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Objective: Adrenal incidentalomas are commonly detected in clinical practice.
Despite growing interest in their molecular features, their germline genetic
background remains largely unexplored. This study investigated the presence
and potential pathogenic role of germline variants (GVs) in these patients using a
targeted next-generation sequencing (NGS) approach, and explored possible
genotype-phenotype correlations.

Design: This multicenter retrospective study included 191 patients with
incidentally discovered adrenal masses from four European reference centers.
Patients with adrenocortical carcinoma, pheochromocytoma and primary
aldosteronism were excluded.

Methods: Germline DNA was extracted from peripheral blood and analyzed
using a custom next-generation sequencing (NGS) panel targeting 21 genes
potentially involved in adrenal tumorigenesis. Bioinformatic analysis was
followed by variant classification using the ClinVar and VarSome databases, in
accordance with ACMG guidelines.

Results: GVs were identified in 12 of 191 patients (6.3%), affecting 7 different
genes: ZNRF3, ARMC5, APC, CACNA1H, SCNN1B, PDE11A, and KCNJ5. Most of
the detected variants were classified as variants of uncertain significance (VUS).
Genotype-phenotype analysis revealed that some patients with GVs had bilateral
adrenal lesions and/or mild autonomous cortisol secretion (MACS). No variants
were classified as clearly pathogenic.

Conclusion: This study provides new insights into the germline genetic
landscape of adrenal incidentalomas. Although GVs were identified in a
minority of patients, their clinical significance remains unclear due to the
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predominance of VUS. These findings do not currently support widespread
germline testing in routine clinical management of adrenal incidentalomas.
Nevertheless, the detection of potentially pathogenic variants may inform
future studies exploring their possible role in adrenal tumorigenesis.

genetics, variant, mutation, genotype-phenotype correlation, cortisol, adrenal
adenoma, primary bilateral macronodular adrenal hyperplasia

Introduction

Adrenal tumors are a heterogeneous group of neoplasms in
terms of frequency, clinical presentation, and outcomes. The group
includes a wide spectrum of pathological entities, from the rare and
aggressive adrenocortical carcinoma (ACC) to the frequent and
benign adrenal adenoma (1). Currently, the majority of adrenal
adenomas are serendipitously detected by imaging tests performed
for unrelated reasons in up to 5-7% of people, and therefore they are
called “adrenal incidentalomas” (2, 3).

Adrenal incidentalomas are most commonly non-functioning;
however, overt cortisol or aldosterone hypersecretion occurs in
approximately 15% of cases, while mild autonomous cortisol
secretion (MACS) is observed in up to 30-50% of cases (4, 5).
Malignant tumors are infrequent among adrenal incidentalomas
but should not be underestimated since they accounted for 8.6% of
all cases according to population-based data (6).

The molecular mechanisms underlying the occurrence of
adrenocortical tumors are complex and not yet fully elucidated.
Nevertheless, several key oncogenic pathways have been identified
for adrenocortical carcinoma, such as IGF, TP53 and the Wnt/(3-
catenin pathways (7-11). In benign adrenocortical adenomas, the
activation of the cAMP/PKA signaling cascade has been frequently
reported: somatic mutations in the catalytic alpha subunit of the
protein kinase A (PRKACA) and the stimulatory G-protein alpha
subunit (GNAS) are the most frequently observed alterations (12—
14). These are driving factors in up to 35-60% of cortisol producing
adenoma associated with overt Cushing syndrome, and are
associated with a clinical phenotype characterized by more severe
hormonal hypersecretion (15, 16). Conversely, these genetic
variants are less frequently found in non-functioning
adrenocortical adenoma or adenomas associated with MACS (12,
17-19). Indeed, the overall prevalence of PRKACA mutations in
adenomas associated with MACS is less than 4.5%, while the most
common genetic alteration is a somatic mutation of CTNNBI
(encoding B-catenin) with a prevalence similar to that observed in
non-functioning adenomas (17).

An increasing number of molecular events with pathogenetic
role have been identified in aldosterone-secreting adrenocortical
adenomas: almost all (90%) are due to somatic variants in genes
encoding ion channels or transporters. Somatic variants of KCNJ5
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(potassium inwardly rectifying channel subfamily ] member 5) are
present in approximately 40% of aldosterone-producing adenomas
(20). Other genes (CACNAID, ATP1AI, ATP2B3, CTNNBI) are less
frequently involved (21-23), and familial forms of primary
aldosteronism due to germline mutations are uncommon.

