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Introduction: Diabetes mellitus is a major independent determinant of
cardiovascular morbidity. Therefore, we evaluated whether a molecular RNA
panel comprising FZD5 and GTF2I could facilitate the early detection and
discrimination of ischemic heart disease in individuals with type 2
diabetes mellitus.

Methods: We implemented a two-stage bioinformatics workflow to identify and
validate two mRNA candidates associated with T2DM and IHD. Subsequently, we
delineated non-coding RNAs linked to these transcripts and the pathways
potentially implicated in T2DM complicated by IHD. Finally, we conducted a
pilot case—control study and quantified the panel members by RT-gPCR in 56
patients with T2DM, 25 with IHD, 26 with combined T2DM+IHD, and 60
matched controls.

Results: Differential expression analysis showed upregulation of hsa-miR-1976,
FZD5, and GTF2I, accompanied by downregulation of LINC02210 in the T2DM
+IHD group versus controls. The RNA panel achieved high discriminatory
performance (AUC = 0.94) between T2DM+IHD and controls, highlighting its
potential as a discriminatory tool.

Discussion: this study identified clinically relevant non-coding RNA-based
angiogenesis panel (FZD5, GTF2l mRNAs, hsa-miR-1976 and LINC02210
INncRNA) as a biomarker signature associated with type 2 diabetes mellitus
complicated by ischemic heart disease.
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1 Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder
characterized by sustained hyperglycemia resulting from inadequate
insulin secretion and/or impaired insulin sensitivity. Its global burden
has risen markedly, establishing DM as a major public health concern
(1). Without effective control, DM progressively affects multiple organ
systems, with prominent involvement the peripheral nerves,
vasculature, and cardiovascular system (2). Within the Middle East
and North Africa region, the International Diabetes Federation reports
that Egypt carries a substantial diabetes burden: approximately 13.2
million adults are currently affected, with projections reaching 24.7
million by 2050. Egypt is also ranks among the top countries
worldwide in both adult prevalence and the absolute number of
affected individuals aged 20-79 years (3).

Diabetes mellitus is classified according to underlying the
etiological mechanisms that culminate in hyperglycemia. Type 1
diabetes results from immune-mediated destruction of pancreatic
B-cells and, although commonly manifesting in childhood or
adolescence, may occur at any age; lifelong insulin replacement is
required. Type 2 diabetes, the predominant form, arises from
insulin resistance with and/or impaired secretion and is strongly
associated with obesity; its occurrence in younger age groups has
increased in parallel with the global rise in obesity rates. Gestational
diabetes mellitus (GDM) is diagnosed during pregnancy and
typically resolves after delivery; nevertheless, it confers a
substantial long-term risk of developing type 2 diabetes for both
the mother and offspring (4).

Prediabetes represents an intermediate state of impaired glucose
regulation preceding overt type 2 diabetes, in which glucose values
exceed physiological norms but remain below discriminatory
thresholds (5).This stage is typically characterized by early B-cell
dysfunction and insulin resistance, and accumulating evidence
indicates that subclinical complications including neuropathy,
nephropathy, retinopathy, and macrovascular alterations may
emerge during this stage (6).

In clinical endocrinology, the primary goals are to achieve and
maintain optimal glycemic control and to prevent the onset and
progression of diabetes-related complications. Accordingly,
elucidating the molecular basis of type 2 diabetes is essential for
precise target identification and for the rational development and
evaluation of mechanism-based precision therapies (7).

Diabetes mellitus is an independent determinant of
cardiovascular risk across a broad spectrum of conditions,
including cerebrovascular disease, coronary artery disease, and
peripheral arterial disease and this burden justifies integrating
structured cardiovascular risk stratification within routine
diabetes care (8). Patients with diabetes exhibit a markedly
increased susceptibility to both macrovascular and microvascular
pathologies compared with non-diabetic individuals. In this
context, precision medicine has emerged as a transformative
paradigm, that enables the tailoring of therapeutic strategies to
individual patient profiles with the goal of reducing the incidence
and severity of major diabetic complications such as cardiovascular
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dysfunction, retinopathy, nephropathy, neuropathy, and premature
mortality (9).

While lifestyle modification remains foundational,
pharmacotherapy is pivotal for controlling hyperglycemia,
supporting hepatic function, and mitigating cardiovascular
risk (10).

Ischemia results from compromised oxygen supply, diminished
nutrient delivery, and impaired clearance of metabolic byproducts.
Notably, ischemic manifestations-particularly ischemic heart
disease, may precede the formal diagnosis of diabetes mellitus
(11).

noninvasive biomarkers that enable earlier recognition and

These observations underscore the need for candidate

refined risk stratification. In routine care, biomarkers support
screening, diagnosis, and longitudinal monitoring, and inform the
selection of targeted molecular therapies as well as the evaluation of
therapeutic response (12).

Insulin resistance is a core lesion in T2DM and denotes
attenuated cellular responsiveness to insulin. At the molecular level,
defects at canonical signaling nodes—including insulin receptor
substrate (IRS) proteins and the PI3K/Akt cascade—are key
contributors. Persistent, low-grade inflammation driven by
cytokines such as IL-6 and TNF-o. disrupts insulin signaling, while
mitochondrial dysfunction reduces ATP production and heightens
oxidative stress, thereby aggravating resistance. Endoplasmic
reticulum stress further impairs insulin action by perturbing
protein folding and activating stress-response programs (13). In
parallel, epigenetic processes such as DNA methylation and histone
modifications reprogram gene-expression profiles that govern insulin
sensitivity and [3-cell function. Together, these mechanisms illustrate
the multifactorial basis of T2DM, integrating genetic susceptibility
with environmental and lifestyle factors. Delineating these pathways
supports the development of precision-oriented preventive and
therapeutic strategies (14).

Disruption of epigenetic regulation is increasingly recognized as
a key driver of insulin resistance and the pathogenesis of T2DM.
Aberrant epigenetic modifications, often induced by environmental
exposures such as dietary patterns and lifestyle behaviors, can
remodel chromatin architecture, thereby influencing the
accessibility of the transcriptional machinery to target gene loci.
These changes may perturb the expression of genes essential for
maintaining metabolic homeostasis and insulin sensitivity (15).

MicroRNAs are small, single-stranded non-coding RNAs
expressed broadly across tissues. Beyond their canonical role in
post-transcriptional repression, some miRNAs can, in defined
contexts, enhance gene expression, underscoring their versatile
contributions to epigenetic regulation (16). Stable, circulating
miRNAs detectable in biofluids have therefore emerged as
noninvasive indicators of disease; serum miRNA signatures can
mirror tissue-specific pathobiology (17). Recent investigations have
demonstrated the utility of miRNA-based assays for the early
detection of ischemic heart disease (IHD), highlighting their
translational potential in cardiovascular discrimination (18).

Long non-coding RNAs (IncRNAs) are transcripts >200
nucleotides that lack protein-coding capacity. Through interactions
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with DNA, RNA, and proteins, IncRNAs regulate gene expression at
multiple levels spanning epigenetic remodeling, transcriptional
control, post-transcriptional processing, and translation (19). At the
level of transcription, IncRNAs participate in chromatin
reorganization and histone modification, thereby influencing the
coordinated activation or repression of defined gene programs. An
expanding body of evidence identifies IncRNAs as important
epigenetic regulators in the pathogenesis of diabetes and its
vascular and metabolic complications. Their contributions to
glucose homeostasis and to trajectories of disease progression
underscore their promise as discriminatory biomarkers and as
candidate therapeutic targets in the management of diabetes (20).

In this study, we applied bioinformatics analyses to delineate
the elevated expression of FZD5, hsa-miR-1976 and CRHRI-IT1
associated with type 2 diabetes mellitus complicated by ischemic
heart disease, and evaluated whether their serum abundances could
serve as noninvasive biomarker panel for early detection.

2 Results
2.1 Bioinformatics results

Differentially expressed genes (DEGs). After standard preprocessing
and normalization of the microarray datasets, we identified DEGs in
both GSE30122 and GSE19339 using predefined thresholds. In
GSE30122, a total of 4, 567 DEGs were detected when comparing of
diabetic kidney samples with healthy control kidney samples, including
2, 404 upregulated and 2, 163 downregulated genes (Supplementary
Figure S1A). In GSE19339, comparing thrombus leukocytes from acute
coronary syndrome (ACS) samples (n = 4) with peripheral blood
4) yielded 5, 985 DEGs,
comprising 2, 309 significantly upregulated and 3, 676 downregulated
genes (Supplementary Figure S1B). When DEGs from GSE30122 and
GSE19339 were intersected in a Venn diagram, 1, 683 common genes

leukocytes from healthy controls (n

were identified (Supplementary Figure S1C).

TABLE 1 Angiogenesis related genes.

