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Background: Non-alcoholic fatty liver disease (NAFLD) is increasingly prevalent
among adolescents and poses a significant public health challenge. Due to
limitations in imaging and invasive diagnostic methods such as liver biopsy,
there is a pressing need for accurate, cost-effective, and non-invasive risk
prediction tools. This study aims to develop and compare multiple machine
learning (ML) models to predict NAFLD risk in adolescents using routine
anthropometric and laboratory data from the National Health and Nutrition
Examination Survey (NHANES) 2011-2020 dataset.

Methods: Data from 2,132 U.S. adolescents (NHANES 2011-2020) were
analyzed. Nine machine learning (ML) models were developed using features
selected by Light Gradient Boosting Machine (LightGBM). Performance was
assessed by AUC, accuracy, sensitivity, precision, F1-score, and calibration. The
Extra Trees (ET) model was further compared with TyG-based logistic regression
models. Model interpretability was evaluated using SHapley Additive exPlanations
(SHAP), and an interactive online prediction tool was deployed.

Results: NAFLD prevalence was 13.0%. The ET model achieved the best overall
performance (AUC = 0.784, ACC = 0.773, Kappa = 0.320), outperforming other
ML algorithms and TyG-based models, which showed higher sensitivity but
poorer precision. SHAP analysis identified waist circumference, triglycerides,
insulin, and HDL as key predictors, revealing nonlinear threshold effects. The
online tool allows individualized risk estimation based on routine
clinical variables.
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Conclusion: The ET-based ML model provides an accurate and interpretable
approach for adolescent NAFLD risk prediction. By surpassing traditional
metabolic indicators and offering an accessible web-based calculator, it
supports scalable, cost-effective early screening and targeted
prevention strategies.

machine learning, non-alcoholic fatty liver disease, adolescents, feature selection,

public health

1 Introduction

Non-alcoholic fatty liver disease (NAFLD) is characterized by
excessive hepatic fat accumulation and is closely associated with
insulin resistance, histologically defined as steatosis in more than
5% of hepatocytes (1). NAFLD has become a leading cause of
chronic liver disease worldwide, with an estimated global
prevalence of 32% (40% in males and 26% in females) (2). In
2024, the European Association for the Study of the Liver (EASL)
recommended replacing the term NAFLD with metabolic
dysfunction-associated steatotic liver disease (MASLD) (3).
However, because the NHANES dataset and most prior
epidemiological studies still adopt NAFLD, this terminology is
retained in the present study. The prevalence of NAFLD has been
reported to reach nearly 70% among overweight individuals (4), N
and while disease progression is often slow, it can lead to fibrosis,
cirrhosis, hepatocellular carcinoma, or end-stage liver disease in a
subset of patients (5). I In recent years, pediatric NAFLD has risen
in parallel with the global obesity epidemic, highlighting the urgent
need for early detection and prevention strategies (6).

Despite its growing incidence, there is no consensus on
standardized diagnostic criteria for NAFLD in adolescents. Liver
biopsy remains the diagnostic gold standard but is invasive and
unsuitable for large-scale use (7). Non-invasive imaging techniques,
such as vibration-controlled transient elastography (VCTE), point
shear wave elastography (pSWE), two-dimensional shear wave
elastography (2D-SWE), and magnetic resonance elastography
(MRE), as well as MRI-based methods (e.g., corrected T1
mapping, diffusion-weighted imaging), offer promising
alternatives but face limitations in cost, availability, and pediatric
accuracy (8).

Parallel to advances in imaging, artificial intelligence (AI) has
gained prominence in healthcare, with machine learning (ML)
enabling more objective risk prediction and individualized
treatment strategies (9, 10). Traditional NAFLD risk assessment
often relies on clinician judgment or simple indices, which may lack
precision. In this context, the triglyceride-glucose (TyG) index and
its derivatives have been proposed as surrogate markers of insulin
resistance, showing predictive value in NAFLD and metabolic
disorders (11, 12). However, these linear constructs are based on
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limited variables and may not capture the multifactorial, nonlinear
nature of NAFLD. This gap highlights the promise of ML methods
in refining risk prediction, particularly in youth populations.