The availability of next-generation sequencing (NGS) has
boosted the study of genetic mechanisms and has facilitated the
identification of both germline and somatic variants in human
diseases, including adrenal disorders (21, 24). Although the
genomic classification of benign adrenal lesions has been
increasingly explored (21, 25-27), most studies have focused on
somatic mutations in tumoral tissue (28), leaving the genetic
background of adrenal incidentalomas still largely uncharted. This
study aimed to identify germline mutations-associated with adrenal
incidentalomas using a targeted sequencing approach and to
explore potential genotype-phenotype correlations.

Materials and methods
Patient cohort

This multicenter study was conducted at four reference
institutes which are part of the European Network for the Study
of Adrenal Tumors (ENS@T): Orbassano (Turin), Milan, Messina
(Italy) and Zagreb (Croatia). The study was conducted in
accordance with the Declaration of Helsinki. Written informed
consent was obtained from all participants, and the study was
approved by the Local Ethics Committees. Patients with
incidentally detected adrenal masses referred to the centers
between 1999 and 2024 were retrospectively included in the study.

The inclusion criteria were as follows: age =18 years,
incidentally detected tumor, presumed benign cortical adenoma,
availability of a peripheral whole blood sample, and complete
follow-up information. Diagnosis of adrenal adenoma was based
on computed tomography (CT) features according to the guidelines
of the time and later revised considering the current clinical practice
guidelines (5, 29). In all patients, CT was repeated after 6 months to
document unchanged CT features. Patients with radiological
features suggesting ACC or with known extra-adrenal
malignancies were excluded from the study. In agreement with
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the definition of adrenal incidentaloma, patients with severe or
resistant hypertension, or hypokalemia or overt clinical signs of
hypercortisolism were excluded. Catecholamine excess was
excluded in all patients by measuring urinary fractionated
metanephrines, while primary aldosteronism (PA) was excluded
using the aldosterone-to-renin ratio (ARR), calculated from the pair
plasma aldosterone concentration and plasma renin activity.
Patients were considered negative for PA when their ARR values
were below 30, in accordance with the guideline-recommended
cutoff available at the time of study design (30).

Clinical and hormonal data were collected at diagnosis and at
last follow-up. Clinical signs and symptoms of adrenal hormone
overproduction were ruled out based on medical history and
physical examination. The following data were obtained for
further evaluation: age at the time of adrenal incidentaloma
diagnosis, sex, family history of adrenal tumors, presence of
arterial hypertension and glucose metabolism impairment, of any
level. Hypertension and diabetes were either reported by the patient
in the past medical history or diagnosed during the follow-up
according to the guidelines available at the time (31, 32).

The measurement of urinary free cortisol (UFC),
adrenocorticotropic hormone (ACTH), serum cortisol after
overnight 1 mg dexamethasone suppression test (DST) were
performed at baseline and at last follow-up. An incomplete
cortisol suppression was defined by a post-DST cortisol level >1.8
pg/dL (50 nmol/L). Mild autonomous cortisol secretion (MACS)
was considered for patients with an incomplete cortisol suppression
following the DST without signs and symptoms of overt Cushing
syndrome (5).

Next-Generation Sequencing (NGS) and bioinformatics
analyses were conducted at the Molecular Oncology Laboratory,
Edo and Elvo Tempia Foundation (Biella, Italy).

