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Introduction: Mesoderm-specific transcript (Mest), a paternally expressed
imprinted gene, is involved in the modulation of adipose tissue expansion.
Mest is also highly expressed in the developing and adult brain, suggesting a
role in behavioral phenotypes. Previously, we showed that female mice with
paternal Mest inactivation (Mest?*°) exhibit no discernible behavioral
impairments compared to wild-type mice. In this study, we performed
metabolic phenotyping of female MestPX© mice in response to a
dietary challenge.

Methods: Eight-week-old female and male wild-type and Mes mice were fed
a control or Western diet (40 kcal% fat) until 24 weeks of age. Body weight, body
composition, and metabolic parameters were measured during the course of the
feeding regimens, and gene expression and type-2-deiodinase (DIO2) activity
were examined in white adipose tissue and brain at the end of the study.
Results: MestP*® female mice fed a Western diet were protected against diet-
induced obesity. Strikingly, these mice showed increased ambulatory activity and
speed, coupled with reduced resting parameters, suggesting a role for MEST in
the regulation of spontaneous physical activity, a form of nonexercise activity
thermogenesis. When considering body mass (control diet) and lean mass
(Western diet), energy expenditure was increased in the female Mest?© mice.
Male MestP*© mice did not exhibit these changes. Analyses of hypothalamic gene
expression revealed upregulation of Dio2, and RNA-seq highlighted differential
expression of numerous thyroid hormone-responsive genes in MestPX®
female mice.

Conclusion: Mechanistically, our results suggest that MEST directly or indirectly
requlates thyroid hormone-responsive genes in the hypothalamus, thereby
modulating the neurobiological control of nonexercise activity thermogenesis
in Western diet-fed female mice.
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1 Introduction

The global increase in the prevalence of obesity substantially
raises the risk of its related comorbidities, such as type 2 diabetes,
metabolic dysfunction-associated steatotic liver disease (MASLD),
hypertension, cardiovascular disease, dementia, joint pain, and
various cancers, imposing a significant burden on public health (1,
2). The development of obesity results from a combination of genetic,
environmental, lifestyle, and epigenetic factors (3). Although
monozygotic twin studies have revealed that the heritability of
obesity is more than 40%, the identification of > 1,000 obesity-
linked genetic variants through genome-wide association studies still
accounts for a small fraction of the variance of body mass index (4, 5).
A significant component of obesity remains unaccounted for, further
reinforcing the complexity of the condition.

Mesoderm-specific transcript (MEST), a paternally expressed
imprinted gene with an unknown molecular function, belongs to
the alpha/beta hydrolase protein family, which exhibits a broad
range of activities (6, 7). Mest mRNA and protein levels vary greatly
—up to ~ 50-fold—in white adipose tissue (WAT) from individual
C57BL/6] mice fed an obesogenic diet, and variations in WAT Mest
show a positive association with fat mass deposition (8). The role of
MEST in adipose tissue has been well characterized (9-11).
Transgenic overexpression of Mest in mice results in enlarged
adipocytes (10), whereas mice with global and adipocyte-specific
inactivation of Mest show reduced diet-induced obesity (12), further
highlighting a role for Mest in WAT expansion. Moreover, Mest is
localized to the endoplasmic reticulum of adipocytes, in close
proximity to the membranes of lipid droplets (13).

Human total daily energy expenditure is composed of basal
metabolic rate, the thermic effect of food, and activity
thermogenesis, which includes exercise and “nonexercise activity
thermogenesis” (NEAT) (14). Purposeful human exercise is
volitional, whereas NEAT encompasses all activities outside of
chosen exercise (15), including the drive to stand and walk,
fidgeting, and gesticulating (16). NEAT-associated activities can
account for 100 to 800 kcal of energy expenditure (EE) per day
(17). Harnessing NEAT as a mechanism to increase total daily energy
expenditure is an attractive strategy to dissipate energy and provide
protection against diet-induced obesity during times of excess caloric
intake. Weight gain in obesity results from a chronic imbalance
between caloric intake and energy expenditure. Excessive caloric
intake combined with physical inactivity contributes to the
development of obesity. Increasing physical activity through NEAT
represents a potential strategy to enhance the energy expenditure
component of body weight regulation (18, 19).

The significance of MEST in the central nervous system is
highlighted by its expression in the embryonic midbrain, as well as
in the early postnatal and adult brain (20-22). Mest is one of the
most highly upregulated genes during early mesodiencephalic

Abbreviations: Mest, mesoderm-specific transcript; WAT, white adipose tissue;
iWAT, inguinal WAT; gWAT, gonadal WAT; BW, body weight; SPA,
spontaneous physical activity; NEAT, nonexercise activity thermogenesis; TH,

thyroid hormone.
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dopaminergic neuronal development in the midbrain (22) and
during the morphological transition of primary neurons during
formation of the mammalian neocortex (23). Mice with inactivation
of Mest (Mest™!?"%%) generated in our laboratory show no
discernible impairments in object recognition memory, social
behavior, or maternal behavior (20). Paradoxically, abnormal
maternal behavior (21) and reduced climbing behavior (22) were
reported by others using a different Mest knockout mouse
(Mest™ ™) - Phenotypic differences between these two models
may result from differences in genetic background or gene-targeting
approaches (20).

This study focused on metabolic phenotyping of female mice
with paternal inactivation of Mest (Mest” ©) fed a control or
obesogenic diet. Remarkably, female MestP mice exhibited
increased spontaneous physical activity (SPA) and were protected
against diet-induced obesity. RNA-sequencing (RNA-seq) analysis
of the hypothalamus from MEST-deficient female mice revealed
upregulation of several thyroid hormone (TH)-responsive genes,
suggesting a mechanism involving TH and MEST in the
neurobiological regulation of increased SPA and protection

tpKO

against obesity in female Mes mice.

