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Type 2 diabetes mellitus (T2DM) and metabolic dysfunction–associated steatotic

liver disease (MASLD) frequently co-occur and aggravate one another through

shared pathways of insulin resistance, low-grade inflammation and disordered

lipid handling. Framing their interaction through the gut–liver–pancreas axis, this

review synthesizes recent progress with a function-first emphasis, moving

beyond taxonomic lists to the microbial outputs most consistently linked to

dual metabolic–hepatic endpoints. We summarize how short-chain fatty acids

(SCFAs), bile acids (BAs), lipopolysaccharide (LPS) and other microbe-associated

molecular patterns, branched-chain amino-acid (BCAA) catabolites,

trimethylamine N-oxide (TMAO) and endogenous ethanol reach the liver via

portal inflow or the enterohepatic BA cycle and act on epithelial, immune and

endocrine interfaces, including the farnesoid X receptor (FXR), G-protein–

coupled BA receptor 1 (TGR5) and fibroblast growth factor 19/15 signaling.

Mechanistic routes—barrier dysfunction and endotoxaemia; SCFA signaling

with effects on enteroendocrine tone and substrate flux; BA remodeling that

resets hepatic and pancreatic set-points; and nitrogen/choline and ethanol

pathways that promote lipotoxic injury—offer biologically coherent

explanations for parallel trajectories of hyperglycemia and steatosis/

inflammation. We appraise therapeutic modulation spanning diet and

fermentable substrates, live biotherapeutics/postbiotics, BA-targeting drugs,

fecal microbiota transplantation and metabolic/bariatric surgery, and we

outline clinically actionable biomarker opportunities using function-based

panels (fermentative capacity, BA transformation, inflammatory ligands,

nitrogen/methyl flux) integrated with host metabolites and genetics for

diagnosis, risk stratification and response prediction. By advocating

standardized reporting, careful control of diet/medications and composite

metabolic–hepatic endpoints in prospective trials, this review provides a

practical framework to accelerate translation from association to targeted

prevention and therapy that improves glycemic control and MASLD activity

in parallel.
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1 Introduction

Type 2 diabetes mellitus (T2DM) and metabolic dysfunction–

associated steatotic liver disease (MASLD) frequently coexist and

share core pathophysiological features, including systemic and

hepatic insulin resistance, low-grade inflammation, and disordered

lipid trafficking. MASLD is a newly defined umbrella term that

replaces the former “non-alcoholic fatty liver disease (NAFLD),”

introduced by a global consensus panel in 2023 to better reflect the

underlying metabolic etiology and remove ambiguity surrounding

alcohol use (1). Epidemiological and clinical observations indicate

that glycemic deterioration and hepatic steatosis/inflammation often

progress in parallel and may reinforce one another (2–4). This

convergence supports viewing T2DM and MASLD not as isolated

entities but as interconnected manifestations along a continuum of

metabolic dysfunction. In practical terms, such a perspective

encourages integrated endpoints—combining glycemic control with

hepatic steatosis, inflammatory activity, and fibrosis risk—rather than

siloed disease management (5).

The human gut microbiome—comprising trillions of bacteria,

archaea, viruses, and fungi—plays a crucial role in regulating host

metabolism. Through fermentation of dietary fibers and processing of

amino acids and bile acids, the microbiome generates a wide array of

bioactive metabolites. Over the last five years, the gut microbiota has

emerged as a mechanistic conduit capable of influencing both glucose

homeostasis and liver disease activity via the gut–liver–pancreas axis

(6–8). The field has progressively moved beyond lists of differentially

abundant taxa to emphasize function-centered outputs. Microbial

metabolites and structural components—including short-chain fatty

acids (SCFAs), bile-acid (BA) derivatives, lipopolysaccharide (LPS)

and other microbe-associated molecular patterns (MAMPs),

branched-chain amino acid (BCAA) catabolites, trimethylamine-N-

oxide (TMAO), and endogenously produced ethanol/aldehydes—act

on intestinal, hepatic, pancreatic, and neural interfaces (9). These

signals modulate epithelial barrier tone and innate immune

activation; engage BA-sensing receptors such as farnesoid X

receptor (FXR) and G-protein–coupled bile-acid receptor 1

(TGR5); and shape enteroendocrine hormone secretion, including

glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic

polypeptide (GIP), and peptide YY (PYY). Collectively, these

pathways provide plausible routes by which the same microbial

functions can alter hepatic lipid flux, b-cell stress, and systemic

insulin sensitivity (10, 11).

This review adopts MASLD terminology and concentrates on

recent, concept-level progress that is directly relevant to

translational researchers and clinicians. We first outline the

anatomical conduits and signaling interfaces that enable gut-

derived factors to co-regulate glycemic and hepatic endpoints. We

then summarize reproducible microbiome features in T2DM and

MASLD at the functional level, discuss key mechanistic routes with

emerging causal support, and briefly appraise interventions—

nutritional strategies, live biotherapeutics/postbiotics, bile-acid–

targeting agents, fecal microbiota transplantation, and metabolic

surgery—that may deliver dual benefits. We close with a concise
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synthesis of biomarker opportunities and outstanding gaps to guide

future work (Figure 1).

This schematic summarizes the five major microbiome-

mediated routes—intestinal barrier dysfunction, SCFA signaling,

bile acid remodeling, endotoxemia (LPS), and nitrogen/choline

metabolism—that collectively influence hepatic inflammation,

insulin resistance, and metabolic dysfunction. These interlinked

mechanisms serve as potential therapeutic targets and biomarker

sources for precision intervention in metabolic-liver disease.
2 The gut–liver–pancreas axis:
anatomical conduits and signaling
interfaces

