 20.6%, identifying 15q25.2 microdeletions

(BNC1, CPEB1) in two patients and FSHR exon 2 deletion in one patient with

resistant ovary syndrome. Overall, the combination of molecular genetic

approaches established a diagnosis of monogenic POI (pathogenic or likely

pathogenic variants) in 23.8% of adolescents with normal female karyotype. 5

patients (7.9%) carried variants of unknown significance in FSHR, LMNA, NOBOX,

SPIDR, LATS1 genes, warranting further investigation.

Discussion: Our findings demonstrate that WES is an effective diagnostic tool for

adolescents with POI and should supplement standard karyotyping and FMR1

testing in routine clinical practice. We report several novel variants in POI-

associated genes and propose new gene-disease association.
KEYWORDS

premature ovarian insufficiency, ovarian dysgenesis, whole-exome sequencing (WES),
FMR1, differences of sex development (DSD), adolescent, genetics
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Introduction

Premature ovarian insufficiency (POI) is a condition defined as

the loss of ovarian function before the age of 40, affecting 1-3.7% of

women and representing a common cause of female infertility (1).

The actual definition of POI includes clinical entities named by

terms ovarian/gonadal agenesis/dysgenesis, primary ovarian

insufficiency, premature/primary ovarian failure, premature

menopause, hypergonadotropic amenorrhea (2). POI can develop

due to genetic abnormalities, autoimmune diseases, infections, or

medical interventions. The mechanisms of POI include abnormal

gonadal development, diminished number of primordial follicles at

birth, accelerated depletion or atresia of follicles, destruction of

ovarian tissue, and resistance to gonadotropins. Depending on the

extent and period of the pathological process in ovaries, it manifests

as primary or secondary amenorrhea (3).

In adolescents, chromosomal abnormalities (primarily Turner

syndrome) account for approximately 20% of POI cases (4, 5). Non-

Turner POI is rare in this age group, with an estimated prevalence

of 1 in 10,000 females under 18 (6, 7). To date, variants in hundreds

of genes involved in different cellular and organ processes

(gonadogenesis, meiosis, germ cells differentiation, folliculogenesis

and postnatal maintenance of ovaries, hormone biosynthesis,

mitochondrial function, DNA damage response and repair, etc.)

have been implicated in POI (4). Targeted or whole exome

sequencing (WES) enables precise diagnostics of POI, prevention

of comorbidities due to syndromic POI or genetic susceptibility,

and prediction of residual ovarian reserve (8–11). Genetic testing

has become an essential tool for identifying causative variants and

providing genetic counseling for affected individuals and their

families (2). Due to the advancements in diagnostics, the

proportion of idiopathic POI has decreased twofold (12).

Beyong its reproductive implications, POI has detrimental effect

on overall health, increasing the risk of metabolic, cardiovascular,

cognitive, and psychological issues (2). It is also significantly

associated with complex genetic disorders and congenital

malformations (5). Furthermore, syndromic forms of POI can be

inherited, potentially leading to reproductive or extragenital

disorders in offspring. Since fertility is retained to some extent in

POI-affected individuals, understanding the underlying genetic

features is particularly important. Ovarian dysfunction may be

the only symptom of multiorganic genetic disease (10).

Additionally, some forms of POI (e.g. caused by variants in

meiosis-related genes) are associated with negative prognosis for

euploid oocyte retrieval or increased risk of miscarriage, making

assisted reproductive technologies (ART) attempts with patient’s

oocytes ineffective (13, 14). Therefore, molecular diagnostics can

enhance genetic counselling and improve prognosis for ART in

these patients (15).

Despite the abovementioned progress on genetics of POI, 36%-

67% of cases remain unexplained after thorough evaluation and

require further investigation (2). Several studies including patients

of mixed ancestry were published and discovered novel genetic

variants related to POI via WES (9, 10, 16). This highlights the need

for further research on the genetics of POI in different national
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cohorts, especially as menstrual irregularities are common in

adolescence, and observational tactics often leads to delay in POI

diagnosis (17).

Here, we describe the cohort of Russian individuals diagnosed

with 46,XX POI before the age of 18 and present the results of

FMR1 premutation testing and whole exome sequencing (WES).
Patients and methods

Ethics review committee approval

The institutional review board of the National Medical Research

Centre for Obstetrics, Gynecology and Perinatology named after

Academician V.I. Kulakov approved this study. This study was

conducted according to the World Medical Association

International Code of Medical Ethics (Declaration of Helsinki).