NGS custom panel design

Targeted NGS was conducted using a custom panel (Illumina,
San Diego, CA) targeting 21 genes potentially associated with benign
adrenal tumors (APC, AXIN1, ZNRF3, ARMC5, PRKARIA, GNAS,
CTNNBI, PRKACA, PRKACB, CACNAIH, SCNNI1B, ATPIAI,
KCNJ5, ATP2B3, CLCN2, DOTIL, HDACY, NR3Cl, PDESB,
PDEI11A, and CYP11B2) (Supplementary Table S1). The study
protocol was conceived in 2019, when the targeted NGS panel was
defined to include 21 genes selected based on the evidence available at
the time and in accordance with the scope of the study that was
approved by the local Ethics Committee. Given the subsequent delays
in patient enrollment and laboratory processing (partly attributable to
restrictions and work disruptions related to the COVID-19
pandemic) the initial gene panel was retained without modification
to ensure consistency with the original design and Ethical clearance.
Briefly, we included oncosuppressor genes involved in the regulation
of the Wnt/B-catenin pathway in adrenal tumors and primary
bilateral macronodular adrenal hyperplasia (PBMAH), as well as
the cAMP-protein kinase A pathway (APC, AXIN1, ZNRF3, ARMCS5,
and PRKARIA) (9, 33, 34). Additionally, genes associated with
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cancer-predisposition (GNAS, CTNNBI, PRKACA, PRKACB) (9,
35, 36) were added. Genes encoding proteins of membrane
transport that are involved in the pathogenesis of aldosterone-
producing adenomas (CACNAIH, KCNJ5, SCNNIB, ATPIAI,
ATP2B3, CLCN2) (21-23) were also selected. Further, we included
additional 6 genes encoding membrane receptors (NR3CI) (37, 38),
enzymes (PDESB, PDEIIA, CYPI11B2) (9, 21, 39) and proteins
involved in the histone modification (DOTIL, HDACY) (40). The
custom panel was designed using the web-platform DesignStudio
v.8.2.0.78 (https://www.illumina.com/products/by-type/informatics-
products/designstudio.html) (Details in Supplementary Table S2).
The selection of these genes was based on literature evidence
highlighting their possible role in the pathogenesis of adrenal
tumors (9, 25, 33, 34).

DNA extraction from blood samples

Germline DNA was isolated from peripheral blood leukocytes
in EDTA using QIAamp® DNA Blood Mini-Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. DNA
quantity of each sample was quantified by DeNovix DS-11
spectrophotometer (DeNovix Inc., Wilmington, DE, USA).

NGS library preparation and sequencing for
genomic germline DNA

DNA library preparation was conducted using the AmpliSeq
Library Plus (Illumina, San Diego, CA, USA) following
manufacturer’s instructions. Briefly, a total amount of 30 ng of
genomic DNA per sample was used to generate amplicon libraries
in a multiplex PCR amplification with two primer pools. The
amplicons were partially digested and phosphorylated with FuPa
reagent (Thermo Fisher Scientific), ligated to AmpliSeq CD indexes
and purified with Agencourt® AMPure® XP beads (Beckman
Coulter, Brea, CA, USA). The libraries were then amplified,
purified with beads, and quantified on a Qubit® 3.0 Fluorometer
(Invitrogen, Waltham, MA, USA) using the dsDNA High
Sensitivity kit. The pooled libraries were loaded for sequencing by
synthesis on the Illumina MiSeqTM platform (Illumina, San Diego,
CA, USA).

NGS analysis and bioinformatics
interpretation

A semi-automated bioinformatics pipeline was used.
Bioinformatics analysis was performed with the DNA amplicon
Analysis Module v2.1.0 workflow in Local Run Manager (Illumina,
San Diego, CA, USA) through the following steps of
analysis: demultiplexing and FASTQ generation, alignment to a
reference genome and variant calling. The ANNOVAR tool
(www.openbioinformatics.org/annovar/) was used to annotate all
variants. Variant prioritization was obtained with a cascade of
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filtering. In particular, single-nucleotide polymorphisms (SNPs) >
1% were excluded using data from the 1000Genome Project Data
MAF (www.internationalgenome.org/) and subsequently with
greater stringency based on the Non-Finnish European (NFE)
category of the Genome Aggregation Database (gnomAD, https://
gnomad.broadinstitute.org/). Furthermore, we removed
synonymous variants that do not result in changes at the amino
acid level. The identified variants were verified by the IGV
(Integrative Genomics Viewer 92 v.2.5) (UC San Diego,
Broad Institute).

Polymorphisms located in intronic regions were excluded
from analysis. The pathogenic role of germline variants
(GV) was assessed using the ClinVar database (https://
www.ncbi.nlm.nih.gov/clinvar/) and the VarSome Premium tool
(https://sso.varsome.com/) based on the American College of
Medical Genetics and Genomics (ACMG) guidelines (41-43).
Pathogenic (P), likely pathogenic (LP), variants of uncertain
significance (VUS) or increased risk alleles variants were studied.
Selected variants were validated through a Sanger sequencing (See
Supplementary Table S3).

