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Background: Cardiovascular disease (CVD) is the leading cause of mortality in
patients with metabolic dysfunction-associated steatotic liver disease (MASLD),
yet traditional risk predictors remain limited in clinical practice.

Objective: To develop machine learning (ML) models for classifying prevalent
atherosclerotic cardiovascular disease (ASCVD) risk in MASLD patients, and to
enhance model interpretability using SHapley Additive exPlanations (SHAP).
Methods: This retrospective study included 590 MASLD patients diagnosed at
the Affiliated Hospital of Qingdao University between December 2019 and
December 2024. Patients were randomly divided into a training set (n=413)
and a validation set (n=177), and further stratified based on ASCVD status. Least
absolute shrinkage and selection operator (LASSO) regression was used for
feature selection. Six ML models were developed and evaluated using
sensitivity, specificity, accuracy, area under the receiver operating
characteristic curve (AUC), and F1 score. SHAP analysis was performed to
interpret feature contributions.

Results: ASCVD was present in 434 of 590 patients (73.6%). The Gradient
Boosting (GB) model achieved the best performance, with AUCs of 0.918 (95%
Cl: 0.890-0.944) in the training set and 0.817 (95% Cl: 0.739-0.883) in the
validation set. SHAP analysis identified the top predictors as the Cholesterol—
HDL-Glucose (CHG) index, Castelli Risk Index Il (CRI-II), lipoprotein(a) [Lp(a)l,
serum creatinine (Scr), and uric acid (UA).

Conclusion: The GB model demonstrated strong high accuracy in identifying
existing ASCVD in MASLD patients and may serve as a useful tool for early risk
stratification in clinical settings.
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is a chronic metabolic
stress—related liver disease that arises in genetically predisposed
individuals due to overnutrition and insulin resistance (IR) (1).
With the global rise in obesity and type 2 diabetes, the diagnostic
criteria for this condition have undergone significant revisions. In
2020, an international expert panel proposed renaming the disease as
metabolic dysfunction-associated fatty liver disease (MAFLD) (2),
reflecting its underlying pathophysiology more accurately. In 2023,
the European Association for the Study of the Liver (EASL) further
updated the terminology to metabolic dysfunction-associated
steatotic liver disease (MASLD), emphasizing the central role of
metabolic and cardiovascular risk factors in its diagnosis (1).
Recent epidemiological studies indicate that MASLD has become
one of the most prevalent chronic liver diseases in China, with a
continuously rising incidence (3).

Atherosclerotic cardiovascular disease (ASCVD) is one of the
leading causes of death and disability worldwide (4-7). Its
pathogenesis is closely linked to atherosclerosis and metabolic
dysfunction. MASLD and ASCVD share multiple metabolic risk
factors, and accumulating evidence suggests that the both presence
and severity of MASLD are strongly associated with increased
ASCVD risk (8, 9), Moreover, ASCVD is a major cause of
mortality in patients with MASLD (10). Therefore, developing
reliable and effective classification of prevalent ASCVD tools is
critical for the early identification and intervention in individuals at
high risk MASLD populations.

Currently, cardiovascular disease (CVD) risk assessment
primarily relies on traditional indicators such as age, sex, smoking
status, blood pressure, and high-density lipoprotein cholesterol
(HDL-C) levels (11). Although widely used in clinical practice,
these models have notable limitations. While HDL-C is a well-
established inverse predictor of ASCVD events (12), its
discriminative ability in identifying ASCVD among MASLD
patients is limited. Such models often fail to account for the
combined effects of dyslipidemia and impaired glucose regulation.
In recent years, composite metabolic indices such as the
cholesterol-HDL-glucose (CHG) index and Castelli’s Risk Index
II (CRI-II) have been proposed to better capture the impact of
metabolic disturbances on cardiovascular risk (13).

Machine learning (ML), as an emerging modeling approach,
offers strong capabilities in handling complex interactions and
nonlinear relationships, and has been widely applied in the
development of medical prediction models (14-17). For instance,
Duran et al. (18) demonstrated nonlinear associations between
gastric microbiota and proton pump inhibitor exposure, while
Kha et al. (19) employed the Extreme Gradient Boosting
(XGBoost) model to identify interactions among oral diabetes
medications in patients with diabetes. Despite these powerful
capabilities and increasing applications, a notable limitation of
ML models remains their limited interpretability, often leading
them to be characterized as “black box” models (20). SHapley
Additive exPlanations (SHAP), a widely adopted interpretability

Frontiers in Endocrinology

10.3389/fendo.2025.1684558

framework in recent years, improves model transparency and
clinical acceptability by quantifying the contribution of each
feature to the prediction output (21, 22).

