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application of machine learning
models for predicting NAFLD
risk in adolescents
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1Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China, 2Department of Infectious
Diseases, The First Hospital of Shanxi Medical University, Taiyuan, China, 3Graduate School, Shanxi
Medical University, Taiyuan, China
Background: Non-alcoholic fatty liver disease (NAFLD) is increasingly prevalent

among adolescents and poses a significant public health challenge. Due to

limitations in imaging and invasive diagnostic methods such as liver biopsy,

there is a pressing need for accurate, cost-effective, and non-invasive risk

prediction tools. This study aims to develop and compare multiple machine

learning (ML) models to predict NAFLD risk in adolescents using routine

anthropometric and laboratory data from the National Health and Nutrition

Examination Survey (NHANES) 2011–2020 dataset.

Methods: Data from 2,132 U.S. adolescents (NHANES 2011–2020) were

analyzed. Nine machine learning (ML) models were developed using features

selected by Light Gradient Boosting Machine (LightGBM). Performance was

assessed by AUC, accuracy, sensitivity, precision, F1-score, and calibration. The

Extra Trees (ET) model was further compared with TyG-based logistic regression

models. Model interpretability was evaluated using SHapley Additive exPlanations

(SHAP), and an interactive online prediction tool was deployed.

Results: NAFLD prevalence was 13.0%. The ET model achieved the best overall

performance (AUC = 0.784, ACC = 0.773, Kappa = 0.320), outperforming other

ML algorithms and TyG-based models, which showed higher sensitivity but

poorer precision. SHAP analysis identified waist circumference, triglycerides,

insulin, and HDL as key predictors, revealing nonlinear threshold effects. The

online tool allows individualized risk estimation based on routine

clinical variables.
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Conclusion: The ET-based ML model provides an accurate and interpretable

approach for adolescent NAFLD risk prediction. By surpassing traditional

metabolic indicators and offering an accessible web-based calculator, it

supports sca lable , cost-effect ive ear ly screening and targeted

prevention strategies.
KEYWORDS
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1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is characterized by

excessive hepatic fat accumulation and is closely associated with

insulin resistance, histologically defined as steatosis in more than

5% of hepatocytes (1). NAFLD has become a leading cause of

chronic liver disease worldwide, with an estimated global

prevalence of 32% (40% in males and 26% in females) (2). In

2024, the European Association for the Study of the Liver (EASL)

recommended replacing the term NAFLD with metabolic

dysfunction–associated steatotic liver disease (MASLD) (3).

However, because the NHANES dataset and most prior

epidemiological studies still adopt NAFLD, this terminology is

retained in the present study. The prevalence of NAFLD has been

reported to reach nearly 70% among overweight individuals (4), N

and while disease progression is often slow, it can lead to fibrosis,

cirrhosis, hepatocellular carcinoma, or end-stage liver disease in a

subset of patients (5). I In recent years, pediatric NAFLD has risen

in parallel with the global obesity epidemic, highlighting the urgent

need for early detection and prevention strategies (6).

Despite its growing incidence, there is no consensus on

standardized diagnostic criteria for NAFLD in adolescents. Liver

biopsy remains the diagnostic gold standard but is invasive and

unsuitable for large-scale use (7). Non-invasive imaging techniques,

such as vibration-controlled transient elastography (VCTE), point

shear wave elastography (pSWE), two-dimensional shear wave

elastography (2D-SWE), and magnetic resonance elastography

(MRE), as well as MRI-based methods (e.g., corrected T1

mapping, diffusion-weighted imaging), offer promising

alternatives but face limitations in cost, availability, and pediatric

accuracy (8).

Parallel to advances in imaging, artificial intelligence (AI) has

gained prominence in healthcare, with machine learning (ML)

enabling more objective risk prediction and individualized

treatment strategies (9, 10). Traditional NAFLD risk assessment

often relies on clinician judgment or simple indices, which may lack

precision. In this context, the triglyceride–glucose (TyG) index and

its derivatives have been proposed as surrogate markers of insulin

resistance, showing predictive value in NAFLD and metabolic

disorders (11, 12). However, these linear constructs are based on
02
limited variables and may not capture the multifactorial, nonlinear

nature of NAFLD. This gap highlights the promise of ML methods

in refining risk prediction, particularly in youth populations.

Recent ML studies have developed predictive models for

progression from NAFLD to more severe outcomes such as

NASH, fibrosis, and hepatocellular carcinoma in adults (13, 14).

