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Background: The systemic inflammation response index (SIRI) has emerged as a

promising inflammatory biomarker linked to the onset and progression of

cardiovascular disease (CVD). However, the association between initial and long-

term trajectories of the SIRI index and carotid atherosclerosis (CAS) progression

remains unexplored.

Methods: This longitudinal retrospective cohort study encompassed 11,623

adults undergoing multiple general health checks at Taizhou Hospital of

Zhejiang Province from January 2017 to September 2024. SIRI values were

derived using the formula: neutrophil count × monocyte count/lymphocyte

count. To assess SIRI trends over time, latent class trajectory modeling was

utilized. Hazard ratios (HRs) and 95% confidence intervals (CIs) for both the initial

and trajectories of the SIRI index were determined through univariate and

multivariate Cox proportional hazards analyses. Restricted cubic splines

evaluated potential nonlinear associations between SIRI and CAS risk.

Results: Over a median follow-up of 2,043 days, 2,460 individuals experienced

progression of CAS. After adjusting for conventional CVD risk factors, a 1-standard

deviation (SD) rise in SIRI was linked to a 12% elevated risk of CAS progression (HR =

1.121, 95% CI 1.035–1.213). Comparable findings were noted when SIRI was stratified

into quartiles. Participants were classified into three trajectory groups: low-stable,

middle-stable, and high-stable. Following multivariate adjustments, the high-stable

group exhibited a 1.166-fold increased risk of CAS progression (95% CI 1.021–1.333).

Conclusions: Elevated initial SIRI levels and a high-stable trajectory were

associated with an increased risk of CAS progression. Tracking SIRI trends over

time may help identify individuals at heightened risk, enabling more focused

prevention and treatment strategies.
KEYWORDS
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1 Introduction

Cardiovascular disease (CVD) is the leading factor behind

disability and premature mortality globally, posing a major

economic and healthcare burden. Based on the Global Burden of

Disease Study 2019, the number of prevalent cases of total CVD

nearly doubled from 271 million in 1990 to 523 million in 2019 (1).

Atherosclerosis, a major pathological process in most

cardiovascular diseases, can begin as early as childhood and

progress asymptomatically for decades (2). Early detection of

arterial disease in seemingly healthy individuals often focuses on

the peripheral arteries, particularly the carotid arteries (3). The

progression of carotid atherosclerosis (CAS) results from a complex

interaction of factors, including lipid metabolism, hemodynamic

stress, and systemic inflammation (4). Among these, inflammation

has emerged as a critical driver of atherosclerotic plaque formation

and destabilization. Recent studies have highlighted the potential of

systemic inflammatory biomarkers in predicting plaque progression

and cardiovascular outcomes (5–8).

Inflammatory markers such as platelet and lymphocyte counts,

along with ratios like neutrophil-to-lymphocyte (NLR) and platelet-

to-lymphocyte (PLR), have been associated with an increased risk of

adverse cardiovascular events and progression of coronary artery

disease (9–14). Other leukocyte indicators, such as monocyte count

and platelet count, may also be correlated with the presence of CAS

(15, 16). The relatively novel index, the SIRI, integrates neutrophil,

monocyte, and lymphocyte counts and has initially been used to

predict survival in cancer patients (17); Despite being considered a

novel inflammatory biomarker, SIRI is more comprehensive, easily

accessible, and has been broadly validated across multiple studies

(18–20). It effectively reflects the inflammatory status of the human

body. Besides, research has shown that SIRI may outperform classic

inflammatory indicators such as the NLR, PLR, and Monocyte-to-

Lymphocyte Ratio (MLR) in predicting stroke prognosis (18). For

instance, Zhang et al. (18)utilized Receiver Operating Characteristic

(ROC) analysis to demonstrate that SIRI had better predictive

accuracy for stroke outcomes than PLR, NLR, or MLR. Similarly,

among patients with acute coronary syndrome, SIRI has been

identified as a more reliable inflammatory biomarker than NLR

and MLR (20).

Currently, an increasing number of research studies have

revealed the association between SIRI and CAS (21–24).

However, most studies have been cross-sectional and have not

provided an in-depth exploration of the relationship between the

dynamic changes (trajectories) of SIRI and the progression of CAS.

In recent years, trajectory models - such as latent variable growth

models and mixed effects models - have gained widespread

application in studying the dynamic changes of biomarkers and

their relationship with disease progression (25, 26). Nevertheless,

the relationship between SIRI trajectories and the progression of

CAS remains unexplored using these methods, which offer a more
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nuanced understanding of temporal trends and potential

causal influences.