2 Materials and methods
2.1 Animals, diets, and experimental design

The Institutional Animal Care and Use Committee at
MaineHealth Institute for Research approved all animal
experiments in accordance with National Institutes of Health
guidelines for the care and use of laboratory animals. We used
Mest™ 282 mice (12) with a global inactivation of Mest and
littermate wild-type (WT) mice for our studies. All mice were
congenic on the C57BL/6] genetic background. Mice were fed the
2018 Teklad Global 18% protein rodent diet (Envigo, Indianapolis,
IN, USA) and housed in a barrier facility with standard light and
humidity conditions at an ambient temperature of 23 °C-24 °C. For
dietary studies, female mice were fed a control (CD; D14042701i,
Research Diets, New Brunswick, NJ, USA) or a Western diet (WD;
40 kcal% fat; D12079Bi, Research Diets, New Brunswick, NJ, USA).
Singly housed 8-week-old, age-matched female and male WT mice
and Mest"™© mice were fed a CD or WD until 24 weeks of age, as
illustrated in Figure 1A. Body weight (BW), body composition
(NMR), glucose and insulin tolerance, and metabolic parameters
(indirect calorimetry) were measured as indicated (Figure 1A).
Detailed analyses were performed on mutant female mice that
exhibited a pronounced increase in SPA. Male data are presented
in the Supplementary Material as indicated in the Results section.

2.2 Body composition and metabolic cage
analyses

Body composition of mice was measured using a Minispec LF50
TD-NMR analyzer (Bruker, Massachusetts) as previously described
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(12). Indirect calorimetry was performed using the Promethion
metabolic cage system (Sable Systems International, North Las
Vegas, NV, USA). Metabolic variables—oxygen consumption
(VO,), carbon dioxide production (VCO,), EE, respiratory
exchange ratio (RER), and locomotor activity—were analyzed
using web-based CalR software (24). Generalized linear modeling,
using BW, fat mass (FM), and lean mass (LM) as covariates, was
performed for VO,, VCO,, and EE. Analysis of variance (ANOVA)
was used for mass-independent variables, including locomotor
activity and RER. Fine movements, such as grooming and
scratching, were calculated as the difference between AllMeters
and PedMeters (Sable Systems). NEAT was calculated as previously
described (25). Total EE (TEE; kcal/h) was divided by two to obtain
TEE values every 30 min (TEE-30). The lowest TEE-30 value for
each day was considered the basal metabolic rate (BMR). NEAT was
then calculated by subtracting BMR from each TEE-30, yielding
NEAT values every 30 min (NEAT-30) for each day.

2.3 Glucose and insulin tolerance tests

Glucose tolerance tests (GTT) were performed after an overnight
fast, followed by intraperitoneal administration of 2 g/kg glucose.
Insulin tolerance tests (ITT) were performed after a 4-h fast, with
intraperitoneal administration of 0.5 IU/kg insulin (Humulin R U-
100, Eli Lilly and Company, Indianapolis, IN, USA). Blood glucose
levels in the tail vein were monitored using a glucometer (Accu-check
Aviva Plus, Roche Diagnostics, Indianapolis, IN, USA).

2.4 Serum corticosterone assay

At the end of the study, blood was collected from isoflurane-
anesthetized mice by intracardiac puncture into BD SST™ tubes
(Becton Dickinson, Franklin Lakes, NJ, USA). The tubes were
inverted 10 x and allowed to clot at room temperature for 30
min. Samples were centrifuged at 1,300xg for 15 min, and serum
was collected and stored at — 70 °C. Serum corticosterone levels
were measured using the Corticosterone AssayMax ELISA Kit
(EC3001-1, AssayPro, St. Charles, MO, USA).

2.5 DIO2 and DIO3 enzymatic assays

Type-2-deiodinase (DIO2) and type-3-deiodinase (DIO3)
enzymatic activities were determined as previously described (26).
In brief, frozen tissues were homogenized on ice in a buffer
containing 20 mM Tris-HCl, 0.25 M sucrose, and 5 mM
dithiothreitol (Sigma-Aldrich, St. Louis, MO, USA) (pH = 7.0 for
DIO2 and 7.4 for DIO3). A suitable volume of tissue homogenate
containing 50-200 g of protein was used in the enzymatic reaction
to ensure that total deiodination did not exceed 40% and remained
proportional to the protein content. Tissue homogenates were
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incubated at 37 °C for an hour in the presence of 25 mM
dithiothreitol (Sigma-Aldrich) with either 1 nM of 1251 labeled
thyroxine (T4; Catalog No. NEXI111X, Revvity, Waltham, MA,
USA) for the DIO2 assay, or 2 nM '*I-labeled triiodothyronine
(T3; Catalog No. NEX110X, Revvity) for the DIO3 assay. Unlabeled
T3 (1 uM) was added to the DIO2 enzymatic reaction to prevent
interference from DIO3 in the DIO2 assay. The enzymatic reactions
were stopped with 1 vol of ethanol, and an aliquot was subjected to
paper chromatography (Catalog No. 3001-614, Whatman, GE
Healthcare Life Sciences, Chicago, IL, USA) as previously
described (27), using ammonia-saturated 2-methyl-2-butanol as
the eluent. Chromatograms were autoradiographed, and the
bands corresponding to different metabolites were excised and
counted using a gamma counter. Dejodination was determined
based on the percentage of '*’I-T3 produced from T4 (for DIO2
assay), accounting for unlabeled T3, or the percentage of '*I-3,3'-
diiodothyronine produced from T3 (for the DIO3 assay).

2.6 Adipose tissue histology

Subcutaneous inguinal (iWAT) and gonadal white adipose
tissue (gWAT) were fixed in Bouin’s solution (Harleco, Millipore
Sigma, Darmstadt, Germany) for 48 h, paraffin-embedded, and
processed for H&E staining.

2.7 RNA isolation and quantitative reverse
transcription PCR

Tissue total RNA was extracted as previously described (12)
using the RNeasy Mini Kit (Qiagen, Germantown, MD, USA).
Briefly, tissues were homogenized in TriReagent (Molecular
Research Center, Cincinnati, OH, USA), and RNA was purified
using the RNeasy Mini Kit and RNAse-free DNAse (Qiagen). One-
step quantitative reverse transcription PCR (RT-qPCR) was
performed using the TagMan RNA-to-CT Reagent (Thermo
Fisher Scientific, Waltham, MA, USA) on a CFX384 Real-Time
Platform (BioRad, Hercules, CA, USA). Two-step RT-qPCR was
performed using SYBR Select Master Mix (Thermo Fisher
Scientific) with ¢cDNA synthesized using the High-Capacity
cDNA Reverse Transcription Kit (Thermo Fisher Scientific).
Gene-specific TagMan probes (LGC, BioSearch Technologies,
Middlesex, TW11 OLY, UK) and PrimeTime primers (Integrated
DNA Technologies, Coralville, IA, USA), as well as primer/probe
combinations, were used for gene quantification. Gene expression
was normalized to TATA box binding protein (Tbp) for TagMan
assays. The relative abundance of genes of interest measured using
SYBR green was quantified and normalized to Tbp using the 2-
AACT method. Probe and primer sequences for TagMan assays,
primer sequences for SYBR green assays, and stock numbers for
primer and probe sets (Integrated DNA Technologies, Coralville,
IA, USA) are listed in Supplementary File S1.
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2.8 RNA-sequencing

