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The pancreas is smaller in individuals with type 1 and type 2 diabetes. The etiology
of this reduced pancreatic volume is not fully understood, but it may be due to
loss of insulin’s trophic influence on exocrine pancreatic tissue. Supporting this,
histological studies have identified a zone of acinar cell hypertrophy and
hyperplasia surrounding pancreatic islets, putatively due to insulin action on
peri-islet acinar tissue. This study develops a mathematical model of pancreas
size incorporating beta cell density, beta cell clustering, and the magnitude and
spatial extent of acinar cell expansion to estimate the relationship between beta
cell mass and pancreas size. This model indicates that growth of acinar tissue
surrounding the beta cell is sufficient to account for the smaller pancreas volume
observed in individuals with diabetes. Furthermore, single beta cells and smaller
beta cell clusters have a greater influence on pancreas size on a per cell basis, as
larger islets have greater overlap in the zone of insulin action. Thus, changes in
pancreas volume may be more sensitive to loss of single beta cells or small islets
than larger islets. The model provides a conceptual framework linking
histological and radiological imaging to better understand the relationship
between pancreas volume and beta cell mass.

diabetes, type 1 diabetes, volume, peri-insular, islets, endocrine, exocrine

Introduction

Pancreas size is smaller in individuals with type 1 (T1D) and, to a lesser extent, type 2
diabetes (T2D) (1). Moreover, pancreas size is dynamic, declining as individuals progress
through presymptomatic stages of T1D (2) and increasing in individuals with T2D
remission (3). Pancreas size also changes over the lifespan with growth during childhood
and adolescence and decline in older age (4). Islet transplantation studies indicate that the
size of the pancreas size is proportional to the number of isolated islets (5), although other
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studies have found mixed results (6). Collectively, these results
suggest that pancreas size correlates with beta cell mass and/or
function, although the precise nature of this correlation remains
unknown. Furthermore, the extent of pancreas size reduction in
TID (30-40% smaller) (1) surpasses the small fraction of the
pancreas made up of beta cells (1-2%) (7), implicating loss of
acinar tissue.

While a smaller pancreas size in individuals with T1D was
observed 8 decades prior (8), the implications of this smaller
pancreas size have not been well characterized. Furthermore,
unlike the pancreatic beta cells, which pose significant challenges
for imaging due to their small size and scattered distribution
throughout the pancreas, pancreas size can be readily assessed
with magnetic resonance imaging (MRI) or computed
tomography (CT). Radiological imaging of the pancreas may
provide information about diabetes progression or therapeutic
response not captured by blood tests (2). However, the
relationship between pancreas size and beta cell mass are not well
understood. For example, it is not known whether there is a linear
relationship between beta cell mass and pancreas size or whether
there is a threshold of beta cell loss needed to detect changes in
pancreas size.

Two mechanisms have been postulated to link beta cell loss and
acinar cell atrophy: loss of trophic effects of insulin and
autoimmune destruction of acinar tissue. Supporting the former,
pancreas size in individuals with insulin deficiency, but lacking
autoimmunity, have similar pancreas size as T1D (9). Additionally,
acinar cell hypertrophy is observed in peri-islet regions of db/db
mice (10), while chemical destruction of the beta cell eliminates
peri-islet acinar hypertrophy (11). Human acinar tissue exhibits
limited hypertrophy surrounding islets, but increased proliferation,
suggesting that hyperplasia may be more dominant in humans (12).
Together, these findings suggest absence of insulin may be a
primary driver of pancreas atrophy in diabetes.

There are no studies that connect structural insights from
pancreas autopsy studies with imaging observations of the
pancreas in individuals with diabetes. Imaging of the entire intact
excised human pancreas can offer a critical bridge between high-
resolution histology and whole-organ radiological imaging (13).
This study builds a mathematical model of pancreas size
incorporating beta cell density and clustering estimates from
excised pancreas studies to evaluate the effect of acinar tissue
expansion on radiological imaging. This model can be used to
guide interpretation of pancreas size measures and estimate relative
loss of beta cell mass in individuals with diabetes.

Research design and methods

All statistical analyses and mathematical modeling were
performed using R (version 4.3.1) within the RStudio
environment (Posit, Boston, MA). Custom scripts were developed
to implement the modeling framework, and standard packages were
used for data processing, visualization, and statistical inference.
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Geometric representation of beta cell
distribution and pancreas volume

We modeled each beta cell as a sphere with radius of 5 pm
(diameter of 10 um), in agreement with prior histology studies (14,
15). Equation 1 was used to calculate the volume of each beta cell:

4 5
Vozumehem Cell = g T heta cell (1)

This yields a volume for a single beta cell of 524 yum? in
agreement with prior reports (16).