Based on this, we proposed that fluctuations in systemic

inflammation could play a role in the progression of CAS. Using

a large longitudinal single-center cohort of Chinese individuals, this

study aimed to examine the association of both baseline SIRI levels

and their long-term trajectories with CAS progression.
2 Method

2.1 Study design and population

This population-based, retrospective longitudinal cohort study

utilized data from routine health examinations conducted at

Taizhou Hospital of Zhejiang Province. Between January 2017 to

September 2024, a total of 33425 participants aged 18 years or older,

who had completed at least two general medical check-ups, were

initially enrolled (27). Exclusion criteria included: (1) A recent

history of viral or bacterial infections (n=925); (2) Individuals with

chronic autoimmune diseases, hematologic disorders, liver

cirrhosis, or oncologic malignancies (n=658); (3) Absence of

carotid ultrasonography data (n=10967); (4) With existing carotid

artery plaques (n=7369); (5) Lack of blood routine data (n=1883).

After exclusions, 11623 individuals were included in the baseline

analysis. The same cohort of 11,623 participants was also used for

trajectory analysis. A detailed flowchart of the study is presented in

Figure 1. The study protocol was reviewed and approved by Ethics

Committee of Taizhou Hospital (K20220790).
2.2 Characteristics and definition

Data on demographic characteristics and medical history were

collected by trained interviewers using a standardized

questionnaire. Diabetes was identified as fasting blood glucose

(FBG) ≥7.0 mmol/L during the examination or self-reported

physician diagnosis of diabetes (28). Systolic (SBP) and diastolic

blood pressure (DBP) were measured as the average of three seated

readings using an automated blood pressure monitor. Hypertension

was defined as SBP ≥140 mmHg or DBP ≥90 mmHg, current use of

antihypertensive drugs, or a self-reported diagnosis of hypertension.

Body mass index (BMI) was computed as weight (kg)/height (m)2.

Helicobacter pylori (H. pylori) infection was assessed using 13C or

14C urease breath tests (29). Biochemical parameters analyzed

included FBG, total cholesterol (TC), triglycerides (TG), low-

density lipoprotein cholesterol (LDL-C), and high-density

lipoprotein cholesterol (HDL-C) (30). Peripheral blood samples

were processed by the Clinical Laboratory Department of Taizhou

Hospital of Zhejiang Province, which holds a laboratory

accreditation certificate. Fasting blood samples were collected in
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the morning, and biochemical analyses were performed using a

Beckman Coulter platform (Beckman Coulter Inc., Brea, CA, USA)

with commercially available assay kits.
2.3 Carotid ultrasonography and study
outcome

Bilateral carotid artery assessments were performed manually

by certified and experienced ultrasound specialists from Taizhou

Hospital of Zhejiang Province, who were blinded to the study

details. The examinations utilized a GE® Vivid i/E95 high-

resolution ultrasound system equipped with a 7.5–12 MHz

phased array probe. Abnormal carotid intima-media thickness

(cIMT) was defined as a maximum cIMT value ≥0.9 mm,

measured as the greatest distance between the lumen-intima

and media-adventitia interfaces. Carotid plaque was identified as

cIMT ≥1.5 mm, a focal structure protruding into the arterial lumen

by ≥0.5 mm, or ≥50% of the surrounding cIMT value. Furthermore,

CAS progression was characterized by the development of new

carotid stenosis, plaque, or increased cIMT during follow-up

compared to baseline (Supplementary Figure 1). For participants

with both carotid plaque and cIMT, baseline and follow-up results

were determined based on the more superior manifestations (i.e.,

carotid plaques) (31–34).
2.4 Systemic inflammation response index
(SIRI, SII, LMR, PLR, NLR)

Systemic inflammation response index derived from complete

blood counts, such as the SIRI, SII, LMR, PLR, and NLR, have been

widely used to predict risk and prognosis in various diseases (35–

37). In this study, we aimed to thoroughly elucidate the relationship

between systemic inflammatory biomarkers and carotid
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atherosclerosis. To this end, we calculated the SIRI, SII, LMR,

PLR, and NLR using the following formulas: SIRI = neutrophil

count × monocyte count/lymphocyte count, SII = platelet counts ×

neutrophil counts/lymphocyte counts, LMR = lymphocyte counts/

monocyte counts, PLR = platelet counts/lymphocyte counts, NLR =

neutrophil counts/lymphocyte counts.
2.5 Statistical analyses

Continuous variables are presented as mean ± standard

deviation, while categorical variables are expressed as frequency

(percentage). Comparisons of continuous variables were conducted

by using Mann–Whitney U tests or Kruskal–Wallis H-tests (two or

more independent samples), and comparisons of categorical

variables were analyzed using the chi-squared test or Fisher’s

exact test. Given the skewed distributions of the SIRI, SII, LMR,

PLR, and NLR, natural logarithm (ln) transformation were applied

to approximate normal distributions, and the values were

categorized into quartiles (Q1, Q2, Q3, and Q4). The Cox

proportional hazards regression model was used to access the

association between baseline SIRI index quartiles (or per standard

deviation change) and CAS progression, adjusting for potential

confounders such as age, SBP, FPG, and BMI. The cumulative

incidence of CAS progression across SIRI quartiles was visualized

using Kaplan-Meier survival curves, with significance determined

by log-rank tests. Additionally, we utilized restricted cubic splines

within the Cox model framework to examine potential nonlinear

dose-response relationships between SIRI values and CAS risk.