Bulk RNA-seq of the whole mouse hypothalamus was
performed at the Pennington Biomedical Research Center
Genomics Core Facility (Baton Rouge, LA, USA). Total RNA
quality was assessed using the Agilent Bioanalyzer RNA 6000
Assay. RNA-seq library construction was performed using the
Lexogen QuantSeq 3> mRNA-seq V2 Library Prep Kit FWD with
UDI (Catalog No. 191.96; Lexogen, Greenland, NH, USA). Libraries
were validated using the Agilent BioAnalyzer High Sensitivity DNA
Assay (Agilent, Santa Clara, CA, USA). The ~ 275-bp libraries were
pooled in equimolar amounts and sequenced on the Illumina
NextSeq2000 (Illumina, San Diego, CA, USA) at 75 bp read
length. Quality control of raw sequencing data was checked using
FastQC (28), and Cutadapt (29) was used to trim adapter sequences
and low-quality bases, ensuring cleaner data for downstream
analysis. The cleaned reads were aligned to the reference genome
(GRCm39 release 110) using the STAR aligner (30). Following
alignment, HTSeq (31) was used to count the number of reads
mapping to each gene, generating a count matrix. Differential
analysis of RNA read count data was then performed using
DESeq (32), which models the total counts as a negative binomial
distribution and applies an empirical Bayes shrinkage-based
method to estimate signal dispersion and fold changes. Gene
expression signals were logarithmically transformed (base 2) for
all downstream analyses, with the lowest expression value being set
to 1. Genes with an absolute log fold change > 1 and a false
discovery rate (FDR) of 5% were considered differentially expressed.
Analysis of differentially expressed genes was performed using the
online enrichment analysis tool Enrichr (33). Gene ontology data
were obtained from the GO Biological Process 2023, GO Cellular
Component 2023, GO Molecular Function 2023, and MGI
Mammalian Phenotype Level 4 libraries. Pathway analysis terms
were retrieved from the Reactome 2022 library. Statistical
significance was defined as an adjusted p-value < 0.05.

2.9 Data analyses

All results are expressed as mean + SEM. Data were tested for
normality to assess Gaussian distribution, and differences between
datasets were analyzed using unpaired parametric t-tests, one- or
two-way ANOVA, or simple linear regression in GraphPad
Prism 10.0.2.

3 Results

3.1 Female mice with paternal inactivation
of Mest show resistance to diet-induced
obesity

Using the experimental design in Figure 1A, female WT and

Mest* © mice were fed a CD (10 kcal% fat) or WD (40 kcal% fat)
from 8 to 24 weeks of age. BW measurements showed that CD-fed
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Mest© female mice had slightly reduced BW compared to WT mice
throughout the 8-14-week period (Figure 1B), due to small
reductions in both FM and LM (Figures 1D-G). When fed WD
from 8 to 24 weeks of age, mice showed considerable divergence in
BW (Figure 1C), with WT mice gaining weight approximately
twofold faster than Mest"™ © (0.51 g/week vs. 0.24 g/week; p =
0.0013). Indices of FM prior to WD feeding at 8 weeks of age
(Figures 1H, I) and average weekly WD intake measured from 14 to
16 weeks of age (WT, 2.40 g/week vs. Mest*™©, 2.28 g/week; p = 0.23),
showed no difference between genotypes. However, divergence in FM
occurred between genotypes by 16 weeks of age (Figures 1H, I).
Analyses using two-way ANOVA showed that time and genotype
contributed to differences in FM between WT and Mes#**® mice fed
WD (Supplementary Table SIA). While LM was similar between
genotypes at 8 weeks of age, significant differences emerged after mice
were fed WD (Figure 1]). Percentage LM relative to BW decreased by
~ 5%-6% in WT mice fed WD from 8 to 24 weeks of age, whereas it
remained consistent in Mest© mice throughout the period and was
significantly higher than in WT mice at 16 and 24 weeks of age
(Figure 1K). Since ~ 25% of adipose tissue mass consists of fat-free
mass—often referred to as the quarter fat-free mass rule (34)—our
results suggest that this component contributes to overall LM in WT
mice (Figure 1J). Additionally, anal-nasal length measurements of
24-week-old WT and Mest? © female mice fed a 10-kcal% fat diet
showed no differences between genotypes (WT, 91.2 mm; Mest” KO,
90.2 mm; n = 8 mice per genotype; p = 0.20), suggesting that Mest
inactivation does not significantly affect longitudinal growth. Glucose
tolerance in CD-fed mice was comparable between genotypes
(Supplementary Table S1B); however, when fed WD, Mest?<©
female mice exhibited significantly improved blood glucose levels
after glucose injection compared to WT mice (Figure 1L). This was
reflected by marginally significant differences (p = 0.062) in the area
under the curve (Figure 1M). While circulating insulin levels were not
measured in our study, an insulin tolerance test assessing whole-body
insulin action showed improved insulin sensitivity in Mest”*© female
mice compared to WT (Figure 1N).

Male Mest”™© mice fed CD or WD from 8 to 16 weeks of age
showed significantly reduced BW gain associated with LM
compared to WT mice (Supplementary Figure S1). Thus, reduced
BW gain in response to dietary intervention is a phenotype
consistent across both sexes.

Inactivation of the paternal allele of Mest has been shown to
ablate Mest in WAT (12). In this study, we demonstrate similar
monoallelic expression of Mest in various regions of the brain, as
evidenced by inactivation of Mest in the hypothalamus (Hyp),
pituitary (Pit), amygdala (Amy), and motor cortex (MC) of
MestP*© mice (Figure 10).