Therefore, this study aimed to develop multiple ML models to
identify existing ASCVD in patients with MASLD, and to
incorporate the SHAP method for model interpretation, thereby
providing an accurate, efficient, and interpretable tool to support
clinical decision-making.

2 Methods

This study collected blood samples, basic medical history
information, and ultrasound reports from patients, and conducted
ML based on population characteristics to evaluate model
performance and establish a model capable of effectively
identifying MASLD patients at risk of ASCVD. The entire
research workflow is summarized in Figure 1.

2.1 Study population

A total of 590 inpatients diagnosed with MASLD were
retrospectively enrolled from the Affiliated Hospital of Qingdao
University between December 2019 and December 2024. Written
informed consent was obtained from all participants. The study
protocol was approved by the Ethics Committee of the Affiliated
Hospital of Qingdao University.

2.2 Inclusion and exclusion criteria

Inclusion criteria were as follows (1): Hepatic steatosis
confirmed by standard abdominal ultrasonography (23). (2)
Diagnosis of MASLD, defined as hepatic steatosis accompanied
by at least one metabolic cardiovascular risk factor, including
obesity, hypertension, prediabetes or a history of type 2 diabetes
mellitus, hypertriglyceridemia, or low HDL-C levels.

Exclusion criteria included: (1) History of excessive alcohol
consumption (=140 g/week for men or 270 g/week for women); (2)
History of viral hepatitis, liver cirrhosis, autoimmune liver disease,
or drug-induced liver injury; (3) Use of antiplatelet or lipid-
lowering medications; (4) History of coronary intervention or
coronary artery bypass grafting (CABG); (5) Presence of other
cardiac diseases;

(6) Severe renal insufficiency, malignancy, autoimmune
disorders, acute or chronic infectious diseases, or major
cerebrovascular disease.

The diagnosis of ASCVD was based on the 2013 ACC/AHA
Guideline on the Treatment of Blood Cholesterol to Reduce
Atherosclerotic Cardiovascular Risk in Adults (10), and included
any of the following conditions: congestive heart failure, stable or
unstable angina, acute myocardial infarction, ischemic stroke, or
peripheral atherosclerosis.
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The GB model demonstrated strong high accuracy in identifying existing ASCVD in MASLD patients and may
serve as a useful tool for early risk stratification in clinical settings

FIGURE 1
Workflow diagram of this study.

2.3 Grouping method

All MASLD patients were classified into two groups based on
the presence or absence of ASCVD: the MASLD-only group and the
MASLD+ASCVD group. Subsequently, the entire cohort was
randomly divided into a training set (n = 413) and a validation
set (n = 177) in a 7:3 ratio for model development and validation.

2.4 Data collection and feature
construction

Basic patient information was obtained from the electronic
medical record system, including sex, age, height, weight,
smoking and alcohol consumption history. Laboratory parameters
included fasting blood glucose (FBG), alanine aminotransferase
(ALT), aspartate aminotransferase (AST), triglycerides (TG), total
cholesterol (TC), lipoprotein(a) [Lp(a)], HDL-C, low-density
lipoprotein cholesterol (LDL-C), serum creatinine (Scr), cystatin
C (CYSC), uric acid (UA), and blood cell count-related indices.

Based on the above data, several composite metabolic indicators
were calculated to better reflect patients’ metabolic status, including
body mass index (BMI), sarcopenia index (SI), CHG index,
Castelli’s Risk Index I and II (CRI-I, CRI-II), atherosclerosis
index (AIP), triglyceride-glucose (TyG) index, and the BMI-
adjusted TyG index (TyG-BMI).
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Data preprocessing and feature engineering were conducted in a
Python 3.8 environment. The Pandas library (v1.3.3) was used for
data loading, cleaning, and structural formatting. Numerical
computation and missing value imputation were performed using
NumPy (v1.21.2). Complete technical specifications are
documented in Appendix A. To reduce feature dimensionality,
enhance modeling efficiency, and control multicollinearity, least
absolute shrinkage and selection operator (LASSO) regression with
L1 regularization was applied for feature selection. The final feature
set was determined exclusively by the LASSO regression without
clinical judgment intervention. Ten-fold cross-validation was
performed using the LassoCV module in the Scikit-learn library
to automatically determine the optimal regularization parameter A.
Variables with non-zero coefficients were retained as input features
for model construction. A regularization path plot illustrating
coefficient shrinkage during LASSO selection was generated using
Matplotlib (v3.4.3).