2.1 Portal inflow and enterohepatic cycling
as anatomical “fast lanes”

The structural design of the portal circulation channels

luminally derived molecules directly from the intestine to the

liver, exposing hepatocytes, Kupffer cells (KCs), hepatic stellate

cells, and sinusoidal endothelium to high concentrations of dietary

catabolites, microbial metabolites, and MAMPs before significant

systemic dilution occurs. In parallel, the enterohepatic BA cycle

returns microbially transformed bile acids to the liver, providing a

second rapid stream of gut-conditioned signals (12, 13). These two

conduits operate in tandem: portal inflow delivers SCFAs, ethanol/

aldehydes, BCAA catabolites, and LPS that influence hepatic

gluconeogenesis, de novo lipogenesis, inflammation, and

fibrogenesis, while BA recirculation modulates hepatocellular and

nuclear receptor signaling that further tunes glucose and lipid

handling. Because these inputs are also sensed by the pancreas

and integrated through neural circuits, the same gut-derived signals

can synchronously affect hepatic steatotic injury and systemic

glycaemia, offering a structural explanation for parallel clinical

trajectories in T2DM and MASLD (14, 15).
2.2 Barrier integrity and innate immune
tone as determinants of inflammatory “set-
points”

The intestinal barrier—comprising epithelial tight junctions, the

mucus layer, and secretory immunoglobulin A—sets the baseline

for exposure to luminal content (16). When diet, medications,

microbial community shifts, or circadian disruption weaken this

barrier, the probability of MAMP translocation increases, with

pattern-recognition receptors (PRRs) such as Toll-like receptors

and nucleotide-binding oligomerization domain receptors in the

liver and adipose tissue sensing these inputs. The resulting low-

grade inflammation reinforces hepatic and peripheral insulin

resistance and augments susceptibility to lipotoxic injury (17).

Conversely, butyrate-rich SCFA profiles generated from

fermentable fiber, together with intact mucus dynamics and
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appropriate epithelial turnover, support tight-junction maintenance

and reduce endotoxaemic load (18). The emerging concept is not a

binary “leaky gut” but a dynamic barrier tone that fluctuates with

diet quality, microbial fermentation, and host behavioral rhythms,

thereby modulating the inflammatory set-point that couples T2DM

control to MASLD activity.
2.3 Bile-acid–receptor signaling as a
bidirectional metabolic hub

Gut microbes remodel the BA pool through deconjugation and

dehydroxylation, altering ligand availability for FXR and

TGR5 along the intestine–liver axis. Activation of intestinal

FXR induces fibroblast growth factor 19/15 (FGF19/15), which

signals to hepatocytes to restrain BA synthesis and to regulate

gluconeogenesis and very-low-density lipoprotein (VLDL) export;

TGR5 engagement influences energy expenditure and stimulates

GLP-1 release from L-cells (19–21). These mechanisms create a

bidirectional hub: BA composition and flow shape microbial niches,

while microbial BA transformations reset receptor-level thresholds

for hepatic and endocrine metabolism. Therapeutically, this

architecture explains why BA-targeting agents and dietary

strategies that shift BA dynamics may exert dual effects on
Frontiers in Endocrinology 03
glycaemia and MASLD activity, although interindividual variation

in BA pools and microbial ecology likely determines both efficacy

and safety windows.
2.4 Enteroendocrine and neural relays
linking nutrient sensing to metabolic
control

Enteroendocrine cells (EECs) integrate microbial metabolites

and BA signals to modulate secretion of GLP-1, GIP, and PYY,

thereby regulating insulin secretion, gastric emptying, appetite, and

intestinal motility (22, 23). These hormonal outputs are further

integrated with vagal afferents and central circuits that adjust

hepatic autonomic tone, influencing hepatic glucose production

and peripheral substrate utilization on short time scales. Clinically

used agents such as GLP-1 receptor agonists (GLP-1RA) and

sodium-glucose co-transporter-2 inhibitors (SGLT2i) primarily

act on host targets but secondarily remodel the gut ecosystem

through weight loss, altered nutrient flow, and BA changes,

creating feedback between pharmacology and microbiome (24–

26). Such feedback helps account for instances in which therapies

initially developed for diabetes show ancillary benefits on liver

fat and inflammation, and it underscores the importance of
FIGURE 1

Mechanistic overview of gut microbiome-driven pathways linking T2DM and MASLD.
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considering gut signaling when interpreting drug responses across

metabolic endpoints.
2.5 From taxa to functions: reproducible
features with translational value

Across populations and study designs, functional readouts have

proven more consistent than single-taxon associations in mapping the

microbiome to T2DM and MASLD. Activities related to LPS

biosynthesis, bile-salt hydrolase function, SCFA production, BCAA

and TMA/TMAO pathways, and endogenous ethanol generation align

more robustly with insulin resistance, hepatic lipid accumulation,

inflammatory activity, and fibrosis risk. Experimental transfers into

gnotobiotic hosts, targeted metabolite supplementation or inhibition,

and early human interventional studies—including fecal microbiota

transplantation—have begun to move selected observations from

correlation toward causality (27). For translation, these functional

signatures provide measurable biomarkers and rational targets for

postbiotic or pathway-directed interventions designed to improve

glycaemia and liver disease activity simultaneously (28).

Key message: Taken together, the portal and biliary conduits

provide rapid delivery and amplification of gut-conditioned signals,

while barrier/innate immune mechanisms, BA-receptor pathways,

and enteroendocrine-neural relays distribute and integrate those

signals across liver and pancreatic physiology. Within this

framework, functional microbiome features—rather than discrete

taxa—map most consistently to dual endpoints relevant to T2DM

and MASLD. This synthesis offers a mechanistic basis for why

dietary patterns, fiber-derived postbiotics, BA-targeting strategies,

metabolic surgery, and some antidiabetic drugs can deliver parallel

improvements in glycaemia and liver health. It also points to the
Frontiers in Endocrinology 04
need for “cleaner” clinical studies that stratify by BA profiles, diet,

and medication use, and that measure functional microbiome

outputs alongside standard metabolic outcomes to clarify

causality and optimize patient selection (Figure 2).

Intestinal barrier integrity—maintained by tight junctions and

mucus layer—is disrupted under dysbiosis, allowing microbial

products such as SCFAs, ethanol/aldehydes, and LPS to translocate

via the portal vein into the liver. These metabolites modulate

gluconeogenesis, de novo lipogenesis, and hepatic inflammation

through activation of hepatic stellate cells and Kupffer cells.

Enteroendocrine signaling (e.g., GLP-1, GIP, PYY) impacts both liver

metabolism and pancreatic islet hormone secretion via vagal and

autonomic pathways. Bile acid metabolism is influenced by gut

microbiota and reciprocally shapes enterohepatic signaling loops.