3.2 Female Mest*° mice fed a Western
diet show increased energy expenditure
and physical activity compared to WT mice

Indirect calorimetry of female WT and Mest”*® mice fed CD or
WD for 16 weeks showed no significant differences in average daily
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FIGURE 1

Phenotypic analyses of WT and Mest"*® (pKO) female mice fed control (CD) and Western diet (WD). (A) Schematic showing the study design used
for dietary studies. BWs of WT and Mest*® female mice fed CD (B) and WD (C) from 8 to 24 weeks of age. (D) Fat mass, (E) % fat mass, (F) lean
mass, and (G) % lean mass of CD-fed female WT and Mest**® mice at 8, 16, and 23 weeks of age measured by NMR. (H) Fat mass, (I) % fat mass,
(J) lean mass, and (K) % lean mass of WD-fed female mice at 8, 16, and 24 weeks of age. (L) Glucose tolerance test (GTT) and (M) area under the
curve (AUC) for WT and Mest®® female mice fed WD at 16 weeks of age. (N) Insulin tolerance test of WD-fed WT and Mest?*® female mice at 17
weeks of age. (O) Analyses of Mest gene expression show it to be almost completely inactivated in the hypothalamus (Hyp), pituitary (Pit), amygdala
(Amy), motor cortex (MC), and inguinal (Ing) and gonadal (Gon) white adipose tissue of female Mest®*© mice. Data in figure panels (B—K) were
analyzed by two-way ANOVA, and (L-0O) by unpaired t-tests. Annotations with a—d indicate p-values lower than 0.05, 0.01, 0.001, and 0.0001 for
data in (B, C). p-values are numerically indicated for the remaining figures, with < 0.001 indicating a p-value of less than 0.0005. Schematic (A) was

created in https://BioRender.com.

EE between genotypes (Figure 2A). However, analysis using
generalized linear modeling (24) indicated that BW (total mass)

was the primary determinant of 24-h EE between genotypes in CD-
fed mice (Figure 2B; p = 0.040). The leftward shift in the regression
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plot for EE of Mest"™™ mice (Figure 2B) indicates a significant

genotype effect associated with a higher metabolic rate.
Furthermore, VO,, VCO,, and EE all exhibited significant
genotype effects during dark hours when BW was included as a

05
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FIGURE 2

Metabolic and physical activity measurements of female WT and Mest**® (pKO) mice fed CD or WD. (A—C) Energy expenditure (EE), (D) respiratory
exchange ratio (RER), and (E-M) indices of activity and sleep were measured in female WT and Mest°*° mice fed CD or WD for 16 weeks. (N, O)
Nonexercise activity thermogenesis (NEAT) and (P) fine movements were calculated as described in Supplementary File Methods. Data in (A, D—P)
were analyzed via unpaired t-tests for each circadian period comparing WT and MestP*© female mice fed CD or WD. Data in (B, C) were calculated
to show significant differences between genotypes when adjusted for (B) total mass or (C) lean mass. p-values are numerically indicated in all

figures, with < 0.001 denoting a p-value of less than 0.0005.

covariate (Supplementary Table S2A). In mice fed WD, LM was the
primary determinant of 24-h EE (Figure 2C; p = 0.044). LM was also
a significant covariate for VO,, VCO,, and EE during the light
hours, with no observable genotype effect (Supplementary Table
S2B). RER (VCO,/VO,) was comparable between genotypes fed
CD, except that Mest”™™© showed significantly higher RER than WT
mice during dark hours (Figure 2D, Supplementary Table S2A),
suggesting increased carbohydrate metabolism at night. No
differences in RER were observed between WT and Mest*<©
female mice fed WD (Figure 1D, Supplementary Table S2B).
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Average ambulatory distance (Figure 2E) and speed within the
cage (Figure 2F) were consistent between MestP° and WT female
mice fed CD. Generalized linear modeling using one-way ANOVA
for mass-independent variables determined significant genotype
effects for pedestrian locomotion and total distance in the cage
for all time periods in Mest© (Supplementary Table S2A). When
fed WD, MestP*© female mice showed significantly increased
pedestrian distance during the day, night, and 24 h compared to
WT (Figure 2E, Supplementary Table S2B). Average pedestrian
speed was significantly increased for Mest?®® female mice
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compared with WT female mice fed WD only at night (Figure 2F).
Measurements of X- and Y-breaks showed no differences between
genotypes when fed CD but were significantly increased in Mest<©
mice during all time periods compared to WT when fed WD
(Figures 2G, H). No differences in Z-breaks were observed
between WT and Mest’ © female mice fed either CD or WD
(Figure 2I). Measurements of % time spent still or asleep, and
total sleep hours, showed no differences between genotypes fed CD

KO mice

but significant differences in mice fed WD, with Mes
showing reduced still and sleep percentages and times (Figures 2]-
L). Correspondingly, the time spent walking was also significantly
increased for all time periods, only for MestP© female mice
compared to WT female mice when fed WD (Figure 2M).

In the context of dietary fat, MestPXO female mice show
increased SPA compared to WT mice, including pedestrian
locomotion (PedMeters), X- and Y-breaks, and time spent
walking (Figures 2E, G, H, M), which correlate with reduced time
spent still and sleeping (Figures 2J-L). The energy associated with
SPA, referred to as NEAT, shows no differences between genotypes
when fed CD but is higher in the Mest”™® compared to WT at all
time periods when fed WD (Figure 2N). Further analysis revealed
that WT mice show reduced NEAT when fed WD compared to
Mest?™©, whereas both genotypes maintained comparable levels of
NEAT when fed CD (Figure 20). Additionally, Mest"© female
mice fed WD were more engaged in fine movements, such as
grooming and scratching, particularly during daylight, compared to
WT mice when fed WD (Figure 2P). Thus, increased SPA and
NEAT, in the context of an obesogenic diet and paternal
inactivation of Mest, may protect Mest”<© female mice from diet-
induced obesity. Resistance to dietary obesity in female Mest”
mice, to some extent, parallels that previously observed in male
mice (12); however, no changes in physical activity were observed in
Mest”™© male mice fed CD or WD (Supplementary Tables S3A, B).