2.5 Machine learning model construction
and hyperparameter optimization

After feature extraction and variable construction, six
commonly used ML algorithms were developed based on the
training set: Random Forest (RF), Logistic Regression (LR),
Gradient Boosting (GB), Adaptive Boosting (AdaBoost),
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XGBoost, and Light Gradient Boosting Machine (LightGBM) (24).
The selection of the six machine learning approaches was guided by
the following considerations: (a) Small-sample robustness: Tree-
based ensembles (RF, GB, AdaBoost, XGBoost, Light GBM) mitigate
overfitting through regularization and ensemble mechanisms, while
LR provides stable baselines for low-dimensional patterns; (b)
Interpretability: LR enables direct coefficient interpretation, and
tree-based models offer native feature importance outputs. (c)
Computational efficiency: All ML demonstrate fast convergence
on moderate-sized datasets, avoiding complex models requiring
large-scale data (25, 26). Model development and training were
conducted in a Python environment using mainstream open-source
libraries, including Scikit-learn, XGBoost (v1.5.1), and
LightGBM (v3.3.2).

To enhance model generalizability, all models were trained
using a Pipeline framework combined with 10-fold cross-
validation. Hyperparameter tuning was performed using the
RandomizedSearchCV method. Model inputs were the key
features selected via LASSO regression, and the output was a
binary classification indicating the presence or absence of ASCVD.

To evaluate model performance, the following metrics were
calculated on the validation set: area under the receiver operating
characteristic curve (AUC), sensitivity, specificity, accuracy,
positive predictive value (PPV), and F1 score. AUC was used as
the primary indicator of discriminatory ability, while the F1 score
was particularly emphasized to assess precision-recall trade-offs in
the presence of class imbalance.

In addition, normalized confusion matrices were generated to
visualize the classification ability of each model for positive and
negative cases. Based on the overall performance across metrics, the
best-performing model was selected for subsequent
interpretability analysis.

Meanwhile, we selected the Prediction for ASCVD Risk in
China (China-PAR project) model as the primary benchmark
because it represents the current standard for ASCVD risk
assessment in Chinese populations (27). It is important to note
that while China-PAR was developed in general population cohorts,
our study specifically targets the MASLD subpopulation.

2.6 Model interpretability analysis (SHAP)

To improve the transparency and interpretability of the
machine learning model, SHAP was applied to the best-
performing model for both global and individual-level
interpretation. SHAP is based on the Shapley value concept from
game theory and assigns each feature a contribution value for every
individual prediction, thereby enabling transparent explanations of
complex, nonlinear models.

At the global level, a SHAP feature importance plot was
generated to rank the input variables according to their average
absolute SHAP values, which reflect the mean magnitude of impact
each feature has on the model’s output. Higher values indicate
greater overall influence on predictions.
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A SHAP summary plot was then constructed to visualize how
individual feature values contributed to model outputs across the
entire dataset. Each point on the plot represents the SHAP value of a
specific feature for one patient. The color gradient from red to blue
indicates high to low feature values, while the distribution along the
x-axis shows the direction and magnitude of each feature’s effect on
the prediction.

To further investigate nonlinear effects and feature interactions,
SHAP dependence plots were generated. These plots visualize the
marginal effects of predictors across their value ranges, revealing
threshold effects and nonlinear relationships with prevalent
ASCVD status.

At the individual level, SHAP force plots were created for two
representative patients randomly selected from the cohort. These
visualizations explain how each feature contributes to a specific
prediction. In the force plots, red bars represent features that push
the prediction toward the positive class (MASLD+ASCVD), while
blue bars represent features that push it toward the negative class.
The sum of these contributions, starting from the model’s base
value, yields the final predicted probability, illustrating a clear,
feature-wise explanation path.

All SHAP analyses were performed in Python using the SHAP
library (v0.40.0), with visualizations generated using Matplotlib and
Plotly. The incorporation of SHAP not only enhanced model
transparency but also provided valuable insights into high-risk
features, thereby improving both clinical utility and
model credibility.

2.7 Statistical analysis

All statistical analyses and visualizations were performed using
R software (version 4.3.3) and SPSS software (version 27.0.0).
Continuous variables were described as mean * standard
deviation (SD) for normally distributed data, or as median with
interquartile range (IQR) for non-normally distributed data.
Categorical variables were expressed as counts (n) and
percentages (%).

Comparisons between groups for categorical variables were
conducted using the chi-square ()*) test. For continuous
variables, independent samples t-tests were applied for normally
distributed data, while nonparametric tests (e.g., Mann-Whitney U
test) were used for skewed distributions. All statistical tests were
two-sided, and a p-value < 0.05 was considered
statistically significant.

3 Results
3.1 Comparison of baseline characteristics
A total of 590 patients with MASLD were enrolled in the study,

including 413 cases assigned to the training set and 177 to the
validation set. Within the training set, patients were further
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stratified based on ASCVD status into the MASLD-only group (n =
107) and the MASLD+ASCVD group (n = 306).

