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University of Évora, Portugal

REVIEWED BY

Akira Takamata,
Nara Women’s University, Japan
Vittorio Emanuele Bianchi,
University of the Republic of San Marino, San
Marino

*CORRESPONDENCE

Laura J. Den Hartigh

lauradh@uw.edu

RECEIVED 08 August 2025
ACCEPTED 06 October 2025

PUBLISHED 17 October 2025

CITATION

Lee AA and Den Hartigh LJ (2025)
Metabolic impact of endogenously
produced estrogens by adipose tissue in
females and males across the lifespan.
Front. Endocrinol. 16:1682231.
doi: 10.3389/fendo.2025.1682231

COPYRIGHT

© 2025 Lee and Den Hartigh. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 17 October 2025

DOI 10.3389/fendo.2025.1682231
Metabolic impact of
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estrogens by adipose
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males across the lifespan
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1Department of Medicine: Metabolism, Endocrinology, and Nutrition, University of Washington,
Seattle, WA, United States, 2UW Medicine Diabetes Institute, Seattle, WA, United States
The aged population, expected to double by 2050, makes up a large proportion

of people living with metabolic disease. Obesity rates in the elderly are rapidly

increasing, with estimates that nearly 40% of men and women over the age of 60

are classified as obese. White adipose tissue (WAT) is a highly metabolically active

organ that undergoes significant changes during both obesity and aging, and

metabolic dysfunction in WAT is a major cause for elevated diabetes risk. A

marked difference in fat distribution is often reported between men and women.

Many studies suggest that pre-menopausal women are protected from the

accumulation of visceral adiposity due to gonadal estrogen, which exerts

cardiometabolic benefits. Men with obesity harbor a disproportionately higher

volume of intra-abdominal fat than premenopausal age-matched women with

obesity, an effect that is negated by menopause as women begin to gain intra-

abdominal fat. Post-menopausal women are at increased risk of developing

diabetes, which can be mitigated by estrogen replacement therapy, suggesting

an important role for sex steroids in diabetes risk. In addition to being highly

responsive to gonadal estrogens, WAT has the capacity to convert androgens

into estrogens, which may similarly impact WAT distribution and metabolism.

Estrogens, comprised primarily of estrone (E1) and estradiol (E2) within WAT, are

biosynthesized from circulating androgens androstenedione (A4) and

testosterone (T) by aromatase (CYP19A1), which is highly expressed in human

and mouse adipose tissue. In post-menopausal women, WAT becomes the

predominant source of estrogen production, with age-associated increases in

WAT aromatase expression that are mirrored by obesity. In contrast to ovarian

estrogen production, in which E2 is the predominant estrogen type, E1 tends to

be the predominant estrogen post-menopause. To date, little is known about

WAT-derived estrogens and their impact on metabolic health, but emerging

evidence suggests that increased E1 levels may contribute to metabolic

dysfunction in aging. This review will introduce known sex differences in

adipose metabolism associated with aging, obesity, and diabetes, and discuss

the impact of WAT-derived sex hormones on local and systemic metabolism.
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1 Introduction

The global rise in obesity has become one of the most pressing

health challenges of our time as a leading contributor to global

morbidity and mortality. Between 1975 and 2014, the average body

weight of adults worldwide dramatically increased, with women

gaining an equivalent of an additional 1.5 kg per decade (1). The

striking rise in body mass index (BMI) is a comorbidity to other

metabolic diseases, including type 2 diabetes (T2D), which is driven

in part by dysregulated white adipose tissue (WAT) function. WAT

is a highly metabolically active organ that undergoes significant

physiological changes during obesity as well as aging. WAT can

expand via increased recruitment of pre-adipocytes, hence

increasing the total number of adipocytes (hyperplasia), or via the

enlargement of existing adipocytes (hypertrophy). WAT exists as

many depots distributed throughout the body, and in general are

categorized as either subcutaneous (sWAT) or visceral/omental

(vWAT). sWAT is the most abundant depot in healthy people

and contributes to metabolic health (2, 3). By contrast, excess

vWAT is associated with metabolic syndrome, which includes the

constellation of type 2 diabetes, hypertension, insulin resistance,

dyslipidemia, systemic inflammation, and atherosclerosis (4, 5).

During periods of nutrient excess (i.e. obesity), WAT may become

severely dysfunctional due to maximization of WAT expansion

potential, resulting in ectopic fat accumulation and lipotoxicity in

other organs (2). In women, the transition to menopause

significantly increases metabolic risk, with postmenopausal

women facing a five times greater risk of central obesity

compared to premenopausal women (6–8). This significant shift

in fat distribution from subcutaneous regions in the hips and thighs

to visceral depots is attributed to the loss of ovarian sex steroid

production, in which case, adipose tissue then becomes the primary

site of estrogen production (7, 9).

The gonads are classically thought to contribute to the majority

of circulating sex hormone levels, and by extension are assumed to

primarily determine sex steroid exposure to other tissues in the

body. This largely ignores the contribution of local tissues to extra-

gonadal sex hormone effects (10). The metabolic impact of

estrogens produced in adipose tissue, for example, remains poorly

understood, and will be a major focus of this review. During

reproductive years, when gonadal estradiol (E2) is the dominant

estrogen, premenopausal women tend to accumulate more

subcutaneous fat, particularly in the hips and thighs (10). This

pattern presents metabolic benefits, as subcutaneous fat is

associated with protective effects, while visceral fat promotes a

greater metabolic risk (10). However, in postmenopausal women,

circulating estrogen levels decline, and the remaining levels of

circulating estrogens reflect what is produced in extragonadal

sites like adipose tissue (11). Studies that support circulating

levels of estrogen being a secondary outcome of estrogen

production for postmenopausal women and men clarify what

may occur in extragonadal tissues but does not capture the local

or tissue-specific actions of estrogen itself. The mechanisms and

consequences underlying the production of estrogen in different

adipose tissue depots remain unclear. Additionally, the metabolic
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impact on adipose tissue by endogenously produced estrogens

appears to be influenced by age, sex, and metabolic disease. These

variations in estrogen regulation and its implications for metabolic

health warrant additional investigation.

This review will investigate the impact of age, sex, and metabolic

disease on endogenous adipose tissue estrogen metabolism,

including differences between subcutaneous and visceral fat

depots. Observational studies in humans across the age span and

preclinical studies in rodent models that have contributed to our

knowledge regarding the relationships between adipose and sex

steroids will be discussed. Firstly, adipocyte metabolism in healthy,

aging, obese, and diabetic individuals will be presented, followed by

the response of adipose tissue to estrogen. Next, we will explore the

regional differences of estrogen activity in different depots of fat,

including estrogen conversion mechanisms in adipose tissue and

the changes that occur with aging. Finally, the impact of these

endogenously produced estrogens on metabolic function will be

discussed. This review thus offers a unique adipocentric perspective

on estrogen metabolism in health and disease across the lifespan.
2 Adipocyte metabolism

In a healthy state, WAT importantly contributes to the

maintenance of lipid and glucose homeostasis. Adipocytes store

triglycerides and release free fatty acids (FFA), as well as synthesize

and secrete adipokines, to maintain metabolic homeostasis. The

WAT secretome is composed of cytokines, adipokines, and other

factors, which can be reviewed here (12), and adipose depot location

greatly influences metabolic health (13, 14). However, the

differences in depot specific WAT sites and their molecular

properties are much less understood (15). Adipocytes within

WAT can expand in both number (hyperplasia) and in size

(hypertrophy) which has been shown to be regulated by nutrient

availability and sex steroids (10, 16). Healthy expansion of WAT

includes increased vascularization and anti-inflammatory signals

(17, 18). Thus, adipose tissue can be considered as an energy

balance “hub” that integrates the body’s requirements for energy

storage and utilization by other organ systems.