All participants provided a written informed consent for the use of

their data for scientific purposes.
Patients

Between January 2021 and April of 2025, patients with onset of

POI before 18 years old and normal female karyotype 46,XX were

recruited in the study. POI was defined as primary or secondary

amenorrhea/spaniomenorrhea for more than 4 months accompanied

by follicle-stimulating hormone (FSH) levels ≥25 IU/l measured on at

least two separate occasions, more than four weeks apart (2). Patients

with known etiology of POI, such as systemic chemotherapy,

radiotherapy, autoimmune disorders or extensive ovarian surgery,

established chromosomal causes of POI, were excluded from the

study. The following clinical data were registered for each patient: age

at the time of diagnosis, type of menstrual disorder, results of

hormonal studies (FSH, E2, AMH), ovarian volume and antral

follicle count (AFC), anamnesis, extragenital symptoms, family

history with special concern of POI, early menopause, female and

male infertility, miscarriage, ethnic origin, and consanguinity.

Characteristics of the cohort (age at diagnosis, levels of hormones

and volumes of the right and left ovaries) are presented as median

and median absolute deviation (MAD).
Sampling and genetic testing

Samples of venous blood from the included patients were

collected in anticoagulant tubes with EDTA. DNA was isolated

using the PREP-MB MAX DNA Extraction Kit (DNA-Technology,

Moscow, Russia) according to the manufacturer’s protocol.
FMR1 premutation testing

The number of CGG-repeats in the FMR1 gene was determined

by PCR amplification using specific primers, one of which was
frontiersin.org
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labelled with the fluorescent dye FAM. The primers targeted the

promoter CGG-repeats-containing region of the gene. Following

PCR, fragment analysis was conducted with DNA samples using the

Nanophor 05 genetic analyzer (Syntol, Russia) to measure the

length of PCR products for each allele. The number of CGG

repeats in each allele was calculated based on the fragment length.
Whole exome sequencing and
chromosomal microarray analysis

WES was performed using a NovaSeq 6000 Illumina sequencer

(San Diego, CA), sequencing libraries were prepared using DNA

Prep (S) Tagmentation, IDT Illumina DNA/RNAUD Indexes (both

Illumina), and xGen Exome Research Panel version 2 enrichment

kit according to the manufacturer’s protocol. All samples were

sequenced with 70×–100× coverage depth, and 10× coverage width

was at least 0.95. The data were analyzed using in-house software,

which included sequence alignment to the reference GRCh38

(hg38) genome, variant calling (GATK v4.5.0.0), and quality

filtering. The Ensembl Variant Effect Predictor v113.3, a number

of variant significance prediction algorithms (SIFT, PolyPhen-2,

SpliceAI, CADD), along with OMIM, Human Gene Mutation

Database (HGMD), and ClinVar were used for the annotation of

variants. LOVD and other specialized databases (if present for a

particular gene) were used for variant interpretation, along with the

MASTERMIND genomic search engine. The genome aggregation

population database (gnomAD v4.1.0) and our internal database

were used to estimate the population frequencies of the identified

variants. CNVs were searched using an algorithm developed by the

laboratory, which is based on the application of ExomeDepth

v1.1.17. The evaluation of the pathogenicity of identified CNVs is

based on technical standards for interpretation and reporting of

constitutional copy number variants: a joint consensus

recommendation of the American College of Medical Genetics

and Genomics (ACMG) and the Clinical Genome Resource

(ClinGen) (18).

The clinical significance of identified variants was assessed

according to the ACMG criteria (19). To prioritize potentially

causative SNVs and CNVs, HPO terms (HP:0008209 Premature

ovarian insufficiency, HP:0000141 Amenorrhea, HP:0000786

Primary amenorrhea, HP:0000869 Secondary amenorrhea,

HP:0008232 Elevated circulating follicle stimulating hormone

level) were used; variants in genes from the OMIM phenotypic

series were also analyzed: PS311360, Premature ovarian failure;

PS233300, Ovarian dysgenesis. For an additional search for possible

causes of POI, a panel of genes from the FeRGI Database was used,

specifically filtered for the POI phenotype. In the presence of

additional phenotypic features (syndromic forms of POI),

additional HPO terms were applied. Pathogenic, likely pathogenic

variants and variants of uncertain significance (VUS) relevant to the

patient’s phenotype were reported. Variants in genes of uncertain

significance were considered VUS by default. The presence of

clinically significant DNA copy number variations (CNVs) was
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confirmed by chromosomal microarray analysis (CMA;

ThermoFisher CytoScan™ Optima Suite, Thermo Fisher

Scientific, Waltham, MA, USA).

Validation of the variants found by WES and segregation

studies in parents and siblings of the proband were performed by

Sanger sequencing when possible.
Results

Patients’ characteristics

The characteristics of patients recruited in this study are

summarized in Table 1 and Figure 1, the detailed information on

patients’ clinical, hormonal and anamnestic data is presented in the

Supplementary Table 1.

