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Objective: The present study aims to explore the impact of washed microbiota
transplantation (WMT) on the tongue microbiota composition of individuals with
metabolic-associated fatty liver disease (MAFLD) and elucidate its
biological correlations.

Methods: We conducted a comprehensive analysis of hepatic fat deposition and
characterized the tongue coating microbiota using 16S rRNA gene sequencing in
MAFLD patients before and after undergoing WMT treatment. Furthermore, a
MAFLD mouse model was established for additional validation.

Results: At the genus level, significant differences in tongue coating microbiota
structure were observed between MAFLD patients and HC. Specifically, Neisseria
positively correlated with the BARD score, Porphyromonas and Rhodococcus
positively correlated with fat decay, and Petostreptococcus, a conditionally
pathogenic bacterium, exhibited a significantly higher relative abundance in
MAFLD patients compared to HC. Conversely, Actinomyces positively
correlated with the FIB-4 score, Megasphaera negatively correlated with the
APRI score, and Subdoligulum negatively correlated with low-density lipoprotein
levels. Notably, following effective WMT treatment, patients exhibited improved
symptoms, with a significant reduction in the relative abundance of
Petostreptococcus and an increase in potential probiotics such as
Lachnospiraceae and Bifidobacterium in their tongue coating microbiota.
Additionally, structural differences in the tongue coating microbiota were
identified at the genus level between MAFLD model mice and HC mice. After
WMT treatment, the relative abundance of conditionally pathogenic bacteria like
Enterococcus was significantly decreased in MAFLD model mice.
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Conclusions: WMT not only significantly ameliorates liver fat deposition in
MAFLD patients but also alters the tongue coating microbial structure
associated with disease severity, thereby potentially mitigating adverse

patient outcomes.

washed microbiota transplantation, metabolic associated fatty liver disease, tongue
coating microorganisms, clinical efficacy, biological correlations

Background

Metabolic associated fatty liver disease (MAFLD), a chronic
progressive disease characterized by excessive fat accumulation in
the liver, has become the most prevalent chronic liver disease
globally, with a recent meta-analysis estimating a global
prevalence of 38.77% (1). Studies have demonstrated a strong
association between MAFLD and the development of liver
cirrhosis, liver failure, and even hepatocellular carcinoma. This
disease not only poses a significant threat to human health but
also places a substantial burden on healthcare systems and the
global economy (2).

Lipid metabolism disorder is a primary factor contributing to
the development of MAFLD. However, due to the incomplete
understanding of its pathogenesis and the absence of clinically
approved specific therapeutic drugs, current treatment strategies for
MAFLD focus primarily on lifestyle modifications. In addition,
pharmacological interventions are often required to address the
patient’s underlying conditions. Despite this, most available
therapeutic drugs have failed to deliver the expected clinical
outcomes (3, 4). Therefore, there remains an urgent need to
identify safe and effective treatments for MAFLD, making this a
key area of research globally. In recent years, the introduction of the
“liver-gut axis” concept has highlighted the role of gut microbiota in
the onset and progression of MAFLD. Clinical studies have revealed
significant differences in gut microbiota composition between
healthy individuals and MAFLD patients, characterized by
reduced ecological diversity and an increase in pathogenic
bacteria abundance (5). These findings indicate that MAFLD
patients experience significant microbial dysbiosis.

The oral microbiota, one of the largest microbial communities
in the human body after the gut (6), plays a significant role in
systemic inflammation, bacterial infections, and disease progression
through its composition and function (7). Studies have shown that
patients with liver diseases often exhibit severe oral microbiota
imbalances (8). In a clinical study involving 102 patients with liver
cirrhosis, severe dysbiosis of the oral microbiota was observed
compared to healthy controls, mirroring the dysbiosis seen in the
intestinal microbiota (9). Research further indicates that oral
microbiota can translocate from the oral cavity to the intestine
(10) and may contribute to the development of liver cirrhosis (11).
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Among the components of the oral microbiota, tongue coating
microorganisms have been found to have close associations with
various clinical diseases (9). The proportion, density, and diversity
of bacterial communities present in tongue coatings are strongly
linked to disease formation.

Fecal microbiota transplantation (FMT) involves isolating
microbiota from the feces of healthy donors and transplanting the
functional bacteria into a patient’s intestine through specialized
techniques, with the aim of reshaping the patient’s intestinal
microbiota and treating disease (11, 12). FMT has emerged as a
breakthrough medical intervention in recent years. An improved
version, water-washed microbiota transplantation (WMT), involves
using an automated purification system to extract and repeatedly
wash the gut microbiota, thereby reducing the risk of FMT-related
adverse effects. WMT has already been investigated in various
metabolic diseases, including dyslipidemia (13, 14), obesity (15),
diabetes (16), and hypertension (17).