To understand the role of WAT on metabolic function and

dysfunction, it must first be understood that while obesity is

commonly defined using BMI, it is not a reliable indicator of

metabolic health on its own. Subsets of individuals who classify as

having obesity can have “metabolically healthy obesity’ (MHO) or

“metabolically unhealthy obesity” (MUHO), and it is also possible

to be “Metabolically unhealthy with a normal weight” (MUHNW)

(19), suggesting there are clear exceptions that may be misclassified

if one were to rely on BMI alone. Several studies have been

conducted on these subsets of patients to clarify the root

connection between obesity and metabolic decline. Demographics

ranging between men, women, and postmenopausal women show

that there is a correlation between a beneficial phenotype for

metabolic outcomes and subcutaneous fat accumulation, whereas

visceral fat accumulation, including omental adipocyte

hypertrophy, leads to a decline in metabolic health (20–25).
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Adipose tissue distribution can contribute to metabolic dysfunction

associated with aging, obesity, and diabetes, to be discussed in more

detail in the next sections.
2.1 Aging

The aged population, herein pertaining to adults over the age of

60, is expected to double by 2050 (26). Aging is a major contributor

to the growing global prevalence of metabolic diseases, which

include the constellation of obesity, diabetes, and cardiovascular

disease (CVD). Obesity rates among the elderly are rapidly

increasing, with estimates that 37.5% of men and 39.4% of

women over age 60 are classified as obese in the United States

(27). With aging, fat mass and tissue distribution go through

significant changes. Fat depot sizes reach a peak in middle to

advanced age (28), following a substantial decline, which appears

to be a result of decreased hypertrophy rather than hyperplasia, as

the capacity for WAT to continue preadipocyte differentiation

declines with age (29–31). Included in this decline is a

redistribution of fat from subcutaneous to visceral depots,

particularly in post-menopausal women, which is associated with

an increased risk for metabolic dysfunction, including insulin

resistance (IR), as adipose tissue releases excess FFA and

inflammatory mediators that impair insulin signaling (32, 33).

Additionally, with age, the decline in WAT mass is associated

with accumulation of fat in ectopic regions in non-adipose tissue

organs like skeletal muscle (34), liver (35), and bone marrow (36),

which exacerbates metabolic dysfunction (37). Aging-related

changes in WAT distribution in women and men are depicted

in Figure 1.

A relationship between aging and chronic, low-grade

inflammation exists, in which a term called “inflammaging” arose,

coined by Dr. Franceschi in the year 2000 (38). With this,

proinflammatory cytokines are notably increased, including

immune cells infiltrating WAT (38). Aged WAT is characterized

by a proinflammatory microenvironment with elevated expression

of inflammatory genes associated with metabolic disease (39).

Aging is also associated with macrophage infiltration into

primarily visceral adipose depots which drives a pro-

inflammatory state and further increases adipose dysfunction

(40). In terms of function and metabolism, older WAT exhibits

reduced lipolysis and lipid storage capacity, driven by increased

fibrosis and reduced plasticity (41). Additionally, WAT from older

individuals exhibits a decline in anti-inflammatory adipokines like

adiponectin, and an upregulation in pro-inflammatory cytokines

that include tumor necrosis factor alpha (TNF-a) and interleukin-6
(IL-6) which can be reviewed here. In post-menopausal women, a

similar pattern of decreased circulating estrogen levels has been

correlated to decreased adiponectin secretion and elevated levels of

TNF-a and IL-6 (42, 43). This chronic inflammation in aging WAT

contributes to hepatic insulin resistance and systemic metabolic

decline (44). The association between decreased adiponectin levels

in postmenopausal women exacerbating metabolic dysfunction is
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supported by a cross-sectional study by Karim et al. which suggests

an inverse association with endogenous concentrations of estrogen

and adiponectin and ghrelin and a positive association with leptin

and endogenous estrogens (45). While cross-sectional studies may

be limited in design, a longitudinal study by Tai et al. in Taiwanese

postmenopausal women showed that higher serum adiponectin

levels were associated with lower BMI and decreased risk of

hyperlipidemia. Similar results were seen in another cross-

sectional study in which menopausal age category was accounted

for, but with no influence (46). Associations between decreased

adiponectin and enhanced insulin resistance and other metabolic

diseases is supported by several other studies (47–49).
2.2 Obesity and diabetes

Obesity, which is characterized by an expansion of WAT,

occurs through two primary mechanisms: hyperplasia and

hypertrophy. Hyperplasia, referring to an increase in the number

of adipocytes, is associated with an increase in subcutaneous fat

volume and protective signals, and is associated with MHO (50). A

greater number of small adipocytes has been associated with

improved insulin sensitivity, reduced inflammation, and less

ectopic lipid accumulation, as the production of new cells leads to

a greater capacity for nutrient storage (51). On the contrary,

hypertrophic adipocytes, in which existing adipocytes enlarge, is

associated with increased dysfunction and MUHO (50), which

contributes to IR and subsequent T2D (52, 53). The molecular

and genetic mechanisms underlying obesity-driven hyperplasia and

hypertrophy are reviewed here (54). Hypertrophic adipocytes are

associated with an interference in lipolysis and adipokine secretion.

This reduces cellular stability, increasing the risk of cell death

resulting in the chronic, low-grade inflammation that we see in

tandem with metabolic syndrome (25). Hypertrophy leads to

multiple fold increase in infiltration of macrophages in WAT (55,

56), which promotes a pro-inflammatory and insulin resistant

environment. There are several mechanisms that lead to this

state, including the promotion of cell death. As WAT expands

beyond its capacity, hypoxia is induced, leading to cellular stress

and necrosis (57). This exacerbates macrophage inflammation, and

thus the chronic pro-inflammatory state that impairs adipocyte

function and insulin sensitivity which contributes to systemic

dysregulation (57, 58). Furthermore, dysfunctional adipocytes

caused by obesity have impaired storage capabilities, promoting

the release of FFA into circulation and ectopic fat accumulation

which interfere with insulin signaling pathways and contribute to

systemic insulin resistance and eventual T2D (44). The

pathophysiology of obesity-related diabetes has several nuances

related to the disruption of metabolic homeostasis caused by

increased adiposity. Obesity-induced insulin resistance is driven

by adipocyte dysfunction, coupled with chronic inflammation, and

ectopic lipid deposition in non-adipose tissues, similar to the effects

seen in aging, which other reviews describe as a compounding effect

(59, 60).
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3 Sex steroids and metabolic disease
Fron
Sex steroid synthesis pathways have been well described (61,

62). Briefly, as shown in Figure 1, gonadal sex steroids are

synthesized from cholesterol by the enzymatic action of

steroidogenic acute regulatory protein (StAR) and CYP11A1.

