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Background: Cardiovascular disease (CVD) is the leading cause of mortality in

patients with metabolic dysfunction-associated steatotic liver disease (MASLD),

yet traditional risk predictors remain limited in clinical practice.

Objective: To develop machine learning (ML) models for classifying prevalent

atherosclerotic cardiovascular disease (ASCVD) risk in MASLD patients, and to

enhance model interpretability using SHapley Additive exPlanations (SHAP).

Methods: This retrospective study included 590 MASLD patients diagnosed at

the Affiliated Hospital of Qingdao University between December 2019 and

December 2024. Patients were randomly divided into a training set (n=413)

and a validation set (n=177), and further stratified based on ASCVD status. Least

absolute shrinkage and selection operator (LASSO) regression was used for

feature selection. Six ML models were developed and evaluated using

sensitivity, specificity, accuracy, area under the receiver operating

characteristic curve (AUC), and F1 score. SHAP analysis was performed to

interpret feature contributions.

Results: ASCVD was present in 434 of 590 patients (73.6%). The Gradient

Boosting (GB) model achieved the best performance, with AUCs of 0.918 (95%

CI: 0.890–0.944) in the training set and 0.817 (95% CI: 0.739–0.883) in the

validation set. SHAP analysis identified the top predictors as the Cholesterol–

HDL–Glucose (CHG) index, Castelli Risk Index II (CRI-II), lipoprotein(a) [Lp(a)],

serum creatinine (Scr), and uric acid (UA).

Conclusion: The GB model demonstrated strong high accuracy in identifying

existing ASCVD in MASLD patients and may serve as a useful tool for early risk

stratification in clinical settings.
KEYWORDS
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is a chronic metabolic

stress–related liver disease that arises in genetically predisposed

individuals due to overnutrition and insulin resistance (IR) (1).

With the global rise in obesity and type 2 diabetes, the diagnostic

criteria for this condition have undergone significant revisions. In

2020, an international expert panel proposed renaming the disease as

metabolic dysfunction-associated fatty liver disease (MAFLD) (2),

reflecting its underlying pathophysiology more accurately. In 2023,

the European Association for the Study of the Liver (EASL) further

updated the terminology to metabolic dysfunction-associated

steatotic liver disease (MASLD), emphasizing the central role of

metabolic and cardiovascular risk factors in its diagnosis (1).

Recent epidemiological studies indicate that MASLD has become

one of the most prevalent chronic liver diseases in China, with a

continuously rising incidence (3).

Atherosclerotic cardiovascular disease (ASCVD) is one of the

leading causes of death and disability worldwide (4–7). Its

pathogenesis is closely linked to atherosclerosis and metabolic

dysfunction. MASLD and ASCVD share multiple metabolic risk

factors, and accumulating evidence suggests that the both presence

and severity of MASLD are strongly associated with increased

ASCVD risk (8, 9), Moreover, ASCVD is a major cause of

mortality in patients with MASLD (10). Therefore, developing

reliable and effective classification of prevalent ASCVD tools is

critical for the early identification and intervention in individuals at

high risk MASLD populations.

Currently, cardiovascular disease (CVD) risk assessment

primarily relies on traditional indicators such as age, sex, smoking

status, blood pressure, and high-density lipoprotein cholesterol

(HDL-C) levels (11). Although widely used in clinical practice,

these models have notable limitations. While HDL-C is a well-

established inverse predictor of ASCVD events (12), its

discriminative ability in identifying ASCVD among MASLD

patients is limited. Such models often fail to account for the

combined effects of dyslipidemia and impaired glucose regulation.

In recent years, composite metabolic indices such as the

cholesterol–HDL–glucose (CHG) index and Castelli’s Risk Index

II (CRI-II) have been proposed to better capture the impact of

metabolic disturbances on cardiovascular risk (13).

Machine learning (ML), as an emerging modeling approach,

offers strong capabilities in handling complex interactions and

nonlinear relationships, and has been widely applied in the

development of medical prediction models (14–17). For instance,

Durán et al. (18) demonstrated nonlinear associations between

gastric microbiota and proton pump inhibitor exposure, while

Kha et al. (19) employed the Extreme Gradient Boosting

(XGBoost) model to identify interactions among oral diabetes

medications in patients with diabetes. Despite these powerful

capabilities and increasing applications, a notable limitation of

ML models remains their limited interpretability, often leading

them to be characterized as “black box” models (20). SHapley

Additive exPlanations (SHAP), a widely adopted interpretability
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framework in recent years, improves model transparency and

clinical acceptability by quantifying the contribution of each

feature to the prediction output (21, 22).