Significant differences were observed between the two groups in
several clinical and laboratory parameters. The MASLD+ASCVD
group showed higher proportions of male patients and elevated
levels of FBG, ALT, TG, TC, Lp(a), LDL-C, Scr, UA, CHG index,
CRI-I, CRI-II, AIP, TyG, and TyG-BMI, all with statistically
significant differences (p < 0.05). In contrast, HDL-C levels were
significantly lower in the MASLD+ASCVD group than in the
MASLD-only group (p < 0.05).

No statistically significant differences were observed in the
remaining variables between the two groups (p > 0.05). A
summary of baseline characteristics is presented in Table 1.

3.2 Feature selection results

A total of 25 clinical and biochemical variables were initially
collected from the training dataset. To improve modeling efficiency,
reduce redundancy, and minimize potential multicollinearity, we
applied LASSO regression combined with 10-fold cross-validation
for feature selection. As a result, eight variables with strong predictive
value were retained (Figure 2): CHG, CRI-II, Lp(a), Scr, UA, AST, SI,
and sex. These selected features were used in the subsequent modeling
process, balancing predictive performance and model simplicity. The
regularization path (Figure 2) illustrates the progressive shrinkage of
variable coefficients as the regularization parameter (L) increases.

3.3 Predictive performance of machine
learning models

All six machine learning models demonstrated favorable
predictive performance in both the training and validation
cohorts. Among them, the GB model consistently outperformed
others, achieving the highest AUC in both the training set (AUC =
0.918, 95% CI: 0.890-0.945) and validation set (AUC = 0.817, 95%
CI: 0.739-0.883), as shown in Table 2 and Figure 3. In addition to
AUC, the GB model also exhibited superior sensitivity (0.811),
specificity (0.725), accuracy (0.785), and F1 score (Table 3,
Figure 4), indicating its robust and balanced classification ability
across multiple performance metrics.

Compared with Clinical Risk Scores, our model demonstrates
superior performance in both the training set (AUC = 0.728, 95%
CI: 0.674-0.780) and validation set (AUC = 0.724, 95% CI: 0.639-
0.804) (Figure 5).

3.4 SHAP-based interpretation of the
optimal model

To enhance the transparency and clinical interpretability of the

machine learning model, SHAP analysis was applied to the best-
performing GB model at both the global and individual levels.
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At the global level, the SHAP feature importance plot
(Figure 6A) identified CHG, CRI-II, Lp(a), Scr, and UA as the
top five most influential predictors of ASCVD. The SHAP summary
plot (Figure 6B) illustrated the direction and magnitude of each
feature’s contribution to the prediction outcome. Specifically,
higher values of CHG, CRI-II, Lp(a), and UA were associated
with greater positive SHAP values, indicating stronger driving
forces toward predicting ASCVD. In addition, SHAP dependence
plots (Figure 7) demonstrated a consistent positive marginal effect
of these features on the model output, suggesting nonlinear trends
and potential threshold effects.

At the individual level, force plots were generated for two
representative patients—one correctly predicted as ASCVD-
positive (true positive) and the other as ASCVD-negative (true
negative) (Figures 8A, B). In these visualizations, red bars denote
features that increase the prediction probability for ASCVD, while
blue bars indicate features that decrease it. The length of each bar
reflects the magnitude of contribution, and the final output is
determined by the cumulative effect of all features starting from
the model’s base value. For instance, markedly elevated CHG and
Lp(a) levels were major contributors to the ASCVD prediction,
whereas higher HDL-C levels played a protective role.

In summary, the SHAP analysis not only confirmed the strong
predictive value of key metabolic features in the GB model but also
provided individualized explanations for model outputs. This
highlights the model’s potential utility in clinical decision
support, offering both accurate prediction and interpretability.

4 Discussion

This study, based on real-world data from hospitalized MASLD
patients, developed and compared multiple machine learning
models to classify concurrent ASCVD. Eight key predictive
features were identified through LASSO regression. The GB
algorithm demonstrated superior predictive performance and
stability within our cohort of hospitalized MASLD patients, with
consistent results across both the training and validation sets.
However, its relative advantage may vary across different clinical
populations or with inclusion of additional features, underscoring
the need for external validation to ensure broader applicability.
Furthermore, the SHAP method was employed to enhance the
interpretability and clinical transparency of the model.

MASLD and ASCVD share a wide range of metabolic risk
factors. Our findings revealed that patients in the MASLD+ASCVD
group exhibited significantly more severe abnormalities in
metabolic indicators, indicating a substantial overlap between
atherosclerotic risk and hepatic metabolic dysregulation. In the
SHAP feature importance ranking, CHG, CRI-II, Lp(a), Scr, and
UA emerged as the top contributors to the predictive model. These
features reflect key metabolic mechanisms such as IR, dyslipidemia,
renal dysfunction, and systemic inflammation, which are consistent
with the established pathophysiology of both MASLD and
ASCVD (8).
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TABLE 1 Baseline characteristics of MASLD patients in the training and validation sets, stratified by ASCVD status.