Cholesterol-derived pregnenolone (Preg) can be further

metabolized into progesterone or dehydroepiandrosterone

(DHEA) by specific enzymes, followed by androstenedione

(A4) and/or testosterone (T), which can be terminally

converted into estrogens. A4 is primarily converted into E1,

while T is converted into E2, both directed by CYP19A1

(aromatase) activity. E1 and E2 can interconvert due to the

activity of several hydroxysteroid dehydrogenase (HSD)
tiers in Endocrinology 04
enzymes, HSD17b subtypes 1, 7, and 12 (62). E2 derived

from testosterone is the primary estrogen produced from the

ovaries, while DHEA-derived A4 leads primarily to E1 in

adipose tissue (63). Thus, E2 tends to dominate in people

with high gonadal function, while E1 becomes more prevalent

as gonadal function declines, as occurs in aging, obesity, PCOS,

and post-menopause (64–66). The impact of circulating sex

steroids on metabolic health and aging is summarized

in Table 1.
A notable sexual dimorphism exists in body fat composition

and adipocyte metabolism, which is influenced by sex steroids that

include estrogens and androgens (51) (Figure 1). Women generally

have higher subcutaneous fat storage capacity than men, which
FIGURE 1

(A) Fat distribution changes across the age span in women and men. Premenopausal women tend to store most fat in subcutaneous depots. After
menopause, more fat accumulates in the visceral compartment, including ectopic fat surrounding the heart and in the liver. Young and older men tend
to accumulate most of their fat in the intra-abdominal region, with more visceral and ectopic fat accumulation as they age. (B) Estrogen synthesis
pathways in subcutaneous inguinal white adipose tissue (IWAT) and visceral gonadal white adipose tissue (GWAT). In both IWAT and GWAT, estrogens
can be converted from androstenedione and/or testosterone due to the presence of aromatase (Cyp19a1). DHEA, androstenedione, androstenediol, and
testosterone enter WAT from the circulation. Estrone (E1) results from androstenedione conversion, while estradiol (E2) is a product of testosterone
conversion by aromatase. E1 and E2 can interconvert due to the action of 17-beta hydroxysteroid dehydrogenases 1 and 2 (Hsd17b1 and Hsd17b2).
Aromatase expression and activity tends to be higher in IWAT. Created in BioRender. Lee, (A) (2025) https://BioRender.com/62mlzmg.
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provides some protection against metabolic dysfunction, while men

tend to store more visceral fat, putting men at greater risk for

developing IR (67, 68). After menopause, women tend to store a

similar amount of adipose tissue in the visceral compartment as

men, implicating a lack of gonadal estrogen signaling in visceral fat

accumulation and subsequent increased risk for IR (69). Indeed,

subcutaneous adipose tissue expresses high levels of estrogen

receptors (37). Hyperplasia and hypertrophy can occur in a

depot-specific manner, as intra-abdominal fat depots primarily

expand through hypertrophy, while subcutaneous WAT has been
Frontiers in Endocrinology 05
seen to expand through both methods (54). Moreover, visceral and

subcutaneous WAT expansion occurs in a sexually dimorphic

manner. Male mice develop diet-induced obesity primarily

though visceral fat hyperplasia, while female mice do so via both

visceral and subcutaneous fat hyperplasia (70, 71) with sex steroids

playing a major role (70, 72). The direct impact of gonadal sex

steroids on WAT function is not well understood, which prompts

further investigation into the sexual dimorphism of adipocyte

function and the mechanisms of gonadal steroids in these

respective tissues. Moreover, T2D is more prevalent in men than
TABLE 1 Summary of the impact of circulating sex steroids on metabolic disease and aging in humans.

Circulating
sex steroid

Association with metabolic disease Association with aging

SHBG -Inverse association with intra-abdominal WAT and obesity (111, 172,
222–224).
-Inverse association with T2D, mediated by visceral fat content (103,
110, 225, 226).
-Decreases with weight gain (227).
-Increases with weight loss in obese men and women (111, 228–232).
-Promotes WAT flexibility in women, contributing to improved insulin
sensitivity (233).

-Inversely associated with BMI in postmenopausal women (n=267)
(171).
-Increases following weight loss in post-menopausal women and older
men (228, 230, 231).

DHEA -Inversely associated with obesity in twins discordant for obesity (n=10)
(223).
-Inversely associated with BMI in premenopausal women with PCOS
(n=136) (234).
-Inversely associated with visceral fat in lean premenopausal women
(n=30) (235).
-Inversely associated with adiposity in premenopausal women with
obesity (n=28) (224).
-Inversely associated with visceral adiposity in healthy men (n=80)
(175).
-Inversely correlated with insulin resistance in men (236).

-Aging decreases DHEA levels in men (n=217) (237).

A4 -Inversely associated with BMI, adiposity, and abdominal adipose mass
in pre-menopausal women (n=46) (238).
-Inversely associated with BMI in premenopausal women with PCOS
(n=136) (234).
-Positively associated with obesity in premenopausal women (n=28)
(224).

-Aging decreases A4 levels in men (n=217) (237).

E1 -In twin men discordant for obesity (n=18 pairs), E1 levels are higher in
the heavier twin (172).
-Associated with BMI and adiposity in women (170, 173, 174).
-Associated with BMI and waist circumference in men (169, 175, 176).
-Associated with impaired fasting glucose and insulin resistance in men
(239) and women (66, 174).

-Associated with BMI in postmenopausal women (n=267) (171, 174).
-Associated with lower-body obesity in women with obesity (240).
-In postmenopausal women, E1 is inversely correlated with
adiponectin and insulin sensitivity (n=101) (174).

E2 -Inversely associated with obesity in premenopausal women (241–244).
-Associated with insulin sensitivity in premenopausal women (245,
246).
-Hyperestrogenemia is associated with insulin resistance (247, 248).
-In twin men discordant for obesity (n=18 pairs), E2 levels are higher in
the heavier twin (172).

-Protective effect on excess adiposity of E2 replacement in post-
menopausal women (n=40) (249).
-In postmenopausal women, E2 is inversely correlated with
adiponectin and insulin sensitivity (n=101) (174, 250).
-Associated with BMI and adiposity in postmenopausal women (171,
174, 251).
-Declines with aging in both men (252, 253) and women.
-Lifestyle-mediated weight loss decreases E2 in older women (230).
-Inversely related to cognitive decline (254).

T -High association with WAT mass and leptin in women (170, 235, 255–
257).
-Lower association with BMI, WAT mass and leptin in men (169, 170,
172, 175, 255–258).
-Weight loss increases T in older men, and decreases T in older women
(229, 230, 259).
-Protective against T2D in men (260).
-Inversely correlated with insulin resistance in men (236).

-Aging decreases T levels in men (n=217) (237).
-Associated with BMI in postmenopausal women (n=267) (171).
Blue text: beneficial associations with metabolic disease or aging; red text: detrimental associations with metabolic disease or aging.
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women, with an estimated 13% of men and 11% of women between

the ages of 20–79 classified as diabetic in 2016 (67, 73). Post-

menopausal women are also at increased risk of developing

diabetes, an effect that can be mitigated by estrogen replacement

therapy (74), suggesting an important role for estrogens in diabetes

risk (Table 1).