Therefore, this study aimed to develop multiple ML models to

identify existing ASCVD in patients with MASLD, and to

incorporate the SHAP method for model interpretation, thereby

providing an accurate, efficient, and interpretable tool to support

clinical decision-making.
2 Methods

This study collected blood samples, basic medical history

information, and ultrasound reports from patients, and conducted

ML based on population characteristics to evaluate model

performance and establish a model capable of effectively

identifying MASLD patients at risk of ASCVD. The entire

research workflow is summarized in Figure 1.
2.1 Study population

A total of 590 inpatients diagnosed with MASLD were

retrospectively enrolled from the Affiliated Hospital of Qingdao

University between December 2019 and December 2024. Written

informed consent was obtained from all participants. The study

protocol was approved by the Ethics Committee of the Affiliated

Hospital of Qingdao University.
2.2 Inclusion and exclusion criteria

Inclusion criteria were as follows (1): Hepatic steatosis

confirmed by standard abdominal ultrasonography (23). (2)

Diagnosis of MASLD, defined as hepatic steatosis accompanied

by at least one metabolic cardiovascular risk factor, including

obesity, hypertension, prediabetes or a history of type 2 diabetes

mellitus, hypertriglyceridemia, or low HDL-C levels.

Exclusion criteria included: (1) History of excessive alcohol

consumption (≥140 g/week for men or ≥70 g/week for women); (2)

History of viral hepatitis, liver cirrhosis, autoimmune liver disease,

or drug-induced liver injury; (3) Use of antiplatelet or lipid-

lowering medications; (4) History of coronary intervention or

coronary artery bypass grafting (CABG); (5) Presence of other

cardiac diseases;

(6) Severe renal insufficiency, malignancy, autoimmune

disorders, acute or chronic infectious diseases, or major

cerebrovascular disease.

The diagnosis of ASCVD was based on the 2013 ACC/AHA

Guideline on the Treatment of Blood Cholesterol to Reduce

Atherosclerotic Cardiovascular Risk in Adults (10), and included

any of the following conditions: congestive heart failure, stable or

unstable angina, acute myocardial infarction, ischemic stroke, or

peripheral atherosclerosis.
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2.3 Grouping method

All MASLD patients were classified into two groups based on

the presence or absence of ASCVD: the MASLD-only group and the

MASLD+ASCVD group. Subsequently, the entire cohort was

randomly divided into a training set (n = 413) and a validation

set (n = 177) in a 7:3 ratio for model development and validation.
2.4 Data collection and feature
construction

Basic patient information was obtained from the electronic

medical record system, including sex, age, height, weight,

smoking and alcohol consumption history. Laboratory parameters

included fasting blood glucose (FBG), alanine aminotransferase

(ALT), aspartate aminotransferase (AST), triglycerides (TG), total

cholesterol (TC), lipoprotein(a) [Lp(a)], HDL-C, low-density

lipoprotein cholesterol (LDL-C), serum creatinine (Scr), cystatin

C (CYSC), uric acid (UA), and blood cell count–related indices.

Based on the above data, several composite metabolic indicators

were calculated to better reflect patients’metabolic status, including

body mass index (BMI), sarcopenia index (SI), CHG index,

Castelli’s Risk Index I and II (CRI-I, CRI-II), atherosclerosis

index (AIP), triglyceride–glucose (TyG) index, and the BMI-

adjusted TyG index (TyG-BMI).
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Data preprocessing and feature engineering were conducted in a

Python 3.8 environment. The Pandas library (v1.3.3) was used for

data loading, cleaning, and structural formatting. Numerical

computation and missing value imputation were performed using

NumPy (v1.21.2). Complete technical specifications are

documented in Appendix A. To reduce feature dimensionality,

enhance modeling efficiency, and control multicollinearity, least

absolute shrinkage and selection operator (LASSO) regression with

L1 regularization was applied for feature selection. The final feature

set was determined exclusively by the LASSO regression without

clinical judgment intervention. Ten-fold cross-validation was

performed using the LassoCV module in the Scikit-learn library

to automatically determine the optimal regularization parameter l.
Variables with non-zero coefficients were retained as input features

for model construction. A regularization path plot illustrating

coefficient shrinkage during LASSO selection was generated using

Matplotlib (v3.4.3).
2.5 Machine learning model construction
and hyperparameter optimization

After feature extraction and variable construction, six

commonly used ML algorithms were developed based on the

training set: Random Forest (RF), Logistic Regression (LR),

Gradient Boosting (GB), Adaptive Boosting (AdaBoost),
FIGURE 1

Workflow diagram of this study.
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XGBoost, and Light Gradient Boosting Machine (LightGBM) (24).