Statistical analysis

Descriptive statistics were used to analyze the clinical variables.
Continuous data are expressed as median and interquartile range
(IQR). Categorical variables are indicated as numbers and
percentages. Statistical analyses were performed with Jamovi -
version 2.6.25.0.

Results
Patient characteristics

We evaluated 191 subjects, 127 females and 64 males (median
age at the blood sample 58.2 years, IQR 33-82 years). None of them
had a family history of adrenal diseases, thus all cases were
apparently sporadic.

At diagnosis, 141 patients (74%) had a unilateral adrenal lesion,
and 50 patients (26%) had bilateral masses. The average tumor size
was 28.2 mm (IQR 20-33.5 mm). At diagnosis, 116 patients (61%)
were hypertensive and 19 (10%) were diabetic. MACS, according to
the criteria defined above, was detected in 46.6% (n=89) of patients,
while non-functioning tumors were detected in 53.4% (n=102) of
patients. The median follow-up was 8.5 years (IQR 3-15 years).

Germline variants at NGS

Of the 191 patients, 12 (6.3%) had germline variants (GVs) in
the panel of analyzed genes. A total of 12 unique GVs were
identified in our patient cohort, including two identical variants
in the ARMCS5 gene in two distinct carriers. One subject was carrier
of two different variants (in PDE11A and KCNJ5 genes respectively).
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These unique variants were identified in seven different genes:
ZNRF3 (n=2), ARMC5 (n=1), APC (n=2), CACNAIH (n=4),
SCNNIB (n=1), PDE11A (n=1), KCNJ5 (n=1) (Table 1). Variants
were interpreted following ClinVar classifications as follows: a) one
(8%) variant of potential pathogenicity, classified as variant of
uncertain significance/likely pathogenic (VUS/LP) in the APC
gene; b) six (50%) VUS in ARMC5 (n=1), CACNAIH (n=3),
PDEI11A (n=1), SCNNIB (n=1). Five out of 12 variants (42%)
lack clinical evidence in ClinVar; therefore, the classification was
implemented using the VarSome Premium tool, which applies the
ACMG guidelines, resulting in: two VUS/LP variants in ZNRF3 and
KCNJ5; two VUS in APC and CACNAIH; and one variant in
ZNRF3 classified as benign (B). None GV was classified as
pathogenic (P).

The complete list of germinal mutations including all the
information about the type and localization of genetic alterations
and the degree of pathogenicity classification is summarized
in Table 1.

Genotype-phenotype analysis

Clinical features of patients are detailed in Table 2.

Both female patients with GVs in the ZNRF3 gene (c.2460delC,
p.Ala822ProfsTer4 and ¢.1828_1829insGCT, p.Ala610delinsGlySer)
had unilateral small adrenal lesions that did not change their
CT characteristics during a mean follow-up of 7 years; however,
the patients became hypertensive despite the absence of
mineralocorticoid and glucocorticoid excess.

A unique GV ¢2192C>G, p.(Pro731Arg) in exon 6 of the
ARMCS gene was found in two male subjects. Both had bilateral
lesions at diagnosis (the largest size of 22 mm and 30 mm,
respectively) that did not grow significantly over time. One of
them had hypertension and MACS at diagnosis, while the other
became hypertensive during follow-up despite the absence of
cortisol autonomy.

A 62-year-old woman, carrier of a well-known GV in exon 16 of
the APC gene c.3920T>A, (p.Ile1307Lys) (I1307K), presented with a
non-secreting adrenal lesion of 16 mm. During follow-up she
developed an adenoma with similar characteristics in the
contralateral gland. Instead, a novel GV ¢.6422G>C,
p.(Gly2141Ala) in the APC gene was found in a 61-year-old man
with bilateral adrenal lesions (the largest of 59 mm) and MACS.

Three of four GVs in the CACNAIH gene were classified as VUS
based on the ClinVar database (ID: #7, c.C212G; #9, ¢.2246C>T;
#10, ¢.5024G>A) and were not associated with aldosterone
hypersecretion. However, the three women who carried these
VUS (#7, #9 and #10) were all hypertensive and diagnosed with
MACS associated with bilateral adrenal lesions. The other patient
(ID: 8#, c.3941A>G) displayed a unilateral adrenal mass with a size
of 40 mm, which remained stable over time, with no occurrence of
hypertension and no evidence of excess hormone secretion.