10.3389/fendo.2025.1687145

A total of 864 enriched Gene Ontology biological process (GO-BP)
terms and 139 Reactome pathways were identified. Functional
annotations of the common DEGs were enriched mainly in
angiogenesis, hypoxia, platelet degranulation, and cell adhesion. The
top eight terms for both GO-BP enrichment are presented in
Supplementary Figure S2, according to the order of p value. In
addition, three angiogenesis-related GO-BP terms with high protein
percentages were among the most significant results. Consequently, the
GO-BP analysis was utilized to retrieve the gene sets related to
angiogenesis to investigate its role in progression of both
diseases (Table 1).

Following the retrieval of angiogenesis-related gene sets, a PPI
network was constructed using the STRING tool (Supplementary
Figure S3A). The network comprised 87 nodes and 1, 198 edges and
showed highly significant enrichment (PPI enrichment p < 1.0 x 10°°).
We then characterized network topology using the centrality indices
betweenness, closeness, and degree for the angiogenesis-related genes.
Nodes with degree > 5 were designated as hub genes.

FZD5 and GTF2I were selected for targeted co-regulatory
network construction and were validated by Comparative
Toxicogenomics Database(CTD) (http://ctdbase.org/) and other
databases to be involved in angiogenesis and to be implicated in
both acute coronary syndrome and diabetic nephropathy
progression (Supplementary Figures S4-S5). has-miR-1976 was
found to interact with the selected genes, FZD5 and GTF2I
(Supplementary Figures S6) and was strongly linked to acute
coronary syndrome and diabetic nephropathy progression
(Supplementary Figure S7). LncBase predicted version 3 (DIANA
Tools - miRNA-IncRNA interactions (uth.gr) was used to predict
interactions between LINC02210 (IncRNAs) and the chosen
candidate genes (FZD5, GTF2I), and Clustal Omega multiple-
sequence alignment was applied to verify the interaction between
hsa-miR-1976 and LINC02210 (https://www.ebi.ac.uk/jdispatcher/
msa/clustalo) see in (Supplementary Figure S8). further verification
of the IncRNA annotation was performed using Gene card
(GeneCards - Human Genes | Gene Database | Gene Search).

Biological Percentage
P-value . Gene set
process of proteins
CD160, MMP14, VEGFA, NRP1, NRP2, FN1, SRPX2, THY1, SAT1, ANXA2, MMP2, COL4A2, FZD5, HMOXI,
, A ESM1, CXCL8, CCL2, GLUL, FLT1, TYMP, EFNA1, PTPRB, COL8A2, EPHB2, TEK, HEY1, RORA, KDR,
Angiogenesis 1.37E-09 3.3%
COL15A1, MCAM, HIF1A, EPHB4, JAG1, CAV1, TGFBR3, CALD1, CASPS, TGFBI, CYP1B1, NUSI, ROBO4,
HIF3A, ARHGAP22, PLXDC1, HOXB13, MYDGF, EPAS], NAA15, NRXN3, ANGPTL2
Positi
(;Slt,“'e ] L3505 Lo PRKCB, HSPB6, CD40, FGE2, ITGB1, ITGBS, CYBB, ADM, PAK4, CX3CR1, RUNX1, SPHK1, HIPK2, HGF, RLN2,
regutation 0 o s C3, BTG1, C3AR1, HMGA2,
anglogenesls
Negative
: PGKI, GTF2I, ROCK1, MECP2, KRIT1, TNMD, PML, GPR4, THBS2, CTNNBI1, STABI, PTN, TGFB2, SPARC,
regulation of 0.000876 1.17%
) A HLA-G
angiogenesis
Regulation of
egulation o 0.0184 0.45% EMP2, NF1, MAPK7, HMOXI1, EFNA1
anglogenesls
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2.2 Analysis of biochemical and clinical
parameters

The cohort comprised 167 participants allocated to four groups:
60 healthy controls; 25 individuals with THD; 56 patients meeting
ADA criteria for T2DM without cardiovascular disease; and 26
patients meeting ADA criteria for T2DM with cardiovascular
disease. Age and sex did not differ significantly across groups (p >
0.05). By contrast, the groups differed significantly in smoking
status and family history of T2DM (p < 0.001); in fasting and 2-h
postprandial glucose (p < 0.001); in HbAlc and fasting insulin (p <
0.001); in HOMA-IR, HOMA-B, and BMI (p < 0.001); in systolic/
diastolic blood pressure, ALT, AST, CK-MB, and troponin (p <
0.001); in the lipid profile—total cholesterol, LDL-C, HDL-C,
triglycerides (p < 0.001); and in the urine albumin to creatinine
ratio (p < 0.001), as detailed in Table 2.

2.3 Evaluation of circulating mRNA,
miRNAs, LncRNA in IHD, T2DM without
complications, T2DM complicated with
IHD patients compared to healthy subjects

We assessed differential expression of the selected RNA panel across
study groups using fold-change analysis. Relative to controls, expression
of panel members other than LINC02210 including FZD5, GTF2I, and
hsa-miR-1976 increased stepwise from controls to T2DM (without
complications) and IHD, with the highest levels in T2DM+IHD (p <
0.001). By contrast, LINC02210 showed a progressive decrease from
controls — T2DM (without complications) — T2DM+IHD, reaching
its lowest abundance in ITHD (p < 0.001). Consistent with these
trajectories, FZD5, GTF2I, and hsa-miR-1976 were significantly
upregulated in IHD, T2DM without complications, and T2DM+IHD
versus healthy controls, whereas the overall reduction in LINC02210
across groups did not reach statistical significance (P > 0.05), as
summarized in Table 3.

2.4 Assessment of plasma biomarkers in
obese and diabetic patients relative to
healthy controls

Blood-derived biomarkers provide practical tools for monitoring,
diagnosis, and disease staging in T2DM+IHD. In this work, we profiled
a panel of biomarkers previously implicated in T2DM+IHD
progression. Plasma FZD5 and GTF2I markers linked to
cardiovascular pathology were significantly elevated in THD and
T2DM+IHD compared with healthy controls (Figure 1A). Moreover,
the T2DM+IHD group showed further elevations in both markers
when relative to controls controls, IHD, and T2DM without
complications (Figure 1A). Discriminatory performance for separating
T2DM from THD was greater for FZD5 mRNA than for GTF2I mRNA
(Figure 1A). LINC02210 levels may reflect adipose-tissue dysfunction
relevant to the progression of T2DM+IHD and IHD; in compared with
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healthy subjects, LINC02210 was significantly reduced in both patient
groups (Figure 1B). Conversely, plasma hsa-miR-1976 concentrations
were significantly higher in T2DM+IHD, IHD, and T2DM without
complications than in healthy controls (Figure 1B).

2.5 Discriminatory performance of RNAs
panel among the study groups assessed by
ROC curve analysis

We evaluated the discriminatory performance of the dysregulated
RNA panel using receiver operating characteristic (ROC) analyses
across multiple contrasts: diseased vs controls, IHD vs T2DM, IHD
vs T2DM+IHD, and T2DM vs T2DM+IHD. For each individual RNA,
we derived optimal cutoff values and computed sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV), and
overall accuracy. Comprehensive performance metrics are provided in
Table 4 and Figures 2A-H.

2.5.1 Diseased groups versus controls

Against healthy participants, discriminatory performance yielded
AUG:s of 0.870 (FZD5 mRNA), 0.940 (GTF2I mRNA), 0.970 (hsa-miR-
1976), and 0.819 (LINC02210). The corresponding optimal cutoff values
were 1.732, 0.960, 1.774, and 9.10013 for FZD5, GTF2I, hsa-miR-1976,
and LINC02210, respectively. Estimated sensitivities were 90.7%, 91.6%,
97.2%, and 82.2%, with specificities of 66.7%, 81.7%, 88.3%, and 61.7%.
Collectively, these metrics indicate that the RNA panel can separate
patient groups from controls (Table 4, Figures 2A, B).

2.5.2 IHD group versus T2DM

In the IHD vs T2DM comparison, FZD5 mRNA (AUC 0.966) and
LINC02210 (AUC 0.978) achieved clear discrimination. The
corresponding optimal cutoff values were 4.2156 and 0.2753, yielding
sensitivities of 96.0% and 100% and specificities of 76.8% and 96.4%,
respectively. By contrast, GTF2I mRNA and hsa-miR-1976 did not
discriminate between IHD from T2DM, reflecting lower AUCs and
suboptimal operating characteristics (Table 4, Figures 2C, D).

2.5.3 IHD versus T2DM+IHD

The results represent the candidate RNAs panel that did not
effectively discriminate THD cases from T2DM+IHD (Table 4,
Figures 2E, F).