Validation set (n= 177)

Training set (n= 413)

pt value p° value

Characteristics ~ MASLD (n = 107)  MASLD+ ASCVD (n = 306) MASLD (n = 49)  MASLD+ASCVD (n = 128)
SEX, n (%) 0.017 027 0.067

Female 49 (45.8) 99 (32.4) 17 (347) 32 (25.0)

Male 58 (54.2) 207 (67.6) 32 (65.3) 96 (75.0)
SMOKE, n (%) 0.101 1 032

No 84 (78.5) 213 (69.6) 37 (75.5) 98 (76.6)

Yes 23 (20.5) 93 (30.4) 12 (24.6) 30 (23.4)
f;t)ty liver, n 0.647 0312 0.985

Grade 1 52 (48.6) 137 (44.8) 22 (44.9) 60 (46.9)

Grade 2 47 (44.0) 138 (45.1) 20 (40.8) 59 (46.1)

Grade 3 8 (7.4) 31 (10.1) 7 (14.3) 9(7.0)
Age (years) 63 (59, 69) 62 (54, 68) 0.062 63 (55, 68) 64 (57, 69) 0.475 0.356
Fib- 4 130 (101, 1.62) 129 (0.95, 1.81) 0.924 129 (0.93, 1.69) 139 (106, 2.02) 0.056 0.12
BMI (kg/m?) 26,63 (24.79,2873) | 2699 (25.01, 29.07) 0.362 27.18 (2491,2932) | 2627 (24.2, 28.74) 0371 0.451
FBG (mg/dL) 10242 (91.0, 117.72) | 110.34 (95.76, 133.33) 0.003 106.56 (98.2, 119.7) | 113.94 (95.3, 146.74) 0.34 0211
AST (U/L) 20 (17, 25) 21 (17, 30) 0.055 21 (17, 26) 22 (18, 34) 0.096 0313
ALT (U/L) 20 (15, 27) 24 (17, 34) 0.002 21 (18, 30) 25 (17, 37) 0.235 0.175
TG (mg/dL) 116,82 (90.71, 177.44) | 145.14 (10443, 198.24) 0.012 130.10 (94.69, 164.61) | 13629 (98.01, 204.44) 0.299 0.774
TC (mg/dL) i;z;g)(mm ’ 174,13 (142,08, 207.14) 0.003 igz:gg)(m'”’ 174.90 (137.36, 210.91) 0.004 0.59
Lp (@) (mgl) | 107 (50, 202) 165 (64, 353) 0.002 115 (57, 237) 166.50 (75.75, 346.75) 0.089 0911
HDL-C (mg/dL) = 504 % 9.6 48.1+ 106 0.043 4844117 486+ 127 0.932 0.569
LDL-C (mg/dL) | 84.69 (6052, 105.18)  99.38 (72.41, 123.74) <0001 | 8121 (6458, 10248) | 97.64 (70.77, 127.71) 0.003 0.762
Ser (mg/dL) 0.96 (087, 1.11) 1.03 (0.9, 1.18) 0.006 0.98 (0.83, 1.15) 1.07 (0.92, 1.17) 0.205 055
Cys-C (mg/dL) | 0.09 (0.08, 0.11) 0.09 (008, 0.11) 0.203 0.09 (0.08, 0.11) 0.1 (0.8, 0.11) 0.09 0.451
PLT (10°/L) 215 (187, 254) 223 (189, 267) 0332 222 (177, 259) 223 (197, 256) 0.878 0.289
UA (umol/L) 330 (276.5, 390) 372.5 (306, 441.75) <0001 | 349 (303, 408) 370.5 (310.25, 446.25) 0.178 0.261
I 104 % 26 108+ 26 0.286 109 + 29 106 + 2.7 0.56 0.753
CHG 5.08 (4.8, 5.38) 531 (507, 5.61) <0001 527 (491, 5.39) 539 (5.11, 5.72) 0.004 0.152
CRIT 3.10 (274, 3.71) 3.72 (3.0, 437) <0001 334 (282,3.92) 374 (3.00, 4.46) 0.002 0533
CRIII 1.67 (1.29, 2.04) 2.12 (158, 2.67) <0001 182 (134, 2.16) 2,09 (1,55, 2.76) 0.002 0.736
AIP 0.41 (0.23, 0.56) 0.47 (031, 0.65) 0.005 0.40 (029, 0.62) 0.4 (028, 0.67) 0.606 0.955
TyG 8.78 (839, 9.20) 9.01 (862, 9.40) <0001 885 (8.47,9.27) 9.05 (853, 9.48) 0.205 0.619
TyG-BMI i:gﬁg)m“ 7 24372 (221.63, 267.56) 0.024 2436 £ 355 2432 £ 354 0.942 0.981