We hypothesize that WMT may offer clinical benefits for
patients with MAFLD and that a correlation exists between the
microbiota present on the tongue coating of MAFLD patients and
the efficacy of WMT treatment. To explore this hypothesis, we
employ a combination of animal and human studies to evaluate the
potential therapeutic effects of WMT on MAFLD.

Methods
Inclusion criteria for MAFLD

This study included MAFLD inpatients aged >18 years who
were admitted to the First Affiliated Hospital of Guangdong
Pharmaceutical University between January 2017 and December
2022. MAFLD was diagnosed based on international consensus
criteria (18). The exclusion criteria for patients were as follows: (1)
Use of antibiotics within the past month; (2) Presence of dental
caries or periodontal disease; (3) Severe heart, lung, or kidney
diseases; (4) Coexisting liver diseases; (5) Serious lack of medical
records. This study was approved by the Ethics Committee of the
First Affiliated Hospital of Guangdong Pharmaceutical University
(#2021-13), and written informed consent was obtained from
all participants.
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Sample collection

Person: serum, tongue coating

Medical record data for the WMT group were collected at three
time points: before treatment (baseline), before each WMT
procedure, and after the final WMT treatment. Data included
laboratory parameters such as BMI, age, gender, liver enzymes,
fasting insulin, blood lipids, fasting blood glucose, and liver imaging
(CT, ultrasound, and elastography). Sample collection from patients
followed a standardized protocol. Patients were instructed to avoid
eating and brushing their teeth for at least 1 hour prior to sampling.
After rinsing their mouths with physiological saline, a sterile cotton
swab was used to collect samples from the middle of the tongue. The
swab was placed into an RNase-free Eppendorf tube, 1 mL of
phosphate buffer solution (PBS) was added, and the mixture was
stirred. The sample was centrifuged at 4000 rpm for 20 minutes,
after which the supernatant and precipitate were separately stored
in sterile tubes. All samples were kept at -80 °C until
further analysis.

Mice: tongue coating and liver samples

Mouse tongue coating collection: (1) Anesthesia: Administer
0.05 mL of Shu Tai via intramuscular injection per mouse. (2)
Sample Collection: Using tweezers, gently pull the mouse’s tongue
out of its mouth, quickly sever the tongue at the base, and place it in
a sterile tube. All samples were stored at -80 °C until analysis. The
entire procedure was completed within 1 minute after the mouse’s
death. The mouse liver collection procedure follows these steps: (1)
Anesthesia: Administer 0.05 mL of Shu Tai via intramuscular
injection per mouse. (2) Dissection: Incise the abdominal skin to
fully expose the thoracic and abdominal cavities. (3) Cardiac
Perfusion: Locate the abdominal aorta and perform an incision.
Using a syringe, inject 30 mL of physiological saline into the heart
from the apex until the effluent becomes lighter in color. (4) Liver
Tissue Extraction: Identify the liver, gently detach it with tweezers,
and carefully remove the intact organ. (5) Tissue Processing:
Remove any surrounding ligaments and the gallbladder. Divide
the liver into three sections, preserving one relatively intact portion
for pathological analysis, which should be stored in an Eppendorf
tube containing 4% PFA fixative. (6) Pathological Staining: Conduct
staining procedures for pathological examination on the preserved

liver tissue.

WMT

Questionnaire surveys, physical examinations, blood and stool
tests, and other laboratory screenings were conducted for all healthy
fecal donors aged 18 to 25 years. This study employed the Nanjing
Consensus washing bacterial transplantation method (19). In a
biosafety level 2 laboratory, bacterial suspensions were prepared
with the assistance of trained professionals using disposable sterile
materials. To prepare the washed microbial community, a
homogeneous fecal suspension was created by mixing 100 g of
feces with 500 mL of 0.9% saline solution in a 1:5 ratio. This mixture
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was then subjected to microfiltration using an automatic
purification device (Gen™Ter, FMT Medical). The microbial
precipitate was washed three times, after which 100 mL of saline
solution was added to create the bacterial suspension. This
suspension was maintained in a water bath at a constant
temperature of 37 °C and injected within 1 hour to prevent
contamination or compositional changes.

Based on the physical condition and willingness of each
MAFLD patient, the washed bacterial suspension was
administered into the patient’s intestine via either the upper or
lower digestive tract (120 mL per day for 3 consecutive days). This
study followed the “Three Three Principles” therapy, where one
treatment course consisted of continuous injection of the washing
bacterial suspension for 3 days, followed by three consecutive
months of treatment (i.e., three courses), and another course after
a 3-month interval to stabilize bacterial colonization. The total
treatment duration was 6 months. All patients underwent at least
one WMT procedure and completed follow-up assessments by
October 31, 2022.

Mouse experiment

Establishment of MAFLD mouse model

This study utilized a methionine and choline-deficient (MCD)
diet to freely feed C57BL/6 mice (Guangdong Medical Animal
Experimental Center) for 4 weeks, thereby establishing a MAFLD
mouse model (17). The animal experiments received approval from
the Animal Ethics Committee of the First Affiliated Hospital of
Guangdong Pharmaceutical University (#2022-14) and were
conducted in accordance with the guidelines for reporting in vivo
experiments involving animals.