Although some research has applied ML to adolescents, limitations

remain, including reliance on complex predictors and lack of

validation in real-world settings (15–17). Therefore, the present

study aimed to identify key predictors using robust feature selection

strategies and to develop an interpretable ML-based system for

predicting adolescent NAFLD. By leveraging readily obtainable

clinical and laboratory indicators, this approach provides a cost-

effective and scalable tool to support early screening and

intervention. Materials and methods.
2 Materials and methods

2.1 Data sources and study population

The National Health and Nutrition Examination Survey

(NHANES) is a population-based cross-sectional survey of U.S.

adults and children, publicly available for epidemiological and

clinical research. Data from the 2011–2020 cycles were used, and

individuals aged 11–20 years were included. Further details are

available on the NHANES website (https://www.cdc.gov/nchs/

nhanes/index.html).

Sociodemographic variables included age, sex, and race/

ethnicity (Mexican American, Other Hispanic, Non-Hispanic

White, Non-Hispanic Black, and other races). Anthropometric

measures were height, weight, waist circumference (WC), and

body mass index (BMI). Laboratory parameters included white

blood cell count (WBC), red blood cell count (RBC), platelet count

(PLT), hemoglobin (HB), glycated hemoglobin (HbA1c), total

cholesterol (TC), triglycerides (TG), high-density lipoprotein

(HDL), low-density lipoprotein (LDL), fasting glucose (GLU), and

fasting insulin. NAFLD was defined as alanine aminotransferase

(ALT) >26 IU/L in males and >22 IU/L in females, without viral

hepatitis, consistent with prior NHANES-based studies (18, 19).
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The NHANES protocol was approved by the National Center

for Health Statistics (NCHS) Research Ethics Review Board.

Written informed consent was obtained at the time of data

collection. As only de-identified, publicly available data were

used, no additional institutional approval was required.
2.2 Feature selection

The Light Gradient Boosting Machine (LightGBM) package in

Python was first used to rank variables by importance, and the top

10 predictors were retained based on AUC contribution. Because

LightGBM also served as a benchmark model, feature stability was

confirmed with a consensus strategy combining L1-penalized

logistic regression, Boruta, and permutation importance. Six

predictors (WC, TG, insulin, GLU, weight, BMI) were

consistently identified, reducing bias toward tree-based methods

(Supplementary Figures S1, S2).
2.3 Model construction, evaluation and
validation

Using Python libraries including scikit-learn, XGBoost, and

LightGBM, we constructed and evaluated nine supervised

algorithms: artificial neural network (ANN), decision tree (DT),

Extra Trees (ET), gradient boosting (GB), k-nearest neighbors

(KNN), LightGBM, random forest (RF), support vector machine

(SVM), and XGBoost. To address class imbalance (13% NAFLD vs.

87% non-NAFLD), the Synthetic Minority Oversampling

Technique (SMOTE) was applied to the training set within each

fold. Hyperparameters were optimized via grid search with five-fold

stratified cross-validation (Supplementary Table S1), and final

models were retrained on the full training set. Model

performance was assessed by discrimination, calibration, and

clinical utility.

To compare with traditional indicators, three metabolic indices

were included: the triglyceride-glucose index (TyG), TyG-BMI, and

TyG-waist circumference (TyG-WC). The TyG index was

calculated as:

TyG = ln(
TG(mg=dL)� FPG(mg=dL)

2
)

where TG is triglycerides and FPG is fasting plasma glucose.

Each index was first used in logistic regression models, followed by

multivariate models combining TyG and its derivatives. These were

systematically compared with ET models trained on the

same dataset.

For interpretability, SHapley Additive exPlanations (SHAP)

values were used to quantify each feature’s contribution. SHAP

identified the most influential predictors, revealed nonlinear effects,

and enabled individualized risk profiling. To enhance accessibility,

we developed a user-friendly online prediction tool using Streamlit

(https://jd82bumajen97hthfgjsmr.streamlit.app/; source code

available on GitHub: https://github.com/moresaying98/NAFLD-
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adolescence). The interface follows the logic of SHAP force plots:

after inputting individual anthropometric and laboratory values, it

outputs a personalized NAFLD risk probability along with feature-

specific contributions for intuitive interpretation.
2.4 Statistical analysis

Statistical analyses were performed using R (version 4.3.0) and

Python (version 3.10.6). Normally distributed variables were

expressed as mean ± standard deviation (SD) and compared

using independent t-tests. Non-normally distributed variables

were expressed as median (Q1, Q3) and compared with Mann–

Whitney U tests. Categorical variables were presented as n (%) and

compared using chi-square or Fisher’s exact tests. A two-sided p <

0.05 was considered statistically significant.
3 Results

After initial screening, 83 participants with viral hepatitis were

excluded, leaving a preliminary sample of 7,929 individuals. Due to

missing laboratory data, 5,638 participants were further excluded,

reducing the sample size to 2,291. An additional 93 individuals were

excluded due to incomplete physical examination data, resulting in

2,198 eligible participants. Finally, 66 more participants were

excluded because of missing laboratory parameters, yielding a

final analytic sample of 2,132 adolescents. Among them, 1,854

participants were identified as NAFLD-free, while 278 were

diagnosed with NAFLD. A detailed flowchart of the participant

selection process is presented in Figure 1.