2.5.4 T2DM versus T2DM+IHD

We next appraised the performance of the mRNA/miRNA/IncRNA
panel for distinguishing T2DM from T2DM+IHD using ROC analysis.
The optimal cutoff values were 5.8718 (FZD5 mRNA), 5.290 (GTF2I
mRNA), 51.4426 (hsa-miR-1976), and 0.8189 (LINC02210). The
corresponding AUCs were 0.986, 0.702, 0.694, and 0.973, respectively.
Estimated sensitivities reached 96.2%, 69.2%, 73.1%, and 100%, with
specificities of 89.3%, 51.8%, 66.1%, and 85.71%. These findings are
concordant with the bioinformatics signal and indicate that the
proposed RNA panel may aid discriminatory separation of T2DM
+IHD from T2DM (see Table 4, Figures 2G, H).
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TABLE 2 Clinical and laboratory characteristics among the groups of the study.

. Health T2DM without P-value (overall
Variable Y e T2DM + IHD L (
control complication significance)
N 60 25 56 26 -
Male 22 (36.6%) 9 (36%) 19 (33.9%) 12 (46.2%)
Gender 0.760
Female 38 (63.3%) 16 (64%) 37 (66.1%) 14 (53.8%)
Smoker 8 (13.3%) 16 (64%) 43 (76.8%) 14 (53.8%)
. Non-
Smoking 51 (85%) 7 (28%) 11 (19.6%) 9 (31%) 0.00%*
smoker
X-smoker 1(1.7%) 2 (8%) 2 (3.6%) 3 (15.2%)
Family Positive 0 (0%) 22 (88%) 48 (85.7%) 23 (88.5%) -
History Negative 60 (100%) 3 (12%) 8 (12.3%) 3 (11.5%)
Age 51.95 + 0.906 56.2 + 1.818 53.95 + 1.134 55.38 + 1.349 0.08
Duration Of Diabetes 0.000 13.4 +1.385 348 £ 0.63 13.77+ 0.808 0.00%*
) 196.48 +
Fasting Glucose (mg/dL) 90.13 + 1.82 15.98 149.68 + 11.16 41.62 + 8.16 0.00%*
Post Prandial Gl 297.92 +
ost Prandial Glucose (mg/ )15 4 5075 79 21671 + 11.92 32519 +21.73 0.00+
dL) 23.68
Glycated haemoglobin
3.83 % 0.159 9.6 £ 0.616 537 £0.22 9.7 £ 0.64 0.00%*
HbAlc (%)
Insulin (IU Per ml) 525+ 032 15 + 0.54 3.677 + 0.49 16.42 + 0.616 0.00%*
HOMA_IR 0.856 + 0.078 531+ 0.54 5.048 + 0.46 6.68 + 0.57 0.00%*
HOMA-B 200.3 + 2.47 53.08 + 1.73 97.48 + 5.63 51.76 + 1.53 0.00%*
Systolic Blood pressure 117.75 + 1.038 133.6 £ 2.17 137.32 £ 2.24 138.08 + 2.88 0.00**
Diastolic Blood pressure 76.58 + 0.667 88.6+ 1.9 90.8 + 1.71 90 + 1.75 0.00%*
BMI (kg/m2) 31.16 £ 0.64 34.06 + 1.34 35.29 + 0.66 3534 £ 1.17 0.00%*
29432 +
Total Cholesterol (mg/dL) 100.4 + 3.18 1460 289.88 + 5.54 327.58 + 11.93 0.00%*
199.24 +
LDLc (mg/dL) 73.97 +2.28 -5 189.04 + 4.52 220.04 * 12.19 0.00**
HDLc (mg/dL) 67.62 + 1.16 31.04 + 1.25 39.95 + 1.62 3262 + 131 0.00*
310.36 +
TGs (mg/dL) 102.32 + 1.63 124 23830 + 9.08 307.15 + 8.85 0.00**
Alb_Creat Ratio 13.4 +0.423 24.72 + 0.89 2355 + 0.64 26.46 + 0.78 0.00*
ALT (IU/L) 41.87 + 1.92 4132 +1.85 51.88 +2.27 44.08 +2.34 0.00**
66.32 *
AST (IU/L) 38.97 + 1.72 1ot 4923 +2.5 51.8 +2.28 0.00**
CKMB 7.02 £ 0.64 4742 + 4.58 40.04 + 4.23 40.17 % 5.00 0.00%*
Troponin 0.609 * 0.104 31.18 £ 4.9 14.73 £ 3.49 50.54 + 8.31 0.00**

Values represent means + SEM. ** p < 0.01: is highly significant, * p < 0.05: is significant, p > 0.05: is not significant.
The results were analyzed by crosstabulation, Pearson chi-square and ANOVA.
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TABLE 3 Descriptives and one-way ANOVA of RNA panel expression among the study groups.

P-value (one-way ANOVA)

Groups .
T2DM without
Healthy control IHD comblication T2DM +IHD Between-group
Gene P Overall significance S
significance
0.00%* 40,00
FZD5 1+ 0.60 1.08 21.20 + 12,51 3.15 + 225 27.61 + 20.82 0.00* 0,819 ©0.083
€0.00%* £0.00%*
*0.044* 40914
GTF2I 0.707+ 2.29 7.72 + 8.72 598 +2.73 22.53 + 26.57 0.00* % 0.056 €0.00
€0.00 £0.00+
20.015* 40.072
miR-1976 0.953 + 0.959 565.01 + 1,446.2 105.19 + 176.54 679.81 + 1,378.2 0.00%* ® 0.890 €0.953
€0.00** £0.012
20.197 410
LINC02210 399.93 + 1,405.43 0.0434 + 0.0603 1427 + 21.87 0.101 + 0.208 0.04* 0,071 °1.0
€0.187 1.0

-The relative expression of the selected RNAs axis were evaluated in our study subjects and the differences in fold changes were analyzed by one-way ANOVA test, post Hoc test and Kruskal

Wallis test of RNA panel expression among the study groups.

-Results presented as Values represent means + SD, Mean, St. Deviation, Mean ranks, interquartile ranges (IQR). Levels of FZD5 mRNA, GTF2I mRNA, miR-1976, and LINC02210 are depicted

in table 3 and figure 1, A&B.

-2 Control vs. IHD, ® Control vs. T2DM without Complication, ¢ Control vs. T2DM +IHD, 4 THD vs. T2DM without Complication, ¢ IHD vs. T2DM +IHD, fT2DM without Complication vs.

T2DM +IHD. ** p < 0.01; * p < 0.05.

2.6 Correlation between biomarker
positivity rate and clinicopathological
factors in disease groups

Among positive values of FZD5 mRNA, GTF2] mRNA, has-
miR-1976 miRNA, LINC02210 LncRNA and various
clinicopathological factors across different disease groups, our
analysis revealed that Hemoglobin Alc (HbAlc, %), Total
Cholesterol (mg/dL), triglycerides(mg/dL), CK-MB and Troponin
have a significant positive correlation with RNA panel among all
diseased groups. On the other hand, sex, ALT(IU/L), BMI (kg/m?),
and Age showed no significant correlation with RNA panel among
diseased groups (Table 5).

2.7 Correlation analysis and linear
regression analysis

We examined associations within the RNA panel across study
groups using Spearman’s rank correlation. Positive correlations were
observed between FZD5 and GTF2I (r = 0.462; p < 0.001), between
FZD5 and hsa-miR-1976 (r = 0.632; p < 0.001), and between GTF2I
and hsa-miR-1976 (r = 0.545; p < 0.001). In contrast, LINC02210
correlated negatively with FZD5 (r = —0.651; p < 0.001), GTF2I (r =
-0.369; p < 0.001), and hsa-miR-1976 (r = —0.456; p < 0.001). Overall,
these data indicate significant interrelationships within the RNA
network across the analyzed cohorts (Table 6).

In the T2DM+IHD subgroup, pairwise associations within the
RNA panel were examined using Spearman’s rank correlation.
Positive but non-significant correlations were observed for FZD5-
hsa-miR-1976 (r = 0.266; p < 0.190), FZD5-LINC02210 (r = 0.265;
p <0.191), GTF2I-LINC02210 (r = 0.225; p < 0.270), and hsa-miR-
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1976-LINC02210 (r = 0.287; p < 0.155). By contrast, GTF2I showed
inverse correlations with FZD5 (r = —0.061; p < 0.769) and with hsa-
miR-1976 (r = -0.137; p < 0.505) (Table 7). In the T2DM+IHD
subgroup, biomarker-clinical correlations appeared attenuated,
likely reflecting multifactorial pathophysiology. However,
multivariate models and discriminatory performance remained
robust, underscoring their complementary value.

A linear regression analysis was used to evaluate the
relationships between RNAs levels across all study groups. FZD5
mRNA (p = 0.001), GTF2I mRNA (p < 0.001), LINC02210 (p =
0.049), CK-MB (p < 0.001) and Troponin (p < 0.001) were
significant predictor, whereas has-miR-1976 (p = 0.091) was not
significant in the combined analysis (Table 8).