Arrows indicate activation (black), inhibition (orange), portal inflow

(blue), and bile acid cycle directions (green). This diagram integrates

microbiota-derivedmetabolites and host metabolic responses central to

the pathophysiology of T2DM and MASLD.
3 Microbiome signatures across type 2
diabetes mellitus and metabolic
dysfunction–associated steatotic liver
disease

3.1 From taxonomy to functions: what
current data actually agree on

Across recent cohorts, shotgun metagenomics coupled with

targeted or untargeted metabolomics has shifted emphasis from

lists of differentially abundant species to function-level readouts
FIGURE 2

The gut–liver–pancreas axis integrates anatomical conduits (portal inflow and enterohepatic bile−acid cycling) with signaling interfaces.
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that better align with clinical phenotypes (29–32). Community

diversity metrics vary with geography and diet, and disease–

control separations on beta diversity often diminish after

adjustment for lifestyle. By contrast, pathway signatures recur:

enrichment of LPS biosynthesis modules and bile salt hydrolase

activities; altered capacity for SCFA production—especially

butyrate-linked guilds; increased potential for endogenous ethanol

generation; re-weighting of BCAA turnover; and formation of

trimethylamine (TMA)/trimethylamine-N-oxide (TMAO) (33).

These functions correlate more consistently than single taxa with

insulin resistance, hepatic lipid accumulation, and inflammatory

activity across datasets and remain informative in models that

include age and adiposity. This function-first view also improves

portability across platforms and pipelines, creating a clearer bridge

to mechanistic interpretation and to the design of interventions that

target measurable microbial outputs (34, 35).
3.2 Shared backbone and disease-specific
emphases in T2DM and MASLD

In T2DM, profiles frequently indicate reduced butyrate-generating

capacity together with higher representation of inflammatory and

oxidative-stress modules, a combination that mirrors systemic low-

grade inflammation and impaired insulin signaling (34). Functional

features related to BCAA liberation or incomplete catabolism associate

with elevated circulating BCAA and insulin-resistance phenotypes,

while shifts in bile-acid transformation potential can rebalance

engagement of FXR and TGR5, with downstream effects on

gluconeogenesis and enteroendocrine output (13, 36).

In MASLD, pathway sets more consistently implicate gut-derived

inflammatory and lipogenic drives delivered via the portal vein.

Increased capacity for LPS and peptidoglycan biosynthesis, ethanol/

aldehyde production, and deconjugation/7a-dehydroxylation of bile

acids tracks with steatosis severity and, in several cohorts, with

ballooning and fibrosis stage. These transformations are

mechanistically coherent: secondary bile-acid shifts alter receptor-

level thresholds for hepatic glucose output and very-low-density

lipoprotein (VLDL) export, whereas endogenous ethanol perturbs

hepatocellular redox and sensitizes stellate cells (37, 38). Pediatric

and adult MASLD may diverge in both taxonomic composition and

pathway weighting—likely reflecting diet, medication exposure, and

developmental physiology—arguing for age-stratified analyses when

interpreting signatures (13, 39). Superimposed on these disease-specific

emphases is a shared backbone of barrier-relevant and bile-acid–

modifying functions that raise inflammatory tone and reset hepatic

and endocrine set-points, helping explain the frequent clinical co-

expression of T2DM and MASLD (38).
3.3 Integration and translation: how to use
these signatures

Function-based panels that integrate fermentative capacity

(e.g., butyrate pathways), bile-acid transformation potential,
Frontiers in Endocrinology 05
inflammatory ligand production, and nitrogen-containing

metabolite routes offer a pragmatic scaffold for risk stratification

across the T2DM–MASLD continuum. In practice, such panels can

support diagnostic adjuncts, enrich trials by selecting participants

most likely to benefit from fiber-forward diets, bile-acid–

modulating drugs, or incretin-based therapies, and enable

response monitoring that pairs microbiome functions with

glycemic and hepatic endpoints. Longitudinal interventions

provide internal coherence to this approach: weight-loss

programs, metabolic surgery, and fermentable-fiber augmentation

tend to shift the microbiome toward a higher-butyrate, lower-

inflammation state, whereas approved antidiabetic agents such as

GLP-1 receptor agonists and sodium-glucose co-transporter-2

inhibitors remodel gut ecology secondarily via weight change,

nutrient flow, and bile-acid dynamics, coinciding with

improvements in glycaemia and liver fat (31, 32, 40, 41). To

enhance interpretability and replication, studies should

prospectively capture diet and medication use, pre-specify

stratifications (e.g., by bile-acid profile or drug class), and

normalize functional features across batches. Embedding these

standards in interventional designs will clarify causality, refine

patient selection, and accelerate translation from associative

signatures to actionable targets that influence both glucose

control and liver disease activity.

Key message: Recent research increasingly highlights that

function-level microbial signatures—such as SCFA production,

LPS biosynthes i s , BCAA metabol i sm, and bi le ac id

transformation—are more consistent and translatable than

taxonomic shifts alone. These functional profiles not only align

with clinical endpoints like insulin resistance and steatosis but also

demonstrate reproducibility across cohorts, improving their utility

for biomarker development. Moreover, T2DM and MASLD exhibit

both overlapping and distinct microbial functional alterations,

suggesting shared mechanisms alongside disease-specific nuances.

These insights lay the foundation for precision strategies that

leverage microbial functions to support diagnosis, prognosis, and

therapeutic selection.
4 Mechanistic routes linking
microbiome functions to T2DM–
MASLD crosstalk

4.1 Barrier dysfunction, endotoxaemia, and
pattern-recognition signaling

Compromise of the intestinal barrier increases exposure of the

liver and adipose tissue to MAMPs such as LPS and peptidoglycan

that reach the liver via the portal vein. Engagement of pattern-

recognition receptors (PRRs)—notably Toll-like receptors (TLRs)

and nucleotide-binding oligomerization domain (NOD) proteins—

on Kupffer cells (KCs), hepatocytes, and adipose macrophages

activates downstream nuclear factor-kB and interferon pathways,

establishing low-grade inflammation that reinforces insulin

resistance in liver and peripheral tissues (42). This inflammatory
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set-point promotes de novo lipogenesis (DNL), impairs insulin-

mediated suppression of hepatic glucose production, and sensitizes

the liver to lipotoxic injury. Barrier tone is dynamic and shaped by

diet, circadian behaviors, and microbial fermentation; butyrate-rich

SCFA profiles support tight-junction integrity, mucus renewal, and

epithelial energy supply, thereby lowering endotoxin exposure (43).