The cohort comprised 63 patients from 61 families. Median age

at diagnosis was 15 years old (MAD 1, range 11-18, Figure 1A). In

26 (41.3%) of patients POI manifested as primary amenorrhea

(PA), in 37 (58.7%) – as secondary amenorrhea (SA) or

spaniomenorrhea (SP) (Figure 1B). Median hormone

concentrations were 92 IU/l for FSH (MAD 19, Figure 1C), 19.81

pmol/l for E2 (MAD 7.79, Figure 1D), 0.01 ng/ml for AMH (MAD

0, Figure 1E). AMH levels fell within normal range in 3 patients

(P31, P49, P54). P31 and P54 also had normal AFC suggesting

resistant ovaries syndrome (ROS) as a cause of POI (20). In 17 cases,

ovarian tissue was visualized only on one side (27%). In 21 cases,

both ovaries were not visualized (33.3%). Median volume of the

right ovary was 1.35 ml (MAD 0.65, Figure 1F), median volume of

the left ovary was 1.2 ml (MAD 0.6, Figure 1G). 62/63 patients

(98%) were Caucasians.

In 17/61 (27.9%) families proband’s relatives also faced

reproductive issues. POI or early menopause were reported in

relatives in 12 families (19.7%, for pedigrees see Figure 2). In 5

families, sisters were diagnosed with POI (two pairs of sisters were

included in study – P6 and P7, P41 and P42). Consanguinity was

reported in two families (F6 and F22), where parents were

first cousins.
TABLE 1 Characteristics of the cohort of patients with idiopathic
adolescent-onset POI (n=63).

Characteristics Median MAD Range

Age at diagnosis, years 15 1 11-18

FSH, IU/l 92 19 24-200

E2, pmol/l 19.81 7.79 0.1-810

AMH, ng/ml 0.01 0 0.01-4.1

Right ovary volume, ml 1.35 0.65 0.14-11.1

Left ovary volume, ml 1.2 0.6 0.12-12.4
MAD, median absolute deviation; FSH, follicle-stimulating hormone; E2, estradiol; AMH,
antimullerian hormone.
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Molecular genetic testing

FMR1 alleles were normal in 60/63 (95.2%) patients. Two

patients (P52 and P57, 3.2%) carried FMR1 premutations with

expansion on one allele (84 and 81 CGG repeats, respectively). The

patient P14 had one allele with 45 CGG repeats belonging to the

grey zone (Supplementary Table 1).

All patients proceeded to the WES. In total, 18 single nucleotide

variants (SNV) in 12 different genes were detected in 20 patients

(31.7%), 14 of which were novel variants. Causative (likely)

pathogenic SNVs were found in 11/63 patients (17.5%,

Supplementary Tables 2, 3). 7 potentially causative variants

of unknown significance (VUS) were found in 6 patients (9.5%)

and corresponded to the suggested mode of inheritance. In 4
Frontiers in Endocrinology 04
patients (6.3%) with non-syndromic POI, WES detected only

single heterozygous variants in genes, associated with autosomal

recessive POI (STAG3, SPIDR,MCM8, (21) EIF2B2, Supplementary

Table 4). FMR1 premutation testing and CNV-analysis in these

cases (P9, P25, P39, P40) were negative.

Segregation studies were performed in 14 cases. Both parents

were tested in 10 cases, only mother was available for testing in 4

cases. In 7 cases, the origin of the variant could not be determined,

as parent(s) and siblings were unavailable for testing. Segregation

analysis confirmed that the variants were in trans for 5 genes

(DCAF17, NOBOX, SPIDR, STAG3). In two cases, these studies

prompted the reclassification of the variants’ pathogenicity. The

variant p.Ser350ProfsTer55 in the MYRF gene was not inherited

from parents of P63, thus, appeared de novo and was classified as
FIGURE 1

Characteristics of the cohort of patients with idiopathic adolescent-onset POI (n=63).
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pathogenic. In patient P28, we identified the heterozygous variants

in STAG3: VUS p.Arg360Cys and pathogenic p.Arg926Ter.

According to the ACMG guidelines, variant p.Arg360Cys initially

met the criteria PM2, PP2 and PP3, thus classified as a variant of

uncertain significance. Sanger sequencing of family members

confirmed p.Arg360Cys to be in trans with the previously

reported variant p.Arg926Ter (PM3). Taken together, these data

support reclassification of p.Arg360Cys as likely pathogenic. In
Frontiers in Endocrinology 05
family F40, the father was an asymptomatic carrier of the

pathogenic heterozygous variant p.Arg643Gln in TP63 gene. Both

his daughters (patients P41 and P42) and son inherited the variants.