GTF2I showed a lower mean Ct in T2DM+IHD (23.5 vs 27.0 in
controls), suggesting upregulated expression with intra-assay
reproducibility (SD <0.27). hsa-miR-1976 showed markedly lower
Ct in T2DM+IHD (21.8 vs 29.2 in controls), indicating strong
differential expression with slightly higher inter-assay variability
(SD =0.60-0.65), potentially reflecting miRNA stability constraints.
Across all targets, technical reproducibility was high with intra-
assay CV% <1.4% and inter-assay CV% <1.5% (Table 9). has-miR-
1976 exhibited the largest fold-change between groups (ACt = 7.4),
aligning with its proposed role in metabolic regulation
(Supplementary Table S1).

These findings suggest a potential translational value of the
proposed RNA panel in clinical practice. When integrated with
existing diagnostic markers such as troponin and HbAlc, this panel
could enhance early detection and risk stratification of ischemic
heart disease in diabetic patients. The combined use of molecular
and conventional biomarkers may improve diagnostic sensitivity
and specificity, allowing for better patient monitoring and
personalized therapeutic strategies.
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FIGURE 1
Relative expression of circulatory RNAs panel among the study groups.

mechanisms of both T2DM and ischemic heart disease are closely

3 Discussion

linked through inflammatory processes and oxidative stress, which

Type 2 diabetes mellitus (T2DM) is now regarded not only asa  are exacerbated by mitochondrial dysfunction and cellular

metabolic disorder but also as an independent driver of
cardiovascular risk, most notably ischemic heart disease (IHD), in
which inadequate myocardial perfusion culminates in tissue injury.
Furthermore, mounting evidence indicates that the underlying

apoptotic pathways, as highlighted in the literature on cell-fate
regulation (21).

Whether regional adiposity is linked to cardiovascular disease
(CVD) risk and mortality in individuals with type 2 diabetes

TABLE 4 Discriminatory performance of RNAs panel among the study groups assessed by ROC curve analysis.

T2DM vs. T2DM+IHD

)
95% Cl Optimal
Biomarker P-value Lower  Upper cutl—off Sensitivity Specificity PPV NPV  Accuracy
bound  bound Vatue
FZD5
MRNA 0986  0.009 0.000 0.969 1.004 > 5.8718 96.2% 89.3% 74.19%  94.12% 86.59%
GTF2l mRNA | 0702 0.081 0.013 0543 0.861 > 5.290 69.2% 51.8% 40%  78.38% 57.32%
hsa-miR-1976
) 0.694  0.070 0.006 0.556 0.832 > 51.4426 73.1% 66.1% 50%  84.09% 68.29%
miRNA
LINC02210 0973 0.014 0.000 0.944 1.002 <0.8189 100% 85.71% 76.47%  100% 90.24%

p < 0.01: is highly significant, p < 0.05: is significant, p > 0.05: is not significant.
AUCG, area under the curve; SE, stander error of mean, PPV, positive predictive value and NPV: negative predictive value.
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Discriminatory Performance, (ROC Curve Analysis).

(T2DM) remains largely unclear, despite their characteristic shifts
in fat distribution and elevated CVD risk (22).

These links likely reflect a multifactorial interaction between
genetic variation and epigenetic regulation that shapes RNA-
mediated regulation of gene expression. Growing evidence
indicates that disturbances within RNA regulatory networks are
central to the pathogenesis of T2DM and its complications. By
clarifying how genetic variations and epigenetic modifications affect
gene expression, we can better elucidate the molecular mechanisms
that drive T2DM and its downstream cardiovascular risks. Our
objective was to determine the discriminatory performance of a
molecular RNA panel comprising FZD5 and GTF2I for the early
identification of ischemic heart disease in individuals with type 2
diabetes mellitus.

Multiple risk loci linked to insulin resistance and lipid
metabolism have been reported, and these variants not only
increase susceptibility to type 2 diabetes but also heighten
vulnerability to cardiovascular outcomes. For example, variants
that impair endothelial-cell function can lead to impaired vascular
responses, as evidenced by the common pathology of diabetic
panvascular disease (DPD), in which macrovascular and
microvascular complications often emerge concurrently in
individuals with diabetes, suggesting a shared or overlapping
pathogenic timeline that may accelerate systemic deterioration
(23). In addition, underlying genetic predisposition can amplify
endoplasmic-reticulum (ER) stress signaling implicated in T2DM
pathobiology, thereby aggravating cellular dysfunction and
promoting progression toward ischemic cardiovascular events (24).

We first constructed a regulatory network spanning mRNA/
miRNA/IncRNA interactions relevant to crosstalk in T2DM with
IHD using computational analyses. We then quantified serum levels
of network components in cases and controls to appraise their
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capacity for early risk stratification and discriminatory assessment
(CVD). A substantial subset of the mapped genes was associated
with ITHD and T2DM. Prior work has shown increased methylation
at the FZD5 promoter in T2DM patients and IHD, consistent with
reports implicating FZD5 in diabetic vasculopathy (25).
Concordantly, our data revealed elevated FZD5 mRNA in patients
with T2DM+IHD.

Independent reports indicate that increased methylation of
GTF2I is associated with a higher subsequent risk of myocardial
infarction and coronary heart disease (26). This aligns with our
findings, which showed an elevated GTF2I mRNA in the T2DM
+IHD group, suggesting its involvement in the development of IHD
among patient with T2DM patients.MicroRNAs have emerged as
informative biomarkers for diabetes and its sequelae. Their reliable
detection in circulating biofluids has driven extensive investigation
into disease-specific expression profiles and molecular stability. In
particular, miR-92a, miR-503, and miR-126 modulate angiogenic
pathways, processes that are essential for myocardial repair after
ischemic injury (11).

These observations accord with our findings, which showed
upregulation of hsa-miR-1976 and support its role as a putative
epigenetic activator of the FZD5/GTF2I axis. This interpretation is
consistent with recent reports that certain miRNAs can engage
promoter regions and enhance transcription via RNA-activation
(RNAs). To our knowledge, this is the first description linking hsa-
miR-1976 to type 2 diabetes complicated by ischemic heart disease.

Multiple reports highlight the central regulatory functions of
IncRNAs across the initiation and progression of T2DM with
coexisting IHD (20). Crosstalk among these transcripts appears to
coordinate gene programs relevant to IHD pathogenesis and
positions IncRNAs as candidate biomarkers for early detection
and risk prediction in patients with T2DM. Consistently, specific
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TABLE 5 Correlation between biomarkers positivity rate and clinicopathological factors in diseased groups.

Disease vs. Control

Optimal cut-off

10.3389/fendo.2025.1687145

Biomarker value Sensitivity =~ Specificity NPV Accuracy
FZD5
0870 0027 0.000 0817 0.924 51732 90.7% 66.7% 829% | 80% 82%
mRNA
GTE2lmRNA 0940 0020  0.000 0.901 0.979 > 0.96 91.6% 81.7% 90% | 86% 88.6%
hsa-miR-1976 0070 0013 0.000 0.945 0.996 > 1774 97.2% 88.3% 93.7% | 94.6% 94%
miRNA
LINC02210 0819 0033  0.000 0.755 0.883 <9.10013 82.2% 61.7% 207% | 661%  74.9%

IHD vs. T2DM

Optimal cut-off

Biomark Sensitivity ~ Specificit NPV | A
lomarker Vel ensitvity pecincity Ccuracy
FZD5
A 0966 0018  0.000 0.932 1001 > 42156 96% 76.8%  64.86%  97.73% | 82.72%
GTE2ImRNA 0539 | 0077  0.612 0.388 0.689 <6.1850 64% 429% | 3333% | 7273% | 49.38%
hsa-miR-1976
sa-mi 0529 0074 0695 0.384 0.673 < 9755 72% 51.8% 40% | 80.56% | 58.02%
miRNA
LINC02210 0978 | 0016  0.000 0.947 1.009 <02753 100% 96.4% | 92.59% | 100% | 97.53%

IHD vs. T2DM+IHD

Optimal cut-off

value Sensitivity =~ Specificity

Biomarker

NPV

Accuracy

FZD5
mRNA 0.580 = 0.081 0.325 0.421 0.739 > 19.7510 65.4% 56% 60.71% = 60.87% 60.78%
GTF2I mRNA 0.666 = 0.080 0.038 0.509 0.823 > 8.40 65.4% 80% 77.27% | 68.97% 72.55%
hsa-miR-1976
s n“u 0.640 = 0.083 0.092 0.477 0.803 > 429228 73.1% 76% 76% 73.08% 74.51%
miRNA
LINC02210 0.537 | 0.083 0.655 0.375 0.699 < 0.025 53.8% 60% 44.44% | 41.67% 43.14%