Recent ML studies have developed predictive models for
progression from NAFLD to more severe outcomes such as
NASH, fibrosis, and hepatocellular carcinoma in adults (13, 14).
Although some research has applied ML to adolescents, limitations
remain, including reliance on complex predictors and lack of
validation in real-world settings (15-17). Therefore, the present
study aimed to identify key predictors using robust feature selection
strategies and to develop an interpretable ML-based system for
predicting adolescent NAFLD. By leveraging readily obtainable
clinical and laboratory indicators, this approach provides a cost-
effective and scalable tool to support early screening and
intervention. Materials and methods.

2 Materials and methods
2.1 Data sources and study population

The National Health and Nutrition Examination Survey
(NHANES) is a population-based cross-sectional survey of U.S.
adults and children, publicly available for epidemiological and
clinical research. Data from the 2011-2020 cycles were used, and
individuals aged 11-20 years were included. Further details are
available on the NHANES website (https://www.cdc.gov/nchs/
nhanes/index.html).

Sociodemographic variables included age, sex, and race/
ethnicity (Mexican American, Other Hispanic, Non-Hispanic
White, Non-Hispanic Black, and other races). Anthropometric
measures were height, weight, waist circumference (WC), and
body mass index (BMI). Laboratory parameters included white
blood cell count (WBC), red blood cell count (RBC), platelet count
(PLT), hemoglobin (HB), glycated hemoglobin (HbAlc), total
cholesterol (TC), triglycerides (TG), high-density lipoprotein
(HDL), low-density lipoprotein (LDL), fasting glucose (GLU), and
fasting insulin. NAFLD was defined as alanine aminotransferase
(ALT) >26 IU/L in males and >22 IU/L in females, without viral
hepatitis, consistent with prior NHANES-based studies (18, 19).
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The NHANES protocol was approved by the National Center
for Health Statistics (NCHS) Research Ethics Review Board.
Written informed consent was obtained at the time of data
collection. As only de-identified, publicly available data were
used, no additional institutional approval was required.

2.2 Feature selection

The Light Gradient Boosting Machine (LightGBM) package in
Python was first used to rank variables by importance, and the top
10 predictors were retained based on AUC contribution. Because
LightGBM also served as a benchmark model, feature stability was
confirmed with a consensus strategy combining L1-penalized
logistic regression, Boruta, and permutation importance. Six
predictors (WC, TG, insulin, GLU, weight, BMI) were
consistently identified, reducing bias toward tree-based methods
(Supplementary Figures S1, S2).

2.3 Model construction, evaluation and
validation

Using Python libraries including scikit-learn, XGBoost, and
LightGBM, we constructed and evaluated nine supervised
algorithms: artificial neural network (ANN), decision tree (DT),
Extra Trees (ET), gradient boosting (GB), k-nearest neighbors
(KNN), LightGBM, random forest (RF), support vector machine
(SVM), and XGBoost. To address class imbalance (13% NAFLD vs.
87% non-NAFLD), the Synthetic Minority Oversampling
Technique (SMOTE) was applied to the training set within each
fold. Hyperparameters were optimized via grid search with five-fold
stratified cross-validation (Supplementary Table S1), and final
models were retrained on the full training set. Model
performance was assessed by discrimination, calibration, and
clinical utility.

To compare with traditional indicators, three metabolic indices
were included: the triglyceride-glucose index (TyG), TyG-BMI, and
TyG-waist circumference (TyG-WC). The TyG index was
calculated as:

TG(mg/dL) x FPG(mg/dL))

TyG = In( 5

where TG is triglycerides and FPG is fasting plasma glucose.
Each index was first used in logistic regression models, followed by
multivariate models combining TyG and its derivatives. These were
systematically compared with ET models trained on the
same dataset.

For interpretability, SHapley Additive exPlanations (SHAP)
values were used to quantify each feature’s contribution. SHAP
identified the most influential predictors, revealed nonlinear effects,
and enabled individualized risk profiling. To enhance accessibility,
we developed a user-friendly online prediction tool using Streamlit
(https://jd82bumajen97hthfgjsmr.streamlit.app/; source code
available on GitHub: https://github.com/moresaying98/NAFLD-
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adolescence). The interface follows the logic of SHAP force plots:
after inputting individual anthropometric and laboratory values, it
outputs a personalized NAFLD risk probability along with feature-
specific contributions for intuitive interpretation.