A total of 2,132 participants were included in this study based

on the inclusion criteria. Among them, 1,854 (86.96%) were

classified as NAFLD-negative, while 278 (13.04%) were diagnosed

with NAFLD. The baseline characteristics and group-wise

comparisons are summarized in Table 1 . Regarding

anthropometric measures, participants in the NAFLD group had

significantly higher height (167.69 ± 10.38 cm), weight [82.00

(65.10, 101.50) kg], BMI [28.50 (23.65, 34.68)], and waist

circumference [94.10 (80.40, 110.45) cm] compared with those in

the non-NAFLD group (all p < 0.001). In terms of hematological

indicators, the NAFLD group showed significantly higher levels of

white blood cell count [6.40 (5.30, 7.70)], red blood cell count [5.03

(4.72, 5.36)], hemoglobin [14.40 (13.40, 15.40)], and platelet count

[257.50 (216.25, 293.00)] than the non-NAFLD group (all p < 0.05).

In contrast, the HDL level was significantly lower in the NAFLD

group compared to the non-NAFLD group [45.00 (39.00, 54.00) vs

52.00 (45.00, 61.00), p < 0.001]. Additionally, the NAFLD group

exhibited significantly higher levels of TG, low-density LDL, TC,

GLU, glycated HbA1c, and insulin than the non-NAFLD group (all

p < 0.05). Among demographic variables, the proportion of males

was significantly higher in the NAFLD group compared to the non-

NAFLD group (63.67% vs. 49.24%, p < 0.001). Significant

differences in racial/ethnic distribution were also observed

between the two groups (p < 0.001).
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FIGURE 1

Flowchart of participant selection, showing exclusion criteria and the final sample of 2,132 adolescents used for model development.
TABLE 1 Baseline characteristics of participants stratified by NAFLD status.

Variables Total (n = 2132) 0 (n = 1854) 1 (n = 278) Statistic P

Height cm, Mean ± SD 165.12 ± 9.93 164.73 ± 9.80 167.69 ± 10.38 t=-4.66 <.001

Age, M (Q1, Q3) 15.00 (13.00, 17.00) 15.00 (13.00, 17.00) 16.00 (14.00, 18.00) Z=-4.74 <.001

Weight kg, M (Q1, Q3) 63.10 (52.80, 77.50) 61.55 (52.00, 73.88) 82.00 (65.10, 101.50) Z=-12.53 <.001

BMI, M (Q1, Q3) 22.80 (19.90, 27.30) 22.20 (19.70, 26.20) 28.50 (23.65, 34.68) Z=-12.52 <.001

WC, M (Q1, Q3) 78.50 (71.00, 90.20) 77.20 (70.40, 87.00) 94.10 (80.40, 110.45) Z=-13.36 <.001

WBC, M (Q1, Q3) 6.10 (5.10, 7.30) 6.00 (5.00, 7.20) 6.40 (5.30, 7.70) Z=-3.47 <.001

RBC, M (Q1, Q3) 4.83 (4.51, 5.15) 4.80 (4.48, 5.12) 5.03 (4.72, 5.36) Z=-7.03 <.001

HGB, M (Q1, Q3) 13.90 (13.10, 14.90) 13.90 (13.00, 14.80) 14.40 (13.40, 15.40) Z=-5.32 <.001

PLT, M (Q1, Q3) 247.00 (214.00, 286.00) 246.00 (214.00, 286.00) 257.50 (216.25, 293.00) Z=-2.09 0.037

HDL, M (Q1, Q3) 51.00 (44.00, 60.00) 52.00 (45.00, 61.00) 45.00 (39.00, 54.00) Z=-8.49 <.001

TG, M (Q1, Q3) 62.00 (44.00, 87.00) 60.00 (43.00, 83.75) 82.00 (55.25, 127.00) Z=-9.15 <.001

LDL, M (Q1, Q3) 84.00 (69.00, 102.00) 83.00 (68.00, 100.00) 92.50 (72.00, 114.00) Z=-4.93 <.001

TC, M (Q1, Q3) 152.00 (134.00, 172.00) 151.00 (133.25, 171.00) 160.00 (136.25, 183.00) Z=-3.88 <.001

GLU, M (Q1, Q3) 95.00 (90.00, 100.00) 95.00 (90.00, 100.00) 97.00 (91.00, 102.00) Z=-3.52 <.001

HbA1c, M (Q1, Q3) 5.30 (5.10, 5.50) 5.30 (5.10, 5.50) 5.30 (5.10, 5.50) Z=-2.19 0.029