Together, these elements provide a causal bridge from gut ecology

to simultaneous deterioration of glycaemia and MASLD activity.
4.2 SCFAs, epithelial–immune crosstalk,
and enteroendocrine control

Microbial fermentation of fermentable fiber yields acetate,

propionate, and butyrate, which act locally and systemically.

Butyrate fuels colonocytes and inhibits histone deacetylases,

reinforcing barrier integrity and tempering inflammatory gene

expression (44, 45). Free fatty-acid receptors 2 and 3 (FFAR2/

FFAR3; also termed GPR43/GPR41) on enteroendocrine cells sense

SCFAs to stimulate gGLP-1 and PYY release, linking luminal

fermentation to insulin secretion, gastric emptying, and appetite

control (46–48). In the liver, acetate and propionate differentially

modulate substrate flux; propionate may restrain gluconeogenesis

under specific nutritional contexts, whereas excessive acetate

delivery can favor lipogenesis when hepatic insulin signaling is

impaired. The net metabolic effect thus depends on the balance of

SCFAs, the background diet, and hepatic insulin sensitivity. In

aggregate, SCFA-driven improvements in barrier function and

enteroendocrine tone provide a coherent route by which fiber-

forward diets and postbiotic strategies yield dual benefits for

glycaemia and hepatic steatosis/inflammation.
4.3 Bile-acid remodeling and endocrine
signaling via FXR/TGR5–FGF19/15

Gut microbes remodel the bile-acid (BA) pool through

deconjugation and dehydroxylation, altering ligand availability for

FXR and TGR5 along the intestine–liver axis (49). Activation of

intestinal FXR induces fibroblast growth factor 19/15 (FGF19/15),

which signals to hepatocytes to repress BA synthesis and to

recalibrate gluconeogenesis and VLDL production; TGR5

engagement increases energy expenditure and stimulates GLP-1

secretion from L-cells (20). Because BA composition also selects for

specific microbes, these circuits form a bidirectional hub in which

microbial BA transformations can reset hepatic and endocrine

thresholds for glucose and lipid handling, while host factors (diet,

weight loss, medications) feedback to reshape microbial niches.

Clinically, this architecture explains why BA-targeting interventions

and therapies that secondarily shift BA dynamics—such as GLP-

1RA, SGLT2i, and metabolic surgery—can produce parallel
Frontiers in Endocrinology 06
improvements in glycemic control and MASLD activity in

appropriately selected patients (50, 51).
4.4 Nitrogen and choline pathways,
endogenous ethanol, and hepatic injury

Microbiome-linked branched-chain amino acid (BCAA)

liberation and incomplete catabolism associate with elevated

circulating BCAA and impaired insulin signaling, providing a

plausible route from proteolytic fermentation to systemic insulin

resistance. In the nitrogen–methyl axis, microbial conversion of

dietary choline and carnitine to trimethylamine (TMA) and host

oxidation to trimethylamine-N-oxide (TMAO) have been linked to

cardiometabolic risk and may influence hepatic lipid trafficking and

inflammation; simultaneously, microbial consumption of choline

can limit hepatic phosphatidylcholine availability, constraining

VLDL assembly and promoting steatosis (52, 53). A distinct set of

taxa generate endogenous ethanol and aldehydes, which reach the

liver via the portal vein, perturb mitochondrial redox and lipid

peroxidation, and activate stellate cells—changes that align with

progression from simple steatosis to steatohepatitis and fibrosis.

These nitrogen, methyl, and ethanol pathways thus provide

convergent mechanisms by which gut metabolism can aggravate

both T2DM phenotypes and MASLD severity, particularly when

combined with high-fat, low-fiber diets that diminish SCFA-

mediated protection (54, 55).

Across these mechanisms, a coherent picture emerges: barrier-

conditioned MAMP influx sets inflammatory tone; SCFA signaling

couples fermentation to epithelial fitness and enteroendocrine

control; bile-acid remodeling establishes an endocrine hub that

tunes hepatic and pancreatic metabolism; and BCAA/TMAO/

ethanol pathways add organ-specific pressures that intensify

hepatic lipid accumulation and systemic insulin resistance. This

integrated view clarifies why interventions that increase fermentable

substrates, stabilize BA signaling, or attenuate nitrogen/ethanol fluxes

can deliver dual metabolic benefits, and it motivates clinical trials that

stratify participants by functional microbiome profiles and measure

these outputs alongside standard glycemic and hepatic endpoints.

Key message: The interplay between microbial functions and

host metabolism is mediated through several coherent mechanistic

routes. Disruption of intestinal barrier integrity leads to

endotoxaemia and chronic inflammation; SCFAs regulate

epithelial health and enteroendocrine signaling; bile acid

remodeling modulates receptor-mediated metabolic control; and

nitrogen/choline pathways and microbial ethanol production

promote hepatic injury. These integrated axes explain how gut

microbial metabolism influences both glycemic regulation and liver

pathology. Understanding these mechanisms provides a biological

rationale for interventions that target specific microbial functions to

achieve dual metabolic and hepatic benefits.
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5 Therapeutic modulation of the
microbiome

5.1 Diet patterns and fermentable
substrates as first-line levers

Diet remains the most controllable driver of microbiome

function and the most scalable lever for dual endpoints inT2DM

and MASLD. Patterns that emphasize minimally processed plant

foods—such as Mediterranean-style or targeted high-fiber diets—

consistently increase short-chain fatty acid (SCFA) production

capacity, particularly butyrate, while reducing the representation

of inflammatory ligand pathways such as lipopolysaccharide (LPS)

biosynthesis. In practical terms, greater intake of fermentable fibers

(e.g., inulin, resistant starches, b-glucans) strengthens epithelial

barrier tone, enhances GLP-1 and PYYsignaling via FFAR2/

FFAR3, and attenuates hepatic lipogenesis by lowering endotoxin

exposure through the portal vein (56–58). Weight loss—whether

achieved through caloric restriction, time-restricted eating, or

macronutrient rebalancing—amplifies these effects by reducing

hepatic substrate oversupply and improving peripheral insulin

sensitivity. These shifts often co-occur with favorable BA

remodeling (e.g., reduced hydrophobic secondary BA load),

providing a mechanistic rationale for parallel improvements in

glycaemia and liver fat. Implementation should pair clear fiber

targets with pragmatic food lists and brief behavior support;

measuring diet quality and medication use alongside outcomes

improves interpretability.
5.2 Live biotherapeutics, consortia, and
postbiotics: when to add and what to
expect