Thus, the diagnostic value of WES after segregation analysis of

SNVs was 17.5% (11/63 patients).

Furthermore, CNV analysis of WES data revealed pathogenic

heterozygous microdeletions on chromosome 15q25.2,

encompassing the BNC1 and CPEB1 genes, in two patients (P8,
FIGURE 2

Pedigrees of familial POI cases. Proband is indicated by an arrow. Details of family history are presented in Supplementary Table 1. F, family; P,
patient; POI, premature ovarian insufficiency; AM, age at menarche; PD, pubertal delay; Inf., infertility; N, wild type allele.
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P10) with secondary amenorrhea. The deletions in P8 and P10 were

verified with CMA (Supplementary Table 2). These patients had

nonspecific phenotype (P8: mild eyelid ptosis, thin upper lip,

smooth philtrum, streak of grey hair, P10: limited extension of

elbows, hirsutism, astigmatism, tachycardia, speech delay, ADHD,

pityriasis versicolor, mega cisterna magna on brain MRI). These

findings increased the diagnostic performance of WES to 20.6% (13/

63 patients).

Therefore, combined with FMR1 testing results, WES

established the molecular diagnosis in 15/63 patients (23.8%).

Nevertheless, 39 patients (61.9%) had no candidate variants

detected by WES or FMR1 testing, including P46, who has sister

with the same manifestations (ovarian dysgenesis).

It is worth noting that 9/15 (60%) patients with genetic POI

suffered from autosomal recessive disorders. The consanguinity was

reported only for three of them (sisters P6 and P7, P23). Among

these 9 patients, there were 4 patients with STAG3- associated POI

from unrelated families. Interestingly, all of them carried the same

p.Arg926Ter variant in either homozygous or compound-

heterozygous state.

The patients P6, P7, P15 and P63 had syndromic forms of POI. In

these cases, clinical and molecular diagnosis was also based on specific

phenotype (Supplementary Tables 2, 3), and in P15 clinical diagnosis

of blepharophimosis-ptosis-inverse epicanthus syndrome precluded

the molecular diagnosis. According to the patient’s mother, the father

had a phenotypic appearance similar to that of P15, but he was not

available for examination. We assume that he may have transmitted

the pathogenic variant in FOXL2 to his daughter. Monozygotic twins

P6 and P7 from a consanguineous family with a novel homozygous

variant p.Glu391GlyfsTer4 in the DCAF17 gene manifested primary

amenorrhea, ovarian agenesis, hypoplastic uterus, secondary

hypothyroidism, short stature, global developmental delay, mild

intellectual disability, broad chest, wide-set nipples, genu valgum,

broad tip of the nose, high palate, widely spaced incisors, cone-

shaped fingers, consistent with diagnosis of Woodhouse-Sakati

syndrome. In patient P63, a novel heterozygous variant

p.Ser350ProfsTer55 in the MYRF gene was identified. P63 also had

a congenital heart defect (secundum atrial septal defect with an absent

superior rim, partial anomalous pulmonary venous return draining to

the right atrium, bicuspid aortic valve) and mild hypermetropia, both

of which are distinctive of MYRF-related disorders.

As shown in Supplementary Tables 2 and 3, 5 patients (7.9%)

carried VUSes in known human POI-causing genes (LMNA,

NOBOX, SPIDR, FSHR) or in genes, which disruption leads to

ovarian dysgenesis in mice (LATS1). A heterozygous VUS

p.Ala491Gly in the LMNA gene was identified in patient P17. The

origin of the variant could not be determined, as her father died at

age 52 from heart failure, and her mother was not a carrier. Further

segregation studies were not possible. The homozygous in-frame

deletion p.Cys310_Glu313del in the RAD51-binding domain of the

SPIDR gene was identified via WES in patient P25. Sanger

sequencing revealed that the patients’ elder fertile sister, younger

brother, and both parents were heterozygous carriers of the variant.
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Patient P23, from a consanguineous family, harbored a

homozygous missense variant p.Leu287Val in the NOBOX gene.

The family declined further segregation studies in the patients’ elder

fertile sisters. In patient P49, diagnosed with resistant ovaries

syndrome (ROS) and PA, we identified a compound heterozygous

SNV and CNV in the FSHR gene: a novel hemizygous variant

p.Phe66Cys and a heterozygous deletion involving exon 2 of the

gene. We could not define the precise boundaries of the intragenic

deletion. P49 also carried a novel likely pathogenic heterozygous

variant p.Pro2002Arg in the FBN1 gene, which likely accounts for

her ophthalmological features (OU mild myopia, OS peripheral

vitreochorioretinal dystrophy).