A 49-years old woman with a GV ¢.857C>T, p.(Ser286Leu) in
the SCNNIB gene presented a single adrenal lesion with MACS and
developed hypertension overtime.
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TABLE 1 Germline variants detected by NGS in a cohort of 191 patients with adrenal incidentalomas.

ABojoundopul ul s1a1uoI4

S0

610" UISIa1UO

Gene Chr. position f ClinVar (accessed L2
Pt 1D Exon 3 Variant type VarSome Gene function
(Ref. Seq) (hg19)* yP on May2025)

#1 8 chr22:29446626 ¢.2460del p.(Ala822ProfsTer4) Frameshift N/A B

ZNRF3 deletion Frizzled binding activity and ubiquitin-
# (NM_001206998.1) 8 hr22:29445997 1828 _1829insGCT p.(Ala610delinsGlySer) Nonframeshift N/A VUS/LP protein transferase activity

insertion

#3-4 ARMCS 6 chr16:31477594 c2192C>G p.(Pro731Arg) (p.P731R) SNV Conflicting interpretations B Protein binding.

(NM_001105247.2) of pathogenicity Modulation of steroidogenic enzymes

(3 VUS, 2 LB) expression
#5 16 chr5:112175211 c3920T>A p-(Ile1307Lys) (p.I11307K) SNV Conflicting interpretations B
of pathogenicity Protein binding
APC (NM_000038.5) (5P, 9 LP, 5 RISK ALLELE, Transcriptional activity,
11 VUS) ) )
apoptosis regulation.

#6 16 chr5:112175211 €.6422G>C p-(Gly2141Ala) (p.G2141A) SNV N/A VUS
#7 2 chr16:1203949 c212C>G p-(Pro71Arg) (p.P71R) SNV VvUS VUS
#8 CACNAIH 19 chr16:1260465 c.3941A>G p-(Glu1314Gly) (p.E1314G) SNV N/A VUS Voltage-gated monoatomic ion channel
#9 (NM_021098.2) 10 chrl6:1254253 €2246C5>T p.(Thr749Met) (p.T749M) SNV VUS LB activity
#10 28 chr16:1265066 ¢.5024G>A p.(Argl675GIn) (p.R1675Q) SNV VUsS B
#11 SCNNIB 5 chr16:23379257 c.857C>T p-(Ser286Leu) (p.S286L) SNV VUsS VUS Ligand-gated Sodium

(NM_000336.3) channel activity
#12 PDEIIA 12 chr2:178592456 c.1973A>G p-(Tyr658Cys) (p.Y658C) SNV Vus LB Signal transduction/Cyclic-nucleotide

(NM_016953.3) phosphodiesterase activity
#12 KCNJ5 3 chr11:128786343 c.977A>G p-(Glu326Gly) (p.E326G) SNV N/A VUS/LP Inward rectifier Potassium

(NM_000890.3) channel activity

1Assembly GRCh37/hg19; 2Gene function information was retrieved from GeneCards (www.genecards.org). Legend of abbreviations: chr, chromosome; HGVS, Human Genome Variation Society Nomenclature; SNV, single nucleotide variant; B, benign; LB, likely

benign; VUS, variant of uncertain significance; LP, likely pathogenic; P, pathogenic; N/A, not available in database.

‘|e 12 euIssapy

0225891'5202°0PUd4/682¢°0T


http://www.genecards.org
https://doi.org/10.3389/fendo.2025.1685220
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Messina et al.

TABLE 2 Clinical characteristics of patients with GVs.