3.3 Hypothalamic gene expression is
altered in control diet-fed female Mes
mice

tpKO

Analysis of Mest mRNA in multiple brain regions of WT and
Mest?™ © mice, including the hypothalamus, pituitary, amygdala,
and motor cortex, confirms that transcription occurs exclusively
from the paternal allele, with the highest expression in the pituitary
(Figure 10). To investigate the neurobiological basis for increased
physical activity without the influence of dietary fat, several
potential candidate genes were measured in the different brain
regions of CD-fed WT and Mest"™™© female mice. Initial studies
focused on the hypothalamus and pituitary because of their well-
recognized role in metabolism. Mest”© female mice showed
significantly reduced hypothalamic expression of corticotropin-
releasing hormone (Crh), oxytocin (Oxt), thyrotropin-releasing
hormone (Trh), and the primary central melanocortin signaling
gene melanocortin 4 receptor (Mc4r), compared to WT mice
(Figure 3A). Agouti-related neuropeptide (Agrp), an antagonist of
melanocortin receptor signaling, also trended lower in Mest©
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female mice (Figure 3A). Hypocretin (Hcrt) and the G-protein-
coupled receptor hypocretin receptor 1 (Hcrtrl), involved in
orexigenic signaling and regulation of sleep and arousal, showed
no differences in expression between genotypes (Figure 3A). Since
Trh is associated with thyroid-stimulating hormone release and is
subject to negative feedback by TH, additional TH-related genes
were measured in the hypothalamus (Figure 3B). Results showed
increased expression of Dio2 in Mest?© female mice, which
correlated with increased hairless (Hr), a recognized TH-
responsive gene, possibly indicating a localized TH effect in the
hypothalamus (Figure 3B). While Kruppel-like factor 9 (KIf9),
another TH-responsive gene, was marginally elevated in the
Mest?™© female hypothalamus, the expression of other recognized
TH-responsive genes—uncoupling protein 2 (Ucp2), glycerol
phosphate dehydrogenase 2 (Gpd2), and thyroid hormone
responsive (Thrsp)—showed no difference in expression between
genotypes (Figure 3B). Dio3, which converts active T3 to inactive
metabolites, also showed comparable hypothalamic expression
between genotypes (Figure 3B). The pituitary showed no
differences in gene expression between genotypes (Figures 3C, D),
whereas the amygdala showed increased expression of Dio3 in
Mest”™© mice, while Dio2 and KIf9 were unchanged (Figure 3E).
The motor cortex showed marginally increased expression of Dio2
and a small but significant increase in KIf9 mRNA in MestP<©
female mice, whereas Dio3 expression was similar for both
genotypes (Figure 3F). DIO2 and DIO3 enzymatic activity
measured in the amygdala and motor cortex correlated with gene
expression patterns and showed increased Dio3 mRNA and DIO3
activity in the amygdala of Mest” © mice (Figures 3E-G). Levels of
circulating corticosterone in female WT and Mest™ © mice were
comparable (Supplementary Figure S2), suggesting that perceived
stress is unlikely to be linked with differences in physical activity
between genotypes.

Since we previously demonstrated that the conception rate
between WT (84.2%) and Mest*? © (82.4%) female mice was
comparable (20), we did not assess estrous cyclicity or estrogen
levels in this study. In addition, measurements of pituitary
expression of luteinizing hormone beta (Lhb) and follicle-
stimulating hormone beta (Fshb)—genes associated with
ovulation, estrogen production, follicular development, and
control of the estrous cycle—were similar between genotypes
(Supplementary Figure S3), suggesting normal hormonal patterns.

In contrast to the results in female mice, the expression of the
hypothalamic genes Dio2 and Hr in male mice showed no
differences between genotypes (Supplementary Figure S4).
Overall, patterns of gene expression suggested that the increased
physical activity of Mest”© female mice could be at least partially
due to increased hypothalamic TH signaling.

A limitation of our study is that circulating thyroid hormones
were not measured. However, while not as direct or convincing as
measurements of T3 and T4 in serum or plasma, we show that
hepatic gene expression of Diol and Thrsp—which have been
shown to correlate with levels of circulating thyroid hormones
(35, 36)—showed no differences between female WT and Mest**®

mice after being fed CD or WD (Supplementary Figure S5). These
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FIGURE 3

Gene

Key thyroid hormone metabolic and responsive genes show increased expression in the hypothalamus of CD-fed female Mest®® (pKO) mice.

(A, B) Data show hypothalamic (Hyp), (C, D) pituitary (Pit), (E) amygdala (Amy), and (F) motor cortex (MC) gene expression in CD-fed WT and Mest®©
mice measured using RT-gPCR. (G) Enzymatic measurements of type 2 (DIO2) and type 3 (DIO3) deiodinases were measured in the Amy and MC
from female WT and Mest”© mice fed CD. Unpaired t-tests were used to compare gene expression data between genotypes, and p-values are

numerically in all figures.

data suggest that localized conversion of T4 to T3 by DIO2 in the
hypothalamus contributes to the phenotypic differences in physical
activity observed between genotypes.

3.4 The hypothalamic transcriptome is
altered in control diet-fed female Mest?X®
mice

The RNA-seq transcriptome of WT and Mest"™® female mice,
selected from the CD-fed cohort (Figure 1A), revealed 866
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differentially expressed genes (DEGs; p.q; < 0.05), with 580
upregulated and 286 downregulated in Mest© compared to WT
female mice (Figure 4A, Supplementary Table S4). Functional
annotation of upregulated genes showed enrichment in pathways
associated with the neuronal system, neurexins and neuroligins, and
protein—protein interactions at synapses. Downregulated genes
showed enrichment in axon guidance, eukaryotic translation
termination, and nonsense-mediated decay independent of the
exon junction complex (Figure 4B). Gene ontology was consistent
with pathway analysis and emphasized enrichment for biological
process terms associated with axonogenesis, positive regulation of
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excitatory postsynaptic potential, and chemical and glutamatergic
synaptic transmission, and was consistent with cellular component
(neuron projection, axon, dendrite, etc.) and molecular function
(voltage-gated potassium and monoatomic cation channel activity)
ontologies (Figure 4C). MGI Mammalian Phenotype (level 4)
analyses showed enrichment for hyperactivity, which closely
matches the phenotype observed in MestP*© female
mice (Figure 4C).