The selection of the six machine learning approaches was guided by

the following considerations: (a) Small-sample robustness: Tree-

based ensembles (RF, GB, AdaBoost, XGBoost, LightGBM) mitigate

overfitting through regularization and ensemble mechanisms, while

LR provides stable baselines for low-dimensional patterns; (b)

Interpretability: LR enables direct coefficient interpretation, and

tree-based models offer native feature importance outputs. (c)

Computational efficiency: All ML demonstrate fast convergence

on moderate-sized datasets, avoiding complex models requiring

large-scale data (25, 26). Model development and training were

conducted in a Python environment using mainstream open-source

libraries, including Scikit-learn, XGBoost (v1.5.1), and

LightGBM (v3.3.2).

To enhance model generalizability, all models were trained

using a Pipeline framework combined with 10-fold cross-

validation. Hyperparameter tuning was performed using the

RandomizedSearchCV method. Model inputs were the key

features selected via LASSO regression, and the output was a

binary classification indicating the presence or absence of ASCVD.

To evaluate model performance, the following metrics were

calculated on the validation set: area under the receiver operating

characteristic curve (AUC), sensitivity, specificity, accuracy,

positive predictive value (PPV), and F1 score. AUC was used as

the primary indicator of discriminatory ability, while the F1 score

was particularly emphasized to assess precision–recall trade-offs in

the presence of class imbalance.

In addition, normalized confusion matrices were generated to

visualize the classification ability of each model for positive and

negative cases. Based on the overall performance across metrics, the

bes t -per forming model was se lec ted for subsequent

interpretability analysis.

Meanwhile, we selected the Prediction for ASCVD Risk in

China (China-PAR project) model as the primary benchmark

because it represents the current standard for ASCVD risk

assessment in Chinese populations (27). It is important to note

that while China-PAR was developed in general population cohorts,

our study specifically targets the MASLD subpopulation.
2.6 Model interpretability analysis (SHAP)

To improve the transparency and interpretability of the

machine learning model, SHAP was applied to the best-

performing model for both global and individual-level

interpretation. SHAP is based on the Shapley value concept from

game theory and assigns each feature a contribution value for every

individual prediction, thereby enabling transparent explanations of

complex, nonlinear models.

At the global level, a SHAP feature importance plot was

generated to rank the input variables according to their average

absolute SHAP values, which reflect the mean magnitude of impact

each feature has on the model’s output. Higher values indicate

greater overall influence on predictions.
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A SHAP summary plot was then constructed to visualize how

individual feature values contributed to model outputs across the

entire dataset. Each point on the plot represents the SHAP value of a

specific feature for one patient. The color gradient from red to blue

indicates high to low feature values, while the distribution along the

x-axis shows the direction and magnitude of each feature’s effect on

the prediction.

To further investigate nonlinear effects and feature interactions,

SHAP dependence plots were generated. These plots visualize the

marginal effects of predictors across their value ranges, revealing

threshold effects and nonlinear relationships with prevalent

ASCVD status.

At the individual level, SHAP force plots were created for two

representative patients randomly selected from the cohort. These

visualizations explain how each feature contributes to a specific

prediction. In the force plots, red bars represent features that push

the prediction toward the positive class (MASLD+ASCVD), while

blue bars represent features that push it toward the negative class.

The sum of these contributions, starting from the model’s base

value, yields the final predicted probability, illustrating a clear,

feature-wise explanation path.

All SHAP analyses were performed in Python using the SHAP

library (v0.40.0), with visualizations generated using Matplotlib and

Plotly. The incorporation of SHAP not only enhanced model

transparency but also provided valuable insights into high-risk

features , thereby improving both cl inical uti l i ty and

model credibility.
2.7 Statistical analysis

All statistical analyses and visualizations were performed using

R software (version 4.3.3) and SPSS software (version 27.0.0).

Continuous variables were described as mean ± standard

deviation (SD) for normally distributed data, or as median with

interquartile range (IQR) for non-normally distributed data.

Categorical variables were expressed as counts (n) and

percentages (%).

Comparisons between groups for categorical variables were

conducted using the chi-square (c²) test. For continuous

variables, independent samples t-tests were applied for normally

distributed data, while nonparametric tests (e.g., Mann–Whitney U

test) were used for skewed distributions. All statistical tests were

two - s i d ed , a nd a p - v a l u e < 0 . 0 5 wa s con s i d e r e d

statistically significant.
3 Results

3.1 Comparison of baseline characteristics

A total of 590 patients with MASLD were enrolled in the study,

including 413 cases assigned to the training set and 177 to the

validation set. Within the training set, patients were further
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stratified based on ASCVD status into the MASLD-only group (n =

107) and the MASLD+ASCVD group (n = 306).