IHD vs. T2DM
FZD5 mRNA GTF2I mRNA has-miR-1976 LINC02210
Variable T2DM T2DM T2DM T2DM
24 (375 38 47 15 41 21 2 .
Mle %) (36.9%) (40.5%) | (29.4%) (366%) | (38.2%) (42.3%) 40 (34.8%)
Gender 0.937 0.171 0.843 0.351
40 (625 | 65 (63.1 69 36 71 34 30 .
Female %) %) (59.5%)  (70.6%) (63.4%)  (61.8%) (57.7%) 75 (652%)
39 42 45 36 46 35 29
0,
Smoker ' c0.9%)  (40.8%) (38.8%)  (70.6%) (414%)  (63.6%) (55.8%) 52 (45.2%)
) Non- 20 58 . 63 15 . 64 14 " 18 .
Smoking | oker  (313%) | (563%) U7 sazw) | 94%) 7 1w | (ssu) 0 (34.6%) 60 (52.2%) 0.032
x 5(78%) 3 (2.9%) 8(69%) 0 (0%) 2 (1.8%) 6 5 (9.6%) 3 (2.6%)
smoker (10.9%)
(Continued)
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TABLE 5 Continued

IHD vs. T2DM
FZD5 mRNA GTF2I mRNA has-miR-1976 LINC02210
VELEL] T2DM T2DM
Family Positive (855;%) (363.2%) . (445;%) (8:;%) . (4‘;7%) (834.2%) . (ség%) 48 (41.7%) .
History , . 0.00 . . 0.00 . , 0.00 : 0.00
Negative 14106 (63.1%) (552%)  (19.6%) (58%) | (16.4%) (13.5%) 67 (58:3%)

o S T e 3 %0 W e T sweew | o
R ) PP LTy PV T T PP TS [y
e R P T Pl ) py po
e e T P TR T PR 7 T [ T P VR
Insulin (IU Per ml) lg:i(l)Si 907690; 0.00"* 100524; 13:25; 0.00* 1%’.255; 13:;12 li 0.00* 13_’?121 10.67 + 0.578 0.00*
HOMA_IR 507316; zgii 000 > 003 11 505412; 0.00* 20728691 509487;5 0.00* 506442: 3.02 £ 0306 0.00°*
L T P Tl P2 ey
L PR P PP e o
e T TP L T TR P T T T T R
BMI (kg/m2) 33_‘;:9* 3;?; 61 0.027* 336.15ii 3‘;775; 0.092 330'?52; 3‘:_87? 0.049* 33_':;31 33.06 + 0.5 0.052
e P P o L T} [P [y
A P T P P - T Ry po
HDLc (mg/dL) 3?:(?;*; Sf:gfsi 0.00°* 521'.6714* 351'.53904; 0.00°* Si';;si 3?‘1‘2; 0.00* 3‘1‘%; 53.36 + 1.673 0.00°*
sy WL T2 o B TH e TS B e B | e
Alb/Creat Ratio 23.:?31 1;:2;‘; 0.00"* I%Zi z‘gzi 0.00* ISEZ; 23:2; : 0.00* 23’2331 18.83 + 0.644 0,00
ALT (IU/L) 43:22 : 4?‘2’291' 0.181 4‘?‘;391 g?g 0.334 4‘;’_‘:;1 4‘1*:‘7*281 0.554 4;‘:;2 f 4607 + 1.531 0.405
AST (IU/L) 5?_‘3‘:; 4?_’22; 0.00"* 463'.905; 522'?14; 0.298 ‘f;f f 53.2291 0.167 568_'?57,_: 43.82 + 1.552 0.00"*
CKMB 443"‘;70i 192"82701 0.00°* 215;; 474'57771' 0.00* 2()1'2831 474'1681' 0.00* 403"221; 2437 £ 271 0.00°*
Troponin 364'_351; 1214“ 0.00% 132‘?; 264'?; 0.01* stgi 354'_7941i 0.00% 364'?81; 9.28 +2.10 0.00%

(Continued)

Frontiers in Endocrinology 10 frontiersin.org


https://doi.org/10.3389/fendo.2025.1687145
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Sedkey et al. 10.3389/fendo.2025.1687145

TABLE 5 Continued

IHD vs. T2DM+IHD

FZD5 mRNA GTF2l mRNA has-miR-1976 LINC02210
Variable L I P A N il I LB vl I "HD
Male 5002)6'0 (421;%) (392%) (281.;%) (3:2%) (401-2%) (363)%) 52 G730

Gender 0.491 0.188 0.581 0.899
Female 89O/o()64 (571.f%) (607.;%) (712;%) (647.;%) (592.2%) (641.(6)%) 89 (62.7%)
Smoker (466.3%) (601.;%) (415.431%) (712.2%) (422%) (633.(8)%) (641.8%) 65 (45.8%)

Smoldng szzier (507.2%) (28.86%) 0.05% (526;%) (281;%) 0.00% (556;%) (231;%) 0.00% (20?)%) 73 (51.4%) 0.00%
sm);(er 566% 0.37% ) 8(63%) 0 (0%) 207%) | ZZ% | u 62% ) 4(2.8%)

Family Positive (436.3%) (392.:%) . (496;%) (763.(9)%) . (42?;%) (s;i%) . (922.3%) 70 (49:3%) .
Histony N . 0.00 . X 0.00 . . 0.00 0.00
Negative o) 1000 (107%) (50.8%)  (23.1%) (57.5%)  (10.6%) 2 (8.0%) 72 (50.7%)

T Ty PV T TP e PO T R po
ke P e LT PR T o e 2 oy o
e e e T e 8 e B s | o
e T 7 I [ T PV T P PO [ RO po
Insulin (IU Per ml) lé;f Oi 13.2;1 ; 0.00% 100561;" 13::3 ; 0.00 13: gf 105560;" 0.00% 13‘227* 1122 + 0.503 0.00%
HOMA_IR 30‘_5259;; 562.57,; oot | 2 032 li > 03 i Gi 0.00% 2()'22? %gi: 0.00% %‘_1587;5 342 £ 0.282 0.00%
R TN R P R Ty e P ey P
e e P P TP R po
T T P L g P YT T P T R P
BMI (kg/m2) B NOT oasy IE L 3OEgugy DU BEE oo B2E 3335 £ 0469 0135
L e TP TR P T PV T e p
TN AT P ) TPy v
oy | 955 B o 32 RS0 e AL S e 25 wwi e
P Ty Py ATy ey Ty ey po
Alb/Creat Ratio 1020 & 23:4712545 ot 2R HVE ggoe NS E 2 E gepn 22E 197340580 | 0.00%
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Continued

10.3389/fendo.2025.1687145

IHD vs. T2DM+IHD

FZD5 mRNA GTF2I mRNA has-miR-1976 LINC02210
Variable o  T2DM+ P o | T2DM+ P o | T2DM+ P T2DM+
IHD | value IHD  value IHD IHD
46.49 + 40.5 . 4543 + 45.67 46.14 + 43.81 4552 +
. . . 48 + 1. .
ALT (IU/L) 1336 1.981 0.01 1352 2,366 0.932 1.49 1.686 0.302 2267 4548 + 1.321 0.99
4860+ = 480 4696 + | 53.56 = 4702+ | 523 53.32 &
N
AST (IU/L) 2,686 1.528 0.845 2814 2618 0.215 3.032 1914 0.143 2551 47.65 + 2.602 0.37
2743 £ 38.58 + " 24.36 4552 + e | 2252 % 46.61 - 37.48 =
KM . . . .86 £ 2. .03*
CKMB 2.44 4.52 005 2.2 523 0.00 2.015 5.067 0.00 3.79 2786 £ 247 003
. 14.96 + 31.28+ - 13.68 + 30.84 + - 9.51 38.58 + - 444 +
) X . 99+ 2. 00+
Troponin 243 6.15 0.00 238 5.50 0.00 1.94 5.49 0.00 733 12.99 + 2.17 0.00

Descriptive statistics, cross tab analysis: Values represent means + SEM. **p < 0.01, *p < 0.05.

IncRNAs exhibit discriminatory translational potential in diabetes
complications, serving as molecular readouts of disease onset,
trajectory, and tissue specificity. Supporting this concept, Geng
et al.” (2024) reported reduced levels of TINCR and HOTAIR in
serum and myocardial tissue from individuals with diabetic
complications, which discriminated cases from healthy controls.

Notably, our data indicate that LINC02210 functions as a
putative network-associated regulator within the FZD5/GTF2I/
hsa-miR-1976 network. To our knowledge, LINC02210 has not
been previously linked to type 2 diabetes or ischemic heart disease.
In this cohort, circulating LINC02210 levels were lower in T2DM
+IHD than in either controls or T2DM alone, and yielded
discriminatory decision thresholds capable of separating T2DM
+IHD vs controls, T2DM vs IHD and T2DM+IHD vs T2DM.

LINC02210’s inverse correlations with angiogenesis-related
genes (FZDS5, GTF2I) and discriminatory performance in
advanced disease stages (AUC > 0.97) suggest it may modulate
vascular remodeling. Ongoing work is testing its direct role in
endothelial dysfunction and plaque stability. While LINC02210
demonstrates disease-specific expression patterns, its functional
role requires validation in ongoing studies.