WMT experiment in mice

Preparation of bacterial solution follows these steps: (1) Sterile
Procedure: All operations should be conducted in a sterile room to
maintain a contamination-free environment. (2) Sample Collection:
Collect fecal samples separately from MAFLD mice and healthy
mice, gathering 2 or more fresh fecal samples from each mouse, and
label them appropriately. (3) Fecal Suspension: Soak the collected
feces in a 0.1 g/mL physiological saline solution for at least 10
minutes, then homogenize the mixture. (4) Centrifugation:
Centrifuge the homogenized suspension at 1000 rpm for 3
minutes and collect the supernatant. Gavage Procedure: MAFLD
mice were divided into two groups: one group received the bacterial
solution from mice with more severe disease, while the other group
received the bacterial solution from healthy mice. Gavage was
administered at a dose of 0.2 mL per animal, given once every
other day for four consecutive weeks.

DNA extraction and 16S rRNA

Total DNA from the tongue coating of MAFLD patients and the
tongues of MAFLD mice was extracted according to the EZN.a®
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protocol using the Soil DNA Kit (Omega BioTek, Norcross, GA,
USA). The quality and concentration of all DNA samples were
evaluated using a NanoDrop 2000 spectrophotometer (Thermo
Fisher Scientific, Wilmington, DE, USA). The V3-V4 fragment of
the bacterial 16S rRNA gene was amplified by PCR using primers
806R and 338F. The sequences of the primers were as follows: 5-
GACTACHVGGGTWTCTAAT-3" (338F) and 5’-
ACTCCTACGGGAGGCAGCAG-3’ (806R). The PCR conditions
included an initial denaturation at 95 °C for 30 seconds, followed by
27 cycles of 30 seconds at 55 °C, 45 seconds at 72 °C, and a final
extension at 72 °C for 5 minutes. The PCR reaction mixture
contained: 4 UL of 5 x TransStart FastPfu buffer, 2 puL of 2.5 mM
deoxyribonucleoside triphosphates (dNTPs), 0.8 uL of 5 uM
primers, 0.4 uL of TransStart FastPfu DNA polymerase, and 10
ng of extracted DNA, with the final volume adjusted to 20 pL with
ddH20. Agarose gel electrophoresis was performed to verify the
size of the PCR amplicon. Sequencing was conducted using the
Ilumina MiSeq PE300 platform (Shanghai MajorbioBio, China).

H.E. staining

HE staining: Prepared slices were placed in a fully automated
staining machine for HE staining. After the staining process was
complete, the slices were sealed for further analysis.

Data statistical analysis

Statistical analyses were performed using GraphPad Prism 9.0.0
and SPSS 25.0 software. Changes in clinical indicators of MAFLD
patients before and after WMT were presented as differences using a
self-matching design. Continuous variables were first assessed for
normality. mean + standard deviation (M + SD) was used to describe
continuous variables with a normal distribution, analyzed using a
one-sample t-test. For non-normally distributed continuous
variables, the median (interquartile range) was reported and
analyzed using the one-sample rank sum test. Categorical variables
were represented by frequency and percentage. A bilateral p-value of
< 0.05 was considered statistically significant, with p < 0.05 denoted
by *, p < 0.01 denoted by **, and p < 0.001 denoted by ***.

Results

Evaluation of clinical efficacy of WMT in
the treatment of MAFLD

Comparative analysis of baseline level
information for the samples included in this
study

A total of 175 subjects participated in this study, consisting of 76
MAFLD patients, 66 NMD patients, and 33 healthy control (HC)
volunteers. The baseline physiological characteristics of all
participants are summarized in Table 1. Significant differences (p
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< 0.05) were observed in multiple clinical indicators between the
MAFLD group and the HC group. These indicators included body
mass index (BMI), white blood cell count (WBC), fat decay (FD),
liver hardness (LH), total cholesterol (TC), triglycerides (TG), high-
density lipoprotein (HDL), fasting blood glucose (FBG),
homeostasis model assessment-insulin resistance (HOMA-IR),
alanine aminotransferase (ALT), aspartate aminotransferase
(AST), albumin (ALB), gamma-glutamyl transferase (GGT),
MAFLD fibrosis score (MES), aspartate aminotransferase-to-
platelet ratio index (APRI), and fibrosis 4 Score, (FIB-4). In
contrast, no significant differences were noted in other aspects.
These clinical data indicate that the MAFLD patients in this study
require further intervention to address the ongoing progression of
the disease. Furthermore, the non-MAFLD other diseases (NMD)
patient sample served as a reference group for subsequent analyses.