We next explored the extent of TH involvement in the
hypothalamus of CD-fed female mice and identified 99 DEGs
(Pagj < 0.05) from a total of 866 DEGs (Supplementary Table S4)
that overlapped with a published compendium of 734 top TH-
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) (Figure 4D), with 69 upregulated and 30
pKO

responsive genes (37
downregulated in Mest compared to WT female mice
(Figures 4D, E). Fifteen upregulated genes were selected, and their
expression was validated by RT-qPCR (Figure 4F). While three of
the downregulated genes in Mest” KO (Crh, Oxt, and Trh) were
validated (Figure 3A), an additional five failed to validate by RT-
qPCR, with two (Cnrl, Dcx) showing significantly higher
expression in Mest?*© compared to WT mice (Figure 4F).
Overall, several well-established TH-responsive genes were
significantly upregulated in the hypothalamus of female Mest”
mice, suggesting a role for TH signaling in increased activity-
associated behavior. An analysis comparing hypothalamic DEGs
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Transcriptomic analyses reveal differential hypothalamic expression patterns between CD-fed WT and Mest®® (pKO) female mice. (A) Venn diagram
showing the numbers of differentially expressed genes between WT and Mest®° female mice and the top 10 Reactome pathways (B) associated
with genes expressed at higher or lower levels in Mest**© mice compared to WT. (C) Ontology analyses of genes upregulated in the hypothalamus

of MestPk®

mice compared to WT. (D) Venn diagram showing the overlap between thyroid hormone (TH)-responsive genes from a published

compendium (17) and genes differentially expressed between WT and Mest®® mice. (E) Heatmap of TH-responsive genes showing significant

differences in expression between WT and Mest**®

mice. (F) Differentially expressed TH-responsive genes identified by RNA-seq were validated in

hypothalamic RNA from WT (n = 9) and Mest®© (n = 9) mice using RT-qPCR. Data in (F) were analyzed using unpaired t-tests, and p-values are
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in our study with TH-target genes identified in astrocytes and
hypothalamus in two additional studies (38, 39) showed an overlap
with 21 TH-upregulated and six TH-downregulated genes TH (39),
and eight TH-upregulated and eight TH-downregulated genes (38),
with KIf9 and Hr being upregulated across all three studies.
Hypergeometric analyses (http://nemates.org/MA/progs/
overlap_stats.html) of overlap between TH-responsive DEGs from
our study identified a representation factor of 2.8 (p < 1.3e-06)
compared to Zekri et al. (39), and 2.4 (p < 9.4e—04) compared to Wu
et al. (38), providing further evidence for a central role of TH in the
activity behavior of female Mest”® mice.

Because loss of Mest was thought to mediate mouse behavior via
abnormal development of mesodiencephalic dopaminergic
neurons, resulting in reduced tyrosine hydrolase (Th) protein and
dopamine release (22), we investigated DEGs associated with
dopamine biosynthesis in our study. Our analyses revealed no
downregulated expression of DEGs involved in dopamine
biosynthesis in the hypothalamus of female Mest?™° mice;
however, three DEGs—Th (p.q; < 0.001; 1.5F), Slc6a3 (pagj =
0.0017; 5.6F), and Gpr37 (p,g; = 0.0037; 1.3F)—showed significant
upregulation of expression compared to female WT mice. Gene
ontology analyses of DEGS with elevated expression in Mest”<° did
not identify significant pathways associated with dopamine
synthesis or function. Similarly, pathways associated with
catecholamine secretion, transport, uptake, and biosynthesis
showed no significant differences between genotypes. Our results
using Mest™ **%* are contradictory to past studies using Mest
knockout mice (e.g., Mest™ ™330y which could be due to differences
in the design of the targeted allele (20, 21).

Loss of Mest, a paternally expressed imprinted gene, is
associated with differential expression of other imprinted genes,
including KIf14, a maternally expressed gene (MEG), and several
paternally expressed genes (PEGs; Peg3, Ndn, Dlkl, Magel2;
Supplementary Figure S6). It is possible that Mest disruption acts
in trans on the expression of other MEGs or PEGs as a component
of a network of imprinted genes (40).

3.5 Increased adipose expression of Dio2
and Ucpl in female Mest”*° mice fed WD

We previously determined that upregulation of Mest in iWAT
and gWAT in WT female and male mice fed a high-fat diet shows
coordinated expression patterns with Kriipple-like factor 14 (Kif14),
a maternally expressed gene ~ 230 kb downstream of Mest on
mouse Chr 6 (41, 42). Herein, similar coregulation between Mest
and KIf14 was observed in WAT depots of female WT mice fed CD
(iWAT, R* = 0.75; gWAT, R* = 0.64) and WD (iWAT, R* = 0.82;
gWAT, R? = 0.81), and Mest was absent in the WAT of female
Mest”™© mice (Figures 5A, B). Lep showed comparable expression
between genotypes in iWAT and gWAT in mice fed CD, but its
expression was significantly lower in WAT depots of Mest™™© mice
compared to WT when fed WD, consistent with reduced adipose
mass between genotypes (Figure 5C). While Ucpl was comparable
between genotypes when fed CD, WD-fed Mest*© female mice

Frontiers in Endocrinology

10.3389/fendo.2025.1680158

showed significantly elevated Ucp! in both WAT depots compared
to WT mice (Figure 5D). In contrast, Tfam, a mitochondrial
transcription factor, and Cptlb, which plays a role in
mitochondrial fatty acid oxidation, were significantly
downregulated in both WAT depots of mice fed WD compared
to CD, with no differences observed between genotypes
(Supplementary Figures S5E, F). Dio2 showed similar patterns of
expression as Ucpl and was upregulated in both iWAT and gWAT
of Mest? © mice fed WD (Figure 5G). Measurements of DIO2
activity in WAT depots corresponded poorly with gene expression
but showed increased activity in both WAT depots in mice fed WD,
with significantly higher levels in gWAT of Mest” mice compared
with controls (Figure 5H). Additional screening of thermogenesis-
associated genes in WAT (Ppargcla, Cidea, Ppara, and Gpd2)
showed expression patterns consistent with Ucpl in WAT depots
of WD-fed Mest* © mice (Figures 5I-L), which were strongly
influenced by genotype (Supplementary Table S5). These data are
further supported by increased “beiging” of iWAT and gWAT in
histological sections of WD-fed Mest”™® female mice compared
with WT (Supplementary Figure S7), suggestive of increased UCP1
thermogenesis and EE. In total, our data suggest that increased
WAT thermogenesis and SPA likely contribute to the reduced
susceptibility of Mest?*© female mice to dietary obesity.