Data are presented as median (interquartile range, IQR), mean + standard deviation (SD), or number (percentage), as appropriate. P *: P -value for comparison between MASLD and MASLD+ASCVD
groups in the training set. P % P -value for comparison between MASLD and MASLD+ASCVD groups in the validation set. P *: P -value for comparison between the training and validation sets (inter-
group difference). Abbreviations: Fib-4, Fibrosis-4 index; BMI, body mass index; FBG, fasting blood glucose; AST, aspartate aminotransferase; ALT, alanine aminotransferase; TG, triglycerides; TC, total
cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Scr, serum creatinine; Cys-C, cystatin C; UA, uric acid; Plt, platelet count; SI, sarcopenia index;
CHG, cholesterol-HDL-glucose index; CRI-I, Castelli’s Risk Index I; CRI-II, Castelli’s Risk Index II; AIP, atherogenic index of plasma; TyG, triglyceride-glucose index; TyG-BMI, BMI-adjusted TyG

index.
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FIGURE 2

Feature selection process using LASSO regression. (A) Coefficient shrinkage

paths for all 25 candidate variables using least absolute shrinkage and

selection operator (LASSO) regression. As the regularization parameter a (log scale) increases, less informative features are penalized and their

coefficients shrink toward zero. (B) Ten-fold cross-validation curve showing
optimal o, corresponding to the minimum MSE, was used to select the final

the relationship between mean squared error (MSE) and a values. The
subset of predictive features. This approach balances model simplicity

and generalization performance. A total of 25 clinical and biochemical variables were entered into the model. Feature selection and visualization

were performed using the LassoCV module from Scikit-learn (Python 3.8).

Traditional single lipid markers such as LDL-C have
demonstrated limited effectiveness in early ASCVD classification
of prevalent ASCVD (28). A previous study reported that
approximately 77% of hospitalized ASCVD patients had LDL-C
levels within the normal range (29), suggesting its insufficient
standalone predictive value. In contrast, composite lipid indices
such as CRI, AIP, and the TyG index, which simultaneously reflect
multiple metabolic pathways, have shown superior performance in
predicting cardiovascular and metabolic diseases (13, 30-32).
Notably, this study is the first to systematically evaluate the CHG
index for identifying ASCVD risk among MASLD patients,
expanding its potential application in early metabolic
risk management.

Unlike many prior “black-box” models, this study emphasized
model interpretability. At the population level, SHAP feature
rankings and dependence plots revealed the marginal and non-
linear effects of key variables. At the individual level, SHAP force
plots provided transparent explanations of the prediction logic for
specific patients, highlighting the positive or negative impact of each

variable. This approach offers valuable insight for developing
transparent clinical decision support systems (CDSS).

Despite the promising findings, several limitations must be
acknowledged. First, this study was conducted as a single-center
retrospective analysis. The cohort was intentionally enriched with
high-risk MASLD patients from tertiary hospital cardiology clinics,
resulting in a higher observed ASCVD prevalence (73.6%) than
population-based samples. While this design ensured adequate
event rates for predictive modeling, it may introduce selection
bias and limit external generalizability to community-based
primary prevention settings. External validation in broader and
more diverse cohorts is therefore warranted. Second, our outcome
definition relied on administrative ICD codes (e.g., I50.x for heart
failure), which cannot distinguish between atherosclerotic and non-
atherosclerotic etiologies of congestive heart failure. Prospective
studies with protocol-defined ASCVD adjudication are needed to
confirm etiology-specific classifications. Third, although L1
regularization was used to mitigate overfitting, the relatively small
sample size still poses a risk to the robustness of the conclusions.

TABLE 2 Predictive performance of six machine learning models in the validation cohort.

Sensitivity Specificity Precision F1 score
RF 0.757(0.675-0.839) 0.925(0.886-0.964) 0.364(0.293-0.435) 0.815(0.757-0.872) 0.866(0.816-0.916)
LR 0.717(0.633-0.796) 0.812(0.754-0.870) 0.477(0.404-0.551) 0.824(0.768-0.880) 0.818(0.761-0.875)
GB* 0.817(0.739-0.883)* 0.767(0.705-0.829) 0.750(0.686-0.814) 0.903(0.859-0.946) 0.829(0.774-0.885)
AdaBoost 0.797(0.720-0.865) 0.812(0.754-0.870) 0.568(0.495-0.641) 0.850(0.798-0.903) 0.831(0.776-0.886)
XGBoost 0.792(0.717-0.857) 0.759(0.696-0.822) 0.614(0.542-0.685) 0.856(0.804-0.908) 0.805(0.746-0.863)
LightGBM 0.815(0.743-0.881) 0.887(0.841-0.934) 0.500(0.426-0.574) 0.843(0.789-0.896) 0.864(0.814-0.915)

Values are expressed as mean (95% confidence interval). The Gradient Boosting (GB) model achieved the best overall performance, with the highest AUC and balanced sensitivity and specificity.