Animal studies have supported the protective impact of estrogens

on metabolic disease risk (summarized in Table 2). Female mice and

rats that have undergone ovariectomy (OVX), effectively removing all

gonadal estrogens, have increased adiposity and are more prone to

diet-induced obesity than sham-operated mice, with elevated adipose

tissue inflammation (75–79). These effects of OVX appear to be

consistent across rodent species (mice and rats), strain (rats: Sprague-

Dawley, Wistar), and with age at OVX (4–10 weeks of age in mice).

Estrogen treatment promotes anti-inflammatory and insulin

sensitizing effects in both male and female mice (80, 81), and

estrogen replacement reverses some of the detrimental metabolic

effects of ovariectomy (80, 82–84). By contrast, castrated male rodents

have been shown to exhibit improved glucose and insulin tolerance

with reduced adiposity in some studies (85, 86), and in others display

worsened adiposity, WAT inflammation, and glucose tolerance (87,

88). Perturbation of estrogen signaling in mice has primarily been

achieved by genetic manipulation of estrogen receptors (ERa, ERb)
or aromatase in mice. Global deletion of ERa has been shown to

increase adiposity, systemic and adipose tissue inflammation, and

insulin resistance in mice (89–92). Similarly, adipocyte-specific

deletion of ERa increases inflammation concurrently with

adipocyte hypertrophy (93). Studies of mice with global aromatase

deficiency consistently show an increased propensity towards obesity

and insulin resistance (94–96), and mice with adipocyte-specific

aromatase overexpression exhibit improved insulin sensitivity and

reduced inflammation (97). Collectively, studies in mice highlight the

distinct metabolic impacts of the loss of gonadal androgens and

estrogens on systemic metabolism.

In addition to being a major target of gonadal sex hormones,

adipose tissue can also synthesize and store them (Figure 1).
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The decline in gonadal sex hormone production that occurs in

post-menopausal women and in aged men coincides with increased

sex hormone synthesis within adipose tissue (76, 98). Increased

synthesis of adipose tissue-derived sex hormones has also been

reported in the setting of obesity (99). The mechanisms by which

adipose tissue can become a source for sex hormones will be

discussed in Section 3.2.4., and emerging knowledge regarding the

metabolic impact of WAT-derived sex hormones is summarized

in Table 3.
3.1 Sex hormone-binding globulin and
adipose tissue

Sex hormone-binding globulin (SHBG) is a glycoprotein

primarily synthesized in the liver. SHBG regulates the

bioavailability of sex steroids in the bloodstream, including

testosterone (T) and estradiol (E2). There is compelling evidence

that supports SHBG’s involvement in glucose and lipid metabolism

and its role as a biomarker for obesity-related disorders including

T2D (100–102). The mechanisms of SHBG’s regulation in the

context of sex differences and adiposity are incompletely

understood. This section will discuss the current knowledge and

gaps thereof.

The most established link between SHBG and metabolic health

is its inverse association with insulin resistance. Low circulating

SHBG levels are predictive of T2D development, independent of

BMI (103). Particular single nucleotide polymorphisms (SNPs) for

SHBG confer increased risk for T2D (102, 104). This brings to

question if SHBGmay mediate a relationship between adiposity and

impaired glucose metabolism (100). Mechanistically, this seems to

involve insulin’s inhibitory effect on hepatic SHBG production.

Hyperinsulinemia, which is a hallmark of insulin resistance,

suppresses SHBG synthesis, creating a cycle of increasing free sex

steroid concentrations and worsening metabolic outcomes (105–

107). Interestingly, recent studies suggest that SHBG may partially
TABLE 2 Summary of the impact of perturbing circulating and WAT-derived sex steroids on metabolic disease and aging in mouse models.

Mouse models Impact on metabolism

Genetic SHBG perturbation
-Male mice overexpressing SHGB is protective against diet-induced obesity and insulin resistance (109).
-No metabolic impact on SHGB overexpression in male and female mice fed a HFD (108).

Genetic estrogen signaling perturbation

-ERa KO mice have impaired insulin sensitivity and are more prone to excess adiposity (89–92, 143, 144).
-Hepatic overexpression of estrogen sulfotransferase (EST), which increases the inactivation of estrogens, promotes
dysregulated glucose metabolism. Conversely, loss of EST improved metabolic function in females, but worsened metabolic
function in males (261).
-Adipocyte-specific deletion of ERa increases adipocyte hypertrophy and inflammation (93).
-Mice with aromatase deficiency are more prone to obesity and insulin resistance (94–96).
-Mice with adipocyte-aromatase overexpression have improved insulin sensitivity and reduced inflammation (97).

Surgical estrogen deprivation

-Ovariectomy (OVX) increases body weight and body fat in female mice (76, 83, 84, 262–264).
-OVX improves HFD-induced insulin resistance in female mice (75).
-OVX of ERa mice led to decreased body weight vs. sham-operated ERa mice (91).
-Castration indirectly reduces estrogen in male mice, leading to enhanced adiposity and pronounced diet-induced obesity
(72).

Estrogen treatment
-E2 given to female mice attenuated high fat diet-induced weight gain and visceral adiposity (81).
-E2 given to males prevented high fat diet-induced weight gain and improved glucose tolerance (265, 266).
-E2 given to both male and female diet-induced obese mice led to improved WAT inflammation and insulin sensitivity (80).
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explain sex differences in glucose regulation, reporting that SHBG

mediates a proportion of the association between sex and fasting

glucose levels, as well as T2D incidence (101). The degree to which

SHBG independently influences metabolic health, or rather if it acts

as a marker of other underlying processes, is not well agreed upon in

current literature. A study by Sofer et al. (2018) tested the

hypothesis that SHBG provides metabolic protection by feeding

transgenic mice expressing human SHBG a high-fat diet (HFD) for

4.5 months. Their results revealed no protective effects from SHBG

expression on obesity or dysglycemia in either male or female mice

(108). SHBG transgenic mice appeared to gain weight similarly to

wild-type (WT) controls. Furthermore, fasting glucose, insulin, and

insulin resistance measured using HOMA-IR found no significant

differences (108). It was also observed that female SHBG transgenic

mice showed higher fasting glucose levels than WT controls,

suggesting that SHBG may play a detrimental role in certain

contexts (108). The authors speculate that the absence of

metabolic protection may result from the longer duration of the

HFD in their model, which may have allowed for compensatory

mechanisms to override an early protective benefit that SHBG may

provide. They also acknowledge that SHBG may not be causally

protective but rather serve as a biomarker for metabolic health.

Contrastingly, a study by Saez-Lopez et al. (2020) reported that

SHBG overexpression protected male, transgenic mice against

HFD-induced obesity as well as metabolic disease. Over the

course of 8 weeks, compared to WT controls on the same diet,

SHBG transgenic mice demonstrated significantly less weight gain,

smaller epididymal white adipose tissue (EWAT) depots, and a

healthier metabolic profile including lower insulin, leptin, and

resistin while also demonstrating higher adiponectin levels (109).