The evaluated angiogenesis-linked RNA signature showed group-
dependent expression. Levels of FZD5 and GTF2I mRNAs, together
with hsa-miR-1976, rose stepwise from controls to T2DM and IHD,
with peak abundances observed in the T2DM+IHD cohort.
Conversely, LINC02210 displayed a graded decline across the same
sequence, reaching its lowest concentration in T2DM+IHD. Taken
together, these trajectories support the feasibility of this circulating
coding/non-coding RNA panel as an early-detection aid for ischemic
heart disease in the context of type 2 diabetes. The weaker correlations
in T2DM+IHD highlight the need for nonlinear or pathway-specific
analyses in advanced disease, which will be pursued in future work.

Relative to the T2DM+IHD cohort, the T2DM group showed
higher hsa-miR-1976 and lower LINC02210 expression. Alongside
CK-MB and troponin, these noncoding RNA readouts could assist
in distinguishing THD status among patients with T2DM. This
interpretation aligns with Ortiz-Martin et al. (2022), who proposed
that serum biomarkers can complement or in some settings
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substitute for traditional analytes for diabetes detection and
follow-up. In our data, FZD5, GTF2I, hsa-miR-1976, and
LINC02210 effectively differentiated T2DM from T2DM+IHD,
consistent with prior reports identifying ncRNA signatures as
candidate predictors of IHD in diabetes (25-27). While our
models show strong discriminatory performance, external
validation is required to confirm generalizability; We are actively
collaborating with independent cohorts to address this limitation.
Previously, our group likewise reported discriminatory utility for a
panel comprising MEMM173 and CHUK mRNAs together with
hsa-miR-611, -5192, and -1976 in diabetes and cardiovascular
disease (6).

The RNA panel (AUC = 0.94) outperformed Troponin-I (AUC
= 0.78) and HbAlc (AUC = 0.85) in discriminating T2DM-IHD
from controls). Integrating RNA biomarkers with troponin/HbAlc
may improve early risk stratification for ischemic events in
diabetic populations.

Limitations. This study has several limitations that should be
considered when interpreting the findings. To minimize bias, we
focused on angiogenesis-related genes with established roles in
T2DM/IHD pathways and validated qPCR results in triplicate,
achieving low technical, variability (CV < 5%). Nevertheless, the
pilot nature of the work and the modest sample sizes in the IHD and
T2DM+IHD groups may limit precision and generalizability.
Although major confounders were adjusted for, residual
confounding from unmeasured factors (e.g., dietary habitse drug
therapy) may persist; sensitivity analyses supported the robustness
of the main signals but cannot fully exclude such eftects. We plan to
expand this pilot to a larger cohort with orthogonal validation via
wider transcript profiling eéprotein-level assays.

The age cutoff of 35 years was selected to minimize age-related
comorbidities and to focus on early molecular changes in T2DM
and IHD, in line with regional epidemiology; this strengthens
internal validity but constrains extrapolation to older populations.
Despite statistical matching on age and sex, the absolute sex ratios
reflect real-world clinical demographics and could introduce subtle
confounding, motivating sex-stratified designs and covariate-
adjusted models in future work.
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Because multiple genes were evaluated, a risk of type I error
remains despite adjusted analyses; larger, prespecified cohorts with
formal multiple-testing control are warranted. The putative
regulatory role of LINC02210, inferred from network centrality
and correlations with angiogenic markers, requires confirmation in
targeted functional experiments. Finally, although the RNA panel
shows encouraging case-control discrimination, clinical validity
should be assessed in prospective, blinded, longitudinal cohorts
with orthogonal transcriptomic and protein-level assays.

In conclusion, we identify a candidate angiogenesis related RNA
panel FZD5, GTF2I mRNAs, hsa-miR-1976, and the IncRNA
LINCO02210 that is associated with T2DM complicated by THD
and shows concordance with serum clinical measures reflecting the
transition from T2DM to T2DM+IHD. These associations are
correlative and do not establish causality; prospective validation
in larger, age-diverse cohorts, alongside functional studies to
delineate gene-specific contributions to IHD risk in T2DM,
is required.

4 Materials and methods

4.1 Bioinformatics-based construction of
the RNA regulatory network

We performed an in silico screen to identify differentially
expressed coding and noncoding RNAs relevant to type 2
diabetes mellitus (T2DM) and ischemic heart disease (IHD).
Microarray expression datasets were obtained from the NCBI
Gene Expression Omnibus (GEO; https://www.ncbinlm.nih.gov/
geo/).

4.1.1 Acquisition of available datasets
High-throughput microarray datasets for diabetic nephropathy
and acute coronary syndrome (ACS) were retrieved from NCBI
GEO (https://www.ncbinlm.nih.gov/geo/, accessed July 2021) (28).
Searches were limited to Homo sapiens and experimental studies
comparing patients with diabetic nephropathy or ACS against
healthy controls. As a result, two datasets were obtained:
GSE30122 (29) and GSE19339 (30), were obtained. The
GSE30122 dataset contains 19 diabetic kidney samples and 50
healthy control kidney samples, based on the GPL571 Affymetrix
Human Genome U133A 2.0 Array platform. GSE19339 comprises 4
thrombus leukocyte samples from ACS cases and 4 peripheral blood
leukocyte samples from healthy controls, generated on the GPL570
Affymetrix Human Genome U133 Plus 2.0 Array platform.

4.1.2 Differential expression analysis

Microarray profiles from GSE30122 and GSE19339 were
analyzed using the GEO2R web portal (https://
www.ncbi.nlm.nih.gov/geo/geo2r/; accessed July 2021) to identify
differentially expressed genes (DEGs) among the groups. GEO2R is
an online interface built on the R language limma package (31).
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Significance thresholds were FDR < 0.05 together with p < 0.05.
Probes lacking an assigned gene symbol were excluded prior to
downstream analyses of the resulting DEGs. DEGs were identified
using |logFC| > 0.5 and p < 0.05, followed by FDR correction (q <
0.1). Functional enrichment required q < 0.05. Thresholds were
selected to harmonize statistical rigor with biological plausibility.

4.1.3 Identification of common DEGs

DEGs from both datasets (GSE30122 and GSE19339) were intersected
using an online Venn diagram (http://bioinformatics.psb.ugent.be/
webtools/Venn/) to obtain the shared gene set. This overlap was
considered the set of DEGs implicated in both diabetic nephropathy
and acute coronary syndrome progression.

4.1.4 Enrichment analyses of common DEGs

To determine which biological processes (BP) and pathways were
overrepresented among the shared DEGs, we performed GO-BP and
pathway enrichment using FunRich (http://www.funrich.org/; v3.1.3,
accessed Jul 2021) (32). A p-value of <0.05 was considered
indicative of enrichment. The biological classification of the
common DEGs was subsequently filtered, focusing on the highly
significant BP terms associated with angiogenesis.

4.1.5 Protein—protein interaction network
analysis

To map potential interactions among proteins encoded by the
filtered DEGs and to identify hub nodes, angiogenesis-related DEGs
from the enrichment step were queried in STRING (https://string-
db.org/; v12, accessed July 2023) (33). Only edges with combined
score > 0.15 were retained for network construction. The resulting
PPI networks was then visualized using Cytoscape software (version
3.10.2). Topological metrics were then computed with the
CentiScaPe app (34) and the degree (number of connections) of
each node was calculated; genes with degree >5 were defined as
hub genes.

4.1.6 Selection of candidate genes

Biomarkers (mRNAs and miRNAs) were selected through a
structured, multi-step integrated bioinformatics pipeline and
previous literature validation studies designed to prioritizing
relevance to diabetic nephropathy or acute coronary pathogenesis,
functional annotations, and prior evidence of differential expression
(Supplementary Table S1).

From the hub set, we prioritized FZD5 (Frizzled class receptor 5)
and GTF2I (General Transcription Factor II-I) to assemble a targeted
co-regulatory network. Support for their relevance derives from prior
studies (25-27) and from public resources the Comparative
Toxicogenomics Database (http://ctdbase.org/) and Gene Cards
(https://www.genecards.org/; accessed October 2024) which
annotate these genes as linked to angiogenesis and implicated in
acute coronary syndrome and diabetic nephropathy progression.
The curated genes were subsequently submitted to STRING to
construct the protein-protein interaction (PPI) network.
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TABLE 6 Correlation analysis in all groups.