In patient P47, we identified two heterozygous missense

variants in LATS1 gene, which is not associated with any

monogenic disease , according to OMIM: c .1334C>G

(p.Pro445Arg) and c.234G>T (p.Leu78Phe), which were classified

as VUS. Sanger sequencing confirmed that variants are compound-

heterozygous and parents are heterozygous carriers. The family

history of patient P47 was unremarkable, she had no siblings. Her

extragenital features included inferior vermian hypoplasia,

hypermetropic astigmatism, and migraine.

Genetic POI was diagnosed more often in patients with PA (9/

26, 34.6%) than with SA/SP (6/37, 16.2%). Vice versa, patients with

genetic POI were more likely to manifest PA (9/15, 60%) in

comparison to patients with no molecular diagnosis (17/48,

35.4%). Among 15 patients with established genetic POI, three

had congenital anomalies (20%), 4 had dysmorphic features (26.7%)

and 2 had developmental delay (13.3%). Among patients without

established genetic cause of POI, one had congenital anomalies (2%,

P59 born prematurely from complicated pregnancy had Klippel-

Feil syndrome), 9 had non-specific dysmorphic features (18.7%),

such as ocular hypertelorism, short palpebral fissures, high

forehead, hemifacial hypoplasia, upslanting palpebral fissures,

long lashes, low-set columella, smooth philtrum, thin upper lip,

mandibular prognathism, short broad neck, connective tissue

disorders, etc. 4 had either intellectual disability (P36) or

neurological problems, e.g. migraine, diffuse muscular hypotonia,

syncope (10.4%, P19, P31, P36, P54).

In 12 cases with familial POI or early menopause, the rate of

genetic diagnosis (pathogenic or likely pathogenic variants) was

41.7%. This included 2 families with autosomal recessive POI (F6

with DCAF17 variants and F36 with STAG3 variants), one family

with autosomal dominant POI (F40, paternally inherited TP63

variant), and 2 families with FMR1 premutation (F50, F55). Still,

family history of POI or early menopause was a predictor of genetic

POI diagnosis only if the proband had an affected sister [4/5 cases

(80%)], but not when other relatives, e.g. mother, grandmother,

aunt, were affected (1/7 cases – P52 with FMR1 premutation has an

affected mother, 14.3%). Thus, in families with intergenerational

transmission, the prevalence of genetic POI was compatible to that

in sporadic cases (8/49, 16.3%). Thus, in most families with

intergenerational transmission of POI we did not find a

molecular explanation for disorder in affected relatives.
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Discussion

In our cohort of adolescents with 46,XX POI, whole-exome

sequencing yielded a diagnostic rate of 17.5%, consistent with other

WES studies (9, 22, 23). Combining WES with FMR1 testing, CNV

analysis, and segregation studies established a molecular diagnosis

in 15 of 63 adolescents (23.8%). Recent study by Cosette et al. using

array-CGH and next-generation sequencing resulted in very similar

rate of causative variants detection of 28.6%, although the average

age of diagnosis was more than in our study (27.7 years vs. 15 years)

(24). In our cohort 9 out of 63 cases (14.3%) were caused by variants

in genes associated with autosomal recessive POI. 3 of these cases

had consanguinity in family history and carried homozygous likely

pathogenic variants or VUS. For STAG3-related POI, which showed

high prevalence in our cohort, we did not find correlation with

consanguinity or specific ethnic groups.

Among genetic findings, we diagnosed 3 patients with SA with

fragile X-related POI (FXPOI). Early-onset secondary amenorrhea

is not typical for FXPOI, and median age of amenorrhea in

premutation carriers is around 38 years (25). It is estimated that

approximately 3% of FMR1 premutation carriers have irregular

menstrual cycles in adolescence and only 1% of them experience

final menstruation before the age of 18 (26). We performed WES in

these patients, but did not find alternative monogenic cause of POI.

The etiology of POI remains unknown for 48 of 63 patients

(76.2%) in whom no candidate variants were found or who carried

only VUS. The possibility of other undetected variants cannot be

excluded. Studies show that besides variants in single genes, many

POI patients have oligogenic or multigenic contribution to

phenotype (9, 27, 28). Other undetectable on WES causes may

include variants in mitochondrial DNA (29), epigenetic factors (30),

mosaic chromosomal aneuploidy in ovarian tissue (31). In this

study, we could not establish the clinical significance of variants in

FSHR, LMNA, NOBOX, SPIDR, LATS1 genes, mainly due to

unavailability of blood samples of proband’s relatives. Further

studies and animal modelling are required to determine the real

causative relationship between these variants and ovarian

dysfunction that is beyond the scope of this article.