4 Discussion

Previous studies in our laboratory and others show Mest is
predominantly expressed from the paternal allele in WAT (12, 43,
44), with concomitant levels of WAT Mest mRNA and MEST
protein correlating with dietary fat-induced FM accretion (8, 9, 41),
and reduced diet-induced obesity in mice with global or adipocyte-
specific inactivation of the paternal allele of Mest (12). While our
earlier studies focused on the role of Mest in male B6 mice, we
recently determined that female B6 mice show dietary-fat inducible
Mest in WAT (~ 27-fold), which is comparable to male mice (~ 24-
fold), albeit with lower baseline expression levels (42). Therefore,
dietary fat-induced Mest expression in WAT is a phenomenon
common to both sexes.

Herein, we focused on understanding the metabolic phenotypes
of female mice with paternal inactivation of Mest under two dietary
conditions. Mest*© female mice fed CD were significantly leaner
than WT, with reduced FM and LM, which was further accentuated
after feeding WD. Protection of Mest”™® female mice from dietary
obesity was associated with improved glucose tolerance and insulin
sensitivity. Mest’© female mice fed CD show noteworthy
adaptations in energy metabolism, including increased EE and a
trend toward increased locomotor activity compared to WT,
enabling maintenance of a lean phenotype over time. Remarkably,
when fed WD, Mest” © female mice responded to increased caloric
intake by substantially increasing locomotor activity and SPA,
translating to increased NEAT compared to WT female mice. In
addition, Mest?© female mice allocated more time moving at
increased speed, engaged in fine movements, and spent less time
staying still and sleeping compared to WT when fed WD.
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Increased adipose tissue expression of Ucpl and Dio2 in female MestP*© (pKO) mice fed a Western diet. (A) RT-qPCR measurements of gene
expression in inguinal (IWAT) and gonadal (GQWAT) white adipose tissue show inactivation of Mest in female Mest®“® mice. (B, C) Genes associated
with fat mass expansion showed reduced expression in both WAT depots of MestP*© mice fed WD compared with WT. (D) While the thermogenic
gene Ucpl showed increased expression in Mest®*© mice when fed WD compared to WT, genes associated with (E) mitochondrial gene
transcription and (F) fatty acid transport and oxidation showed no differences between genotypes, but expression was reduced in WD-fed mice.
(G) Dio2 expression and (H) enzymatic activity were higher in gWAT of MestP® mice fed WD compared with WT. (I-L) Additional genes associated

with adipose thermogenesis and glycerol-3-phosphate cycling measured in iWAT and gWAT showed increased expression in Mest

PO mice when

fed WD. Data in (A—H) were analyzed using two-way ANOVA, and in (I-L) by unpaired t-tests. p-values are numerically indicated, and data

annotated with < 0.001 indicate a p-value of less than 0.0005.

A notable phenotype of MestP< female mice, the interaction of
diet and SPA, highlights an important strategy to counteract dietary
obesity. Increased physical activity of Mest’®© female mice
corresponded to fine movements such as walking, grooming, and
scratching that are not associated with exercise. This was reflected
in significantly elevated values for NEAT and fine movements in
WD-fed Mest”X© female mice compared to WT (Figures 2N, O). In
human terms, this corresponds to the energy utilized to walk,
perform housework, undertake agricultural tasks, and fidget (45).
Fidgeting and other small movements are spontaneous and
random, triggering body and limb movements and locomotion
(46). In industrialized societies, human locomotion, essential for
daily activities, is low compared to that of our ancestors (47).
However, harnessing this “fidget” factor in humans has proven
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beneficial in resisting fat gain caused by increased caloric intake (46,
48). Individuals who gained less weight under caloric excess were
observed to have increased EE associated with nonexercise
movements, which was equivalent to up to 700 kcal/day above
usual EE (17).

The specifics of neural control of SPA and NEAT are still being
resolved. In contrast to exercise, which is governed by higher-level
cortical function, SPA is likely facilitated by more primitive areas of
the brain, such as the hypothalamus (16). Neuromediators
implicated in SPA, and consequently NEAT, include hypocretin/
orexin, Agrp, ghrelin (Ghrl), neuromedin U (Nmu), Crh,
cholecystokinin (Cck), estrogen, leptin, and dopamine (16, 19,
49), some of which exhibit altered expression in the
hypothalamus of Mest?™ © female mice. Furthermore, studies have
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demonstrated that rats supplemented with T3 show increased SPA
and NEAT (50).

Thyroid hormones are well recognized for their profound
effects on energy expenditure and body weight regulation. The
changes mediated by thyroid hormones in energy expenditure
require a signal from the brain, which alters local hypothalamic
Dio2 expression, with consequent changes in the regulation of
energy balance (51). The enhanced SPA phenotype in WD-fed
MestP*© female mice presents a model to investigate neural
mechanisms of NEAT in relation to TH signaling and energy
metabolism. TH controls an array of developmental and
physiological processes in the brain (37). We observe
upregulation of Dio2 in the MestP© female hypothalamus, which
suggests a possible TH-regulated mechanism in the control of
physical activity. TH that reaches the brain through the
circulation undergoes tightly controlled metabolism, leading to
hormonal activation or inactivation. Dio2 can locally increase TH
signaling by converting the inactive prohormone T4 into the
biologically active T3 in a tissue- and temporal-specific fashion,
independent of circulating hormone levels (52). Dio2-generated T3
from glial cells can influence neighboring neural cell types, acting in
a paracrine fashion to modulate T3-responsive genes (53). In
humans, TH dysfunction is linked to sedentary behavior in
hypothyroidism, as opposed to increased activity in
hyperthyroidism (54). Pharmacologic mouse models of hypo- and
hyperthyroidism recapitulate human phenotypes, including
alterations in overall physical activity (55). Interestingly, male
mice with astrocyte-specific Dio2 inactivation have normal serum
T3 but exhibit anxiety-depressive behavior linked to decreased
hippocampal expression of classic TH-responsive genes (56). The
increased hypothalamic Dio2 expression and the large number of
TH-responsive genes upregulated in the hypothalamus of the
Mest?™© female mice suggest a local increase in T3 levels, which
may augment SPA. In addition, peripheral tissue T3 effects elicited
by Dio2 upregulation in Mest”*© female mice are demonstrated by
increased WAT Ucpl, a recognized T3-responsive gene (57).
Mest?™© female mice fed WD showed markedly increased Dio2
and Ucpl in WAT, in addition to genes associated with
thermogenesis and fatty acid oxidation. Although a mechanism
for the functional association between MEST and DIO2 remains to
be resolved, it is of marked interest that both are colocalized
subcellularly in the endoplasmic reticulum membrane (13, 58),
unlike DIO1 and DIO3, which are found in the plasma membrane
(58). This further supports the possibility that disruption of Mest
leads to DIO2-dependent local activation of TH signaling in the
brain and WAT.