The authors proposed that this protective effect was mediated

through enhanced lipolysis in WAT, as SHBG transgenic mice

had elevated expression of lipolytic genes including beta-3-

adrenergic receptor (Adrb3), interferon regulatory factor-4 (Irf4),

and perilipin-1 (Plin) and increased phosphorylation of protein kinase

A (PKA), extracellular signal-regulated kinases 1/2 (ERK-1/2), and
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hormone sensitive lipase (HSL), which may suggest that SHBG plays a

more active role in adipocyte metabolism than previously thought. A

notable difference between the two studies is their duration of HFD

exposure. Sofer et al. used a longer, 4.5-month model which may have

allowed for metabolic adaptations, or saturation effects of any

protective role SHBG may play. The shorter 8-week model by Saez-

Lopez et al. may reflect a more acute metabolic response. Further

support for SHBG’s protective role comes from a longitudinal human

study observing changes in SHBG and diabetes risk over the

menopause transition (110). This study found that increasing levels

of SHBG were associated with a decreased risk of T2D after adjusting

for covariates. Furthermore, stable or increasing rates of change in

SHBG were independently associated with a lower risk of diabetes

compared to decreasing rates of change (110). This may suggest that

SHBG exerts effects on glucose regulation beyond its known role as a

regulator of sex steroids. Comparisons between its role with

circulating sex hormones and those that are endogenously produced

are also not fully understood, especially in the context of obesity

related adipocyte dysfunction.

A critical question remains: Is SHBG simply a biomarker of

obesity and metabolic health, or does it act as an active contributor

to metabolic regulation? Cross-sectional human studies show that

low SHBG levels predict T2D and metabolic syndrome incidence,

even after adjusting for adiposity (111). However, these associations

may not imply causation. Studies have demonstrated that SHBG

levels are inversely correlated with markers of adiposity that include

BMI and WHR (111, 112). In post-menopausal women, it appears

that lower SHBG concentrations are associated with higher central

adiposity (113). A separate study found that SHBG levels tend to

increase with age linearly in healthy post-menopausal women (114).

while another suggests this increase relates to the increase of

circulating free testosterone in late-postmenopausal women (115).

Further studies could be beneficial to clarify the interaction between

hormonal aging and metabolic health in postmenopausal women

with and without metabolic syndrome. Despite numerous studies

that show a relationship between SHBG and adiposity, the findings
TABLE 3 Summary of the impact of WAT-derived sex steroids on metabolic disease and aging in humans.

WAT sex
steroid

Association with metabolic disease Association with aging

A4 -Increased capacity of WAT to convert T → A4 associated with BMI (267, 268).

E1 -Increased aromatization of A4 into E1 is associated with adiposity in healthy
women (269, 270).
-Increased WAT E1 content in men with obesity (139).
-WAT E1 levels reportedly 5X higher than circulating levels in premenopausal
women (192).
-WAT E1 correlates with waist circumference in premenopausal women (192).

-Aromatization rate of A4 → E1 increases with age in women,
regardless of BMI (271).
-Shift towards WAT-derived E1 post-menopause increases
visceral fat (62, 270).
-WAT aromatase expression increases with age (272).

E2 -Increased aromatization of T into E2 is associated with adiposity in healthy
women (269).
-Increased WAT E2 content in men with obesity (139).

-Shift towards WAT-derived E2 post-menopause increases
visceral fat (62).

T -Low T levels may contribute to more severe adipose-insulin resistance in obese
men (273).
-T content is higher in WAT from obese subjects than lean (274).
-Positive association between WAT T production and central obesity (63, 268,
275).
Blue text: beneficial associations with metabolic disease or aging; red text: detrimental associations with metabolic disease or aging.
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are not uniform across all populations. A 1997 study found that

SHBG negatively correlated with BMI, WHR, insulin, and

testosterone levels in both premenopausal and postmenopausal

women, however, E2 levels correlated positively with SHBG only

in the premenopausal group (116). The relationship between SHBG

and IAAT similarly does not reach a consensus across studies.

Several cross-sectional studies have shown an inverse relationship

between SHBG and IAAT, suggesting that visceral fat may actively

suppress SHBG synthesis, potentially through inflammatory

pathways or hepatic fat accumulation (111, 117). Contrasting to

these findings, the first of a kind to publish longitudinal data

regarding the relationship of IAAT gain and SHBG from

postmenopausal women indicate that higher baseline SHBG levels

may predict greater IAAT gain over time, a finding that challenges

previous cross-sectional studies (118). These inconsistencies call for

additional investigation into the temporality and causality of the

SHBG-adiposity relationship.
3.2 Estradiol and estrone in metabolism

Estrogens influence many physiological processes including

lipid metabolism and adipose tissue distribution. Estrogen has

three primary forms, estrone (E1), estradiol (E2), and estriol (E3).

Three estrogen receptors have been described: ERa, ERb, and G-

protein coupled estrogen receptor 1 (GPER1), also known as G-

protein coupled receptor 30 (GPR30). Upon activation, estrogen

receptors translocate to the nucleus where they dimerize and bind

to specific DNA sequences, termed estrogen response elements, to

initiate estrogen-dependent gene transcription. Estrogens can also

exert receptor-mediated non-genomic effects via GPER1, including

interactions with cell membrane-associated complexes such as

caveolin-1, other G-proteins, and receptor tyrosine kinases such

as EGFR, IGF-1, and MAPK (119, 120). E2 has the highest affinity

for ERa and ERb and is thus considered the strongest estrogen

(121). E1 and E3 are weaker estrogens, with higher affinity for ERa
and ERb, respectively (121). Only E1 and E2 have reported agonism
for GPER1 (122). ERa and ERb are widely distributed throughout

the body, with major and roughly equivalent expression in the brain

and liver (123). Notably, metabolic tissues such as WAT, skeletal

muscle, bone, and the heart have higher expression of ERa, while
other tissues such as bone, prostate, testes, and ovaries have higher

expression of ERb. To date, GPER1 expression has been reported in

reproductive tissues (testes, prostate, and endometrium), immune

cells, metabolic tissues (adipose, liver, pancreas, and skeletal

muscle), and in certain cancers (prostate, ovarian, cervical, breast,

and lung) (122, 124–126). E2, or 17b-estradiol, is the predominant

estrogen in premenopausal women, and it is the more biologically

active form as it has a higher affinity for estrogen receptors than

other estrogen forms during reproductive years (121). However,

post-menopause, E1 becomes the dominat estrogen, where it is

synthesized in WAT via aromatase activity (62, 127, 128). Many

studies have shown that E2 beneficially influences metabolism

through mechanisms involving reduced food intake and increased

energy expenditure (75, 129–131). Many of the beneficial effects of
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E2 on energy metabolism are increasingly being attributed to its

interaction with GPER1, including its rapid effects on insulin

sensitivity, hepatic glucose and lipid metabolism (132, 133).

However, much less is known regarding how the prevalence of E1

in postmenopausal women may influence metabolic health.