Notably, in familial cases with intergenerational inheritance of

ovarian dysfunction, we identified no shared variants among

affected relatives aside from the FMR1 premutation. Rouen et al.

studied 36 familial cases of non-syndromic POI and found causative

variants in 50%, both with inter- and intragenerational

transmission (32). Thus, within families POI and early

menopause can be of different origin reflecting polyetiological

nature of ovarian dysfunction.

Below we discuss the genetic variants found in our patients.
Variants in established syndromic POI
genes

Monozygotic twins P6 and P7 from a consanguineous family

with a novel homozygous variant p.Glu391GlyfsTer4 in the

DCAF17 gene had a Turner syndrome-like phenotype and
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intellectual disability. The DCAF17 (Ddb1- and Cul4-associated

factor 17) protein acts as a substrate receptor for the CUL4-DDB1

E3 ubiquitin ligase complex. The loss of its function results in

Woodhouse-Sakati syndrome (WSS), a rare autosomal recessive

disorder presenting with hypogonadism in both sexes, lack of

secondary sex characteristics, partial alopecia, diabetes mellitus,

intellectual disability, deafness, electrocardiographic abnormalities,

and extrapyramidal disorders (33). Hypogonadism is a constant

feature of WSS: in females, there are streak or hypoplastic ovaries

with no oocytes on biopsy and hypergonadotropic hypogonadism

(34, 35), while males have azoospermia and hypogonadotropic

hypogonadism (36). In females, FSH can be elevated more or less

significantly (37), despite there are no documented cases of normal

ovarian function. All patients with WSS show ovarian dysgenesis

and hypoplastic mullerian derivatives (38). Murine models support

the role of this gene in ovariogenesis. Dcaf17-knockout mice are

subfertile and exhibit follicular depletion at all stages (39). At

presentation, our patients did not exhibit diabetes mellitus,

alopecia, hearing loss, or extrapyramidal disorders. Still, different

symptoms of WSS may manifest at older age: for example,

neurological disorders appear in adolescence, and diabetes

mellitus usually develops up to the 25 years of age (40). Thus, the

results of WES suggest a risk of developing the abovementioned

issues in future, so we recommended patients to assess their

endocrine (screening for glucose intolerance and thyroid

dysfunction), cardiological and neurological status (assessment for

dystonia, dysarthria, dysphagia and hearing loss) annually.

Patient P15 presented with the facial phenotype of

blepharophimosis-ptosis-inverse epicanthus syndrome and

primary amenorrhea resulting from ovarian dysgenesis. WES

identified the previously reported in POI heterozygous variant

p.Lys193SerfsTer78 in the FOXL2 (forkhead box L2) gene (41).

A heterozygous VUS p.Ala491Gly in the LMNA gene was

identified in patient P17. The LMNA gene is associated with a

wide spectrum of disorders, including premature aging syndromes.

In 2003, Chen et al. described three female patients with atypical

Werner syndrome and hypogonadism who carried heterozygous

variants Ala57Pro and Arg133Leu in LMNA (42). In 2008,

McPherson et al. proposed an association between a heterozygous

missense variant p.Leu59Arg in LMNA and Malouf syndrome

(dilated cardiomyopathy with hypergonadotropic hypogonadism),

based on two unrelated patients with dysgenetic ovaries and onset

of cardiomyopathy at ages 12 and 17 (43). In contrast, P17 showed

no signs of premature aging, lipodystrophy, or cardiomyopathy.

Her growth and intelligence were normal. The same variant

has been reported in ClinVar in a patient with primary dilated

cardiomyopathy (RCV004013487.2). Considering this, p.Ala491Gly

variant was classified as VUS, and regular echocardiography

monitoring was recommended for the patient. The causative

relationship between LMNA variants and POI remains

questionable, as most patients with a clinical diagnosis of Malouf

syndrome have no identifiable variants in the coding regions of

LMNA (44–46). The pathogenetic mechanism of ovarian dysgenesis

in carriers of heterozygous LMNA variants remains unknown.

Although mice lacking lamin A showed no abnormalities in
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ovarian morphology, spermatogenesis is severely disrupted at the

pachytene stage (47). Dominant-negative variants in LMNA may

cause Malouf syndrome through a mechanism different from the

one studied by Alsheimer et al.
Variants in established non-syndromic POI
genes

The pathogenic effect of heterozygous POI-causing variants in

the TP63 gene is sex-limited. Paternal inheritance of the variant

p.Arg643Gln found in patients P41 and P42 has been previously

reported (48, 49), while p.Arg594Ter variant detected in P45 was

described as de novo (50). Variants in TP63 are associated with

broad spectrum of conditions related to ectodermal dysplasia.