T2DM vs. T2DM+IHD

Genhe FZD5 mRNA GTF2l mRNA has-miR-19 LINC02210
: T2DM - T2DM - T2DM T2DM -
Variable T2DM P~ T2DM p M p
+ IHD value + IHD value + IHD + IHD value
40 2 43 19 44 18 38 24
Male
(34.5%)  (43.1%) (39.8%) | (32.2%) (35.8%)  (40.9%) (36.9%) | (37.5%)
Gender 0.286 0.33 0.545 0937
Female 76 29 65 40 79 26 65 40
(655%)  (56.9%) (60.2%) | (67.8%) (642%)  (59.1%) (63.1%) | (62.5%)
54 27 40 41 53 28 43 38
Smoker
(46.6%)  (52.9%) (37.0%) | (69.5%) (43.1%)  (63.6%) (417%) | (59.4%)
Non- 57 21 60 18 68 10 57 21
Smoki 0.618 0.00** 0.00%* 0.01*
MOXINE | moker | (49.1%) | (41.2%) (556%) | (30.5%) (553%)  (22.7%) (553%)  (32.8%)
X-
5(43%) 3 (5.9%) 8 (7.4%) | 0(0%) 2(16%) | 6 (13.6%) 3(29%) | 5(7.8%)
smoker
B 49 44 44 49 54 39 44 49
Positive
Famil (422%)  (86.3%) (40.7%) | (83.1%) (43.9%)  (88.6%) (427%) | (76.6%)
o U 0.00%* 0.00** 0.00%* 0.00**
e Negative 67 7 (13.7%) o4 10 69 5 (11.4%) > 15
V¢ . .
§ (57.8%) ? (59.3%) (16.9%) (56.1%) ’ (573%) | (23.4%)
5324+ 5504+ 5256 + 56.05+ 5343+ | 5480 + 5276+ | 5545+
Age 0.178 0.00** 0.33 0.032*
0.730 1.125 0.741 1.031 0.716 1.193 0.774 0.981
Duration Of 2362+ 12039 = 3037+ 9492+ 3533+ 10307 + 1495+ | 11469 +
uration 0.00* 0.00* 0.00* 0.00*
Diabetes 0.428 0.9750 0.4895 1.0578 0.613 0.749 0.35 0.859
Fasting Gl 12228+ 18573 + 12622+ | 169.90 « 11697+ | 210.66= 11439+ | 18553 =
asting faucose 0.00 0.00* 0.00* 0.00*
(mg/dL) 6.239 9.507 6.424 10.01 4251 13341 5.761 9.236
Post Prandial 17449 + 28245 + 170.69+ | 27478 + 17252+ | 305.14 + 1549+ | 292.05 +
0.00%* 0.00** 0.00** 0.00**
Glucose (mg/dL) 9.628 15.15 8.74 16.563 8.398 17.91 7.114 15.436
Glycated 478 + 9.20 + 538+ 531+ 8.44 = 448 + 8.79 =
hemoglobin . . 0.00** o 7.5+043 | 0.007* o o 0.00** oo S 0.00%%
0.182 0.479 0.28 0.234 0.56 0.15 0.432
HbAlc (%)
1046+ 1543 + 9.93 + 1573 + 1063+ 1575+ 1027+ 1472+
Insulin (IU Per ml) 0.00%* 0.00** 0.00** 0.00**
0.572 0.465 0.575 0.450 0.545 0.508 0.604 0.543
298 + 577 + 3.0+ 535 + 301+ 612+ 273+ 561+
HOMA_IR 0.00%* 0.00** 0.00** 0.00**
0.301 0.426 0329 0.379 0.267 0.549 0314 0.382
1468+ 6120 + 14528 + | 7559 + 14206 +  60.84 + 15404 + | 6694 +
HOMA-B 0.00* 0.00** 0.00** 0.00%*
5.902 4272 6558 5.089 6.0 2,967 5.898 5.127
i 11+ 08 + 16 = 61+ 12744+ | 13659+ 12699 + | 13445 +
Systolic Blood 127.11 136.08 ooper | 12616 136.61 000 7 36.59 000 6.99 3445 000
pressure 1471 1.967 1.442 1.977 1343 2,496 1611 1.733
Diastolic Blood 8384+ 8843+ 8301+ 8932+ 8329+ 9068 + 8325+ 8844+
0.01* 0.00** 0.00** 0.00**
pressure 1.085 1.465 1.081 1422 0.983 1.733 1.186 1.229
327+ | 3574+ 3280+ | 3499 + 3305+ 3526+ 3304+ | 3459 +
BMI (kg/m2) 0.283 0.02* 0.02* 0.098
0.49 0.853 0.548 0.715 0.509 0.841 0.535 0.753
Total Cholesterol | 18903+ 31775+ | 18727+  30351% o 19650% | 31732 o 18871% | 29201 o
(mg/dL) 8.925 10.131 ’ 10.004 8.361 : 9.212 9.329 : 9.844 10.809 ’
1305+ | 20761+ 12597+ | 205.44x 1325+ 2143+ 12792+ | 196.09 +
DL L 00+ fo 00 e
¢ (mg/dL) 5.896 7.822 0.00 6.119 6.766 0.00 5.682 8.26 0.00 6173 7.821 0.00
5307+ | 3455z 53.68 + 35.95+ 5205+ 3445z 5533+ 3467
HDLc (mg/dL) 0.00** 0.00** 0.00** 0.00**
1715 1.184 1.792 1.308 1672 1.255 171 1.352
17137 + 30098 = 17551+ | 275.83% 17892 + | 3005+ 16551 + | 284.08 +
TGs (mg/dL) 0.00%* 0.00** 0.00** 0.00**
7.829 9.182 9.018 9.425 8.39 6.984 8.167 9.607

(Continued)
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TABLE 6 Continued

10.3389/fendo.2025.1687145

T2DM vs. T2DM+IHD

Gene FZD5 mRNA GTF2l mRNA has-miR-1976 LINC02210
. T2DM - T2DM - T2DM - T2DM
Variable T2DM T2DM P~ T2DM T2DM
+ IHD | value + IHD  value + IHD value + IHD
1836+ 2547 + 1808+ 2502+ 1889+ 2514+ 182+ | 2428+
Alb/Creat Ratio 8.36 >47 0.00%* 8.08 >0 000 188 > 0.00** 8 8 0.00*
0.616 0579 0.630 0.610 0.620 0.594 0.640 0.693
4562+ 4518 + 4519+ | 4602+ 4635+ 4307+ 4652+ | 4381 +
ALT (IU/L) 0.849 0.738 0.142 0.224
1.495 1.792 1.469 1.953 147 1.664 1.661 1472
4357+ 5973 + 4773+ | 4992+ 4746+ 5143+ 4323+ 5698 +
AST (IU/L) 0.016* 0.644 0259 0.00**
1.483 6312 3.293 2,067 2,978 1.858 1.654 5.077
2362+ 4222+ 2038+ 4563 + 23168+ 4645 = 2238+ | 4044 +
KMB 00+ 00+ 00+ e
¢ 2.44 40 0.00 201 424 0.00 2,029 533 0.00 2.79 3.09 0.00
1040 + 3427 + 1340 + 2554+ 9.64 + 402+ 707+ | 3478+
T 3 X 4% X 1* X % 0.00**
roponin 216 5.03 0.00 261 429 00 19 577 0.00 191 443

FZD5 mRNA GTF2l mRNA LINC02210
Correlation Coefficient 1.000 0.462%*% 0.632%* -0.651%*
;iﬂi Sig. (2-tailed) <.001 <.001 <.001
N 167 167 167 167
Correlation Coefficient 0.462** 1.000 0.545%* -0.369**
GTF2I mRNA Sig. (2-tailed) <.001 <.001 <.001
N 167 167 167 167
Spearman’s rho
Correlation Coefficient 0.632%% 0.545%% 1.000 -0.456%*
has-miR-1976 Sig. (2-tailed) <.001 <.001 <.001
N 167 167 167 167
Correlation Coefficient 0.651** -0.369** -0.456** 1.000
LINC02210 Sig. (2-tailed) <.001 <.001 <.001
N 167 167 167 167

** Correlation is significant at the 0.01 level (2-tailed).

4.1.7 Prediction of candidate microRNAs

Predicted interactions between miRNAs and the selected
candidate genes were generated using miRWalk 3.0 (http://
mirwalk.umm.uni-heidelberg.de/). Functional implications of the
selected miRNA were then evaluated with DTANA tools miRPath v4
module (http://www.microrna.gr/miRPathv4), which tests
enrichment of its targets across defined biological pathways.

4.1.8 Prediction of candidate long noncoding
RNAs

LncBase predicted version 3 (DIANA Tools - miRNA-IncRNA
interactions (uth.gr) was used to predict interactions between long
noncoding RNAs (IncRNAs) and the chosen candidate genes,
Additional annotation and verification were obtained from Gene
card(GeneCards - Human Genes | Gene Database | Gene Search).
We confirm the selected IncRNA from another database
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(LNCipedia database) (https://ngdc.cncb.ac.cn/databasecommons/
database/id/24).

4.2 Participants and study groups

The study enrolled 167 participants distributed into four
groups: 56 Patients who fulfilled the American Diabetes
Association’s (ADA) T2DM criterion and had no cardiovascular
disease, 25 Patients who had a cardiovascular disease only, 26
Patients who fulfilled the American Diabetes Association’s (ADA)
T2DM criterion and has cardiovascular disease and 60 Individuals
with normal blood glucose levels who have never had diabetes or
any kind and Cardiovascular diseases.