Insulin, M (Q1, Q3) 10.88 (7.28, 16.93) 10.29 (7.06, 15.48) 17.14 (10.28, 29.24) Z=-10.32 <.001

(Continued)
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In this study, feature selection was performed using the LGBM

algorithm implemented in Python. Initially, all variables were

ranked based on feature importance scores derived from the

initial LGBM classifier, and the top 15 variables were selected for

further analysis (Figure 2). These variables were then sequentially

added to the model in order of descending importance, and a series

of LGBM classifiers were constructed to assess the incremental

contribution of each variable to model performance. Model

performance was evaluated using the (AUC). As shown in

Figure 3, the AUC increased with the sequential addition of

variables but plateaued after the inclusion of the 10th variable,

indicating no substantial performance gain beyond that point.

Therefore, the top 10 variables were selected for final model

development. The final 10 key predictors included: WC, insulin,

TG, PLT, Height, GLU, WBC, TC, RBC, and HDL.

Nine machine learning models were developed and evaluated

using the top ten selected features. Figure 4 displays the ROC curves
Frontiers in Endocrinology 05
for all models in both training and testing datasets. In the training

set, AUCs ranged from 0.804 (SVM) to 1.000 (RF), with most

models achieving values above 0.90. In the independent test set,

AUCs were more modest, ranging from 0.671 (DT) to 0.788 (SVM).

Specifically, the AUCs (95% CI) for each model were: ANN, 0.715

(0.656–0.770); DT, 0.671 (0.609–0.738); ET, 0.784 (0.724–0.845);

GB, 0.762 (0.700–0.825); KNN, 0.740 (0.686–0.790); LGBM, 0.739

(0.675–0.808); RF, 0.760 (0.700–0.827); SVM, 0.788 (0.729–0.849);

and XGBoost, 0.768 (0.707–0.830). Detailed classification metrics

including accuracy, sensitivity, specificity, precision, F1-score, and

Kappa are summarized in Table 2. Figure 5 shows the confusion

matrices of the nine models on the testing set. The proportion of

correctly classified non-NAFLD participants ranged from 63.4%

(KNN) to 83.1% (ET), while correct identification of NAFLD cases

varied between 41.0% (DT) and 74.7% (KNN). Models such as ET,

RF, GB, and SVM demonstrated relatively high true negative rates,

whereas KNN and GB achieved comparatively higher true positive
TABLE 1 Continued

Variables Total (n = 2132) 0 (n = 1854) 1 (n = 278) Statistic P

Gender, n(%) c²=20.13 <.001

1 1090 (51.13) 913 (49.24) 177 (63.67)

2 1042 (48.87) 941 (50.76) 101 (36.33)

Race 4, n(%) c²=30.33 <.001

1 589 (27.63) 511 (27.56) 78 (28.06)

2 566 (26.55) 516 (27.83) 50 (17.99)

3 427 (20.03) 340 (18.34) 87 (31.29)

4 550 (25.80) 487 (26.27) 63 (22.66)
t, t-test; Z, Mann-Whitney test; c², Chi-square test.
SD, standard deviation; M, Median; Q1, 1st Quartile; Q3, 3st Quartile.
Values are expressed as mean ± SD or median (Q1, Q3). Group comparisons were performed using t-test, Mann–Whitney U test, or Chi-square test. BMI, body mass index; WC, waist
circumference; WBC, white blood cell count; RBC, red blood cell count; HGB, hemoglobin; PLT, platelet count; HDL, high-density lipoprotein; TG, triglyceride; LDL, low-density lipoprotein;
TC, total cholesterol; GLU, fasting glucose; HbA1c, glycated hemoglobin.
FIGURE 2

Variable importance ranking from the Light Gradient Boosting Machine (LGBM) model.
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rates. Detailed counts and proportions for each cell of the confusion

matrices are displayed in Figure 5. Figure 6 presents the calibration

curves for all models. Most algorithms showed acceptable

agreement between predicted and observed probabilities, though

calibration varied. In the test set, Brier scores ranged from 0.074 to

0.246, with ET, LGBM, GB, and XGBoost showing closer alignment

to the reference line, while SVM and DT deviated more

substantially. Figure 7 displays the decision curve analysis (DCA).

Across a wide range of threshold probabilities, tree-based ensemble

models generally achieved higher net clinical benefit than single

classifiers. Among the nine models evaluated, the Extra Trees (ET)

algorithm achieved the best overall performance (AUC = 0.784,

Brier score = 0.074) with the highest net clinical benefit. ET was

therefore selected as the optimal model for subsequent comparison

with traditional metabolic indicators.