Recently, a case series on TP63-associated POI showed that same

variant may cause POI or isolated cleft palate in relatives, but also

that non-syndromic POI may be caused by variant associated with

ADULT syndrome (51), which makes the resulting phenotype

prediction uncertain. Knowledge of the molecular diagnosis

allows family F40 to make informed reproductive choices and to

consider options such as PGT-M or prenatal diagnostics for

family planning.

In contrast to the TP63 gene, variants in genes involved in

meiosis often cause infertility in both females and males (52). The

STAG3 gene encodes for the stromal antigen 3 protein, which is

involved in the formation of the cohesion complex. Inactivation of

Stag3 in mice results in the absence of axial elements and

synaptonemal complex formation, leading to gonadal dysgenesis

in both sexes (53). In the family of patient P26, who carried

compound-heterozygous variants in the STAG3 gene, segregation

studies led to the identification of an affected brother with severe

oligoasthenoteratozoospermia (54). The p.Arg926Ter variant in the

STAG3 gene was the most common causative variant in non-

syndromic POI, found in 4 unrelated patients in our cohort,

proposing p.Arg926Ter as an enriched variant in our cohort.

Bergant et al. (55) have reported this variant in homozygous state

in patient with PA (55). For the non-Russian population, it is the

only case with this variant described to our current knowledge,

which may indicate a higher prevalence in our population.

However, the possibility of random fluctuation due to the limited

sample size cannot be excluded, especially given that monogenic

causes of POI are understudied. The variant frequency according to

gnomAD v.4.0 is 0.000065, and its frequency is yet to be

investigated in Russia to reveal whether or not it is a recurrent

variant or just reflects chance variation due to the limited sample

size. We also report a novel likely pathogenic missense variant,

p.Arg360Cys, located in the armadillo domain of the STAG3 gene,

found in compound-heterozygote with p.Arg926Ter variant in

patient P28. Several causative missense variants within armadillo

(56–58) or STAG (57) domains of the protein have been described

in publications on POI.

Similar to the variants in the STAG3 gene, biallelic variants in

the SPIDR gene cause both female and male infertility (59). The

SPIDR gene encodes for a scaffold protein involved in DNA repair
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which is an essential factor in meiotic homologous recombination

(60). The homozygous in-frame deletion p.Cys310_Glu313del in

the RAD51-binding domain of SPIDR was identified via WES in

patient P25. This case is of particular interest due to the rarity of

SPIDR-associated POI: only three infertile females with biallelic

SPIDR variants have been described up to date (61, 62). Further

studies (e.g. sister chromatide exchanges) are required to determine

the pathogenicity of this novel in-frame deletion.

In patients P8 and P10, CNV-analysis of WES data suggested a

deletion on chromosome 15q25.2, encompassing the BNC1 and

CPEB1 genes. Complete deletions of both genes have been reported

to cause non-syndromic POI. Hyon et al. described three women

with a microdeletion in the 15q25.2 region encompassing the BNC1

and CPEB1 genes; two of these patients exhibited primary

amenorrhea (63). Similarly, in a study by Bestetti et al.,

microdeletions of 15q25.2 including both genes were found in

two out of 67 women with POI (64). Chen et al. described a 14-

year-old girl with POI and a deletion of approximately 0.447 Mb in

the 15q25.2 region that, interestingly, did not include the CPEB1

gene, emphasizing the role of BNC1 haploinsufficiency in POI

development (65). The BNC1 (basonuclin 1) gene regulates

transcription in germ cells and affects follicle development and

survival. Zhang et al. reported a familial case of POI in which a

heterozygous frameshift variant in BNC1 was identified. A mouse

model carrying this mutation in Bnc1 demonstrated infertility,

elevated FSH levels, decreased ovarian size, and reduced follicle

count (66). Later, they showed that BNC1 deficiency triggers oocyte

ferroptosis leading to premature follicular activation and excessive

follicular atresia (67). The CPEB1 gene encodes cytoplasmic

polyadenylation element-binding protein 1, which regulates the

polyadenylation and translation of several mRNAs important for

oocyte reentry into the meiotic cell cycle. Takahashi et al.

demonstrated that Cpeb1 mRNA translation and protein levels

decrease with age, resulting in altered translation in oocytes and

aberrant progression through the meiotic cell cycle. They observed

that Cpeb1 haploinsufficiency caused similar changes in proteostasis

in young oocytes, while increasing CPEB1 protein levels in aged

oocytes rescued the translation phenotype (68). Thus,

haploinsufficiency of both BNC1 and CPEB1 should be considered

a potential mechanism for POI development; however, BNC1 may

contribute more significantly. Although the deletions found in

patients P8 and P10 included other haploinsufficiency-sensitive

genes, like RPS17, HOMER2 , the patients exhibited no

extragenital symptoms similar to those described in syndromic

patients with 15q25.2 microdeletions (69).