Significant differences were observed between the two groups in

several clinical and laboratory parameters. The MASLD+ASCVD

group showed higher proportions of male patients and elevated

levels of FBG, ALT, TG, TC, Lp(a), LDL-C, Scr, UA, CHG index,

CRI-I, CRI-II, AIP, TyG, and TyG-BMI, all with statistically

significant differences (p < 0.05). In contrast, HDL-C levels were

significantly lower in the MASLD+ASCVD group than in the

MASLD-only group (p < 0.05).

No statistically significant differences were observed in the

remaining variables between the two groups (p > 0.05). A

summary of baseline characteristics is presented in Table 1.
3.2 Feature selection results

A total of 25 clinical and biochemical variables were initially

collected from the training dataset. To improve modeling efficiency,

reduce redundancy, and minimize potential multicollinearity, we

applied LASSO regression combined with 10-fold cross-validation

for feature selection. As a result, eight variables with strong predictive

value were retained (Figure 2): CHG, CRI-II, Lp(a), Scr, UA, AST, SI,

and sex. These selected features were used in the subsequent modeling

process, balancing predictive performance and model simplicity. The

regularization path (Figure 2) illustrates the progressive shrinkage of

variable coefficients as the regularization parameter (l) increases.
3.3 Predictive performance of machine
learning models

All six machine learning models demonstrated favorable

predictive performance in both the training and validation

cohorts. Among them, the GB model consistently outperformed

others, achieving the highest AUC in both the training set (AUC =

0.918, 95% CI: 0.890–0.945) and validation set (AUC = 0.817, 95%

CI: 0.739–0.883), as shown in Table 2 and Figure 3. In addition to

AUC, the GB model also exhibited superior sensitivity (0.811),

specificity (0.725), accuracy (0.785), and F1 score (Table 3,

Figure 4), indicating its robust and balanced classification ability

across multiple performance metrics.

Compared with Clinical Risk Scores, our model demonstrates

superior performance in both the training set (AUC = 0.728, 95%

CI: 0.674–0.780) and validation set (AUC = 0.724, 95% CI: 0.639–

0.804) (Figure 5).
3.4 SHAP-based interpretation of the
optimal model

To enhance the transparency and clinical interpretability of the

machine learning model, SHAP analysis was applied to the best-

performing GB model at both the global and individual levels.
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At the global level, the SHAP feature importance plot

(Figure 6A) identified CHG, CRI-II, Lp(a), Scr, and UA as the

top five most influential predictors of ASCVD. The SHAP summary

plot (Figure 6B) illustrated the direction and magnitude of each

feature’s contribution to the prediction outcome. Specifically,

higher values of CHG, CRI-II, Lp(a), and UA were associated

with greater positive SHAP values, indicating stronger driving

forces toward predicting ASCVD. In addition, SHAP dependence

plots (Figure 7) demonstrated a consistent positive marginal effect

of these features on the model output, suggesting nonlinear trends

and potential threshold effects.

At the individual level, force plots were generated for two

representative patients—one correctly predicted as ASCVD-

positive (true positive) and the other as ASCVD-negative (true

negative) (Figures 8A, B). In these visualizations, red bars denote

features that increase the prediction probability for ASCVD, while

blue bars indicate features that decrease it. The length of each bar

reflects the magnitude of contribution, and the final output is

determined by the cumulative effect of all features starting from

the model’s base value. For instance, markedly elevated CHG and

Lp(a) levels were major contributors to the ASCVD prediction,

whereas higher HDL-C levels played a protective role.

In summary, the SHAP analysis not only confirmed the strong

predictive value of key metabolic features in the GB model but also

provided individualized explanations for model outputs. This

highlights the model’s potential utility in clinical decision

support, offering both accurate prediction and interpretability.
4 Discussion

This study, based on real-world data from hospitalized MASLD

patients, developed and compared multiple machine learning

models to classify concurrent ASCVD. Eight key predictive

features were identified through LASSO regression. The GB

algorithm demonstrated superior predictive performance and

stability within our cohort of hospitalized MASLD patients, with

consistent results across both the training and validation sets.

However, its relative advantage may vary across different clinical

populations or with inclusion of additional features, underscoring

the need for external validation to ensure broader applicability.

Furthermore, the SHAP method was employed to enhance the

interpretability and clinical transparency of the model.

MASLD and ASCVD share a wide range of metabolic risk

factors. Our findings revealed that patients in the MASLD+ASCVD

group exhibited significantly more severe abnormalities in

metabolic indicators, indicating a substantial overlap between

atherosclerotic risk and hepatic metabolic dysregulation. In the

SHAP feature importance ranking, CHG, CRI-II, Lp(a), Scr, and

UA emerged as the top contributors to the predictive model. These

features reflect key metabolic mechanisms such as IR, dyslipidemia,

renal dysfunction, and systemic inflammation, which are consistent

with the established pathophysiology of both MASLD and

ASCVD (8).
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TABLE 1 Baseline characteristics of MASLD patients in the training and validation sets, stratified by ASCVD status.