Islets were modeled as clusters of a range of number of beta
cells, reflecting growing realization that islet sizes are more diverse
than previously appreciated as our tools for imaging these small cell
clusters improves (13). We modeled clusters consisting of a single
beta cell, 5 cells, 25 cells, 100 cells, 250 cells, and 1000 cells (17).
Each cell cluster was modeled as a perfect sphere with the same
volume as the sum of the individual cells packed together. This
assumes no extracellular space of packing inefficiencies. In addition
to analyses of single-sized cell clusters, we modeled a distribution of
beta cell cluster sizes throughout the pancreas, approximating
findings from autopsy studies (13).

For beta cell density, we modeled a maximum beta cell volume
comprising 3% of the pancreas based on a recent study (13)
updating prior estimates of 1-2% beta cell density. We assumed
that individuals with longstanding T1D have a complete loss of beta
cells, in accordance with a prior report of 99% beta cell loss (18),
although we note other studies have found a small population of
beta cells remaining in T1D (19). Accordingly, we note that all
results display beta cell densities ranging from 0-3%, and thus can
be used to estimate changes in beta cell mass spanning this range.
Pancreas size is influenced by body size, age, and sex, leading to a
range of differences in pancreas size between non-diabetic controls
and individuals with T1D (1). For our model, we assumed a non-
diabetic pancreas volume of 90ml and a pancreas volume of 60ml in
individuals devoid of beta cells, derived by averaging published
results from a meta-analysis reporting pancreas volume in controls
and individuals with longstanding T1D (1).

Modeling insulin action

We modeled insulin action as a concentric sphere surrounding
the beta cell (or cluster of beta cells) as displayed in Figure 1. In the
first approach, termed the constant shell model, we assumed that
the trophic effect of insulin acted homogenously within a sphere
surrounding the beta cell cluster (Figure 1). The equation describing
this shell is given in Equation 2:

4 3 4 3
VozumeConsmnt Shell = § Tl she — g Tl beta cell (2)

The thickness of this shell, r,.;, was modeled as 1, 5, 10, 20, and
30 um beyond the outer edge of the beta cell cluster, building upon a
recent report using a 33 pm width for peri-islet insulin action (20).
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FIGURE 1

Left) Cartoon depicting the influence of a beta cell on a concentric shell of acinar tissue surrounding a single beta cell (top) or cluster of beta cells
(bottom). A shell of thickness 10 pm is shown for illustrative purposes. Right) Graph of insulin action on surrounding acinar tissue as a function of
distance from the cell cluster edge. Colors display various distances from the beta cell cluster upon which insulin drives acinar cell growth and
correspond with the colors in the cartoon. Two models of insulin action are displayed. The constant shell model (solid line) assumes insulin acts
homogenously within a shell surrounding the beta cell cluster of prescribed thickness. The insulin gradient model (dashed line) assumes insulin
action is strongest at the outer edge of the beta cell cluster and decays exponentially with increasing distance from the beta cell cluster. The decay
length parameter models how quickly the concentration of insulin decreases as you move away from a beta cell cluster (lower means faster decay).

Cartoon was created using https://BioRender.com.

In a second approach, termed the insulin gradient model, we
assumed that insulin concentration was highest at the outer edge of
the beta cell cluster and decayed exponentially with increasing
distance from the beta cell cluster. This model includes a decay
length parameter (1) that represents how quickly the concentration
of insulin decreases as you move away from a beta cell cluster. The
volume of this insulin gradient model is given in Equation 3:

Theta cell 54
4 71?7‘2 . e—(r—”bem cell)/;"dr-

VOlumeInsulin Gradient :/ (3)

Theta cell

The decay length, A, was set at 1, 5, 10, 20, and 30 pum to
determine the distance over which insulin has a significant effect on
the surrounding tissue. A small decay length means insulin’s
influence drops off rapidly and is limited to areas very close to
the cluster, while a larger value means insulin spreads out further,
affecting a wider region around the cluster. A plot of the effect of
insulin concentration as a function of decay length and distance
from the beta cell cluster edge is shown in Figure 1. For these initial
analyses, we assumed that the acinar tissue volume doubled within
the volume surrounding the beta cell cluster.

To simulate varying degrees of acinar cell expansion around
beta cells, we adjusted the magnitude of acinar cell growth within
the shell surrounding the beta cell cluster. The maximum expansion
was set to 100%, corresponding to the doubling of acinar cell
volume in the affected volume used in prior analyses. Expansion
was also modeled as 50% and 20% increases to simulate smaller
amounts of acinar tissue growth in response to insulin. These
varying levels of expansion allowed us to examine how different
degrees of acinar cell growth might influence pancreas size.
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Results