Figure 8 and Tables 3, 4 compare the ET model with logistic

regression models based on the TyG index and its derivatives. In the

training set, AUCs ranged from 0.675 (TyG) to 0.958 (ET), while in

the test set they ranged from 0.675 (TyG) to 0.784 (ET). Among the

TyG-based models, derivatives such as TyG-BMI (AUC = 0.748),
FIGURE 3

Feature selection using LGBM, with AUC plateauing after the 10th variable; top 10 predictors retained.
FIGURE 4

ROC and DCA curves for nine machine learning models. (A) Training set. (B) Testing set.
Frontiers in Endocrinology 06
TABLE 2 Performance comparison of nine machine learning models for
NAFLD prediction in the testing set.

Model AUC ACC SEN PRE F1 Score Kappa

ANN

DT

ET

GB

KNN

LightGBM

RF

SVM

XGBOOST

Model AUC ACC SEN PRE F1 Score Kappa

ANN 0.715 0.778 0.470 0.285 0.355 0.230

(Continued)
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TyG-WC (AUC = 0.760), and multi-feature combinations (AUC up

to 0.768) showed improved discrimination over TyG alone but

remained inferior to ET. On the test set, the ET model achieved

higher overall accuracy (0.773), precision (0.324), and Kappa

(0.320), reflecting more balanced classification. In contrast, TyG-

derived models often reached higher sensitivity (e.g., TyG-WC =

0.823) but at the expense of reduced precision and agreement,

suggesting a tendency to overclassify positive cases. In summary,

the ET model outperformed commonly used TyG-based

traditional indicators, providing more reliable and balanced

predictive performance.

SHAP analysis confirmed waist circumference (WC),

triglycerides (TG), insulin, red blood cell count (RBC), and HDL

as the most influential predictors of adolescent NAFLD, with

glucose and platelet count also contributing (Figure 9). The

SHAP summary plot (Figure 9B) demonstrated how higher WC,

TG, and insulin levels increased risk, whereas higher HDL was
TABLE 2 Continued

Model AUC ACC SEN PRE F1 Score Kappa

DT 0.671 0.673 0.602 0.221 0.324 0.165

ET 0.784 0.808 0.651 0.365 0.468 0.361

GB 0.762 0.716 0.699 0.270 0.389 0.249

KNN 0.740 0.648 0.747 0.233 0.355 0.196

LightGBM 0.739 0.759 0.627 0.297 0.403 0.276

RF 0.760 0.844 0.530 0.419 0.468 0.378

SVM 0.788 0.747 0.723 0.302 0.426 0.297

XGBOOST 0.768 0.723 0.699 0.276 0.396 0.258
Models include ANN (artificial neural network), DT (decision tree), ET (extra trees), GB
(gradient boosting), KNN (k-nearest neighbors), LightGBM (Light Gradient Boosting
Machine), RF (random forest), SVM (support vector machine), and XGBoost (eXtreme
Gradient Boosting). Metrics: AUC, area under the curve; ACC, accuracy; SEN, sensitivity;
PRE, precision.
FIGURE 5

Confusion matrices of nine machine learning models.
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protective. Dependence plots (Figure 10) further revealed nonlinear

threshold effects, such as sharp risk increases at elevated WC and

TG. At the individual level, SHAP force plots (Figure 11)

decomposed predictions into feature-specific contributions,

estimating, for example, a NAFLD probability of 0.56 versus 0.44

for non-NAFLD in a representative case. These visualizations

provide clinically interpretable insights at both population and

patient levels. Notably, the online risk prediction tool developed

in this study adopts a similar framework: users input individual

clinical and laboratory values, and the system generates a SHAP-

like explanation of their personalized NAFLD risk. Together, these

visualizations enhance both population-level interpretation and

individual-level applicability.
4 Discussion

In this study, we developed predictive models for adolescent

NAFLD using NHANES data (2011-2020) and nine supervised

algorithms. To address class imbalance (13% vs. 87%), SMOTE was
Frontiers in Endocrinology 08
applied during training. Feature selection identified WC, TG,

insulin, HDL, and RBC count as the most influential predictors.

While these are established risk factors, the ML framework added

value by quantifying their relative contributions, capturing

nonlinear effects, and enabling individualized prediction through

SHAP analysis. Comparative evaluation showed that the Extra

Trees (ET) model outperformed commonly used TyG-based

indices and achieved the most balanced performance across

discrimination, accuracy, and agreement metrics. Finally, we

deployed the ET model as an online risk calculator to support

practical application in adolescent NAFLD screening.

Over the past decade, the prevalence of NAFLD in the United

States has increased from 34.4% to 38.1%, paralleling the rise in

obesity and type 2 diabetes mellitus (T2DM) (20). Among children

and adolescents with obesity, the prevalence is approximately 36.1%

and is expected to rise further with the global obesity epidemic (21).