Characteristics

Training set (n= 413)
p1 value

Validation set (n= 177)
p2 value p3 value

MASLD (n = 107) MASLD+ ASCVD (n = 306) MASLD (n = 49) MASLD+ ASCVD (n = 128)

SEX, n (%) 0.017 0.27 0.067

Female 49 (45.8) 99 (32.4) 17 (34.7) 32 (25.0)

Male 58 (54.2) 207 (67.6) 32 (65.3) 96 (75.0)

SMOKE, n (%) 0.101 1 0.32

No 84 (78.5) 213 (69.6) 37 (75.5) 98 (76.6)

Yes 23 (20.5) 93 (30.4) 12 (24.6) 30 (23.4)

Fatty liver, n
(%)

0.647 0.312 0.985

Grade 1 52 (48.6) 137 (44.8) 22 (44.9) 60 (46.9)

Grade 2 47 (44.0) 138 (45.1) 20 (40.8) 59 (46.1)

Grade 3 8 (7.4) 31 (10.1) 7 (14.3) 9 (7.0)

Age (years) 63 (59, 69) 62 (54, 68) 0.062 63 (55, 68) 64 (57, 69) 0.475 0.356

Fib- 4 1.30 (1.01, 1.62) 1.29 (0.95, 1.81) 0.924 1.29 (0.93, 1.69) 1.39 (1.06, 2.02) 0.056 0.12

BMI (kg/m2) 26.63 (24.79, 28.73) 26.99 (25.01, 29.07) 0.362 27.18 (24.91, 29.32) 26.27 (24.2, 28.74) 0.371 0.451

FBG (mg/dL) 102.42 (91.0, 117.72) 110.34 (95.76, 133.33) 0.003 106.56 (98.2, 119.7) 113.94 (95.3, 146.74) 0.34 0.211

AST (U/L) 20 (17, 25) 21 (17, 30) 0.055 21 (17, 26) 22 (18, 34) 0.096 0.313

ALT (U/L) 20 (15, 27) 24 (17, 34) 0.002 21 (18, 30) 25 (17, 37) 0.235 0.175

TG (mg/dL) 116.82 (90.71, 177.44) 145.14 (104.43, 198.24) 0.012 130.10 (94.69, 164.61) 136.29 (98.01, 204.44) 0.299 0.774

TC (mg/dL)
162.16 (127.03,
189.38)

174.13 (142.08, 207.14) 0.003
154.44 (131.27,
176.83)

174.90 (137.36, 210.91) 0.004 0.59

Lp (a) (mg/L) 107 (50, 202) 165 (64, 353) 0.002 115 (57, 237) 166.50 (75.75, 346.75) 0.089 0.911

HDL-C (mg/dL) 50.4 ± 9.6 48.1 ± 10.6 0.043 48.4 ± 11.7 48.6 ± 12.7 0.932 0.569

LDL-C (mg/dL) 84.69 (60.52, 105.18) 99.38 (72.41, 123.74) < 0.001 81.21 (64.58, 102.48) 97.64 (70.77, 127.71) 0.003 0.762

Scr (mg/dL) 0.96 (0.87, 1.11) 1.03 (0.9, 1.18) 0.006 0.98 (0.83, 1.15) 1.07 (0.92, 1.17) 0.205 0.55

Cys-C (mg/dL) 0.09 (0.08, 0.11) 0.09 (0.08, 0.11) 0.203 0.09 (0.08, 0.11) 0.1 (0.08, 0.11) 0.09 0.451

PLT (109/L) 215 (187, 254) 223 (189, 267) 0.332 222 (177, 259) 223 (197, 256) 0.878 0.289

UA (umol/L) 330 (276.5, 390) 372.5 (306, 441.75) < 0.001 349 (303, 408) 370.5 (310.25, 446.25) 0.178 0.261

SI 10.4 ± 2.6 10.8 ± 2.6 0.286 10.9 ± 2.9 10.6 ± 2.7 0.56 0.753

CHG 5.08 (4.88, 5.38) 5.31 (5.07, 5.61) < 0.001 5.27 (4.91, 5.39) 5.39 (5.11, 5.72) 0.004 0.152

CRI-I 3.10 (2.74, 3.71) 3.72 (3.03, 4.37) < 0.001 3.34 (2.82, 3.92) 3.74 (3.00, 4.46) 0.002 0.533

CRI-II 1.67 (1.29, 2.04) 2.12 (1.58, 2.67) < 0.001 1.82 (1.34, 2.16) 2.09 (1.55, 2.76) 0.002 0.736

AIP 0.41 (0.23, 0.56) 0.47 (0.31, 0.65) 0.005 0.40 (0.29, 0.62) 0.44 (0.28, 0.67) 0.606 0.955

TyG 8.78 (8.39, 9.20) 9.01 (8.62, 9.40) < 0.001 8.85 (8.47, 9.27) 9.05 (8.53, 9.48) 0.205 0.619