The relationship between beta cell mass and pancreas size
depended on the spatial extent of insulin action as well as the
beta cell cluster size. In the constant shell model, a wider thickness
of affected acinar tissue increased the slope of the line linking beta
cell density and pancreas volume (Figure 2). Smaller clusters of beta
cells resulted in higher pancreas volumes for a given beta cell
density (Figure 2). Note the different y-axis in panels of Figure 2.
This relationship between cell clustering and pancreas size results
from greater overlap in the shells surrounding larger clusters of beta
cells versus smaller clusters of individual beta cells. For example, a
single beta cell with an influence radius of 20 pm leads to an
increased acinar tissue volume of 64,973 um>. 100 of these single
beta cells with no overlap would lead to an increased volume of
6,497,300 pmS. In contrast, a cluster of 100 beta cells would only
lead to an increased volume of 287,431 um?, 22 times smaller, due to
overlap of the sphere of influence of these 100 clustered cells. The
dashed lines on Figure 2 display a pancreas volume of 90ml, the
estimated volume of a pancreas with a full complement of beta cells.
For single beta cell clusters, shell thicknesses of 10, 20, or 30 pm
exceed the 90ml pancreas volume at 3% beta cell density. Clusters of
250 or 500 beta cells do not reach 90ml at any shell
thickness modeled.

In the insulin gradient model (Figure 3), pancreas volume is
higher than the corresponding shell model for a given beta cell
cluster size. The correlation between beta cell density and pancreas
volume is influenced by both the beta cell cluster size and the decay
length of acinar tissue expansion surrounding each cell cluster.
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FIGURE 2

In the constant shell model, pancreas volume correlates with beta cell density. The slope of this relationship is influenced by both the beta cell
cluster size (shown in different panels) and the thickness of acinar tissue expansion surrounding each cell cluster (displayed according to color).
Smaller beta cell clusters lead to larger pancreas volume due to diminished overlap in the shells surrounding each cluster. The pancreas volume of a
non-diabetic control (90ml) is shown as a dashed line. This model assumes acinar tissue doubles within the affected volume. Note the different y-

axis maximum in each panel.

Again, note the different y-axis in panels of Figure 3. Increasing
decay length corresponds to a larger volume of acinar tissue
expansion. For single beta cell clusters, all decay lengths can
exceed the 90ml pancreas volume at 3% beta cell density. For beta
cell clusters of 250 only a 30 pm decay length exceeds the 90ml
pancreas volume at 3% beta cell density. Clusters of 500 beta cells
cannot reach a pancreas volume of 90ml at any decay
length modeled.

Given the strong influence of beta cell cluster size on pancreas
volume, and the existence of variable islet sizes within the pancreas,
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we modeled further results as a distribution of beta cell cluster sizes.
Specifically, we modeled a distribution of 5% single beta cells, 10%
clusters of 10 cells, 20% clusters of 25 cells, 40% clusters of 100 cells,
20% clusters of 250 cells, and 5% clusters of 1000 cells,
approximating findings from a recent autopsy study (17). For this
analysis, we modeled different magnitudes of acinar tissue
expansion within the affected region, ranging from a 20% to
100% increase in volume (a doubling of acinar tissue volume
within the region). We found that 100% expansion was able to
recapitulate the 90ml pancreas volume at 3% beta cell density in
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In the exponential decay model, pancreas volume correlates with beta cell density and is higher than the corresponding shell model. The slope of
this relationship is influenced by both the beta cell cluster size (shown in different panels) and the decay length of acinar tissue expansion
surrounding each cell cluster (displayed according to color). Increasing decay length corresponds to a larger volume of acinar tissue expansion, and
more strongly influences the decay model than the constant shell model. The pancreas volume of a non-diabetic control (90ml) is shown as a
dashed line. This model assumes acinar tissue doubles within the affected volume. Note the different y-axis maximum in each panel.
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A higher magnitude of acinar tissue expansion surrounding beta cell clusters leads to increased pancreas volume. Graphs illustrate increases of 20%,
50%, and 100% (a doubling of acinar tissue volume within the volume surrounding the beta cell cluster). The top row displays results for the shell
model while the bottom row shows results for the exponential decay model. This model assumes a heterogeneous distribution of 5% single beta
cells, 10% clusters of 10 cells, 20% clusters of 25 cells, 40% clusters of 100 cells, 20% clusters of 250 cells, and 5% clusters of 1000 cells. Note the

different y-axis maximum in each panel.

both the shell model and decay model (Figure 4). A 50% expansion
of acinar cell volume reached a 90ml pancreas volume for the 30 um
shell thickness as well as 20 and 30 um decay length. The lowest
expansion magnitude, a 20% increase in acinar volume, only
reached a pancreas volume of 90ml at 3% beta cell density in the
decay model with the largest (30 um) decay length.