Fl-score is a metric synthesizing precision (proportion of positive predictions that are true) and

recall (proportion of actual positives correctly predicted), balancing them to comprehensively

reflect classification performance. AUC, area under the receiver operating characteristic curve; F1 score: harmonic mean of precision and recall; RF, random forest; LR, logistic regression; GB,
gradient boosting; AdaBoost, adaptive boosting; XGBoost, extreme gradient boosting; LightGBM, light gradient boosting machine. "*" denotes highlighting that GB is the optimal model.

Frontiers in Endocrinology 07

frontiersin.org


https://doi.org/10.3389/fendo.2025.1684558
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Li et al.

10.3389/fendo.2025.1684558

TABLE 3 Performance evaluation of the gradient boosting (GB) model in training and validation sets.

Metric

Training set (

Validation set (n=49/128)

AUC 0.918 (0.890-0.944) 0.817 (0.739-0.883)
Sensitivity 0.771(0.731-0.812) 0.767 (0.705-0.829)
Specificity 0.935(0.911-0.958) 0.750 (0.686-0.814)
Precision 0.971(0.955-0.987) 0.903 (0.859-0.946)
F1 score 0.860(0.826-0.893) 0.829 (0.774-0.885)

Model performance metrics for the Gradient Boosting (GB) algorithm were assessed in both the training set (n = 413; 306 positive, 107 negative) and validation set (n = 177; 128 positive, 49
negative). The GB model achieved an AUC of 0.918 in the training set and 0.817 in the validation set, with consistently high sensitivity, specificity, precision, and F1 score across both cohorts.
Values are presented as point estimates with 95% confidence intervals in parentheses. Performance was evaluated based on five metrics: area under the receiver operating characteristic curve
(AUQ), sensitivity (recall), specificity, precision (positive predictive value), and F1 score (harmonic mean of precision and recall).

Fourth, the current model does not incorporate multimodal data
such as imaging scores, genomic information, or lifestyle factors,
which could further enhance predictive accuracy. Lastly, while
SHAP-based explanations improve interpretability, further
validation through mechanistic studies and clinical pathways is
needed to confirm their clinical applicability and acceptance.

In conclusion, this study successfully developed a high-
performing and interpretable classification model for identifying
ASCVD in MASLD patients. By integrating machine learning with
SHAP-based explanations, the model demonstrates strong potential
for precision stratification and individualized risk assessment in
metabolic diseases. The model demonstrates strong predictive
performance in treatment-naive MASLD patients, providing a
novel tool for early high-risk identification. While excluding lipid-
lowering or antiplatelet therapy may limit immediate

generalizability to medicated populations, this approach helps
preserves the integrity of metabolic risk drivers analysis.
Importantly the key biomarkers highlighted by SHAP analysis—
such as (e.g., Lp(a)—remain clinically actionable therapeutic targets
for clinical intervention. The superior performance of our model
compared to the China-PAR score underscores the value of a
precision medicine approach for the distinct high-risk MASLD
population. This difference likely stems from a fundamental
divergence in design intent: while established scores like China-
PAR are optimized for general population screening, our model is
specifically engineered to capture the unique risk profile of MASLD
patients. Therefore, our work provides a complementary,
population-specific tool rather than a direct replacement for
general-purpose scores, enabling more refined risk stratification
for this cohort. Future work should focus on expanding to
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ROC curves of six machine learning models in predicting ASCVD among MASLD patients. (A) Training set (n = 413); (B) Validation set (n = 177).
Among all models, Gradient Boosting (GB) achieved the highest AUC in both sets (AUC = 0.918 in training, 0.817 in validation), indicating superior
discriminative performance. Model performance was evaluated using 10-fold cross-validation and plotted with the ROC curve and AUC (95% ClI).
Abbreviations: RF, Random Forest; LR, Logistic Regression; GB, Gradient Boosting; AdaBoost, Adaptive Boosting; XGBoost, Extreme Gradient