Age at diagnosis

Size of adrenal

10.3389/fendo.2025.1685220

Pt ID Gene Gender Laterality Diagnosis Clinical phenotype
(years) mass (mm)

#1 F 49 20 Unilateral MACS Hypertension
ZNRF3

#2 F 38 18 Unilateral NFAT -

#3 M 56 22 Bilateral MACS Hypertension, IGT
ARMC5

#4 M 48 30 Bilateral NFAT Hypertension. IGT

45 F 0 16 Umll)alltera.l e;t dliilgjosm, NEAT B

APC ilateral at

#6 M 61 59 Bilateral MACS Hypertension

#7 F 58 48 Bilateral MACS Hypertension

#8 F 40 40 Bilateral NFAT -

CACNA1H

#9 F 70 50 Unilateral MACS Hypertension

#10 F 64 30 Bilateral MACS Hypertension, T2DM

#11 SCNNIB F 49 25 Unilateral MACS Hypertension
PDE11A

#12 KCNJ5 M 66 14 Unilateral NFAT Hypertension, T2DM

MACS, mild autonomous cortisol secretion; NFAT, nonfunctioning adrenal tumor; IGT, impaired glucose tolerance; T2DM, Type 2 Diabetes Mellitus; LFU, last follow-up.

GVs in both PDEIIA and KCNJ5 genes were identified in a
hypertensive, diabetic male patient presenting with a 14 mm non-
secreting adrenal mass, which demonstrated no radiological
progression over a 7-year follow-up period.

Discussion

Adrenal tumors occur sporadically, and only in rare instances in
the context of familial genetic syndromes. This clinical observation
supports the view that hereditable genetic factors contribute to their
etiopathogenesis in a minority of cases (44). To date, genetic
research has primarily focused on patients with primary
aldosteronism (45, 46), or Cushing syndrome (47, 48) or ACC
(49, 50). Clinically non-functioning adrenal incidentalomas
received less attention. This multicenter study represents, to our
knowledge, one of the few studies aimed to investigate the germline
variants associated with adrenal incidentalomas using a targeted
sequencing approach and to explore potential genotype-
phenotype correlations.

Targeted NGS focused on 21 genes whose selection was based
on literature data supporting their potential role in adrenal tumor
formation. Our findings show that GVs in genes implicated in
adrenal tumorigenesis are present in approximately 6.3% of patients
with adrenal incidentaloma. Currently, the clinical significance of
these variants remains uncertain, as the majority are classified as
VUS according to the ClinVar database. Nonetheless, these VUS
could be reclassified based on new evidence thanks to functional
assays or emerging clinical data. Therefore, a potential pathogenic
role for these variants cannot be ruled out at this time. In summary,
we identified GVs in only 7 of the 21 genes analyzed in the panel,
ZNRF3, ARMC5, APC, CACNAI1H, SCNN1B, PDEI1A, KCNJ5.
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Somatic mutations of ZNRF3 are present in approximately 20%
of patients with ACC (51), a finding that suggests an important role
in tumor development through aberrant activation of the Wnt
pathway (7, 8). In contrast, such mutations are rarely observed in
adrenal adenomas (17, 25) suggesting a limited pathogenic role in
benign lesions. In our series, we observed two GV’ of the ZNRF3 gene
in patients with adrenal adenomas lacking any suspicious features
and remaining radiologically stable over time. Both identified tumor
suppressor variants -a novel in-frame variant p.(Ala610delinsGlySer)
and a frameshift variant p.(Ala822ProfsTer4)- have not been
previously reported in the ClinVar database. While somatic
mutations in ZNRF3 are commonly observed across various
cancers, the implications of germline variations in this gene remain
less well understood. Notably, the p.(Ala610delinsGlySer) variant is
classified in the Varsome Premium tool as benign, based on its allele
frequency in the gnomAD exome dataset (0.000164), and its presence
primarily in healthy adult individuals. This alteration results in a
change in the protein coding sequence length and does not occur
within a known repeat region, suggesting that it may not arise from
replication slippage or repeat-associated mutational mechanisms
(52). Furthermore, we identified a novel null variant in the ZNRF3
gene (c.2460del), leading to a frameshift and premature stop codon.
Although this variant has not yet been reported in ClinVar nor
established as a germline contributor to adrenal incidentalomas,
Varsome Premium classifies it as a variant of VUS/LP, due to a
frameshift mutation presumed to cause nonsense-mediated decay.
Importantly, ZNRF3 inactivation has been demonstrated to
cause hyperactivation of Wnt/B-catenin signaling, a pathway
critical for regulating cell growth, differentiation, and tumor
development (51, 53). Nevertheless, to date, no studies have
explored the clinical implications of these variants in patients with
adrenal incidentalomas.
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Inactivating mutations in ARMC5 are the most common
genetic alterations in PBMAH, accounting for approximately 80%
of familial and 20-25% of sporadic cases (10, 54, 55). Pathogenic
GVs in ARMC5 have already been detected in 18.8% of patients
with bilateral adrenal incidentalomas and MACS (56). The
heterozygous p.(Pro731Arg) variant in ARMCS5, currently
classified as conflicting interpretation, has been reported in earlier
studies, indicating that it represents a relatively frequent
observation among reported cases (10, 50, 55, 56). We found this
variant in two patients with bilateral adrenal lesions (and MACS in
one of them). The relative frequency of non-pathogenic ARMC5
variants suggests that multiple molecular mechanisms are needed in
PBMAH pathogenesis (57). This finding leads also to the
speculation that a continuum may exist between bilateral
adenomas and PBMAH and that what we currently interpret as
bilateral adenomas might represent early stages of PBMAH.
PBMAH frequently results from heterozygous germline
inactivating mutations, often accompanied by a second somatic
mutation, consistent with a ‘two-hit’ model of tumorigenesis (33).
However, recent studies have identified somatic ARMC5 mutations
occurring independently of germline alterations (56). A potential
limitation of our study is the lack of genetic analysis on adrenal
tissue, which precludes the assessment of somatic mutations role.
Nonetheless, the recurrence of the ARMCS variants in patients with
bilateral adrenal tumors across different cohorts, including ours,
supports the existence of a definitive genotype-phenotype
correlation. In line with this, ARMC5 testing may be most
informative in patients with bilateral adrenal lesions, especially
when associated with MACS, as already proposed by Mariani
et al. (2020) (58).