In patient P49, diagnosed with resistant ovaries syndrome

(ROS), we identified a compound heterozygous SNV and CNV in

the FSHR gene: a novel hemizygous variant p.Phe66Cys and a

heterozygous deletion involving exon 2 of the gene. Biallelic

missense and truncating variants in FSHR causing POI with ROS

have been reported, as well as several exon deletions in this gene

(70–72). ROS usually leads to primary amenorrhea, while rare cases

of secondary amenorrhea were reported (73). Interestingly, in two

other patients (P31 and P54) with secondary amenorrhea clinically

diagnosed with ROS, we did not identify any FSHR variants. Also, in
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P49 we found likely pathogenic heterozygous variant p.Pro2002Arg

in the FBN1 gene located outside exons 65–66 of FBN1, which

encode asprosin, a C-terminal cleavage product of fibrillin 1 that

may influence ovarian function (74), thus, it is not considered to

contribute to the development of POI in this patient.

Patient P23, from a consanguineous family, harbored a

homozygous missense variant p.Leu287Val located in the

homeobox domain of the NOBOX gene. NOBOX (newborn ovary

homeobox) is a gene involved in the earliest stages of

folliculogenesis. Most reported variants are located within the

homeodomain, which is responsible for nuclear localization of

NOBOX protein (75). Biallelic variants in this gene have been

reported as the most frequent cause of monogenic POI (76), though

they were uncommon in our cohort (1/63, 1.6%).
Potential novel gene-phenotype
associations in POI

A novel heterozygous variant p.Ser350ProfsTer55 in the MYRF

gene was identified in patient P63. MYRF (myelin regulatory factor)

is a transcription factor essential for oligodendrocyte development

and coelomic epithelium-derived cells proliferation and migration.

Heterozygous variants in MYRF are associated with cardiac-

urogenital syndrome, nanophthalmos and mild encephalopathy

with reversible myelin vacuolization. Cardiac-urogenital syndrome

is a 46,XY and 46,XX disorder of sex development caused via

dysregulation of gonadogenesis and, possibly, upregulation of

CITED2 gene (77, 78). Some of the several reported 46,XX patients

had ovarian and/or müllerian agenesis or hypoplasia and often were

severely affected by multiple congenital anomalies leading to

premature death (79, 80). Recently, Ding and Tian (81) reported a

patient with hypergonadotropic hypogonadism, primary amenorrhea

and mullerian aplasia. Exome sequencing revealed a de novo variant

c.1468C>G (p.Arg490Gly) in MYRF gene. Importantly, this patient

had no significant extragenital anomalies, except possible renal

duplication. Also, we described patient who had ovarian hypoplasia

with preserved ovarian function and extragenital issues, and carried a

heterozygous de novo p.Ala440ThrfsTer2 variant in MYRF (82).

These two cases illustrate pleiotropic effect of MYRF variants and

high variability of associated phenotype. These cases show that

precise molecular diagnosis is important in syndromic ovarian

dysfunction as long as fertility management of these patients must

include preimplantation genetic testing of embryos for monogenic

condition (PGT-M) to prevent severe malformations in children.

In patient P47, we identified two heterozygous missense variants

in LATS1, c.1334C>G (p.Pro445Arg) and c.234G>T (p.Leu78Phe),

which were classified as VUS. LATS1 (large tumor suppressor kinase

1) encodes for a regulator of the Hippo pathway (83) and has

not previously been associated with POI in humans, while the

deleterious consequences of LATS1 deficiency on ovariogenesis

were demonstrated in murine models. The ablation of LATS1

in mice causes increased germ cell apoptosis with subsequent

primordial follicle loss, development of ovarian cysts and stromal

tumors, and lack of mammary glands (84). The Lats1−/−
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mice exhibit a high perinatal mortality (85). In mice with

deletions of both Lats1 and Lats2, ovarian enlargement was

observed along with transdifferentiation of granulosa cells into

seminiferous tubule-like structures and bone tissue (86). Germline

variants in the LATS1 gene are not associated with any monogenic

disease in humans (OMIM: 603473), but Kim et al. proposed that

heterozygous missense variant p.Arg96Trp may be a cause of familial

schwannomatosis (87). The data in the current manuscript is not

sufficient for suggesting LATS1 as a potential POI-associated gene as

functional studies could not be performed, nevertheless we consider

this observation to be of an interest of future studies.
Conclusions

Our study demonstrates that whole exome sequencing

combined with CNV-analysis is an effective diagnostic tool in the

adolescent population with POI and should be as a supplement for

standard karyotyping and FMR1 testing. Understanding the

molecular mechanisms underlying POI is essential for improving

clinical management and genetic counselling, including the

evaluation of reproductive risks and extragenital symptoms.
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