Single-strain probiotics have shown variable effects on

glycaemia and hepatic indices, reflecting strain heterogeneity and

short exposure windows. Current evidence is more congruent for

defined consortia that restore fermentative guilds (including

butyrate producers) or Akkermansia-enriched formulations that

improve mucus dynamics; these products tend to produce modest,

directionally favorable changes in insulin sensitivity and hepatic

steatosis markers when layered on diet and weight management

(59). Postbiotics—purified microbial metabolites or cell-free

preparations—offer a more standardizable way to deliver

mechanism-specific benefits (e.g., butyrate donors, propionate

esters, or bile-salt hydrolase inhibitors/agonists), with fewer

colonization uncertainties (60). Fecal microbiota transplantation

(FMT) provides the strongest proof-of-principle for causality but

has heterogeneous metabolic responses and non-trivial regulatory

and safety considerations. A practical approach is stepwise:

optimize diet and weight first; consider an adjunct biotherapeutic/
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postbiotic where functional deficits are evident (e.g., low SCFA

production capacity or unfavorable BA profile); and reserve FMT

for research settings or highly selected cases with rigorous donor

screening and outcome monitoring (61).
5.3 Pharmacologic modulation: bile-acid–
targeting agents and antidiabetic therapies
with microbiome feedback

The FXR–fibroblast growth factor 19/15 (FGF19/15) axis and

TGR5 constitute a tractable endocrine hub (62). Agents that

modulate these pathways can shift hepatic glucose output, VLDL

export, and inflammatory tone while secondarily remodeling the

gut ecosystem through BA composition and flow. In parallel, widely

used antidiabetic therapies—GLP-1RAand SGLT2i—act primarily

on host targets but feedback on the microbiome by altering nutrient

transit, BA pools, and energy balance, changes that align with

observed reductions in liver fat and transaminase levels in subsets

of patients (63, 64). These bidirectional effects recommend a

function-aware lens for pharmacotherapy: baseline BA profiles

and fermentative capacity may explain part of the between-

patient variability in hepatic responses to GLP-1RA/SGLT2i or to

BA-targeted drugs, suggesting a path to trial enrichment and patient

selection using microbiome functions rather than taxa (65, 66).

Routine antibiotic use to “reset” the microbiome is not supported

for metabolic indications given transient effects and off-target risks;

if antibiotics are unavoidable, documenting timing and class is

important when interpreting metabolic outcomes.
5.4 Metabolic surgery as a systems-level
reset

Metabolic/bariatric procedures (e.g., Roux-en-Y gastric bypass,

sleeve gastrectomy) produce large, durable weight loss and rapid

glycemic improvement, accompanied by profound shifts in

microbiome function and BA signaling that are partly weight-loss

independent (67). Post-operative increases in SCFA-linked

pathways, altered BA pools that favor FXR/TGR5 signaling

conducive to GLP-1 release, and normalization of inflammatory

ligand signatures are well-described and map onto reductions in

hepatic steatosis and fibrosis risk markers (10). These findings

highlight the mechanistic plasticity of the gut–liver–pancreas axis

and reinforce the idea that diet, drugs, and biotherapeutics can be

combined to approximate—on a smaller scale—the multi-pathway

benefits of surgery in patients who do not meet surgical criteria. A

comparative overview of how key interventions—including dietary

strategies, pharmacological agents, bariatric surgery, and FMT—

modulate microbiome-driven pathways and impact dual metabolic-

hepatic endpoints is summarized in Table 1 and Supplementary

Table S1.
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5.5 Evidence and challenges: conflicting
findings and reproducibility issues

While many studies report beneficial effects of probiotics,

synbiotics, and FMT on metabolic parameters and hepatic

steatosis, the findings are not uniformly consistent. For example,

differing outcomes have been observed depending on the donor

microbiota used in FMT, participant baseline microbiome

structure, duration of intervention, and concomitant diet or

medication (72). In clinical trials and human RCTs, some

probiotic formulations show significant improvements in liver

enzymes or hepatic fat, whereas others fail to demonstrate benefit,

possibly due to small sample size, short follow-up, strain specificity,

or heterogeneity in endpoints (73). Furthermore, multi−omic

microbiome studies frequently report inconsistent associations

when repeated across different cohorts, likely reflecting variability

in sequencing platforms, bioinformatics pipelines, population

genetics, geography, diet, and other host/environmental

confounders (74). Safety concerns and long−term effects,

especially for FMT (such as unintended colonization of microbes

in non−native niches, or risk of pathogen transfer), remain under

−studied. Addressing these challenges will require larger,

multicenter RCTs, harmonized protocols, longer follow−ups, and

pre−registered analysis plans to enhance reproducibility and

facilitate translation.

Key message: Modulating the gut microbiome through diet,

therapeutics, and surgical interventions offers a promising route to

address both T2DM and MASLD. Diets rich in fermentable fibers

enhance SCFA profiles and barrier tone, while select live

biotherapeutics and postbiotics can restore functional deficits in

fermentation or bile acid modulation. Pharmacologic agents,

including GLP1RAs and SGLT2is, indirectly reshape the

microbiome via host-mediated pathways, creating bidirectional

feedback loops. Metabolic surgery exerts profound and durable
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shifts in microbiome-derived functions and bile acid profiles.