2.4 Statistical analysis

Statistical analyses were performed using R (version 4.3.0) and
Python (version 3.10.6). Normally distributed variables were
expressed as mean * standard deviation (SD) and compared
using independent t-tests. Non-normally distributed variables
were expressed as median (Q1, Q3) and compared with Mann-
Whitney U tests. Categorical variables were presented as n (%) and
compared using chi-square or Fisher’s exact tests. A two-sided p <
0.05 was considered statistically significant.

3 Results

After initial screening, 83 participants with viral hepatitis were
excluded, leaving a preliminary sample of 7,929 individuals. Due to
missing laboratory data, 5,638 participants were further excluded,
reducing the sample size to 2,291. An additional 93 individuals were
excluded due to incomplete physical examination data, resulting in
2,198 eligible participants. Finally, 66 more participants were
excluded because of missing laboratory parameters, yielding a
final analytic sample of 2,132 adolescents. Among them, 1,854
participants were identified as NAFLD-free, while 278 were
diagnosed with NAFLD. A detailed flowchart of the participant
selection process is presented in Figure 1.

A total of 2,132 participants were included in this study based
on the inclusion criteria. Among them, 1,854 (86.96%) were
classified as NAFLD-negative, while 278 (13.04%) were diagnosed
with NAFLD. The baseline characteristics and group-wise
comparisons are summarized in Table 1. Regarding
anthropometric measures, participants in the NAFLD group had
significantly higher height (167.69 + 10.38 cm), weight [82.00
(65.10, 101.50) kg], BMI [28.50 (23.65, 34.68)], and waist
circumference [94.10 (80.40, 110.45) cm] compared with those in
the non-NAFLD group (all p < 0.001). In terms of hematological
indicators, the NAFLD group showed significantly higher levels of
white blood cell count [6.40 (5.30, 7.70)], red blood cell count [5.03
(4.72, 5.36)], hemoglobin [14.40 (13.40, 15.40)], and platelet count
[257.50 (216.25, 293.00)] than the non-NAFLD group (all p < 0.05).
In contrast, the HDL level was significantly lower in the NAFLD
group compared to the non-NAFLD group [45.00 (39.00, 54.00) vs
52.00 (45.00, 61.00), p < 0.001]. Additionally, the NAFLD group
exhibited significantly higher levels of TG, low-density LDL, TC,
GLU, glycated HbA1c, and insulin than the non-NAFLD group (all
p < 0.05). Among demographic variables, the proportion of males
was significantly higher in the NAFLD group compared to the non-
NAFLD group (63.67% vs. 49.24%, p < 0.001). Significant
differences in racial/ethnic distribution were also observed
between the two groups (p < 0.001).
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Adolescents from NHANES
2011-2020
(N=8012)
Exclusion of participants with viral hepatitis
(N=83)
( 7929 particpants )
Exclusion of participants without TG and GLU data
(N=5686)
< 2291 particpants >
Exclusion of participants without examination data )
( 2198 participants )
f Exclusion of participants without laboratory data
'K (N=66)
( 2132 participants >
278 with NAFLD ) 1854 without NAFLD
FIGURE 1
Flowchart of participant selection, showing exclusion criteria and the final sample of 2,132 adolescents used for model development.

TABLE 1 Baseline characteristics of participants stratified by NAFLD status.