Emerging evidence suggests that E1 is not associated with the

same beneficial effects on insulin sensitivity reported for E2 and

may promote inflammation (99, 134). Obese mice supplemented

with E1 display a robust pro-inflammatory phenotype, while E2

treatment resulted in an anti-inflammatory phenotype, an effect

dependent on NFkB activation by E1 that was replicated in cultured

adipocytes and breast cancer cell lines (134). In addition, obesity is

associated with higher circulating and WAT-derived E1 levels (64,

135–138), which may be due to the capacity for higher fat content to

convert androgens into more estrogens (139, 140), and in particular

E1 (62, 141). Rats fed an E1-enriched diet gained twice as much

body weight as control rats (142), suggesting that E1 could promote

obesity. More research is needed to improve our understanding of

the metabolic impact of changing estrogens concentration and type

on metabolism post-menopause.

The metabolic benefits of E2 have been well studied, with

evidence that it promotes insulin-sensitivity and improved lipid

metabolism in tandem with estrogen receptors, primarily ERa (90)

and GPER1 (133). In mice, estrogens act via ERa and GPER1 to

regulate insulin sensitivity (143). Studies have shown that ERa
knockout (KO) mice in both males and females have worse

metabolic profiles including developing obesity and worsened

glucose homeostasis (90, 143–145). Recent research has also

suggested that estrogen’s metabolic effects are not only mediated

through direct action on adipocytes, but also through endothelial

mechanisms of ERa that improve insulin transport to skeletal

muscle (146). ERa appears to be required to induce the positive

effect that E2 has on insulin sensitivity in mice (89, 90). Recent

mouse models of global GPER1 deficiency report similar

phenotypes. GPER1 KO mice are more prone to obesity, insulin

resistance, inflammation, and dyslipidemia than control mice (147–

149). Furthermore, in humans, individuals with T2D and poorly

managed glucose control showed a significant decrease in ERa
mRNA expression (145). The systemic effects of estrogens are well

documented, especially regarding the role of E2 in promoting

insulin sensitivity and reducing lipid accumulation, but a major

limitation in our current understanding of how estrogens impact

metabolism is limited by a lack of understanding the tissue-specific

mechanisms that drive metabolic regulation and WAT distribution

(130). Tissue-specific estrogen actions will be discussed in the

next sections.

3.2.1 Skeletal muscle
Current literature supports that the expression of glucose

transporter-4 (GLUT4) in myocytes may be influenced by ERa in

mouse models, suggesting ERa positively regulates GLUT4

expression, contributing to the systemic differences in insulin

resistance seen in ERa KO mice (150). An in vivo experiment

similarly showed that increased ERa expression increased skeletal

muscle glucose uptake in ovariectomized female mice given E2 (151).
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Another study found that the expression of ERa in skeletal muscle

had a significant, inverse relationship with adiposity and fasting

insulin levels (152). However, a separate study showed that ERa is

sufficient, but is not required, to protect mice from metabolic

dysfunction in skeletal muscle and in women with insulin

resistance and obesity (153). This necessitates future studies to

consider the role of estrogens in skeletal muscle, and what

mechanisms compensate for individuals with low to no ERa
expression resulting from changes like aging and obesity (153). The

expression of ERa is not uniform across all tissues in the body but is

highly expressed in female reproductive tissues including ovaries and

breast, WAT, liver, and other tissues which can be reviewed here

(154). ERb, which was not experimentally shown to regulate GLUT4

expression (150), is primarily expressed in male reproductive organs

and other tissues (154). The sexual dimorphism of estrogen synthesis

and estrogen receptors would benefit from additional investigations

that consider the tissue-specific mechanisms in males and females

and how this differs regarding our understanding of how E2

maintains a protective effect.

3.2.2 Liver
There is strong evidence that estrogens regulate hepatic glucose

and lipid metabolism through ERs, particularly ERa (155–157). Loss of

ERa in hepatocytes appears to impair glucose tolerance and increase

lipid accumulation in the liver, worsening adiposity and IR in both

male and female mice, with one study reporting a greater effect in

female mice (158, 159). Orally ingested estrogens have also been

reported to induce acute cholestasis, causing a decrease in bile flux

which is detrimental to cholesterol homeostasis (159). The role of E2

has been well established to play a regulatory metabolic role via ERa in

peripheral tissues such as skeletal muscle and WAT (130, 160–162)

(further discussed in Section 3.2.3). There is evidence that ERa plays a

similar role in the liver, with lower, but similar expression patterns to

WAT (130, 162). E2/ERa signaling appears to increase lipid and

glucose metabolism in the liver by influencing transcriptional factors

that increase lipolysis while decreasing lipogenesis and gluconeogenesis

(162). The role of E1 in the liver is much less clear. Some studies report

that elevated E1 levels may contribute to hepatic IR and increased

inflammation (134). An interesting direction from studies on male

patients with hepatic cirrhosis states that E1, not E2, may play a larger

role on sustaining increased circulating levels of estrogen for patients

with liver cirrhosis through the peripheral conversion of androgens to

E1 (163, 164). This specific hormonal profile may have clinical

relevance on the progression of cirrhosis and altered fat distribution.

Further research regarding the conversionmechanisms of androgens to

estrogens and the use of aromatase inhibitors could improve our

current understanding of E1 function in the liver and how it may

impact metabolic homeostasis.

3.2.3 Adipose tissue
In premenopausal women, E2 promotes lipid storage

predominantly in subcutaneous adipose tissue (SAT) and inhibits

excessive lipid accumulation in visceral adipose tissue (VAT) (165).

E2 contributes to metabolic homeostasis in adipose tissue

specifically by decreasing the activity of lipoprotein lipase and
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subsequent lipogenesis, and has proven to influence hyperplasia

of subcutaneous adipocytes (166). E2 also increases preadipocyte

proliferation, suggesting an adipogenic effect (167). This protective

effect appears to diminish in postmenopausal women, where a

decrease in circulating E2 by the gonads leads to a deficiency, which

has been associated with increased VAT deposition (168).

E1 has consistently been found to positively associate with BMI,

waist circumference, and adiposity in men and women across the

life span (169–176). The dominant estrogen post-menopause is E1,

and while there is compelling speculation regarding its metabolic

impact, there is not yet sufficient evidence for conclusive roles for E1

in energy metabolism. E2 has been studied for its endogenous

metabolic benefits, yet the role of E1 in WAT function and

metabolism remains much less understood. As the predominant

estrogen circulating post-menopause, E1 is primarily synthesized in

adipose tissue through the aromatization of androgens via

aromatase (CYP19A1) (62, 177). A seminal publication suggested

that E1 may exert metabolic effects distinct from those of E2,

indicating that elevated E1 levels correlate with increased

adiposity and insulin resistance in postmenopausal women (134).

This supports the notion that E1 may contribute to metabolic

dysfunction in WAT, while also supporting that E2 does not

appear to have the same negative effects. It is not clear if the

metabolic impact of E1 is dependent on local conversion

mechanisms to E2, and if estrogen receptors and aromatase

activity differ in varying depots and how this may impact the

effects of E1 on metabolism. Whether E1 possesses direct

metabolic effects remains a topic of interest.

The protective role attributed to E2 may be depot-specific, as

ERa must be available for E2 to have a protective effect (178).