We identified two different GVs of the APC gene. Other studies
investigated the natural history of adrenal incidentalomas in
familial adenomatous polyposis (FAP) and found that these
lesions typically exhibit a non-aggressive behavior (59). Of
particular interest, the APC p.(Ile1307Lys) variant is a missense
polymorphism with an allele frequency of 0.002008 (gnomAD
exome) in the general population, indicating that it is relatively
common and should therefore be considered of limited clinical
significance. In particular, this variant is a low-to-moderate
penetrance alteration associated with a moderately increased risk
of colorectal cancer exclusively in individuals of Ashkenazi Jewish
origin (60-62). However, the InSight consortium has highlighted
challenges in applying standard variant interpretation frameworks
to this peculiar alteration, leading to inconsistencies in its
classification (63). Currently, there is insufficient high-quality
evidence to establish the p.(Ile1307Lys) variant as a significant
risk factor for colorectal cancer in non-Ashkenazi Jewish
populations or for extracolonic malignancies (64).

We identified another APC variant p.(Gly2164Ala) in a male
patient presenting with bilateral adrenal lesions and MACS, but
without evidence of colonic polyposis. This specific variant has not
previously been documented in individuals with APC-related
syndromes, nor is it reported in population databases such as the
gnomAD, indicating that it is a rare or possibly novel alteration.
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Currently, there is insufficient data to clarify the pathogenicity or
clinical significance of this variant. Mutations in the APC gene,
particularly those affecting exon 16, are well-established
contributors to colorectal carcinogenesis (65). Especially, exon 16
is the largest exon, encoding approximately 77% of the APC protein
and encompassing multiple critical functional domains (63). It has
been observed that the majority (~94%) of germline APC mutations
result in truncated proteins, for instance caused by nonsense or
frameshift mutations (66).

Literature data showed that both somatic and germline
heterozygous mutations in CACNA1H, which encodes the alpha-1
subunit family of T-type calcium channel (CaV3.2), result in a gain-
of-function effect, leading to enhanced aldosterone synthesis (22).
In our cohort, primary aldosteronism was excluded at diagnosis;
nonetheless, three of the four carriers of these variants of uncertain
clinical significance in CACNAIH presented with hypertension and
MACS. This finding is in line with the concept that autonomous
aldosterone secretion extends beyond the traditional boundaries of
primary aldosteronism (67) and reinforce the notion of a
continuum, in which mild or subclinical forms may not be
reliably captured by standard screening approaches. In the fourth
carrier, CACNAIH SNV p.(Glul314Gly) was identified, which has
not yet been classified in the ClinVar database. According to
Varsome, this variant is currently categorized as of uncertain
significance while multiple in silico prediction tools suggest a
likely deleterious effect (SIFT: 0.001; PolyPhen-2: 1.0; FATHMM:
-4.55). This amino acid substitution occurs within the homologous
domain III transmembrane o-helix, a region known to play a key
role in regulating calcium ion flux through the CaV3.2 channel,
thereby influencing cellular processes (68). The replacement of a
negatively charged glutamic acid with a neutral glycine could
disrupt the structural stability of the channel protein, potentially
impairing its folding and function. Although these bioinformatic
predictions raise concerns about its pathogenic potential, further
functional validation is required to determine the true clinical
significance of this variant in the context of adrenal incidentalomas.