Collectively, these strategies highlight the potential of

microbiome-directed therapies as adjuncts or amplifiers of

conventional metabolic interventions.
6 Microbiome biomarkers in T2DM
and MASLD: clinical translation and
future directions

6.1 Function−based panels for diagnosis
and risk stratification

The most credible case for clinical microbiome biomarkers now

lies in function-level panels paired with host metabolites. In T2DM,

large prospective data show that baseline shotgun metagenomic

profiles predict incident disease independent of conventional risk

factors: in a Finnish cohort of 5,572 adults followed a median ~15

years, metagenomic features associated with future T2DM and

validated across subcohorts, supporting feasibility for population-

level risk enrichment (32). In MASLD, recent multi-center analyses

emphasize functional signatures (e.g., lipopolysaccharide (LPS)

biosynthesis, bile-salt hydrolase and 7a-dehydroxylation capacity,

endogenous ethanol pathways) that align with steatosis activity and

fibrosis staging more reliably than single taxa; a 2024 study reported

robust, disease-specific signatures with improved cross-cohort

portability, reinforcing the shift from organism lists to pathway

readouts for non-invasive detection and staging (31). For liver

disease specifically, non-invasive biomarker frameworks such as

the NIMBLE project (focused on NAFLD/MASH biomarker

qualification) provide a template for evaluating add-on value of

microbiome functions alongside established non-invasive tests

(imaging and serum panels), highlighting where further validation

is required before qualification (75, 76).
TABLE 1 Clinical studies across T2DM–MASLD showing dual metabolic–hepatic endpoints.

Category Intervention Design/Population/N/Duration
Glycemic
outcome

Hepatic outcome

Diet (68) (Prebiotic)
Resistant starch
(RS2) 40 g/day

Randomized, placebo-controlled; NAFLD/
MASLD; n=200; 4 mo

Modest improvement in
insulin/glycemic indices

↓ IHTG ~30–40%; ↓ ALT (partly
weight-independent)

Pharmacologic (69)
(GIP/GLP-1 RA)

Tirzepatide 5/10/
15 mg weekly

Phase 2 RCT; MASH F2–F3; n=190; 52 wk ↓ HbA1c; ↓ weight
MASH resolution 51–62% vs 13%;
fibrosis ≥1-stage 51–55% vs 30%

Pharmacologic (41)
(GLP-1 RA)

Semaglutide
2.4 mg weekly

Phase 3 RCT; MASH F2–F3; ~n=800; 72 wk ↓ HbA1c; ↓ weight
Higher MASH resolution and fibrosis

improvement vs placebo

Pharmacologic (40)
(SGLT2 inhibitor)

Empagliflozin
10 mg daily

RCT; non-diabetic MASLD; n=98; 52 wk Neutral (non-diabetic) ↓ MRI-PDFF vs placebo (D ≈ −1.1%)

Metabolic surgery (70)
RYGB/Sleeve
gastrectomy

Prospective & retrospective cohorts; biopsy-
proven NASH; n=180 & n=1158; up to 10 yr

Sustained improvements
NASH resolution ~84% at 5 yr; fewer

long-term liver events

Microbiota transfer (71)
Lean-donor FMT

(capsules)
Double-blind RCT; T2DM; ~n=60; 12 wk

No durable HbA1c/ISI
benefit

Not primary/insufficient imaging
RCT, randomized controlled trial; MASLD, metabolic dysfunction–associated steatotic liver disease; MASH, metabolic dysfunction–associated steatohepatitis; HbA1c, glycated hemoglobin;
MRI-PDFF, magnetic resonance imaging–proton density fat fraction; IHTG, intrahepatic triglyceride; ALT, alanine aminotransferase; RYGB, Roux-en-Y gastric bypass; FMT, fecal microbiota
transplantation.
↓ downregulation.
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6.2 Predicting and monitoring therapeutic
response

A pragmatic near-term use case is response prediction. Baseline

fermentative capacity (particularly butyrate-linked pathways) and

bile-acid (BA) transformation potential often track with

improvements in glycaemia and liver fat during weight-loss diets

or fiber-forward interventions; multiple diet trials and systematic

syntheses suggest that the pretreatment microbiome can forecast

weight-loss and hepatic fat responses, although effect sizes vary with

design and adherence (68, 77). In pharmacotherapy, widely used

antidiabetic agents—GLP-1RA and SGLT2i—show secondary

microbiome remodeling after initiation, and emerging human

data indicate that baseline fecal features can predict glycemic

response to these drugs, suggesting a path to function-aware

patient selection and monitoring (78). For metabolic/bariatric

surgery, longitudinal cohorts link resolution of NAFLD/MASLD

to post-operative shifts in gut microbial functions and plasma BA

species, supporting the concept that combining stool metagenomics

with BA profiles could serve as a monitoring tool when imaging or

biopsy is impractical. Finally, fecal microbiota transplantation

(FMT) continues to provide proof-of-principle for causality;

randomized and controlled metabolic-syndrome/T2DM studies

report directionally favorable changes in insulin sensitivity and

SCFA-producing guilds, albeit with heterogeneous durability—

underscoring the need for better recipient stratification and

standardized endpoints (70, 79, 80).
6.3 Integrating microbiome functions with
host multi−omics

The most informative models combine microbiome functions

with host multi-omics. Recent work integrating polygenic risk

scores with gut metagenomics demonstrates that microbiome-

derived risk can match or complement traditional clinical

predictors for cardiometabolic diseases, including T2DM,

suggesting additive value beyond age, blood pressure and lipids

(29). In MASLD, multi-omic subtyping has identified biologically

distinct forms of severe disease using genomics, transcriptomics,

proteomics and metabolomics, a framework that can incorporate

microbial functions and BA species to refine fibrosis risk and

treatment targeting (81). Integration with host genetics (e.g.,

PNPLA3, TM6SF2) and dietary exposures is increasingly

emphasized; contemporary analyses illustrate how inherited risk

and nutrition interact with microbial pathways to shape liver fat

and inflammation, an approach that naturally extends to function-

level microbial markers (82).