Imprinted genes are highly expressed in the brain and influence
synaptic function and plasticity, neural development and wiring,
social behaviors, energy balance, and cognition, among other
processes (59, 60). In the adult mouse brain, MEST has been
reported in neuron-rich areas by lacZ staining (21), and more
recent advanced technologies have described its expression in brain
regions such as the pituitary (61), hypothalamus (62-64), and
mouse forebrain (65). Single-cell RNA sequencing data indicate
that Mest is expressed in neurons and nonneuronal populations,
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e.g., astrocytes and tanycytes (64), and it was shown to be expressed
in neurons and tanycytes of female mice regardless of age (63). Mest
is also highly expressed in the lateral ganglionic eminence of the
mouse forebrain, which gives rise to all forebrain GABAergic cells
(65), is among the top 1% of enriched imprinted genes in the
embryonic and adult mouse pituitary, and scRNA sequencing
showed high Mest expression in lactotrophs and thyrotrophs in
the postnatal d4 and d49 anterior pituitary (61). The unique
increased physical activity phenotype observed in Mest mutant
female mice further supports the essential role of imprinted genes
in the brain.

Since male mice with adipocyte-specific inactivation of Mest
show similar resistance to diet-induced obesity as mice with global
inactivation of Mest (12), it is possible that metabolic imbalance
caused by the reduced capacity for lipid storage in adipocytes in the
absence of Mest in female mice may drive central nervous system
regulation of SPA. Alternatively, reduced dietary fat-induced
obesity in female mice with global inactivation of Mest could
result from an additive contribution from both adipose tissue and
the central nervous system (CNS), or from a sex-specific CNS-
dominant mechanism. Future investigation of a probable
mechanistic link between Mest and TH metabolism in the
hypothalamus will determine the effects of adipocyte- or neural
cell-specific inactivation of Mest, distinguishing between peripheral
and central effects of Mest inactivation on metabolism and SPA in
female mice. Moreover, differences in physical activity between
male and female Mest”™© mice are not well understood but may
involve developmental programming of the neonatal brain by
reproductive hormones such as estrogen, which is recognized for
motivating behavioral changes in female mice (66).
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SUPPLEMENTARY FIGURE 1

Phenotypic analyses of WT and Mest®© (pKO) male mice fed control (CD)
and western diet (WD). (A) BWs of WT and Mest”*® male mice fed CD and (B)
WD from 8 to 16 weeks of age. (C) Fat mass, (D) % fat mass, (E) lean mass and
(F) % lean mass of CD fed male WT and Mest**® mice at 8, 12 and 16 weeks of
age measured by NMR. (G) Fat mass, (H) % fat mass, (I) lean mass and (J) %
lean mass of WD fed male mice at 8, 12 and 16 weeks of age. All data were
analyzed by two-way ANOVA. Annotation with a, b, ¢, or d indicate p-values
lower than 0.05, 0.01, 0.001 and 0.0001 for data in figure panels (A, B) and
indicated numerically in figure panels (C-J).

SUPPLEMENTARY FIGURE 2

Serum corticosterone levels are similar between genotypes when fed either
control (CD) or Western diet (WD). Serum corticosterone was measured in
WT and Mest**® (pKO) mice fed CD (n=7 per genotype) or WD (n=15-17 per
genotype). Unpaired t-tests were used to measure significance between
genotypes for each diet.

SUPPLEMENTARY FIGURE 3
Pituitary expression of Lhb and Fshb is comparable in the pituitary of female
WT and MestP*© (pKO) mice fed CD. Gene expression measured in RNA from
pituitary of WT (n=7) and MestP*® (n=7) mice. Unpaired t-tests were used to
measure significance between genotypes for each diet. P-values are
numerically indicated.

SUPPLEMENTARY FIGURE 4

Hypothalamic expression of metabolic and thyroid-hormone responsive
genes is similar between male WT and Mest™© (pKO) mice fed WD. Gene
expression measured in RNA isolated from hypothalamus of WT (n=8) and
Mest* © (n=7) mice showed no significant differences in thyroid metabolic
(Dio2, Dio3), regulatory (Crh) or responsive (Hr, KIf9, Mbp) genes between
genotypes. Mest mRNA is mostly absent in hypothalamus of Mest®*® mice.
Unpaired t-tests were used to measure significance between genotypes. P-
values are numerically indicated and data annotated with <0.001 indicates a
p-value of less than 0.0005.

SUPPLEMENTARY FIGURE 5

Hepatic thyroid hormone responsive genes show similar expression in female
WT and Mest?*© (pKO) mice fed CD or WD. Diol and Thrsp gene expression
was measured in RNA isolated from liver of WT (n=7-8) and Mest**® (n=7-8)
mice. Unpaired t-tests were used to measure significance between
genotypes for each diet. P-values are numerically indicated.

SUPPLEMENTARY FIGURE 6

Hypothalamic imprinted genes are differentially expressed between female
WT and MestP*© (pKO) mice fed CD. Gene expression measured in RNA from
hypothalamus of WT (n=8) and Mest?*® (n=8) mice. The letters in
parentheses below each gene indicate the imprinting status as maternal-
expressed (m) or paternal-expressed (p). Unpaired t-tests were used to
measure significance between genotypes for each diet. P-values are
numerically indicated.

SUPPLEMENTARY FIGURE 7

Adipocyte morphology of gonadal (gWAT) and inguinal (iWAT white adipose
tissue (WAT) of wildtype (WT; n=4) and MestPX® (pKO; n=4) female mice after
being fed Western diet (WD) for 4 weeks. Data shows smaller adipocytes in
both WAT depots in WD-fed female MestP*® mice compared to WT.
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