Mutations in SCNN1B, belonging to the sodium channel genes,
may cause a rare dominant form of monogenic hypertension. We
found the p.(Ser286Leu) variant in a patient with MACS. However,
this variant has been previously reported as benign (69). Functional
studies on this variant, which is located in exon 5, suggest that it
does not significantly alter the cellular sodium transport
activity (70).

Defects in the PDE11A gene, encoding phosphodiesterase type
11, represent the main genetic cause of isolated primary pigmented
nodular dysplasia of the adrenal cortex (iPPNAD), and are also
detectable in PBMAH and adrenocortical adenomas (71). The
p-(Tyr658Cys) variant, previously identified in a patient with
ACTH-dependent macronodular adrenal hyperplasia (72), lies
outside canonical functional domain. Although not located within
the catalytic or regulatory regions, in silico algorithms SIFT and
Polyphen-2 predict this missense substitution could be deleterious.
Functional studies further support its significant impact on enzyme
activity: transfection experiments in different cell lines

frontiersin.org


https://doi.org/10.3389/fendo.2025.1685220
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Messina et al.

demonstrated markedly reduced PDE activity associated with the
Y658C variant, with the most pronounced inhibitory effect among
the tested mutations (73). This reduction in enzyme activity likely
inhibits intracellular cAMP and cGMP regulation, key pathways in
adrenal cortex homeostasis. The study of Faucz et al. (2011) also
reported that the observed differences in variant behavior between
cell types suggest tissue-specific effects, which may underlie the
clinical variability observed among patients carrying PDEIIA
mutations (73). Further in-depth functional and clinical studies
are needed to definitively establish its pathogenic role.

GVs of KCNJ5 are implicated in rare syndromic forms of
primary aldosteronism, unlike its somatic mutations which are
often causative of aldosterone-producing adenomas (74). The
p-(Glu326Gly) variant falls within a functional domain present in
the third coding exon. The effect of amino acid substitution within
the inward-rectifying potassium (K) channels domain is well
studied, and the PA-associated mutations in KCNJ5 typically
cause a marked reduction in K+ selectivity (75, 76). Hence the
channels carry a significant inward Na+ current, which is thought to
depolarize the zona glomerulosa cells triggering increased
aldosterone synthesis and release. In silico predictors suggest that
it could be deleterious; however, there are no studies reporting this
specific mutation. Notably, our subject carrying both PDE11A and
KCNJ5 variants presented with hypertension and a non-
functioning adrenal tumor.

In conclusion, this study provides the first germline-level
analysis in a large cohort of patients with adrenal incidentalomas
to identify genetic variants in potential predisposition genes. In our
cohort, no GV with a current clearly established pathogenic role was
identified. Most of the variants found in our cohort were variants of
uncertain significance (VUS), a classification that is likely due to the
limited data available in the current literature. We disclose the limit
that the use of a targeted panel in this study could be associated with
a limited diagnostic yield, highlighting the need for broader
genomic strategies in future cohorts. Larger, adrenal-disease-
inclusive panels or whole-exome sequencing could help uncover
rare or unexpected predisposition genes, provide a more
comprehensive framework to assess genotype-phenotype
correlations, and facilitate a deeper understanding of the
molecular basis of adrenal incidentalomas. To clarify the potential
pathogenicity of the variants of currently unknown significance,
further functional studies correlating genetic findings with clinical
phenotypes will be necessary. Given the current status of
knowledge, the present findings suggest that germline testing is
not useful in the management of patients with adrenal
incidentalomas, and widespread germline testing may therefore
not be warranted.
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