Variables Total (n = 2132) 0 (n = 1854) Statistic

Height cm, Mean + SD 165.12 + 9.93 164.73 + 9.80 167.69 + 10.38 t=-4.66 <.001
Age, M (Q;, Q3) 15.00 (13.00, 17.00) 15.00 (13.00, 17.00) 16.00 (14.00, 18.00) Z=-4.74 <001
Weight kg, M (Qy, Q) 63.10 (52.80, 77.50) 61.55 (52.00, 73.88) 82.00 (65.10, 101.50) Z=-12.53 <001
BMIL M (Q;, Q3) 22.80 (19.90, 27.30) 2220 (19.70, 26.20) 28.50 (23.65, 34.68) 7=-12.52 <001
WC, M (Qy, Q3) 78.50 (71.00, 90.20) 77.20 (70.40, 87.00) 94.10 (80.40, 110.45) Z=-13.36 <.001
WBC, M (Qy, Q) 6.10 (5.10, 7.30) 6.00 (5.00, 7.20) 6.40 (5.30, 7.70) 7=-3.47 <001
RBC, M (Q;, Q) 4.83 (451, 5.15) 4.80 (448, 5.12) 5.03 (4.72, 5.36) 7=-7.03 <.001
HGB, M (Q;, Qs) 13.90 (13.10, 14.90) 13.90 (13.00, 14.80) 14.40 (13.40, 15.40) Z=-5.32 <001
PLT, M (Q;, Qs) 247.00 (214.00, 286.00) | 246.00 (214.00, 286.00)  257.50 (216.25, 293.00) Z=-2.09 0.037
HDL, M (Qy, Qs) 51.00 (44.00, 60.00) 52.00 (45.00, 61.00) 45.00 (39.00, 54.00) Z=-8.49 <001
TG, M (Q1, Q) 62.00 (44.00, 87.00) 60.00 (43.00, 83.75) 82.00 (55.25, 127.00) 7=9.15 <001
LDL, M (Q;, Qs) 84.00 (69.00, 102.00) 83.00 (68.00, 100.00) 92,50 (72.00, 114.00) 7=-4.93 <001
TC, M (Q;, Qs) 152.00 (134.00, 172.00) = 151.00 (133.25, 171.00)  160.00 (136.25, 183.00) 7=-3.88 <.001
GLU, M (Q;, Q) 95.00 (90.00, 100.00) 95.00 (90.00, 100.00) 97.00 (91.00, 102.00) Z=-3.52 <001
HbAlc, M (Q), Q) 5.30 (5.10, 5.50) 5.30 (5.10, 5.50) 5.30 (5.10, 5.50) 7=-2.19 0.029
Insulin, M (Q;, Qs) 10.88 (7.28, 16.93) 10.29 (7.06, 15.48) 17.14 (10.28, 29.24) Z=-10.32 <001

(Continued)
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TABLE 1 Continued

Variables

Total (n = 2132)

0 (n = 1854)

10.3389/fendo.2025.1681686

1(n = 278) Statistic

Gender, n(%) x?=20.13 <.001
1 1090 (51.13) 913 (49.24) 177 (63.67)
2 1042 (48.87) 941 (50.76) 101 (36.33)

Race 4, n(%) x?=30.33 <.001
1 589 (27.63) 511 (27.56) 78 (28.06)
2 566 (26.55) 516 (27.83) 50 (17.99)
3 427 (20.03) 340 (18.34) 87 (31.29)
4 550 (25.80) 487 (26.27) 63 (22.66)

t, t-test; Z, Mann-Whitney test; %, Chi-square test.
SD, standard deviation; M, Median; Q,, 1st Quartile; Qs, 3st Quartile.

Values are expressed as mean + SD or median (Q;, Q3). Group comparisons were performed using t-test, Mann-Whitney U test, or Chi-square test. BMI, body mass index; WC, waist
circumference; WBC, white blood cell count; RBC, red blood cell count; HGB, hemoglobin; PLT, platelet count; HDL, high-density lipoprotein; TG, triglyceride; LDL, low-density lipoprotein;

TG, total cholesterol; GLU, fasting glucose; HbAlc, glycated hemoglobin.

In this study, feature selection was performed using the LGBM
algorithm implemented in Python. Initially, all variables were
ranked based on feature importance scores derived from the
initial LGBM classifier, and the top 15 variables were selected for
further analysis (Figure 2). These variables were then sequentially
added to the model in order of descending importance, and a series
of LGBM classifiers were constructed to assess the incremental
contribution of each variable to model performance. Model
performance was evaluated using the (AUC). As shown in
Figure 3, the AUC increased with the sequential addition of
variables but plateaued after the inclusion of the 10th variable,
indicating no substantial performance gain beyond that point.
Therefore, the top 10 variables were selected for final model
development. The final 10 key predictors included: WC, insulin,
TG, PLT, Height, GLU, WBC, TC, RBC, and HDL.