Clinical efficacy evaluation of WMT
treatment for MAFLD

To assess the clinical efficacy of WMT for treating MAFLD, the
patients in this study were randomly assigned to two groups: the
WMT group (n = 43) and the drug therapy control (DTC) group (n
= 33), in which the medication of group DTC was completely in
accordance with the “guidelines for the prevention and treatment of
nonalcoholic fatty liver disease” (23). Concurrently, various clinical
indicators were collected from both groups prior to treatment.
Based on the statistical analysis, glucose and lipid indicators closely
associated with MAFLD were compiled and visualized (Figure 1).

After one course of WMT treatment, MAFLD patients
demonstrated significant reductions in TC, TG, and LDL (p <
0.05), while HDL levels remained unchanged. These findings
suggest that WMT can effectively improve glucose and lipid
metabolism in patients with MAFLD to some extent. In contrast,
no significant changes were observed in these indicators among
patients in the DTC group during the same treatment period. This
evidence indicates that WMT treatment may have a beneficial
impact on MAFLD in clinical practice.

Long-term efficacy evaluation of WMT
treatment for MAFLD

To further evaluate the clinical efficacy of long-term WMT
treatment for MAFLD, we conducted a statistical analysis of the
glucose and lipid indicators in 43 MAFLD patients who participated
in WMT (Figure 2). Among these patients, 27 underwent 2 courses
of WMT, 14 completed 3 courses, and 3 received 4 courses of
WMT. Additionally, we included clinical data from NMD patients
for comparative analysis.

As illustrated in the results graph, an increasing number of
treatment cycles corresponded with a significant downward trend in
the levels of TC, TG, and LDL compared to the baseline levels
(WMT-0) in the MAFLD group. Conversely, HDL levels exhibited a
significant upward trend, suggesting that long-term WMT
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TABLE 1 Baseline physiological characteristics of all participant samples.

Project

Basic information

Fibro touch

Glycolipid index

Liver function related
indexes and scores

Disease severity related score

10.3389/fendo.2025.1684173

Age (Years) 53.04 + 15.38 4324 + 1473 44.92 +14.35
M/F (n/n) 35/41 32/34 14/19

BMI (kg/m?) 2642 + 4.19 ¥+ 21.06 + 3.17 19.75 + 1.65
WBC (10°/L) 6.96 + 2.10 *** 6.29 +1.97 ** 524 + 1.19
RBC (10°/L) 4.51 £ 0.69 437 £0.65 442 £0.50
FD (dB/m) 284.54 + 30.38 *** 215.00 + 34.53 219.56 + 15.81
LH (kPa) 0.96 + 0.67 *** 573 + 1.49 6.22 + 1.11
TG (mmol/L) 2.04 + 1,55 ** 0.92 +0.37 1.03 +0.32
TC (mmol/L) 535+ 120 % 446 +1.05 498 +0.88
HDL (mmol/L) 113 + 0.27 *** 1324033 1.38 +0.28
LDL (mmol/L) 329 +1.06 * 273 +0.86 ** 3.16 +0.75
FBG (mmol/L) 545+ 171 % 437 £ 045 441 £ 0.61
HOMA-IR (20) 3.06 + 2.55 ¥+ 1.27 +0.88 0.73 + 0.34
ALT (U/L) 42.83 +3.52 %+ 2136 + 30.09 14.62 + 5.46
AST (U/L) 29.46 + 22.94 ** 23.97 + 1831 19.43 + 4.98
ALB (g/L) 42.83 +3.52 4147 + 4.05 46.32 + 3.53
GGT (U/L) 59.19 + 66.82 * 22.82 +16.94 15.10 + 5.92
DB 462 + 147 9.54 + 41.80 482 +1.83
IB 8.16 + 3.32 10.72 + 14.86 8.36 + 2.34
MEFS (21) 2.70 + 0.68 ** 1.91 + 0.66 1.73 + 0.46
APRI (21) 0.33 +0.28 * 041 +0.83 0.24 + 0.07
FIB-4 (22) 031 +0.30 * 0.62 +2.26 0.28 + 0.14

MAFLD, metabolic associated fatty liver disease; NMD, Non-MAFLD other diseases; HC, health control; M/F, mela/female; BMI, basic measuring instrument; WBC, white blood cell; RBC, red
blood cell; FBG, fasting blood glucose; FD, Fat decay; LH, liver hardness; TC, total cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein; HOMA-IR,
homeostasis model assessment-insulin resistance; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALB, albumin; GGT, gamma-glutamyl transferase; DB, direct bilirubin; IB,
ilndirect bilirubin; MFS, MAFLD fibrosis score; APRI, aspartate aminotransferase-to-platelet ratio Index; FIB-4, Fibrosis 4 Score; ¥, p < 0.05 vs. HC; **, p < 0.01 vs. HG; ***, p < 0.001 vs. HC.

treatment can substantially enhance glucose and lipid metabolism

in MAFLD patients.

Interestingly, no significant differences were observed in glucose

and lipid indicators between NMD patients and their baseline
levels, nor were any changes noted following one cycle of WMT
treatment. This indicates that WMT does not cause disturbances in
glucose and lipid indicators, further supporting its safety and
efficacy in managing MAFLD.