Similar to what has been observed in skeletal muscle, it appears that

the metabolic benefit of E2 is regulated by receptor signaling, which

may vary in different fat depots. In adipose tissue, deletion of ERa
(but not ERb) is associated with metabolic decline (93, 179). In

overweight pre-menopausal women, SAT in the abdominal region

contains more ERa relative to ERb than in gluteal SAT (180).

Another study showed that E2/ER signaling plays a significant role

in mediating sex differences of VAT accumulation, where males

express less ERa in VAT than females (181).

Much has been learned about peripheral estrogen receptor-

mediated effects using genetically perturbed mice. Male and female

mice deficient in ERa have a higher degree of adiposity, insulin

resistance, and glucose intolerance than WT mice (90, 92), a

phenotype that closely resembles humans lacking either ERa or

aromatase. Additional approaches to silencing ERa, including
adeno-associated viral techniques and ERalox/lox/Adiponectin-Cre

(Adipo-ERa) mice, revealed that disrupting adipose tissue ERa
recapitulated this phenotype (93), suggesting that the adipocyte is a

major target of estrogens to impart beneficial effects on

systemic metabolism.
3.2.4 Aromatase activity and estrogen conversion
in adipose tissue

In addition to its capacity to respond to gonadal estrogens,

WAT has the capacity to convert circulating androgens into
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estrogens (127, 128, 182) (Figures 1 and 2). Such endogenously

converted estrogens can then function in an autocrine or paracrine

manner (183, 184). Estrogen biosynthesis is catalyzed by aromatase

P450, encoded by the CYP19A1 gene, which is highly expressed in

human and mouse WAT (185, 186). In ovaries, aromatase is largely

driven by the cyclic AMP response element binding protein (CREB)

promoter (98). In contrast to the ovaries, in which the major

substrate for estrogen aromatization is testosterone, the major

substrates for aromatase-mediated estrogenesis in WAT are

DHEA and androstenedione, and may be driven by inflammatory

cytokines (62, 98). Another potential direction with promise lies in

exploring the less understood pathways of aromatase activity and
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estrogen conversion between E2 and E1, and how it may modulate a

tissue-specific outcome. WAT converts androgens to E1 via

CYP19A1 (62, 141), an enzyme that appears to increase with

adiposity in males due to the decline in available testosterone

(187). Indeed, people with obesity have been reported to have

increased CYP19A1 expression in WAT (99, 141, 188, 189). In

another study, aromatase gene expression in SAT positively

correlated with increased adiposity and IR, but interestingly not

with circulating E2 (190). SAT tends to express aromatase in higher

levels compared to VAT, whereas VAT appears to express more of

17b-hydroxysteroid dehydrogenase (17b-HSD), an enzyme which

interconverts E1 and E2 (191). Another study found that, in
FIGURE 2

Schematic for estrogen synthesis pathways derived from cholesterol involving gonads (testes and ovaries), adrenal gland, and adipose tissue.
Box 1: Gonadal and adrenal sex hormone synthesis pathways. Circulating cholesterol is transported across the mitochondrial membrane by
steroidogenic acute regulatory protein (StAR) and CYP11A1 and is eventually converted to dehydroepiandrosterone (DHEA) via CYP17a1. In both
testes and ovaries, DHEA is converted to androstenedione (A4) and testosterone (T) by HSD3b1 and HSD17b3, respectively. When aromatase
(CYP19a1) is present, A4 and T are converted into estrone (E1) and estradiol (E2), respectively. Functional gonads release high levels of T from testes,
and E2 from ovaries. Like the gonads, the adrenal gland can convert circulating cholesterol to androgens, primarily A4. Box 2: Adipose tissue
androgen conversion pathways from healthy young people (left) and those with obesity, insulin resistance, PCOS, and/or advanced age (right). In
people with robust gonadal function, circulating androgens (A4, T) are converted to E2 due to aromatase activity in white adipose tissue (WAT).
Some E2 will convert to E1 due to HSD17b1 activity. In people with reduced gonadal function (i.e. advanced age, obesity, PCOS, and/or insulin
resistance), the major circulating androgen is A4, which predominantly converts to E1 in WAT. Created in BioRender. Den Hartigh, L. (2025) https://
BioRender.com/oqv7exy.
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women, aromatase levels in VAT positively correlated with

adipocyte hypertrophy, suggesting that aromatase activity may be

associated with VAT gain and overall metabolic dysfunction (189).

These findings suggest that aromatase activity appears to regionally

differ between fat depots (Figure 1B). Future analysis into aromatase

expression levels in different depots to analyze its metabolic impact

would benefit from an added component of comparing levels of E1

and E2 produced in these sites. A separate study found that E1 is the

dominating form of estrogen in WAT for premenopausal women,

showing a 5–10 times greater concentration of E1 in SAT and VAT

compared to serum levels (192). They also found that the expression

of aromatase positively correlated with the E1 concentration in

VAT (192). In another study, women with obesity appear to express

much higher levels of aromatase in SAT compared to VAT (193).

The observed correlation between aromatase expression and its

effect on adiposity and IR implicates E1 in metabolic dysfunction.

Further research should seek to distinguish if E1 has direct

metabolic effects or if its metabolic impact is mediated through

the local conversion to E2.

Mechanistic studies in mice provide clues regarding the

metabolic effects of local estrogens. Mice globally deficient in

aromatase (Cyp19a1 KO) are more prone to aging-associated

increase in abdominal obesity and insulin resistance (94–96).

Providing exogenous E2 rescues the obesogenic phenotype in

Cyp19a1 KO mice, suggesting the lack of E2 drives the increased

adiposity. While rare, aromatase deficiency in humans also leads to

insulin resistance and T2D (194), suggesting a beneficial effect of

aromatase. In support of this, a single study has shown improved

insulin sensitivity in male mice with transgenic aromatase

overexpression specifically from WAT, driven largely by increased

E2 (97). While these genetic studies offer a starting point in

modulating estrogen production capacity in general terms, only

one study has addressed the potentially divergent effects of

perturbing particular estrogens. Qureshi et al. found that in obese

mice, E1 promoted a pro-inflammatory phenotype, while E2

dampened inflammation, an effect supported by transcriptomics

(134). Further, higher E1:E2 ratios were predictive of ER-positive

tumor growth (134), suggesting differential impact of E1 and E2 on

obesity-related breast cancer incidence. The impact of particular

estrogens on breast tissue and tumor burden will be discussed in the

next section.

3.2.5 Breast tissue
Breast tissue appears to have a distinct estrogenic profile than

other fat depots, despite breast tissue having a significant portion of

WAT. Similar to WAT, the expression of aromatase in breast tissue

is highly regulated and involved in estrogen synthesis. E2 in breast

tissue is not associated with protective metabolic effects, but rather

has been linked to proliferative tumor growth (195). Elevated

aromatase expression in breast WAT increases local E2

production, which may contribute to estrogen receptor-positive

(ER+) breast cancer pathogenesis (135, 195, 196). This localized

estrogen synthesis differs from systemic estrogen metabolism as

breast WAT appears to maintain high estrogenic activity, especially

for postmenopausal women where WAT is the key source of
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estrogen synthesis. Moreover, tumor-bearing breast tissue has

been shown to have higher aromatase expression within adipose

in close proximity to the tumor than in distal tissue within the same

breast (197), suggesting an adverse role for endogenously produced

estrogens in breast cancer. Inflammatory cytokines secreted by

hypertrophic breast tissue in individuals with obesity appear to

exacerbate aromatase production and thus local estrogen

production (198). In addition, the impact of post-menopausal

estrogens derived from WAT on breast cancer incidence has been

studied extensively, with evidence that ER-positive breast cancer

incidence increases with age (199). Multivariate analyses suggest

that estrogens are the most important factors associated with the

elevated breast cancer risk in postmenopausal women with obesity

(200). Finally, it has recently been reported that E1 and E2 derived

from breast WAT have opposing pro- and anti-inflammatory

transcriptional profiles, respectively (134).
3.4 Menopausal hormone therapy

The use of menopausal hormone therapy (MHT) to reduce

metabolic dysfunction associated with menopause has been studied.