Nine machine learning models were developed and evaluated
using the top ten selected features. Figure 4 displays the ROC curves

for all models in both training and testing datasets. In the training
set, AUCs ranged from 0.804 (SVM) to 1.000 (RF), with most
models achieving values above 0.90. In the independent test set,
AUCs were more modest, ranging from 0.671 (DT) to 0.788 (SVM).
Specifically, the AUCs (95% CI) for each model were: ANN, 0.715
(0.656-0.770); DT, 0.671 (0.609-0.738); ET, 0.784 (0.724-0.845);
GB, 0.762 (0.700-0.825); KNN, 0.740 (0.686-0.790); LGBM, 0.739
(0.675-0.808); RF, 0.760 (0.700-0.827); SVM, 0.788 (0.729-0.849);
and XGBoost, 0.768 (0.707-0.830). Detailed classification metrics
including accuracy, sensitivity, specificity, precision, F1-score, and
Kappa are summarized in Table 2. Figure 5 shows the confusion
matrices of the nine models on the testing set. The proportion of
correctly classified non-NAFLD participants ranged from 63.4%
(KNN) to 83.1% (ET), while correct identification of NAFLD cases
varied between 41.0% (DT) and 74.7% (KNN). Models such as ET,
RF, GB, and SVM demonstrated relatively high true negative rates,
whereas KNN and GB achieved comparatively higher true positive

Top 15 Feature Importance

wC
Insulin

TG

PLT
Height.cm.
GLU

WBC

Feature

TC
RBC
HDL
HGB
LDL
BMI
Weight kg.

HbAlc...

FIGURE 2

150 200 250
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Variable importance ranking from the Light Gradient Boosting Machine (LGBM) model.
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Feature selection using LGBM, with AUC plateauing after the 10th variable; top 10 predictors retained.
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ROC and DCA curves for nine machine learning models. (A) Training set. (B) Testing set.

rates. Detailed counts and proportions for each cell of the confusion
matrices are displayed in Figure 5. Figure 6 presents the calibration
curves for all models. Most algorithms showed acceptable
agreement between predicted and observed probabilities, though
calibration varied. In the test set, Brier scores ranged from 0.074 to
0.246, with ET, LGBM, GB, and XGBoost showing closer alignment
to the reference line, while SVM and DT deviated more
substantially. Figure 7 displays the decision curve analysis (DCA).
Across a wide range of threshold probabilities, tree-based ensemble
models generally achieved higher net clinical benefit than single
classifiers. Among the nine models evaluated, the Extra Trees (ET)
algorithm achieved the best overall performance (AUC = 0.784,
Brier score = 0.074) with the highest net clinical benefit. ET was
therefore selected as the optimal model for subsequent comparison
with traditional metabolic indicators.

Figure 8 and Tables 3, 4 compare the ET model with logistic
regression models based on the TyG index and its derivatives. In the
training set, AUCs ranged from 0.675 (TyG) to 0.958 (ET), while in
the test set they ranged from 0.675 (TyG) to 0.784 (ET). Among the
TyG-based models, derivatives such as TyG-BMI (AUC = 0.748),
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TABLE 2 Performance comparison of nine machine learning models for
NAFLD prediction in the testing set.

Model AUC ACC SEN PRE F1Score Kappa

LightGBM

RF

SVM

XGBOOST

Model AUC ACC SEN PRE F1Score Kappa

ANN ‘ 0.715 0.778 0.470 0285  0.355 ‘ 0.230

(Continued)
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TABLE 2 Continued

Model AUC ACC SEN PRE F1Score Kappa

DT 0.671 0.673 0.602 = 0221 | 0.324 0.165

ET 0.784 0.808 0.651 = 0.365 = 0.468 0.361

GB 0.762 0.716 0.699 = 0270 | 0.389 0.249
KNN 0.740 0.648 0.747 0233 | 0.355 0.196
LightGBM 0.739 0.759 0.627 = 0297 | 0.403 0.276
RF 0.760 0.844 0.530 = 0.419 = 0.468 0.378
SVM 0.788 0.747 0.723 0302 | 0.426 0.297
XGBOOST 0.768 0.723 0.699 = 0276 = 0.396 0.258