Pediatric NAFLD often persists into adulthood and can progress to

fibrosis, cirrhosis, or other complications, underscoring the need for

early detection. However, the optimal timing, frequency, and

modality of screening remain unclear, and current evidence in
FIGURE 6

Calibration curves of nine machine learning models. (A) Training set. (B) Testing set.
FIGURE 7

Decision curve analysis (DCA) of nine machine learning models.
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adolescents is limited. While liver biopsy is the diagnostic gold

standard, its invasiveness and cost preclude large-scale use (22).

Conventional ultrasonography is more practical but has limited

sensitivity for mild steatosis (23), the controlled attenuation

parameter (CAP) has been proposed as a first-line screening tool

in the general population, providing a more objective and

quantifiable assessment of hepatic fat and serving as a useful

adjunct to conventional ultrasound (24). However, its

performance appears less reliable in pediatric populations, likely

due to differences in body habitus and abdominal fat distribution

that compromise imaging accuracy (25). Magnetic resonance

imaging–derived proton density fat fraction (MRI-PDFF)

provides the most accurate noninvasive quantification of hepatic

fat and performs well in children, but its high cost and technical

demands restrict routine use. Consequently, recent research has

emphasized the need for reliable serum biomarkers for large-scale

adolescent NAFLD screening (26). In addition, recent studies have

applied machine learning specifically to pediatric and adolescent

populations, including an NHANES-based adolescent model and a

multi-algorithm pediatric study, both of which reported

encouraging predictive performance and provided interpretable

insights into feature contributions (27, 28).
Frontiers in Endocrinology 09
Using the LGBM algorithm, we initially ranked variables by

feature importance and identified the top ten predictors: WC,

insulin, TG, PLT, Height, GLU, WBC, TC, RBC, and HDL. These

factors are well documented in adults—WC as the strongest body

composition predictor of NAFLD (29, 30), insulin resistance as a

central drive (31), and TG accumulation as a key pathological

hallmark (32). Platelet and red blood cell indices have also been

implicated in liver injury and repair processes (33–36). Although

these associations are established, their relative contributions and

interactions in adolescents remain understudied. To ensure

robustness, we validated the LGBM-based selection with a

consensus strategy combining L1-logistic regression, Boruta, and

permutation importance, which consistently highlighted

overlapping predictors. This confirmed that our feature selection

was not biased toward tree-based methods and provided a stable

foundation for subsequent model development.

Comparative evaluation of nine supervised algorithms

demonstrated that the Extra Trees (ET) model achieved the most

consistent overall performance across discrimination, classification,

calibration, and clinical utility. In ROC analysis, ET yielded the

highest AUC in both training and testing sets, reflecting strong

discriminative ability compared with ensemble and non-ensemble
FIGURE 8

ROC curves comparing the Extra Trees (ET) model with TyG-based logistic regression models. (A) Training set – basic models. (B) Test set – basic
models. (C) Training set – logistic regression models. (D) Test set – logistic regression models.
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algorithms. Confusion matrix results further confirmed its balanced

classification, with markedly higher sensitivity for NAFLD

detection than most counterparts, while maintaining high overall

accuracy. In terms of calibration, the ET model produced the lowest

Brier score and curves closely aligned with the reference line,

indicating reliable probability estimates. Decision curve analysis

(DCA) also showed that ET consistently provided the greatest net

clinical benefit across a wide range of threshold probabilities,

outperforming the other eight models. Taken together, these

findings indicate that ET offered the most robust balance of

discrimination, reliability, and clinical applicability, supporting its

selection as the optimal algorithm for subsequent comparison with
Frontiers in Endocrinology 10
traditional metabolic indices. Consistent with previous studies,

ensemble tree-based methods such as ET and RF have repeatedly

shown strong generalization in predicting chronic diseases,

including NAFLD (37–39). Our study extends this evidence to

adolescents, representing the first application of ET in

this population.

When compared with logistic regression models based on the

TyG index and its derivatives, the ET model consistently

demonstrated superior predictive balance. Although TyG-derived

models—particularly TyG-WC (sensitivity = 0.823) and multi-

feature combinations (AUC up to 0.768)—achieved higher

sensitivity than ET, this came at the cost of lower precision and

overall accuracy, reflecting a tendency to overclassify positive

cases. By contrast, ET maintained the highest AUC (0.784), along

with better precision (0.324) and agreement (Kappa = 0.320),

offering a more reliable performance profile. These results

suggest that while TyG indices capture important aspects of

insulin resistance, their limited dimensionality constrains their

predictive value. ET, by integrating complex nonlinear

interactions, provides superior discrimination and more balanced

performance, making it a more appropriate tool for adolescent

NAFLD risk prediction.