Increasing evidence suggests that baseline microbiome

functional profiles, host genetic variants, and dietary context

jointly determine individual responses to microbiome−targeted

therapies (29). For example, the capacity for butyrate or bile acid

transformation at baseline may stratify likelihood of response to

fermentable fiber, GLP−1 receptor agonists, or FXR/TGR5−targeted

drugs. Host genetic polymorphisms—such as in PNPLA3, TM6SF2,
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and HSD17B13—modulate hepatic lipid metabolism and

inflammatory tone, and may interact with microbial metabolite

signaling to influence therapeutic efficacy (83). Dietary patterns,

particularly habitual fiber intake or choline burden, further shape

the ecological context in which interventions act. As such, precision

microbiome modulation will require integrated assessment of

microbial functions, host genetics, and modifiable exposures (84,

85). Future trials should incorporate stratification strategies based

on these variables, enabling more targeted, reproducible, and

patient−centered intervention approaches.
6.4 Standardization and clinical
implementation

Translational credibility depends on pre-analytical rigor and

transparent reporting. The STORMS guideline (Strengthening the

Organization and Reporting of Microbiome Studies) is now the de

facto reporting standard for human microbiome research and

should be paired with CONSORT/STARD/TRIPOD as

appropriate (30). Studies should prospectively capture diet and

medication use, standardize sample collection and storage, and

report batch correction and functional normalization strategies. On

the analytics side, recent cross-study evaluations show that without

strict separation of training/validation data and without leakage

control, claimed performance often collapses when models face

external cohorts; interpretable or sparse machine-learning pipelines

with cross-cohort validation are therefore preferred for clinical

translation. For clinical labs, near-term assays should favor

targeted pathway panels (e.g., butyrate/propionate modules, LPS

biosynthesis, BA-modifying enzymes) and paired host metabolites

(stool/plasma SCFAs, BA species), reported as risk strata or

response probabilities rather than raw abundances—facilitating

integration with existing non-invasive tests and electronic health

records (86).
6.5 Regulatory and ethical considerations
for microbiome−based therapeutics

The U.S. Food and Drug Administration (FDA) has established

precedents for live microbiota products, approving REBYOTA

(fecal microbiota, live-jslm) in November 2022 and VOWST (oral

fecal microbiota spores) in April 2023—both for recurrent

Clostridioides difficile—and posting specific guidance and safety

communications for fecal microbiota products. These actions

delineate expectations for donor screening, manufacturing quality,

and post-marketing surveillance that will inform future metabolic

indications (87). For T2DM/MASLD applications, ethics

considerations include informed consent for stool-derived data,

data privacy for sequencing-based diagnostics, and equitable access

to diet-centered or biotherapeutic interventions. Any exploration of

FMT for metabolic endpoints should remain within regulated trials

that adhere to FDA advisory committee recommendations and

safety monitoring.
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Recent clinical milestones have significantly advanced the

therapeutic landscape of MASLD. Notably, Resmetirom

(Rezdiffra), a selective thyroid hormone receptor-b (THR−b)
agonist, became the first FDA-approved drug for MASH in 2024,

demonstrating robust efficacy in reducing hepatic steatosis and

fibrosis progression across phase 3 trials (88). Concurrently,

fibroblast growth factor 21 (FGF21) analogues such as

pegozafermin, efruxifermin, and BIO89–100 have shown dual

benefit in improving both metabolic parameters (e.g., glycemia,

triglycerides, insulin sensitivity) and hepatic histology (steatosis,

ballooning, inflammation) (89–91).

These emerging agents provide critical context for microbiome-

targeted strategies. For example, Resmetirom modulates bile acid

composition and FXR–FGF19 signaling, while FGF21 analogues

influence hepatic lipid oxidation, adipose lipolysis, and energy

expenditure—pathways that are increasingly recognized to

interact with gut microbiota-derived metabolites. Future

microbiome-based interventions may be layered onto or used to

stratify responses to these agents, particularly via profiling of bile

acid–modifying bacteria, SCFA fermentation potential, and

inflammation-linked microbial signatures.

As MASLD therapeutics shift toward precision endpoints and

combinatorial approaches, integrating function-based microbiome

metrics with emerging drug mechanisms offers a pathway toward

more personalized and effective treatment strategies.
6.6 Challenges, knowledge gaps and trial
design priorities

Three methodological gaps dominate. First, causality: despite

encouraging Mendelian randomization (MR) signals linking specific

microbial taxa or pathways to T2DM sub-phenotypes and to

trimethylamine-N-oxide (TMAO) biology, instruments remain weak

and heterogeneous; triangulation with longitudinal interventions,

gnotobiotic transfers, and pathway-targeted postbiotics is required

(34, 92). Second, confounding: diet quality, alcohol exposure, energy

balance, antibiotics, metformin, proton-pump inhibitors, and statins

strongly shape microbiome functions and must be measured and,

where possible, controlled. Consensus reports in diabetes now explicitly

recommend capturing these covariates when interpreting microbiome

data in clinical studies (41). Third, endpoints and generalizability:

microbiome-guided strategies should be tested against composite

outcomes that reflect the dual goal (glycaemia + liver fat/

inflammation/fibrosis). Recent hepatology trials illustrate feasible

histologic and non-invasive endpoints (e.g., resolution of metabolic

dysfunction–associated steatohepatitis and changes in fibrosis stage)

and show that incretin-based agents can deliver parallel benefits—a

clinical context in which function-level microbiome markers may help

enrich responders and interpret heterogeneity (69, 93).

Design-wise, we advocate pre-registered, multi-arm studies that

(i) stratify by baseline BA profile and fermentative capacity; (ii)

incorporate standardized diet/medication reporting and STORMS

adherence; (iii) measure microbiome functions + host metabolites

at baseline/early-response/maintenance; and (iv) use adaptive
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enrichment to prospectively test whether function-based strata

increase effect sizes for diets, postbiotics, BA-targeted agents, or

combination regimens.
6.7 Clinical integration framework

To translate microbiome-based diagnostics into routine care, a

simplified, stepwise framework can assist clinicians in selecting,

interpreting, and applying microbiome-derived information. First,

functional microbiome panels—targeting SCFA production, bile acid

transformation, LPS biosynthesis, and nitrogen metabolism—can be

deployed in at-risk populations (e.g., patients with obesity, prediabetes,

or elevated liver enzymes) to stratify risk of dual metabolic-hepatic

progression. Second, combining stool-based microbial functions with

existing non-invasive tools (e.g., FibroScan, MRI-PDFF, liver enzyme

panels, HbA1c) enhances diagnostic precision, particularly when

fibrosis risk or therapeutic escalation is being considered. Third, in

pharmacologic or dietary interventions, baseline microbial capacity

(e.g., butyrate production or BA profiles) may help predict response

and guide selection of GLP-1RAs, SGLT2i, BA-modulating drugs, or

high-fiber dietary regimens. Finally, for follow-up, repeated functional

testing may allow clinicians to monitor therapeutic impact alongside

hepatic and glycemic endpoints, especially in settings where imaging or

biopsy is impractical. Embedding microbiome-derived readouts into

electronic health records and clinical decision support tools will further

facilitate real-world uptake. To illustrate how microbiome-based

biomarkers can be operationalized in clinical practice, we propose a

simplified integration workflow (Figure 3), outlining the translational

path from risk stratification to therapeutic monitoring and digital

decision support.