Models include ANN (artificial neural network), DT (decision tree), ET (extra trees), GB
(gradient boosting), KNN (k-nearest neighbors), LightGBM (Light Gradient Boosting
Machine), RF (random forest), SVM (support vector machine), and XGBoost (eXtreme
Gradient Boosting). Metrics: AUC, area under the curve; ACC, accuracy; SEN, sensitivity;
PRE, precision.

10.3389/fendo.2025.1681686

TyG-WC (AUC = 0.760), and multi-feature combinations (AUC up
to 0.768) showed improved discrimination over TyG alone but
remained inferior to ET. On the test set, the ET model achieved
higher overall accuracy (0.773), precision (0.324), and Kappa
(0.320), reflecting more balanced classification. In contrast, TyG-
derived models often reached higher sensitivity (e.g., TyG-WC =
0.823) but at the expense of reduced precision and agreement,
suggesting a tendency to overclassify positive cases. In summary,
the ET model outperformed commonly used TyG-based
traditional indicators, providing more reliable and balanced
predictive performance.

SHAP analysis confirmed waist circumference (WC),
triglycerides (TG), insulin, red blood cell count (RBC), and HDL
as the most influential predictors of adolescent NAFLD, with
glucose and platelet count also contributing (Figure 9). The
SHAP summary plot (Figure 9B) demonstrated how higher WC,
TG, and insulin levels increased risk, whereas higher HDL was

ANN Decision Tree

17.6%

No NAFLD (98) No NAFLD
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FIGURE 5
Confusion matrices of nine machine learning models.
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Calibration curves of nine machine learning models. (A) Training set. (B) Testing set.

protective. Dependence plots (Figure 10) further revealed nonlinear
threshold effects, such as sharp risk increases at elevated WC and
TG. At the individual level, SHAP force plots (Figure 11)
decomposed predictions into feature-specific contributions,
estimating, for example, a NAFLD probability of 0.56 versus 0.44
for non-NAFLD in a representative case. These visualizations
provide clinically interpretable insights at both population and
patient levels. Notably, the online risk prediction tool developed
in this study adopts a similar framework: users input individual
clinical and laboratory values, and the system generates a SHAP-
like explanation of their personalized NAFLD risk. Together, these
visualizations enhance both population-level interpretation and
individual-level applicability.

4 Discussion

In this study, we developed predictive models for adolescent
NAFLD using NHANES data (2011-2020) and nine supervised
algorithms. To address class imbalance (13% vs. 87%), SMOTE was

Decision Curve Analysis (Training set)

— Treatall
== Treat none
— ANN

—— Decision Tree
Extra Trees

0.109

Net Benefit

applied during training. Feature selection identified WC, TG,
insulin, HDL, and RBC count as the most influential predictors.
While these are established risk factors, the ML framework added
value by quantifying their relative contributions, capturing
nonlinear effects, and enabling individualized prediction through
SHAP analysis. Comparative evaluation showed that the Extra
Trees (ET) model outperformed commonly used TyG-based
indices and achieved the most balanced performance across
discrimination, accuracy, and agreement metrics. Finally, we
deployed the ET model as an online risk calculator to support
practical application in adolescent NAFLD screening.

Over the past decade, the prevalence of NAFLD in the United
States has increased from 34.4% to 38.1%, paralleling the rise in
obesity and type 2 diabetes mellitus (T2DM) (20). Among children
and adolescents with obesity, the prevalence is approximately 36.1%
and is expected to rise further with the global obesity epidemic (21).
Pediatric NAFLD often persists into adulthood and can progress to
fibrosis, cirrhosis, or other complications, underscoring the need for
early detection. However, the optimal timing, frequency, and