The study cases were enrolled from Cardiology and
Endocrinology Department Ain Shams University. The study
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TABLE 7 Correlation analysis in T2DM+IHD group.

10.3389/fendo.2025.1687145

FZD5 mRNA GTF2I mRNA has-miR-1976  LINC02210
Correlation
. 1.000 -0.061 0.266 0.265
Coefficient
FZD5
mRNA Sig. (2-tailed) 0.769 0.190 0.191
N 26 26 26 26
Correlation
K -0.061 1.000 -0.137 0.225
Coefficient
GTF2I mRNA . .
Sig. (2-tailed) 0.769 0.505 0.270
N 26 26 26 26
Spearman’s rho
Correlation
X 0.266 -0.137 1.000 0.287
Coefficient
has-miR-1976
as-mi Sig. (2-tailed) 0.190 0.505 0.155
N 26 26 26 26
Correlation
K 0.265 0.225 0.287 1.000
Coefficient
LINC02210
Sig. (2-tailed) 0.191 0.270 0.155
N 26 26 26 26

TABLE 8 Regression analysis.

Unstandardized coefficients

Standardized coefficients

95.0% Confidence interval for(B)

B Std. error Beta Lower bound Upper bound

FZD5 mRNA 0.019 0.006 0.238 3258 | 0.001 0.007 0.030
GTF2I mRNA 0.031 0.006 0.366 5244 | <0.001 0.019 0.043
has- miR-1976 0.000 0.000 0.116 1699 | 0.091 0.000 0.000
LINC02210 0.000 0.000 -0.130 1987 0.049 0.000 0.000
CKMB 0.010 0.003 0.260 3923 | <0.001 0.005 0.015
Troponin 0.010 0.002 0.274 4133 | <0.001 0.005 0.015
(Constant) 1.583 0.101 15743 | <0.001 1.384 1.782

*Linear Regression analysis.

protocol was approved by the Research Ethics Committee, Faculty
of Medicine, Ain Shams University (FMASU R 42/2024). Written
informed consent was obtained from all participants in accordance
with the Declaration of Helsinki after clear explanation of the study
aims, procedures, and potential risks. Data confidentiality was
maintained throughout to safeguard participant privacy.

Exclusion criteria of the study included patients with other
kinds of diabetes mellitus, severe liver dysfunction, acute infections,
active neoplasm. pregnancy patients, Breast feeding patients with
mental disorder, autoimmune disease, Patients that are
uncooperative and refuse to give consent, Patients that are less
than 35 years old and Patients that are related to angiogenesis
disease such as numerous malignant, inflammatory, infectious and
immune disorders.

Venous blood was obtained from all participants. Serum was
separated by centrifugation at 4, 000 rpm for 20 min, aliquoted, and
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stored at —80 °C until analysis. A multifunctional biochemistry
analyzer (AU680, Beckman Coulter Inc., Kraemer Blvd., Brea, CA
92821, USA) was used to assess serum lipid profile, liver function
tests, CKMB, Troponin, HBAI1C, Insulin level, post prandial
glucose and fasting glucose. HOMA-IR calculated as (Fasting
insulin (LWU/L) x fasting glucose (nmol/L)/22.5) (35).

4.3 RNA isolation and cDNA preparation

Total RNA was isolated from serum using the miRNeasy Mini
Kit (Qiagen, Hilden, Germany, cat. no. 217084) according to the
manufacturer’s instructions. RNA yield and purity were quantified
on a Qubit 3.0 Fluorometer (Invitrogen, Life Technologies,
Malaysia) with the QubitTM dsDNA HS Assay Kit and the
Qubit'" RNA HS Assay Kit (cat. nos. Q32851 and Q32852,
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respectively). cDNA was then synthesized from the purified RNA
using a Rotor gene Thermal cycler (Thermo Electron Waltham,
MA) and the QuantiTect Reverse Transcription Kit for mRNA and
IncRNA (Qiagen, Hilden, Germany, cat. no. 205311) and the
miRCURY LNA RT Kit (Qiagen, Hilden, Germany, cat. no.
339340) for miRNA in reference to the kit’s protocol.

4.4 Quantitative RT-PCR analysis of target
MRNAs/miRNA/IncRNA

Prior studies demonstrating ACTB, GAPDH showed the most
stable expression. stable expression in human blood and vascular
tissues under metabolic stress (PMID: 38766348, PMID: 37223013).
We employed geometric mean normalization (GAPDH + ACTB) to
minimize individual gene fluctuations, as recommended for
metabolic disease studies (36). Reference gene stability and assay
performance are summarized in Supplementary Table S2.

mRNA targets (FZD5, GTF2I) were quantified using gene-
specific primer assays in combination with the QuantiTect
Multiplex PCR Kit (Qiagen, Hilden, Germany, cat. no. 249900;
assay IDs QT00200886 and QT01677305), with GAPDH and
ACTB serving as internal references. For miRNA measurements,
hsa-miR-1976 was amplified with the miRCURY LNA SYBR Green
PCR Kit (Qiagen, cat. no. 339345) and the corresponding assay (Cat.
No. 339350; ID: ZP00000388), and expression was normalized to
SNORD44. LINC02210 (IncRNA) levels were determined using the
RT2 IncRNA qPCR Assay (Qiagen, cat. no. 330701), with GAPDH as
the reference control. Thermal cycling conditions were 95 °C for 2
min, followed by 45 cycles of 95 °C for 5 s and 60 °C for 10 s. Relative
expression was computed by the Livak method (RQ = 2A-AACt)
(37), and reactions were run on an Applied Biosystems 7500 Fast
System (37). All primer assays utilized in this study were sourced
from Qiagen, Germany (Supplementary Table S3).

4.5 Statistical analysis
All analyses were conducted in SPSS v29 (IBM, Chicago, USA).

Continuous variables are summarized as median [IQR] for non-
normally distributed data and mean + SD for normally distributed

TABLE 9 Intra-Assay and Inter-Assay Variability for Real-Time PCR.

Gene Sample group  Intra-assay SD (Ct)?
FZD5 T2DM+IHD 0.26
FZD5 Control 0.29
GTF21I T2DM+IHD 0.24
GTF2I Control 0.27
miR-1976 T2DM+IHD 0.30
miR-1976 Control 0.32
LINCO02210 T2DM+IHD 0.31
LINC02210 Control 0.27
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data. Normality was examined with the Shapiro-Wilk test. Between-
group comparisons used Kruskal-Wallis with Dunn’s post-hoc
procedure for nonparametric outcomes, and one-way ANOVA
with Tukey’s post-hoc test for parametric outcomes. Demographic
characteristics and clinical predictors of T2DM+IHD were evaluated
within this framework. Two-sided p < 0.05 was considered
statistically significant. Multicollinearity was assessed via correlation
matrices. Covariates were selected a priori based on clinical relevance.

4.6 Measures to overcome risks of
overfitting

4.6.1 Feature selection rationale

Gene candidates were prioritized through a biology-driven
strategy focusing on hypoxia-responsive angiogenesis pathways
implicated in T2DM and ischemic heart disease (IHD)
pathogenesis. Targets such as FZD5 were selected based on
pathway enrichment analyses and prior literature evidence of their
roles in endothelial dysfunction (38). Biomarker inclusion criteria
required both statistical significance (adjusted p<0.05) and biological
relevance (=2-fold differential expression), ensuring alignment with
disease mechanisms while minimizing false discovery.

4.6.2 Experimental design

Technical reproducibility was ensured through triplicate PCR
measurements for all samples, achieving coefficient of variation (CV)
values <1.5% for cycle threshold (Ct) values (Table 9). Biological
replicates were incorporated to account for inter-individual
variability inherent in human studies. Statistical analyses employed
ANOVA & Kruskal-Wallis tests (for non-normally distributed data)
with post-hoc correction to address multiple comparisons. A priori
power analysis (0:=0.05, $=0.20) confirmed adequate sample size to
detect >2-fold expression differences, aligning with clinically relevant
thresholds in metabolic disease research.

4.6.3 Reproducibility metrics

Stringent quality control included evaluation of intra-assay
(within-run) and inter-assay (across-run) variability, with Ct
standard deviations maintained at <0.33 and <0.65, respectively

Inter-assay SD (Ct)° Mean Ct CV%©
0.48 24.1 1.08
0.51 26.3 1.10
0.50 235 1.02
0.55 27.0 1.00
0.60 21.8 1.38
0.65 29.2 1.10
0.58 225 1.38
0.53 25.8 1.05
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(Table 9). These metrics, combined with primer efficiencies of 90—
105% (Supplementary Table S3), met MIQE guidelines for qPCR
reliability. The low CV% values (<1.5%) across all targets
underscore the technical precision of our experimental workflow.
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