Relationship between tongue coating
microorganisms and MAFLD

Differences in tongue coating microbiota
between MAFLD patients and HC

To investigate the tongue microbiota of MAFLD patients, we
analyzed samples from 56 MAFLD patients and 26 healthy
individuals. The species richness and diversity of the two
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microbial communities were further assessed (Figure 3). Our
results indicated no statistically significant differences in the ACE,
Chaol, Shannon, and Simpson indices between the two groups
(Figure 3A), suggesting that microbial community richness and
diversity in the tongue coatings were comparable between the
two populations.

Additionally, we performed genus-level clustering analysis using
Principal Coordinates Analysis (PCoA) on the two sample groups
(Figure 3B), which demonstrated no significant differences in microbial
community structure between them. Notably, further analysis revealed
that the Wilcoxon rank sum test indicated significantly higher relative
abundances of Neisseria, Porphyromonas, Rhodococcus, and
Peptoniphilus in the MAFLD group compared to the healthy
controls. Conversely, Actinobacteria, Megasphaera, Blautia, and
Subdoligranulum exhibited significantly higher abundances in the
healthy population (Figures 3C, D). These findings indicate distinct
differences in the tongue coating microbiota between MAFLD patients
and HC group.
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The glucose and lipid indicators of patient MAFLD undergoing clinical treatment with WMT (A-D) and DTC (E—H) methods. WMT, washed
microbiota transplantation; TC, total cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density lipoprotein; DTC, drug therapy
control; 0, baseline level before treatment; 1, 1 treatment cycle; *, p < 0.05; ns, no significant.

Correlation analysis between tongue coating
microorganisms and clinical metabolism in
MAFLD patients

Further analysis revealed that Rhodococcus and Johnsonella in
the tongue microbiota of MAFLD patients were positively
correlated with the liver fat attenuation index (p < 0.05, as shown
in Figure 4A). Additionally, TC and LDL levels in MAFLD patients
were positively correlated with Sphingomonas, while Bergeyella
exhibited a positive correlation with LDL. Conversely,
Capnocytophaga demonstrated a negative correlation with TG,
and Atopobium showed a negative correlation with LDL.
Moreover, Rothia and Rhodococcus were positively correlated
with fasting blood glucose (FBG) (p < 0.05, Figure 4B).

Correlation analysis between tongue coating
microorganisms and liver function in MAFLD
patients

In addition, we observed a positive correlation between
Johnsonella and AST, as well as a positive correlation between
Saccharimondales and Veillonella with ALB. Conversely,
Atopobium was negatively correlated with PLT (p < 0.05,
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Figure 4C). Furthermore, we found that the genus Rothia was
positively correlated with the AST to APRI scores, while Neisseria
exhibited a positive correlation with the BARD score. Additionally,
there was a positive correlation (p < 0.05, Figure 4D) between
Parvimonas and Abiotrophia with the FIB-4 score.

The effect of WMT on tongue microbiota
in MAFLD patients

Impact of WMT on tongue coating microecology
in MAFLD patients

This study found that the alpha diversity of the tongue
microbiota in MAFLD patients decreased after WMT treatment,
with the exception of the Shannon index, and there were no
significant changes in the ACE, Sobs, or Simpson indices
(Figure 5A). PCoA analysis also revealed no significant alterations
(Figure 5B), indicating that the microbial community structure
remained relatively stable. Furthermore, the Wilcoxon rank sum
test indicated a significant decrease in the relative abundance of
opportunistic pathogens, such as Peptostreptococcus, in MAFLD
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patients following WMT. Conversely, the abundance of potential
probiotics, including Lachnospiraceae and Bifidobacterium,
increased significantly (p < 0.05, Figure 5C).

Further analysis revealed that Porphyromonas, Leptotrichia, and
CO2-oxidizing bacteria in the tongue microbiota of MAFLD patients
post-WMT were positively correlated with fat attenuation. In
contrast, Streptococcus and other bacteria were positively associated
with the fat attenuation burden in these patients (p < 0.05,
Figure 5D). Additionally, the genera Catonella, Fretibacterium, and
Filifactor showed positive correlations with TC indicators in patients,
while Campylobacter, Corynebacterium, and Eubacterium were
positively correlated with both HDL and LDL. Moreover,
Atonobium, Saccharimonadales, and Lachnoanaerobaculum were
positively associated with FBG levels (p < 0.05, Figure 5E).

Correlation analysis between tongue coating
microorganisms and liver function in MAFLD
patients treated with WMT

Through the analysis of liver function indicators, we found that
the genera Haemophilus and Porphyromonas were positively
correlated with liver enzyme levels (ALT, AST), while
Oribaterium showed a positive correlation with ALB (p < 0.05,
Figure 5F). Additionally, Porphyromonas and Haemophilus were
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positively correlated with disease severity scores, whereas
Megasphaera exhibited a negative correlation with APRI scores (p
< 0.05, Figure 5G).