TyG-BMI
237.25 (216.37,
250.95)

243.72 (221.63, 267.56) 0.024 243.6 ± 35.5 243.2 ± 35.4 0.942 0.981
F
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Data are presented as median (interquartile range, IQR), mean ± standard deviation (SD), or number (percentage), as appropriate. P ¹: P -value for comparison betweenMASLD andMASLD+ASCVD
groups in the training set. P ²: P -value for comparison between MASLD and MASLD+ASCVD groups in the validation set. P ³: P -value for comparison between the training and validation sets (inter-
group difference). Abbreviations: Fib-4, Fibrosis-4 index; BMI, bodymass index; FBG, fasting blood glucose; AST, aspartate aminotransferase; ALT, alanine aminotransferase; TG, triglycerides; TC, total
cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Scr, serum creatinine; Cys-C, cystatin C; UA, uric acid; Plt, platelet count; SI, sarcopenia index;
CHG, cholesterol–HDL–glucose index; CRI-I, Castelli’s Risk Index I; CRI-II, Castelli’s Risk Index II; AIP, atherogenic index of plasma; TyG, triglyceride–glucose index; TyG-BMI, BMI-adjusted TyG
index.
tiersin.org

https://doi.org/10.3389/fendo.2025.1684558
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2025.1684558
Traditional single lipid markers such as LDL-C have

demonstrated limited effectiveness in early ASCVD classification

of prevalent ASCVD (28). A previous study reported that

approximately 77% of hospitalized ASCVD patients had LDL-C

levels within the normal range (29), suggesting its insufficient

standalone predictive value. In contrast, composite lipid indices

such as CRI, AIP, and the TyG index, which simultaneously reflect

multiple metabolic pathways, have shown superior performance in

predicting cardiovascular and metabolic diseases (13, 30–32).

Notably, this study is the first to systematically evaluate the CHG

index for identifying ASCVD risk among MASLD patients,

expanding its potential application in early metabolic

risk management.

Unlike many prior “black-box” models, this study emphasized

model interpretability. At the population level, SHAP feature

rankings and dependence plots revealed the marginal and non-

linear effects of key variables. At the individual level, SHAP force

plots provided transparent explanations of the prediction logic for

specific patients, highlighting the positive or negative impact of each
Frontiers in Endocrinology 07
variable. This approach offers valuable insight for developing

transparent clinical decision support systems (CDSS).

Despite the promising findings, several limitations must be

acknowledged. First, this study was conducted as a single-center

retrospective analysis. The cohort was intentionally enriched with

high-risk MASLD patients from tertiary hospital cardiology clinics,

resulting in a higher observed ASCVD prevalence (73.6%) than

population-based samples. While this design ensured adequate

event rates for predictive modeling, it may introduce selection

bias and limit external generalizability to community-based

primary prevention settings. External validation in broader and

more diverse cohorts is therefore warranted. Second, our outcome

definition relied on administrative ICD codes (e.g., I50.x for heart

failure), which cannot distinguish between atherosclerotic and non-

atherosclerotic etiologies of congestive heart failure. Prospective

studies with protocol-defined ASCVD adjudication are needed to

confirm etiology-specific classifications. Third, although L1

regularization was used to mitigate overfitting, the relatively small

sample size still poses a risk to the robustness of the conclusions.
FIGURE 2

Feature selection process using LASSO regression. (A) Coefficient shrinkage paths for all 25 candidate variables using least absolute shrinkage and
selection operator (LASSO) regression. As the regularization parameter a (log scale) increases, less informative features are penalized and their
coefficients shrink toward zero. (B) Ten-fold cross-validation curve showing the relationship between mean squared error (MSE) and a values. The
optimal a, corresponding to the minimum MSE, was used to select the final subset of predictive features. This approach balances model simplicity
and generalization performance. A total of 25 clinical and biochemical variables were entered into the model. Feature selection and visualization
were performed using the LassoCV module from Scikit-learn (Python 3.8).
TABLE 2 Predictive performance of six machine learning models in the validation cohort.