However a consensus regarding its efficacy is far from established.

Studies generally show that estrogen replacement therapy in

postmenopausal women can promote weight loss and improve

metabolic markers including fat distribution, notably by increasing

subcutaneous fat and reducing visceral fat mass (201–203). The

majority of MHT trials have been done in women of normal

weight (BMI<30); as such, the reported impact of MHT on body

weight and adiposity has been modest (74, 204–206). After adjusting

for age and BMI, the Nurse’s Health Study (n=21,028) showed that

MHT (estrogen alone, progesterone alone, or the combination) users

had a 20% reduced risk for diabetes than non-users (207). Similarly,

MHT users in the postmenopausal estrogen/progestin interventions

(PEPI) trial showed improved fasting glucose and insulin levels (204).

MHT has also been shown to reduce homeostatic model assessment

of insulin resistance (HOMA-IR) in postmenopausal women, and

with a nearly 3-fold greater benefit in postmenopausal women with

T2D (204, 208). All the MHT studies listed to this point used either

conjugated estrogen (CE) alone or in combination with a progestin,

delivered orally. More recently, bioidentical E2 with or without a

progestin has become a more common method of MHT. To date,

there is very little known about the impact of other MHT delivery

methods, including transdermal patches, vaginal rings, gels, creams,

or suppositories, on general metabolic health. No randomized

controlled trials have directly examined the metabolic impact of

oral vs. transdermal HRT, but observational studies reveal the

potential for reduced risk for thromboembolism and dyslipidemia

with transdermal delivery when compared to oral (209, 210). This

could be due to the first-pass through the liver with oral MHT,

enabling increased triglycerides, coagulation factors, and C-reactive

protein, which is minimized with transdermal therapy (211, 212). By

contrast, while both transdermal and oral MHT delivery methods

have been shown to reduce diabetes risk, oral MHT led to a greater

risk reduction (213).
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Conflicting data suggest that estrogen’s metabolic effects may

depend on context. Initial results from the Women’s Health Initiative

(WHI) showed that conjugated equine estrogen with or without

medroxyprogesterone acetate let to worse cardiometabolic outcomes

in postmenopausal women, dampening enthusiasm for MHT (214).

It has since been suggested that, since the MHT study population in

the WHI was on average more than 10 years post-menopause,

metabolic benefits of MHT may be greater in women within 10

years of menopause, introducing the importance of MHT timing into

the equation (215). Indeed, subsequent re-analyses of the WHI data

revealed cardiometabolic benefits of MHT in women aged 50-59

(216–218). Some studies report that high circulating E2 levels are

associated with increased inflammation and adipocyte dysfunction,

particularly in postmenopausal individuals with obesity (174, 219).

This discrepancy may be attributed to differences in estrogen

metabolism, receptor expression, or interactions with other

hormones such as androgens and insulin which can be reviewed

here (220). Other studies support that E2’s protective effects onWAT

expansion may be depot-specific, as the expression of estrogen

receptor ERa, which has been shown to be necessary for E2 to

maintain its protective effect of inflammation in both males and

females, may be higher in subcutaneous fat (181, 221). Moreover,

subcutaneous WAT has been shown to have a higher E2 conversion

rate than visceral WAT (64, 192). By contrast, visceral WAT has been

reported to produce more E1 than subcutaneous WAT (64). To date,

it is not known how MHT impacts WAT responsiveness or estrogen

conversion capacity in postmenopausal women.
4 Conclusions

Endogenously produced estrogens in WAT appear to impact

energy homeostasis, fat distribution, and inflammation. The

patterns which emerge in studies to date show that the impact of

estrogens synthesized locally in WAT depots are dependent on

factors like age, sex, and depot, with subcutaneous fat generally

presenting higher estrogenic activity than visceral fat.

As women enter menopause, the shift in estrogen production

localized to estrogens produced in WAT is primarily driven by

aromatase activity. The interconversion between estradiol to

estrone in WAT may play a significant role in estrone dominance

over estradiol in circulation post-menopause. How estrone may

influence visceral adiposity, inflammation, and insulin resistance is

a topic of growing interest that requires investigation that separate

the longitudinal and systemic impact presented in covariates like

sex, age, depot, species, and tissue type. Examples include the

difference in bioavailability and expression of key enzymes

involved in estrogen production, conversion, transport, and

signaling, which include but are not limited to aromatase,

HSD17b1, SHBG, TNF-a, IL-6 and ERa. Further investigation to

clarify how WAT responds to estrogenic signaling across the life

span will lead to a more comprehensive understanding of metabolic

decline with age, especially for women post-menopause.
Frontiers in Endocrinology 12
Developing therapies require the precision of understanding the

interplay between the human hormonal milieu and metabolic

health to manage metabolic dysfunction in diverse populations.
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Glossary

ADRB3 beta-3- adrenergic receptor
Frontiers in Endocrino
BMI body mass index
CE conjugated estrogen
CVD cardiovascular disease
CYP19A1 aromatase
DHEA dehydroepiandrosterone
E1 estrone
E2 estradiol
E3 estriol
ERa estrogen receptor alpha
ERb estrogen receptor beta
ERK1/2 extracellular signal-regulated kinases 1/2
EWAT epididymal white adipose tissue
FFA free fatty acids
GLUT4 glucose transporter 4
GPER1 G-protein coupled estrogen receptor
GPR30 G-protein coupled receptor 30
HFD high fat diet
HOMA-IR homeostatic model assessment of insulin resistance
HSD hydroxysteroid dehydrogenase
HSL hormone sensitive lipase
IAAT intra-abdominal adipose tissue
IL-6 interleukin-6
IR insulin resistance
logy 19
IRF4 interferon regulatory factor-4
KO knock out
MHO metabolically healthy obesity
MHT menopausal hormone therapy
MUHNW metabolically unhealthy normal weight
MUHO metabolically unhealthy obesity
OVX ovariectomy
Preg pregnenolone
PKA protein kinase A
PLIN perilipin
SAT subcutaneous adipose tissue
SHBG sex hormone binding globulin
StAR steroidogenic acute regulatory protein
sWAT subcutaneous white adipose tissue
T testosterone
T2D type 2 diabetes
TNFa tumor necrosis factor alpha
VAT visceral adipose tissue
vWAT visceral white adipose tissue
WAT white adipose tissue
WHI Women’s Health Initiative
WHR waist-to-hip ratio
WT wild type.
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