modality of screening remain unclear, and current evidence in
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FIGURE 7
Decision curve analysis (DCA) of nine machine learning models.
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adolescents is limited. While liver biopsy is the diagnostic gold
standard, its invasiveness and cost preclude large-scale use (22).
Conventional ultrasonography is more practical but has limited
sensitivity for mild steatosis (23), the controlled attenuation
parameter (CAP) has been proposed as a first-line screening tool
in the general population, providing a more objective and
quantifiable assessment of hepatic fat and serving as a useful
adjunct to conventional ultrasound (24). However, its
performance appears less reliable in pediatric populations, likely
due to differences in body habitus and abdominal fat distribution
that compromise imaging accuracy (25). Magnetic resonance
imaging-derived proton density fat fraction (MRI-PDFF)
provides the most accurate noninvasive quantification of hepatic
fat and performs well in children, but its high cost and technical
demands restrict routine use. Consequently, recent research has
emphasized the need for reliable serum biomarkers for large-scale
adolescent NAFLD screening (26). In addition, recent studies have
applied machine learning specifically to pediatric and adolescent
populations, including an NHANES-based adolescent model and a
multi-algorithm pediatric study, both of which reported
encouraging predictive performance and provided interpretable
insights into feature contributions (27, 28).

Frontiers in Endocrinology

Using the LGBM algorithm, we initially ranked variables by
feature importance and identified the top ten predictors: WC,
insulin, TG, PLT, Height, GLU, WBC, TC, RBC, and HDL. These
factors are well documented in adults—WC as the strongest body
composition predictor of NAFLD (29, 30), insulin resistance as a
central drive (31), and TG accumulation as a key pathological
hallmark (32). Platelet and red blood cell indices have also been
implicated in liver injury and repair processes (33-36). Although
these associations are established, their relative contributions and
interactions in adolescents remain understudied. To ensure
robustness, we validated the LGBM-based selection with a
consensus strategy combining L1-logistic regression, Boruta, and
permutation importance, which consistently highlighted
overlapping predictors. This confirmed that our feature selection
was not biased toward tree-based methods and provided a stable
foundation for subsequent model development.

Comparative evaluation of nine supervised algorithms
demonstrated that the Extra Trees (ET) model achieved the most
consistent overall performance across discrimination, classification,
calibration, and clinical utility. In ROC analysis, ET yielded the
highest AUC in both training and testing sets, reflecting strong
discriminative ability compared with ensemble and non-ensemble
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TABLE 3 Performance comparison between the ET model and TYG-
based indicators in the testing set.

Model AUC ACC SEN PRE F1Score Kappa
TYG
TYG.BMI
TYG.WC
ET
Model AUC ACC SEN PRE F1Score Kappa
TYG 0675 = 0.653 | 0633 0206 0311 0.153
TYG.BMI 0748 0720 | 0722 | 0266 0389 0255
TYG.WC 0760 0714 | 0823 | 0278 0415 0.283
ET 0784 0773 0687 @ 0324 0.440 0320

ET, extra trees; TyG, triglyceride-glucose index; BMI, body mass index; WC, waist
circumference. Metrics as in Table 2.

algorithms. Confusion matrix results further confirmed its balanced
classification, with markedly higher sensitivity for NAFLD
detection than most counterparts, while maintaining high overall
accuracy. In terms of calibration, the ET model produced the lowest
Brier score and curves closely aligned with the reference line,
indicating reliable probability estimates. Decision curve analysis
(DCA) also showed that ET consistently provided the greatest net
clinical benefit across a wide range of threshold probabilities,
outperforming the other eight models. Taken together, these
findings indicate that ET offered the most robust balance of
discrimination, reliability, and clinical applicability, supporting its
selection as the optimal algorithm for subsequent comparison with

10.3389/fendo.2025.1681686

traditional metabolic indices. Consistent with previous studies,
ensemble tree-based methods such as ET and RF have repeatedly
shown strong generalization in predicting chronic diseases,
including NAFLD (37-39). Our study extends this evidence to
adolescents, representing the first application of ET in
this population.