AUC Sensitivity Specificity Precision F1 score

RF 0.757(0.675-0.839) 0.925(0.886-0.964) 0.364(0.293-0.435) 0.815(0.757-0.872) 0.866(0.816-0.916)

LR 0.717(0.633-0.796) 0.812(0.754-0.870) 0.477(0.404-0.551) 0.824(0.768-0.880) 0.818(0.761-0.875)

GB* 0.817(0.739-0.883)* 0.767(0.705-0.829) 0.750(0.686-0.814) 0.903(0.859-0.946) 0.829(0.774-0.885)

AdaBoost 0.797(0.720-0.865) 0.812(0.754-0.870) 0.568(0.495-0.641) 0.850(0.798-0.903) 0.831(0.776-0.886)

XGBoost 0.792(0.717-0.857) 0.759(0.696-0.822) 0.614(0.542-0.685) 0.856(0.804-0.908) 0.805(0.746-0.863)

LightGBM 0.815(0.743-0.881) 0.887(0.841-0.934) 0.500(0.426-0.574) 0.843(0.789-0.896) 0.864(0.814-0.915)
Values are expressed as mean (95% confidence interval). The Gradient Boosting (GB) model achieved the best overall performance, with the highest AUC and balanced sensitivity and specificity.
F1-score is a metric synthesizing precision (proportion of positive predictions that are true) and recall (proportion of actual positives correctly predicted), balancing them to comprehensively
reflect classification performance. AUC, area under the receiver operating characteristic curve; F1 score: harmonic mean of precision and recall; RF, random forest; LR, logistic regression; GB,
gradient boosting; AdaBoost, adaptive boosting; XGBoost, extreme gradient boosting; LightGBM, light gradient boosting machine. "*" denotes highlighting that GB is the optimal model.
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Fourth, the current model does not incorporate multimodal data

such as imaging scores, genomic information, or lifestyle factors,

which could further enhance predictive accuracy. Lastly, while

SHAP-based explanations improve interpretability, further

validation through mechanistic studies and clinical pathways is

needed to confirm their clinical applicability and acceptance.

In conclusion, this study successfully developed a high-

performing and interpretable classification model for identifying

ASCVD in MASLD patients. By integrating machine learning with

SHAP-based explanations, the model demonstrates strong potential

for precision stratification and individualized risk assessment in

metabolic diseases. The model demonstrates strong predictive

performance in treatment-naive MASLD patients, providing a

novel tool for early high-risk identification. While excluding lipid-

lowering or antiplatelet therapy may limit immediate
Frontiers in Endocrinology 08
generalizability to medicated populations, this approach helps

preserves the integrity of metabolic risk drivers analysis.

Importantly the key biomarkers highlighted by SHAP analysis—

such as (e.g., Lp(a)—remain clinically actionable therapeutic targets

for clinical intervention. The superior performance of our model

compared to the China-PAR score underscores the value of a

precision medicine approach for the distinct high-risk MASLD

population. This difference likely stems from a fundamental

divergence in design intent: while established scores like China-

PAR are optimized for general population screening, our model is

specifically engineered to capture the unique risk profile of MASLD

patients. Therefore, our work provides a complementary,

population-specific tool rather than a direct replacement for

general-purpose scores, enabling more refined risk stratification

for this cohort. Future work should focus on expanding to
FIGURE 3

ROC curves of six machine learning models in predicting ASCVD among MASLD patients. (A) Training set (n = 413); (B) Validation set (n = 177).
Among all models, Gradient Boosting (GB) achieved the highest AUC in both sets (AUC = 0.918 in training, 0.817 in validation), indicating superior
discriminative performance. Model performance was evaluated using 10-fold cross-validation and plotted with the ROC curve and AUC (95% CI).
Abbreviations: RF, Random Forest; LR, Logistic Regression; GB, Gradient Boosting; AdaBoost, Adaptive Boosting; XGBoost, Extreme Gradient
Boosting; LightGBM, Light Gradient Boosting Machine.
TABLE 3 Performance evaluation of the gradient boosting (GB) model in training and validation sets.

Metric Training set (n=107/306) Validation set (n=49/128)

AUC 0.918 (0.890-0.944) 0.817 (0.739-0.883)

Sensitivity 0.771(0.731-0.812) 0.767 (0.705-0.829)

Specificity 0.935(0.911-0.958) 0.750 (0.686-0.814)

Precision 0.971(0.955-0.987) 0.903 (0.859-0.946)

F1 score 0.860(0.826-0.893) 0.829 (0.774-0.885)
Model performance metrics for the Gradient Boosting (GB) algorithm were assessed in both the training set (n = 413; 306 positive, 107 negative) and validation set (n = 177; 128 positive, 49
negative). The GB model achieved an AUC of 0.918 in the training set and 0.817 in the validation set, with consistently high sensitivity, specificity, precision, and F1 score across both cohorts.
Values are presented as point estimates with 95% confidence intervals in parentheses. Performance was evaluated based on five metrics: area under the receiver operating characteristic curve
(AUC), sensitivity (recall), specificity, precision (positive predictive value), and F1 score (harmonic mean of precision and recall).
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FIGURE 4