The effect of WMT on MAFLD mice

Effects of WMT on the microecology of tongue
coating in MAFLD mice

Animal experiments revealed significant differences in the
tongue coating microbiota between MAFLD mice and healthy
control (CON) mice (Figures 6A-C). The results of the PCoA for
beta diversity indicated no overlap in the microbial communities of
the tongue coating at the species level between the MAFLD and
CON groups (Figure 6B), highlighting alterations in the
composition and structure of the tongue coating microbiota in
MAFLD mice. Further analysis using Wilcoxon rank sum tests at
the genus level demonstrated that the abundances of the genera
Rothia and Faecalibaculum were significantly higher in the MAFLD
group, while the abundances of Muribaculaceae and
Flavobacterium were significantly elevated in the CON group (p <
0.05, Figure 6C). These findings indicate a substantial difference in
the tongue coating microbiota between the two groups.
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FIGURE 3
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Following FMT treatment, no significant statistical differences
were observed in the alpha diversity indices (ACE, Chaol,
Shannon) of the tongue microbiota between the group receiving
severe fatty liver fecal microbiota transplantation (DIS_T) and the
group receiving healthy fecal microbiota (HC_T) (Figure 6D). This
indicates that there were no significant differences in the richness
and diversity of the tongue microbiota between the two groups of
mice. Furthermore, beta diversity analysis of the two groups of
MAFLD mice also revealed no significant differences in the
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microbial structure of the tongue coating (Figure 6E). However,
the Wilcoxon rank sum test at the genus level identified a higher
abundance of the opportunistic pathogenic bacterium Enterococcus
in the disease microbiome (p < 0.05, Figure 6F). Additional analysis
showed that the levels of TC and TG in MAFLD mice following
FMT were positively correlated with the genera Veillonella,
Intrasporangiaceae, Gaielle, and Bacillus, while negatively
correlated with Streptococcus, Faecalibaculum, Bergeyella,
Kribbella, and Romboutsia (p < 0.05, Figure 6G).
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FIGURE 4

Correlation analysis between different clinical indicators and tongue coating microbiota in MAFLD patients. (A) Correlation heatmap of FA and LH
relative to the abundance and composition of tongue coating microbiota in MAFLD patients; (B) Correlation heatmap between glucose and lipid
indicators (TC, TG, HDL, LDL and FBG) and the abundance and proportion of tongue microbiota in MAFLD patients; (C) Correlation heatmap of liver
function indicators (AST, ALT, ALB, Dbil, PLT) between the abundance and proportion of tongue microbiota genera in MAFLD patients; (D)
Correlation heatmap of disease severity related scores (BARD, NFS, BATT, APRI, FIB-4) between the abundance and proportion of tongue microbiota

genera in MAFLD patients; *, p < 0.05;**, p < 0.01;,***, p < 0.001.

Effects of WMT on the liver of MAFLD mice
Histological analysis of the livers from mice revealed that the
liver lobule structure in the DIS_T group exhibited more severe
damage, with a higher degree of hepatic cell steatosis compared to
the HC_T group. Additionally, focal necrosis was significantly more
prevalent in the livers of DIS_T mice than in those of HC_T mice
(Figure 6H). Furthermore, the levels of TC and TG per gram of liver
in DIS_T mice treated with FMT were significantly elevated
compared to those in HC_T mice (p < 0.05, Figures 61, J).

Discussion

Discussion on the clinical treatment effect
of WMT on MAFLD

In recent years, numerous studies have demonstrated that
regulating gut microbiota through FMT can be an effective
treatment for MAFLD. A randomized controlled trial
investigating the use of FMT for MAFLD treatment found that
FMT can significantly reduce liver fat deposition and alleviate
disease symptoms by improving gut microbiota dysbiosis (24).
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However, there is a relative paucity of studies examining the
clinical efficacy of WMT, an advanced form of FMT, specifically
in the context of MAFLD. Due to the small sample size in our
previous research, we plan to expand our sample size in this study to
further evaluate the clinical efficacy of WMT on MAFLD. The
findings of this study align with previous research, indicating that
WMT can effectively reduce the hepatic steatosis index in MAFLD
patients. In a separate clinical randomized controlled study
involving 87 obese patients, participants were divided into two
groups, with one group receiving FMT and the other a placebo.
After the same treatment course, the FMT group showed significant
improvements in fat ratio and metabolic disorders (25). Our team
has also conducted a randomized controlled clinical trial that
demonstrated FMT’s ability to reduce fat accumulation in the
liver by reshaping gut microbiota dysbiosis, thus improving
therapeutic outcomes for MAFLD patients (25). Notably, its
clinical efficacy appears to be higher in lean MAFLD patients
compared to their obese counterparts (24). These findings suggest
that WMT may represent a promising new approach for the
treatment of MAFLD.