SHAP analysis confirmed waist circumference (WC),

triglycerides (TG), insulin, red blood cell count (RBC), and HDL

as the most influential predictors of adolescent NAFLD, with

glucose and platelet count also contributing (Figure 9). Beyond

confirming known risk factors, the model quantified their relative

importance and revealed nonlinear effects. Dependence plots

indicated that higher WC and TG sharply increased risk, while

elevated HDL exerted a protective but nonlinear effect (Figure 10).
TABLE 3 Performance comparison between the ET model and TYG-
based indicators in the testing set.

Model AUC ACC SEN PRE F1 Score Kappa

TYG

TYG.BMI

TYG.WC

ET

Model AUC ACC SEN PRE F1 Score Kappa

TYG 0.675 0.653 0.633 0.206 0.311 0.153

TYG.BMI 0.748 0.720 0.722 0.266 0.389 0.255

TYG.WC 0.760 0.714 0.823 0.278 0.415 0.283

ET 0.784 0.773 0.687 0.324 0.440 0.320
ET, extra trees; TyG, triglyceride-glucose index; BMI, body mass index; WC, waist
circumference. Metrics as in Table 2.
TABLE 4 Performance comparison of the ET model and logistic regression models based on TYG and its derived indices in the testing set.

Model AUC ACC SEN PRE F1 Score Kappa

TYG

TYG+TYG.BMI

TYG+TYG.WC

TYG+TYG.BMI+TYG.WC

TYG.BMI+TYG.WC

ET

Model AUC ACC SEN PRE F1 Score Kappa

TYG 0.697 0.653 0.633 0.206 0.311 0.153

TYG+TYG.BMI 0.758 0.736 0.684 0.273 0.390 0.259

TYG+TYG.WC 0.767 0.791 0.658 0.327 0.437 0.326

TYG+TYG.BMI+TYG.WC 0.768 0.797 0.696 0.342 0.458 0.351

TYG.BMI+TYG.WC 0.767 0.786 0.734 0.333 0.458 0.348

ET 0.784 0.773 0.687 0.324 0.440 0.320
ET, extra trees; TyG, triglyceride-glucose index; BMI, body mass index; WC, waist circumference. Metrics as in Table 2.
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At the individual level, SHAP force plots illustrated how multiple

features jointly shaped predictions, with WC and TG driving

positive contributions and HDL and insulin reducing risk

(Figure 11). These results provide clinically interpretable insights

at both population and patient levels.

From a clinical perspective, the ET-based model is practical as it

uses routinely available anthropometric and laboratory measures,

enabling scalable screening in adolescents. The identification of

nonlinear thresholds for WC, TG, and HDL offers actionable cutoffs

for early intervention, while the accompanying online tool provides

individualized risk estimates to support tailored prevention and

patient engagement.
Frontiers in Endocrinology 11
This study has several limitations. It was based on cross-sectional

NHANES data, restricting causal inference, and NAFLD diagnosis

relied on biochemical indicators rather than liver biopsy, which may

have caused misclassification. Although multiple feature selection

strategies were applied, important genetic or environmental factors

might have been overlooked. In addition, the absence of external

cohort validation and the U.S.-only adolescent sample limit

generalizability to other populations. Nonetheless, the study’s

strengths include the use of a large, nationally representative dataset

with rigorous inclusion criteria, adjustment for key confounders, and

the development of an accessible online prediction tool, together

supporting its reliability and clinical relevance.
FIGURE 9

(A) Ranked feature importance of the ET model. (B) SHAP summary (beeswarm) plot showing direction and magnitude of feature contributions.
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FIGURE 10

SHAP dependence plots for the nine most influential variables, illustrating nonlinear associations.
FIGURE 11

SHAP force plots for the first test-set participant: (A) predicted probability for NAFLD = 0.56; (B) predicted probability for non-NAFLD = 0.44.
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5 Conclusion

The machine learning model developed using the Extra Trees

algorithm in this study demonstrates superior predictive

performance for identifying adolescents at risk of NAFLD. Based

on this model, an interactive web-based prediction tool was

constructed, enabling clinicians to rapidly and conveniently

estimate individual NAFLD risk using routine clinical indicators.