Discussion

This study models the relationship between peri-islet acinar
tissue expansion seen on histology with reduced pancreas size
observed in the diabetic pancreas. Using previously reported
parameters for beta cell density and acinar cell expansion, we
demonstrate that loss of acinar tissue surrounding islets is
sufficient to explain the smaller pancreas observed in individuals
with diabetes. Indeed, the model recapitulates autopsy studies
demonstrating declines in pancreas size, beta cell number, and
acinar cell number found in T1D (19). We further establish the
range of islet sizes and extent of acinar tissue expansion that
correspond with clinically observed changes on radiological
imaging. Importantly, this model suggests that loss of individual
beta cells and small beta cell clusters leads to larger declines in
pancreas size than loss of large islets.

Frontiers in Endocrinology

The model developed herein suggests that smaller clusters of
beta cells have a greater influence on pancreas volume than larger
clusters, due to reduced overlap in the volume of insulin action
surround each cell. This finding has important implications for
understanding changes in pancreas volume given the heterogenous
range of islet sizes in the pancreas (13). Specifically, the loss of small
islets may may cause more pancreas atrophy than large islets, on a
per cell basis. This finding carries added significance given a
number of recent reports demonstrating a preferential loss of
small beta cell clusters in individuals with T1D, particularly in the
early stages of the disease (17, 21-24). Our mathematical model
suggests that the declines in pancreas size found using imaging may
be inherently sensitive to this process. Specifically, our model
predicts a linear relationship between pancreas size and the
number of beta cells, but only for a given shell thickness/decay
length and beta cell cluster size. As the slope of this linear
relationship is dependent on these variables, temporal
heterogeneity in beta cell loss, such as preferential loss of small
endocrine clusters in early T1D, would lead to a non-linear
relationship between beta cell mass and pancreas size over time.
In this case, the pancreas volume would decline more quickly per
beta cell lost in early T1D, with a slower decline in pancreas volume
in later T1D as larger islets are lost. Beyond T1D, this model may
also inform our understanding of other alterations in beta cell mass
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and/or pancreas size. Individuals with type 2 diabetes have a 50%
deficit in beta cell mass (25) and a pancreas size intermediate
between nondiabetic controls and T1D (1), in agreement with our
model. In addition to understanding how declines in beta cell mass
affect pancreas size, this model can simulate increases in beta cell
mass/pancreas size, such as those observed in T2D remission (3).

Statistician George Box is credited with coining the aphorism
‘All models are wrong, but some are useful.” This model is proposed
in this spirit, as a first step toward modeling insulin action on acinar
tissue, rather than a comprehensive model incorporating all aspects
of insulin signaling and diabetes pathophysiology. As such, this
mathematical model is limited by several simplifying assumptions.
Our model assumed that individuals with T1D had complete loss of
beta cell mass, but note that residual beta cells persist, even in
longstanding T1D (26). This study modeled beta cells and their
effect on surrounding acinar cells as spherical, but note that studies
suggest that beta cells are elongated (14). Our model did not include
other islet cells, either as drivers of acinar tissue expansion or
contributors to cell cluster volume. For simplicity, we also assume
the amount of insulin secreted by individual beta cells is
independent of the size of the beta cell cluster. Importantly,
insulin distribution is currently modeled as passive diffusion away
from the beta cell; the model does not explicitly account for insulin
consumption or binding to acinar cells (27). Finally, our model is
unable to distinguish acinar cell hypertrophy from hyperplasia, the
latter of which may be more dominant in humans (12).

Further studies are needed to both refine this model and
validate it with histological studies. Model refinement includes
incorporating the effects of other endocrine cells and the
extracellular matrix, incorporating stochastic effects, and more
sophisticated modeling of the insulin gradients surrounding islets.
Importantly, our model assumes isotropic passive diffusion of
insulin away from the beta cell. The vasculature surrounding the
islet has complex structure that controls insulin delivery to acinar
cells and modulates crosstalk between endocrine and exocrine cells
(28). Future work may incorporate islet vasculature structure
similar to our work modeling chemotherapy delivery to solid
tumors (29). Our model is currently applied to one single point
in time. However, it can be adapted to model temporal changes in
beta cell mass during development of T1D and the effect of
interventions that slow this process to better understand
longitudinal imaging results.

In conclusion, the reduced pancreas size observed in individuals
with T1D likely reflects not only beta cell loss but also acinar tissue
atrophy in response to loss of insulin signaling. Radiological
imaging can quantify the size of the pancreas, offering potential
insights into disease progression or therapeutic response that may
not be captured by blood-based measures alone. However, the
relationship between pancreas size and beta cell mass remains
incompletely understood. By integrating histological data on beta
cell density and clustering from excised human pancreata, we
developed a mathematical model that links structural changes in
acinar and beta cell compartments to imaging-based measures of
pancreas size. This framework provides a quantitative tool to
interpret pancreas imaging, estimate relative beta cell loss, and
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bridge the gap between high-resolution autopsy studies and whole-
organ radiological observations, advancing our understanding of
pancreatic remodeling in diabetes.
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