However, some studies have reported that while FMT can
improve gut microbiota and barrier function in patients with
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between the abundance and proportion of tongue microbiota genera in MAFLD patients after WMT; *, p < 0.05;**, p < 0.01;***, p < 0.001.
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FIGURE 6

The effect of WMT on MAFLD mice. Differential analysis of tongue coating microbiota between healthy mice vs. MAFLD mice (A—C) and MAFLD
mouse disease group vs. healthy group after WMT (D-F); (G) Heatmap of TC, TG and tongue coating microbiota in MAFLD mice after WMT; (H) H.E.
staining of liver tissue; The levels of TC (I) and TG (J) in the liver of MAFLD mice.

MAFLD, it does not significantly alter liver fat deposition (26). In
this study, we observed that the recovery rate of the liver fat
attenuation index in MAFLD patients was 21.21% after the first
course of treatment, 40.91% after the second course, but only 30%
after the third course. This decline may be attributed to the
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extended interval between the third and fourth WMT treatments,
which likely led to a reduction in the diversity and abundance of the
gut microbiota, thereby diminishing therapeutic efficacy. Previous
studies have suggested that the effectiveness of FMT is closely
related to various factors, including the characteristics of the

frontiersin.org


https://doi.org/10.3389/fendo.2025.1684173
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Huang et al.

donor’s microbiota, the recipient’s intestinal colonization
resistance, and the frequency of FMT treatments (27, 28).
Consequently, we hypothesize that short-term, multiple WMT
sessions may provide patients with a healthier and higher-quality
microbiota characterized by greater richness and diversity. This
enhancement could be a critical factor contributing to the
significant improvement in fat deposition observed in MAFLD
patients. It is also important to note that dysregulation of glucose
and lipid metabolism is a key feature in the progression of MAFLD
(27). In our study, we found that with increasing treatment cycles,
TC, TG, and LDL levels significantly decreased in MAFLD patients,
indicating improvements in glucose and lipid metabolism following
WMT. Notably, no serious adverse events were reported during the
course of this study, consistent with findings from other clinical
studies indicating that FMT does not lead to serious adverse
outcomes. This suggests that WMT is also a safe intervention.

Discussion on the correlation between
tongue coating microorganisms and
MAFLD

As a significant component of the oral microbiota, tongue
coating microbiota has become a focal point for researchers in
microbiology, both domestically and internationally. The density,
diversity, and changes in the tongue coating microbiota can reflect
the physiological status of the human body and the alterations in its
microbiota composition (27, 28).In this study, we found that the
abundance of Porphyromonas in the tongue microbiota of MAFLD
patients was significantly higher than that in healthy individuals.
Similar findings have been reported in a study, indicating a
significant association between Porphyromonas and the
occurrence and progression of MAFLD (29). Additionally, the
study by Masato (30) identified a higher proportion of
Porphyromonas in MAFLD patients, positively correlating with
disease severity. This suggests that Porphyromonas could serve as
a potential biomarker for MAFLD.

The composition of microorganisms in the tongue coating of
healthy individuals remains relatively stable. Previous scholars have
reported on the specific proportions of various bacteria, including
Streptococcus salivarius (20%), Streptococcus pyogenes (4%),
Streptococcus thermophilus (8%), and Neisseria (0.05%) (31, 32).
In contrast, our study observed that the abundance of the Neisseria
genus in MAFLD patients significantly exceeded this baseline,
indirectly confirming the existence of tongue coating microbiota
dysbiosis in this population.

Furthermore, we identified significantly lower abundances of
Pseudomonas aeruginosa and Subdoligulum in MAFLD patients,
aligning with findings reported by Diaz (33), which noted that these
genera were less abundant in the gut microbiota of MAFLD patients
compared to healthy controls. Collectively, these results suggest that
Porphyromonas, Pseudomonas aeruginosa, and Subdoligulum may
serve as potential biomarkers for MAFLD. Additionally, our animal
studies confirmed significant differences in tongue coating
microbiota between MAFLD and healthy controls, indicating that
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MAFLD may have identifiable biomarkers within the tongue
coating microbiota.

In addition, multiple microbial communities in the tongue
coating of MAFLD patients exhibited correlations with clinical
indicators, akin to the positive association between Rhodococcus
and BMI values reported in a previous study (34). Although our
findings reveal disturbances in the tongue coating microbiota of
MAFLD patients in both animal and clinical studies, along with the
identification of certain highly abundant microbial taxa, the specific
relationship between microbiota and MAFLD necessitates further
extensive investigation for exploration and validation. We believe
that as related research advances and emerging technologies
develop, the connections between MAFLD and tongue coating
microecology will become clearer, ultimately providing novel
insights for the prevention and treatment of MAFLD.