This model not only improves early identification and risk

stratification of NAFLD in youth populations but also has the

potential to reduce unnecessary imaging examinations and

laboratory testing, ultimately supporting cost-effective and

personalized preventive strategies in clinical practice.
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8. Selvaraj EA, Mózes FE, Jayaswal ANA, Zafarmand MH, Vali Y, Lee JA, et al.
Diagnostic accuracy of elastography and magnetic resonance imaging in patients with
NAFLD: A systematic review and meta-analysis. J Hepatol. (2021) 75:770. doi: 10.1016/
j.jhep.2021.04.044

9. Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eD octor:
machine learning and the future of medicine. J Intern Med. (2018) 284:603–19.
doi: 10.1111/joim.12822

10. Deo RC. Machine learning in medicine. Circulation. (2015) 132:1920–30.
doi: 10.1161/CIRCULATIONAHA.115.001593

11. Malek M, Khamseh ME, Chehrehgosha H, Nobarani S, Alaei-Shahmiri F.
Triglyceride glucose-waist to height ratio: a novel and effective marker for
identifying hepatic steatosis in individuals with type 2 diabetes mellitus. Endocrine.
(2021) 74:538–45. doi: 10.1007/s12020-021-02815-w

12. Xue Y, Xu J, Li M, Gao Y. Potential screening indicators for early diagnosis of
NAFLD/MAFLD and liver fibrosis: Triglyceride glucose index-related parameters.
Front Endocrinol. (2022) 13:951689. doi: 10.3389/fendo.2022.951689

13. Chang D, Truong E, Mena EA, Pacheco F, Wong M, Guindi M, et al. Machine
learning models are superior to noninvasive tests in identifying clinically significant
stages of NAFLD and NAFLD-related cirrhosis. Hepatology. (2023) 77:546–57.
doi: 10.1002/hep.32655

14. Wang H, Cheng W, Hu P, Ling T, Hu C, Chen Y, et al. Integrative analysis
identifies oxidative stress biomarkers in non-alcoholic fatty liver disease via machine
learning and weighted gene co-expression network analysis. Front Immunol. (2024)
15:1335112. doi: 10.3389/fimmu.2024.1335112

15. Huneault HE, Gent AE, Cohen CC, He Z, Jarrell ZR, Kamaleswaran R, et al.
Validation of a screening panel for pediatric metabolic dysfunction–associated steatotic
liver disease using metabolomics. Hepatol Commun. (2024) 8:e0375. doi: 10.1097/
HC9.0000000000000375

16. Li M, Shu W, Zunong J, Amaerjiang N, Xiao H, Li D, et al. Predictors of non-
alcoholic fatty liver disease in children. Pediatr Res. (2022) 92:322–30. doi: 10.1038/
s41390-021-01754-6

17. Razmpour F, Daryabeygi-Khotbehsara R, Soleimani D, Asgharnezhad H,
Shamsi A, Bajestani GS, et al. Application of machine learning in predicting non-
alcoholic fatty liver disease using anthropometric and body composition indices.
Sci Rep. (2023) 13:4942. doi: 10.1038/s41598-023-32129-y

18. Vos MB, Abrams SH, Barlow SE, Caprio S, Daniels SR, Kohli R, et al.
NASPGHAN clinical practice guideline for the diagnosis and treatment of
nonalcoholic fatty liver disease in children: recommendations from the expert
committee on NAFLD (ECON) and the north american society of pediatric
gastroenterology, hepatology and nutrition (NASPGHAN). J Pediatr Gastroenterol
Nutr. (2017) 64:319–34. doi: 10.1097/MPG.0000000000001482

19. Gulati R, Gulati K, Durrani HM, Sahni H, Mhanna MJ, Kaelber DC, et al. Missed
opportunities in guideline-based fatty liver screening among 3.5 million children. Acad
Pediatr. (2024) 24:815–9. doi: 10.1016/j.acap.2024.01.019

20. Wong RJ, Cheung R. Trends in the prevalence of metabolic dysfunction-
associated fatty liver disease in the United States, 2011-2018. Clin Gastroenterol
Hepatol Off Clin Pract J Am Gastroenterol Assoc. (2022) 20:e610–3. doi: 10.1016/
j.cgh.2021.01.030

21. Shaunak M, Byrne CD, Davis N, Afolabi P, Faust SN, Davies JH. Non-alcoholic
fatty liver disease and childhood obesity. Arch Dis Child. (2021) 106:3–8. doi: 10.1136/
archdischild-2019-318063
Frontiers in Endocrinology 14
22. Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S,
Barb D, et al. AASLD Practice Guidance on the clinical assessment and management of
nonalcoholic fatty liver disease. Hepatol Baltim Md. (2023) 77:1797–835. doi: 10.1097/
HEP.0000000000000323

23. Ferraioli G, Soares Monteiro LB. Ultrasound-based techniques for the diagnosis
of liver steatosis. World J Gastroenterol. (2019) 25:6053–62. doi: 10.3748/
wjg.v25.i40.6053

24. Karlas T, Petroff D, Sasso M, Fan JG, Mi YQ, de Lédinghen V, et al. Individual
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