When compared with logistic regression models based on the
TyG index and its derivatives, the ET model consistently
demonstrated superior predictive balance. Although TyG-derived
models—particularly TyG-WC (sensitivity = 0.823) and multi-
feature combinations (AUC up to 0.768)—achieved higher
sensitivity than ET, this came at the cost of lower precision and
overall accuracy, reflecting a tendency to overclassify positive
cases. By contrast, ET maintained the highest AUC (0.784), along
with better precision (0.324) and agreement (Kappa = 0.320),
offering a more reliable performance profile. These results
suggest that while TyG indices capture important aspects of
insulin resistance, their limited dimensionality constrains their
predictive value. ET, by integrating complex nonlinear
interactions, provides superior discrimination and more balanced
performance, making it a more appropriate tool for adolescent
NAFLD risk prediction.

SHAP analysis confirmed waist circumference (WC),
triglycerides (TG), insulin, red blood cell count (RBC), and HDL
as the most influential predictors of adolescent NAFLD, with
glucose and platelet count also contributing (Figure 9). Beyond
confirming known risk factors, the model quantified their relative
importance and revealed nonlinear effects. Dependence plots
indicated that higher WC and TG sharply increased risk, while
elevated HDL exerted a protective but nonlinear effect (Figure 10).

TABLE 4 Performance comparison of the ET model and logistic regression models based on TYG and its derived indices in the testing set.

Model AUC ACC SEN PRE F1 Score Kappa
TYG
TYG+TYG.BMI
TYG+TYG.WC
TYG+TYG.BMI+TYG.WC
TYGBMI+TYG.WC
ET
Model AUC ACC SEN PRE F1 Score Kappa
TYG 0.697 0.653 0.633 0.206 0311 0.153
TYG+TYG.BMI 0.758 0.736 0.684 0273 0.390 0.259
TYG+TYG.WC 0.767 0.791 0.658 0327 0.437 0326
TYG+TYGBMI+TYG.WC 0.768 0.797 0.696 0342 0.458 0351
TYGBMI+TYG.WC 0.767 0.786 0.734 0333 0.458 0.348
ET 0.784 0.773 0.687 0324 0.440 0320

ET, extra trees; TyG, triglyceride-glucose index; BMI, body mass index; WC, waist circumference. Metrics as in Table 2.

Frontiers in Endocrinology

frontiersin.org


https://doi.org/10.3389/fendo.2025.1681686
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Zhang et al.

At the individual level, SHAP force plots illustrated how multiple
features jointly shaped predictions, with WC and TG driving
positive contributions and HDL and insulin reducing risk
(Figure 11). These results provide clinically interpretable insights
at both population and patient levels.

From a clinical perspective, the ET-based model is practical as it
uses routinely available anthropometric and laboratory measures,
enabling scalable screening in adolescents. The identification of
nonlinear thresholds for WC, TG, and HDL offers actionable cutoffs
for early intervention, while the accompanying online tool provides
individualized risk estimates to support tailored prevention and
patient engagement.

A

10.3389/fendo.2025.1681686

This study has several limitations. It was based on cross-sectional
NHANES data, restricting causal inference, and NAFLD diagnosis
relied on biochemical indicators rather than liver biopsy, which may
have caused misclassification. Although multiple feature selection
strategies were applied, important genetic or environmental factors
might have been overlooked. In addition, the absence of external
cohort validation and the U.S.-only adolescent sample limit
generalizability to other populations. Nonetheless, the study’s
strengths include the use of a large, nationally representative dataset
with rigorous inclusion criteria, adjustment for key confounders, and
the development of an accessible online prediction tool, together
supporting its reliability and clinical relevance.
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FIGURE 9

(A) Ranked feature importance of the ET model. (B) SHAP summary (beeswarm) plot showing direction and magnitude of feature contributions.
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5 Conclusion

The machine learning model developed using the Extra Trees
algorithm in this study demonstrates superior predictive
performance for identifying adolescents at risk of NAFLD. Based
on this model, an interactive web-based prediction tool was
constructed, enabling clinicians to rapidly and conveniently
estimate individual NAFLD risk using routine clinical indicators.
This model not only improves early identification and risk
stratification of NAFLD in youth populations but also has the
potential to reduce unnecessary imaging examinations and
laboratory testing, ultimately supporting cost-effective and
personalized preventive strategies in clinical practice.
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