Model Performance of gradient boosting (GB) in training and validation sets. (A) ROC curve of the GB model in the training set (n = 413), with an
AUC of 0.918 (95% CI: 0.890–0.945). (B) ROC curve of the GB model in the validation set (n = 177), with an AUC of 0.817 (95% CI: 0.739–0.883).
The orange dashed line represents the no-discrimination reference line (AUC = 0.5). (C, D) Normalized confusion matrices of the GB model for the
training and validation sets, respectively. Class 0: MASLD without ASCVD; Class 1: MASLD with ASCVD. Color intensity indicates normalized
frequency. Model performance was evaluated using 10-fold cross-validation and reported using AUC, sensitivity, and specificity.
FIGURE 5

Model performance of prediction for ASCVD risk in China (China-PAR project) in training and validation sets. (A) ROC curve of the China-PAR project
model in the training set (n = 413), with an AUC of 0.728 (95% CI: 0.674–0.780). (B) ROC curve of the China-PAR project model in the validation set
(n = 177), with an AUC of 0.724 (95% CI: 0.639–0.804). The orange dashed line represents the no-discrimination reference line (AUC = 0.5).
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FIGURE 7

SHAP dependence plots of key predictive features SHapley Additive exPlanations (SHAP) dependence plots showing the marginal effects of the four
most influential features on the prediction output of the Gradient Boosting model: (A) CHG, (B) CRI-II, (C) Lp(a), and (D) UA. The x-axis represents
the actual value of each feature. The y-axis shows the corresponding SHAP value, indicating the direction and magnitude of that feature’s
contribution to the model prediction. Each dot corresponds to a single patient. These plots reveal nonlinear, positive associations between the
feature values and their impact on ASCVD risk prediction, particularly highlighting threshold effects for CHG and Lp(a). The SHAP values were derived
using the Gradient Boosting model trained on 413 patients in the training cohort, using the SHAP Python package (v0.40.0). CHG, cholesterol–
glucose index; CRI-II, Castelli risk index II; Lp(a), lipoprotein (a); UA, uric acid.
FIGURE 6

Global feature importance based on SHAP values from the gradient boosting model Each dot represents an individual SHAP value for a feature in
one patient. The x-axis indicates the direction and magnitude of the feature’s impact on model output. Features are ranked by their mean absolute
SHAP value. The color gradient (blue to red) represents low to high feature values. Features such as CHG, CRI-II, and Lp (a) show strong positive
contributions to ASCVD risk prediction. SHAP values were derived from the Gradient Boosting model trained on the training set (n = 413), using the
SHAP Python package (v0.40.0). Abbreviations: CHG, cholesterol-glucose index; CRI-II, Castelli risk index II; Lp(a) , lipoprotein (a); CR, creatinine; UA,
uric acid; AST, aspartate transaminase; SI, systolic index.
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multicenter, multimodal datasets, conducting performance

comparisons with traditional risk assessment models, developing

integrated risk engines combining traditional factors with MASLD-

specific biomarkers, and exploring the feasibility of clinical

deployment to support personalized cardiovascular risk

management in MASLD.
5 Conclusion

This study developed and validated multiple machine learning

models to classify concurrent atherosclerotic cardiovascular disease

(ASCVD) in hospitalized MASLD patients, using real-world cross-

sectional data. Among the evaluated methods, tree-based ensemble

learning algorithms—particularly Gradient Boosting—

demonstrated the most robust performance in this specific cohort,

showing high predictive accuracy and stability across both the

training and validation sets. The eight high-value features selected

via LASSO regression were also confirmed to have strong predictive

contributions through SHAP interpretability analysis.

The innovation of this study lies in the integration of high-

performance prediction modeling with interpretable machine

learning, balancing accuracy with clinical applicability. In

particular, the application of SHAP provided transparent

decision-making support at both global and individual levels,

enhancing the model’s practical value in CDSS.

This model provides a novel tool for identifying MASLD

patients with prevalent ASCVD, enabling individualized clinical

assessment during hospitalization. Future work should focus on

optimizing the model using multicenter datasets and expanding its

scope by incorporating imaging, genetic, and behavioral data. This

would provide a more comprehensive tool for early identification

and intervention in MASLD patients at high risk for ASCVD.
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represents the model’s base value, i.e., the expected output when no features are present. SHAP (SHapley Additive exPlanations) values were
calculated using the SHAP Python package (v0.40.0), based on the Gradient Boosting model trained on the training cohort (n = 413).
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