Discussion on the effect of WMT treatment
on the microbiota of MAFLD tongue
coating

In this study, we found that after WMT treatment, the
abundance of Peptostreptococcus in the tongue coating of MAFLD
patients significantly decreased, while the abundance of
Lachnospiraceae and Bifidobacterium increased markedly. A study
demonstrated that FMT effectively alleviates symptoms in patients
with diarrhea-predominant irritable bowel syndrome, leading to a
significant increase in Bifidobacterium abundance in the intestinal
microbiota (35). This finding aligns with our observation of a
substantial increase in Bifidobacterium in MAFLD patients
following WMT. Furthermore, Wu (36) reported that
Bifidobacterium is negatively correlated with metabolic
endotoxemia, suggesting that this genus may help mitigate disease
progression. While Peptostreptococcus was typically considered part
of the normal human microbiota, it has also been associated with
infections in various tissues and organs. Therefore, based on these
findings, we infer that WMT not only impacts gut microbiota but
also influences the microbiota present in the tongue coating.

In addition, this study unexpectedly identified a correlation
between tongue coating microorganisms and the efficacy of WMT
treatment for MAFLD. For instance, Porphyromonas was found to
be positively correlated with obesity, ALT, AST, and disease severity
in MAFLD patients, consistent with findings reported in other
studies. Specifically, Porphyromonas gingivalis has been closely
associated with the onset and progression of various diseases,
including MAFLD (37, 38), cirrhosis (39), and liver cancer (40).
This relationship may stem from the ability of Porphyromonas to
invade the intestine, leading to an imbalance in gut microbiota and
increased serum endotoxin levels. Consequently, this disruption
may compromise the intestinal mucosal barrier and interfere with
hepatic fat metabolism (41). These findings suggest that
Porphyromonas, Peptostreptococcus, and Bifidobacterium may
serve as potential biomarkers for predicting the efficacy of WMT
in treating MAFLD. To further investigate this, we conducted
animal experiments that yielded similar results. Although no
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significant differences were observed in the microbiota of the tongue
coating between mice receiving healthy bacterial solutions and
those receiving severe fatty liver bacterial solutions after FMT,
Enterococcus exhibited a higher abundance in the group receiving
the severe fatty liver bacterial solution. As a well-known conditional
pathogen, Enterococcus is recognized as a leading cause of infection
(42). A clinical study conducted by Vieira (43) demonstrated that
intestinal Enterococcus can translocate to the liver and other tissues,
while Schwenger KJP (44) found a strong correlation between
Enterococcus abundance and disease severity and mortality in
MAFLD patients. Based on these findings, we speculate that
Enterococcus may be widely present in MAFLD in both animal
models and humans, potentially acting as a conditional pathogen
closely linked to the onset and progression of MAFLD.

However, this study has several limitations, including a small
sample size and microbiological assessments of tongue coating at
different treatment cycles. Therefore, there is an urgent need for
multicenter, large-scale studies to validate the potential significance
of these microorganisms in MAFLD. Furthermore, the metabolic
products of tongue coating microorganisms are relatively abundant,
and MAFLD patients exhibit their own accumulation of metabolic
products, some of which were closely related to
specific microorganisms.

To address these complexities, integrating and analyzing the
metabolomics of both tongue coating microbiota and intestinal
microbiota could lead to the identification of additional and more
robust potential biomarkers. Such an approach may provide new
diagnostic methods for MAFLD, offer important theoretical insights
into the mechanisms underlying MAFLD, and pave the way for
innovative strategies in the prevention and treatment of
this condition.

In addition, this study acknowledges several limitations. Firstly,
the sample size was relatively small, which may limit the
generalizability of the findings. Secondly, despite the observed
associations, there remains a dearth of specific mechanistic
research elucidating the relationship between tongue coating
microorganisms and MAFLD. Consequently, there is a pressing
need for multi-center studies with larger sample sizes to
comprehensively investigate the effects of WMT, on the tongue
coating microbiota and the clinical efficacy in MAFLD patients.
Furthermore, future research should endeavor to explore the
potential microbial interplay between the tongue coating and the
gut, as well as delve deeper into the underlying mechanisms to
enhance our understanding of this intricate relationship.dd.

Conclusion

In summary, WMT demonstrates a substantial capacity to
ameliorate the hepatic steatosis index among patients with
MAFLD, accompanied by a minimal occurrence of adverse
reactions, thereby suggesting its safety and efficacy as a
therapeutic intervention for MAFLD. Notably, significant
disparities were observed in the tongue coating microbiota of
both MAFLD patients and mice, in contrast to healthy controls.
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Various bacterial genera, including Streptococcus, Porphyromonas,
Johannes, and Rhodococcus, exhibited close correlations with
clinical indicators of MAFLD in the tongue coating of affected
patients, hinting at their potential as biological markers for
assessing disease severity. Furthermore, WMT exerts a notable
influence on the tongue coating microbiota of MAFLD patients
and mice. After WMT, multiple bacterial genera, such as
Bifidobacterium, Streptococcus, and Porphyromonas, were found
to be associated with clinical indicators of MAFLD, indicating
their utility as biological markers for evaluating the therapeutic
efficacy of WMT in treating MAFLD.
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