A proposed stepwise clinical framework for incorporating gut

microbiome functional readouts into patient care pathways. Risk

stratification identifies individuals with obesity, prediabetes, or

MASLD. Stool-based metagenomic or metabolomic profiling

assesses microbial modules such as SCFA production, bile acid

transformation, LPS load, and nitrogen metabolism. These are

integrated with clinical diagnostics—including FibroScan, MRI-

PDFF, HbA1c, and liver enzymes—to support stratified treatment

decisions. Personalized interventions (e.g., GLP-1 receptor agonists,

SGLT2 inhibitors, targeted diets) are guided by microbiome

signatures. Therapeutic monitoring involves functional re-testing

and tracking of metabolic endpoints. Decision support systems may

embed microbiome-based algorithms into electronic health records

(EHRs) to enhance clinical workflow.
6.8 Challenges in clinical translation of
microbiome-based biomarkers

Despite the promising prospects of functional microbiome-based

biomarkers in metabolic diseases, their clinical translation faces

significant hurdles. From a technological standpoint, challenges

include the lack of standardized protocols for functional

metagenomic and metabolomic analyses, as well as inconsistency in
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sequencing platforms and downstream bioinformatics pipelines. These

discrepancies hamper reproducibility and cross-cohort comparability,

ultimately limiting the generalizability of findings (94–96).

Biologically, the gut microbiome exhibits high inter-individual

variability shaped by factors such as age, sex, ethnicity, host

genetics, and comorbid conditions. Moreover, extrinsic influences

like diet, medications (e.g., metformin, antibiotics), and

environmental exposures introduce additional noise that may

obscure true disease associations and confound biomarker

performance (97, 98). These factors create significant barriers to

establishing robust, disease-specific functional signatures with

diagnostic or prognostic utility.

Emerging harmonization efforts—such as the STORMS

reporting guidelines for microbiome research—are a critical step

toward improving methodological transparency and data

integration across studies. Furthermore, large-scale, longitudinal,

and multi-ethnic cohort studies are urgently needed to validate

candidate biomarkers in real-world settings and assess their

predictive accuracy across diverse populations (99, 100).

Together, addressing these technical and biological challenges will

be essential to realize the clinical potential of microbiome-derived

biomarkers in T2DM and MASLD.

Key message: Function-based microbiome biomarkers

represent a clinically relevant step forward in the diagnosis,

monitoring, and treatment of T2DM and MASLD. When

integrated with host metabolites and multi-omics platforms, these

signatures can predict disease risk, stratify patients for targeted

interventions, and monitor therapeutic responses with improved

precision. However, successful translation requires methodological

rigor, adherence to reporting standards like STORMS, and

thoughtful trial design that incorporates microbiome function as
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both predictor and endpoint. Regulatory frameworks and ethical

considerations will be crucial as microbiome-based diagnostics and

therapeutics move toward clinical adoption. The future of precision

medicine in metabolic diseases will increasingly rely on functional

microbiome readouts aligned with host physiology.
7 Discussion

T2DM and MASLD are now increasingly understood as

interlinked pathophysiological manifestations within a shared

metabolic framework. Central to this interaction is the gut–liver–

pancreas axis, where gut microbiota-derived functional outputs—

such as SCFAs, bile acid derivatives, LPS, BCAA catabolites,

TMAO, and endogenous ethanol—play multifaceted roles in

modulating host metabolism and immunity.

These metabolites engage host pathways through diverse routes:

SCFAs signal via G-protein coupled receptors (e.g., GPR41/43) to

regulate gluconeogenesis and lipolysis; secondary bile acids activate

nuclear receptors (e.g., FXR, TGR5) affecting lipid metabolism and

inflammation; LPS drives hepatic inflammation through TLR4-

mediated Kupffer cell activation; TMAO perturbs insulin

signaling via oxidative stress and vascular inflammation; and

microbe-derived ethanol alters redox balance in hepatocytes.

Together, these mechanisms contribute to systemic insulin

resistance, hepatic steatosis, inflammation, and fibrosis.

Importantly, functional microbiome signatures show stronger

correlations with clinical phenotypes than taxonomic profiles, and

have demonstrated responsiveness to dietary interventions,

pharmacotherapy, and metabolic surgery—supporting their role

in mediating dual improvements in glycemic and hepatic outcomes.
FIGURE 3

Clinical integration workflow of microbiome biomarkers in T2DM–MASLD comorbidity.
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To translate these insights, future studies should prioritize

function-based biomarker integration with non-invasive fibrosis

scoring and glycemic indices, stratify participants by fermentative

and bile acid metabolic capacity, and incorporate standardized

dietary and medication metadata. Interventions should target

composite T2DM–MASLD endpoints and embed longitudinal

microbiome–metabolome monitoring to infer causality and

enhance precision in patient selection. With rigorous design,

harmonized reporting, and attention to reproducibility and equity,

a function-centered microbiome approach offers a promising avenue

for co-managing metabolic and hepatic disorders.

In summary, this review highlights the emerging role of

microbial functional signatures in shaping the pathophysiology

and cl in ica l t ra jec tory of both T2DM and MASLD.

Mechanistically, gut-derived metabolites influence host

metabolism through endocrine, immune, and enterohepatic

pathways. Integrating these insights into clinical practice requires

robust biomarker validation, stratified trial design, and standardized

metadata capture. A precision-microbiome approach has the

potential to transform how we assess and intervene in metabolic-

liver comorbidity.
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