Boosting; LightGBM, Light Gradient Boosting Machine.
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FIGURE 4
Model Performance of gradient boosting (GB) in training and validation sets. (A) ROC curve of the GB model in the training set (n = 413), with an
AUC of 0.918 (95% CI: 0.890-0.945). (B) ROC curve of the GB model in the validation set (n = 177), with an AUC of 0.817 (95% CI: 0.739-0.883).
The orange dashed line represents the no-discrimination reference line (AUC = 0.5). (C, D) Normalized confusion matrices of the GB model for the
training and validation sets, respectively. Class 0: MASLD without ASCVD; Class 1: MASLD with ASCVD. Color intensity indicates normalized
frequency. Model performance was evaluated using 10-fold cross-validation and reported using AUC, sensitivity, and specificity.
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FIGURE 5
Model performance of prediction for ASCVD risk in China (China-PAR project) in training and validation sets. (A) ROC curve of the China-PAR project
model in the training set (n = 413), with an AUC of 0.728 (95% CI: 0.674-0.780). (B) ROC curve of the China-PAR project model in the validation set
(n = 177), with an AUC of 0.724 (95% CI: 0.639-0.804). The orange dashed line represents the no-discrimination reference line (AUC = 0.5)
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Global feature importance based on SHAP values from the gradient boosting model Each dot represents an individual SHAP value for a feature in
one patient. The x-axis indicates the direction and magnitude of the feature's impact on model output. Features are ranked by their mean absolute
SHAP value. The color gradient (blue to red) represents low to high feature values. Features such as CHG, CRI-II, and Lp (a) show strong positive
contributions to ASCVD risk prediction. SHAP values were derived from the Gradient Boosting model trained on the training set (n = 413), using the
SHAP Python package (v0.40.0). Abbreviations: CHG, cholesterol-glucose index; CRI-II, Castelli risk index II; Lp(a) , lipoprotein (a); CR, creatinine; UA,
uric acid; AST, aspartate transaminase; Sl, systolic index.
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FIGURE 7

SHAP dependence plots of key predictive features SHapley Additive exPlanations (SHAP) dependence plots showing the marginal effects of the four
most influential features on the prediction output of the Gradient Boosting model: (A) CHG, (B) CRI-II, (C) Lp(a), and (D) UA. The x-axis represents
the actual value of each feature. The y-axis shows the corresponding SHAP value, indicating the direction and magnitude of that feature’s
contribution to the model prediction. Each dot corresponds to a single patient. These plots reveal nonlinear, positive associations between the
feature values and their impact on ASCVD risk prediction, particularly highlighting threshold effects for CHG and Lp(a). The SHAP values were derived
using the Gradient Boosting model trained on 413 patients in the training cohort, using the SHAP Python package (v0.40.0). CHG, cholesterol—
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FIGURE 8

SHAP force plots illustrating individual prediction explanations by the gradient boosting model. (A) Force plot for Patient A (true positive). The final
model output f(x) = 2.54 exceeds the base value, indicating a high risk of ASCVD. (B) Force plot for Patient B (true negative). The output f(x) = 1.17
remains below the base value, suggesting no ASCVD. Red bars represent features that increase the predicted risk (positive contribution), while blue
bars represent features that decrease it (negative contribution). The length of each bar indicates the magnitude of contribution. The grey vertical line
represents the model's base value, i.e., the expected output when no features are present. SHAP (SHapley Additive exPlanations) values were
calculated using the SHAP Python package (v0.40.0), based on the Gradient Boosting model trained on the training cohort (n = 413).

multicenter, multimodal datasets, conducting performance
comparisons with traditional risk assessment models, developing
integrated risk engines combining traditional factors with MASLD-
specific biomarkers, and exploring the feasibility of clinical
deployment to support personalized cardiovascular risk
management in MASLD.

5 Conclusion

This study developed and validated multiple machine learning
models to classify concurrent atherosclerotic cardiovascular disease
(ASCVD) in hospitalized MASLD patients, using real-world cross-
sectional data. Among the evaluated methods, tree-based ensemble
learning algorithms—particularly Gradient Boosting—
demonstrated the most robust performance in this specific cohort,
showing high predictive accuracy and stability across both the
training and validation sets. The eight high-value features selected
via LASSO regression were also confirmed to have strong predictive
contributions through SHAP interpretability analysis.

The innovation of this study lies in the integration of high-
performance prediction modeling with interpretable machine
learning, balancing accuracy with clinical applicability. In
particular, the application of SHAP provided transparent
decision-making support at both global and individual levels,
enhancing the model’s practical value in CDSS.

This model provides a novel tool for identifying MASLD
patients with prevalent ASCVD, enabling individualized clinical
assessment during hospitalization. Future work should focus on
optimizing the model using multicenter datasets and expanding its
scope by incorporating imaging, genetic, and behavioral data. This
would provide a more comprehensive tool for early identification
and intervention in MASLD patients at high risk for ASCVD.
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