Latent class trajectory modeling (LCTM) was used to

characterize long-term trends in SIRI. This method identifies

homogeneous subgroups within heterogeneous longitudinal data

by grouping participants with similar SIRI trajectories. The optimal

number of trajectory classes was determined based on: (1) the

lowest Bayesian Information Criteria (BIC) while maintaining
FIGURE 1

Flow diagram of study selection for individuals with health examination who performed the carotid ultrasonograph and blood tests.
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clinical relevance and model parsimony; (2) an average probability

of assignments above 70% for all latent classes; and (3) each class

comprising at least 2% of the study population (26). We fitted

models with two to four classes. Model selection was based on a

combination of statistical criteria and clinical interpretability. The

interpretability required that each class represented a substantively

distinct and clinically meaningful pattern and that all classes

contained a sufficient proportion of the sample (>2%). After

comparing all models, the 3-class solution was chosen as it

offered the optimal balance of statistical fit and parsimony.

Trajectory class characteristics were compared using ANOVA or

Kruskal-Wallis H-tests for continuous variables and chi-square tests

for categorical variables. The association between trajectory classes

and CAS progression was evaluated using Cox proportional hazards

regression, with follow-up time as the time scale.

All of the statistical analyses were conducted using Stata version

18.0 (Stata Corp, College Station, TX, USA), R software (version

4.1.3), and IBM SPSS software (version 23.0, SPSS Inc., Chicago,

I L ) . A two - t a i l e d p - v a l u e < 0 . 0 5 wa s c on s i d e r e d

statistically significant.
3 Results

3.1 Baseline characteristics according to
SIRI index quartiles

This study involved 11623 eligible participants with a median

age was 47 (39–54) years, of whom 7,658 (65.9%) were male. The

median Ln(SIRI) index was 0.6 (0.42–0.83). Over a median follow-

up period of 2043 days (IQR: 1428–2204 days), 2460 (21.2%)

participants met the study outcome. Participants were categorized

into four groups based on the SIRI index levels (Table 1).

Individuals in higher Ln(SIRI) quartiles tended to be younger,

male, and had a higher BMI, as well as a greater prevalence of

hypertension, smoking, alcohol consumption, and H. pylori

infection compared to those in the lowest quartile. Additionally,

SBP, DBP, TG, TC, SIRI, SII index, PLR, and NLR index showed

positive correlations with increasing Ln(SIRI) quartiles. In contrast,

HDL-C levels and LMR index exhibited negative correlations (all p

for trend<0.001). These results suggested that elevated SIRI levels

are linked to a higher burden of cardiometabolic risk factors in the

study population.
3.2 Associations between baseline SIRI
index and CAS progression

As presented in Table 1, the risk of progression of CAS rose

with increasing quartiles of the Ln(SIRI) index. In multivariate

analyses treating the Ln(SIRI) index as a continuous variable, a 1-

standard deviation (SD) increase in the Ln(SIRI) index was linked

to a 12% higher risk of CAS progression (HR = 1.121, 95% CI

1.035–1.213, p = 0.005, as shown in Table 2). Similar patterns were

observed when participants were stratified by Ln(SIRI) quartiles;
Frontiers in Endocrinology 04
Specifically, individuals in the highest Ln(SIRI) quartile exhibited

the greatest risk of CAS progression across all adjusted models

(all p < 0.05, Table 2). In the final model, the HRs with 95% CIs for

CAS progression in the second, third, and fourth quartiles

compared to the first quartile were 1.049 (95% CI 0.929–1.184),

1.212 (95% CI 1.072–1.371), and 1.186 (95% CI 1.052–1.337),

respectively (Table 2). Figure 2 illustrates the Kaplan–Meier

survival curves for CAS progression by baseline Ln(SIRI) quartiles

(log-rank test, p < 0.001). The RCS analysis revealed a nonlinear

positive association between SIRI and CAS risk, with an inflection

point at Ln(SIRI) = 0.35 (p < 0.001, Supplementary Figure 1).
3.3 Baseline characteristics according to
SIRI index trajectories

Trajectory analysis included all 11,623 participants (Figure 1).

The optimal 3-group trajectory model was selected as the final

model, and the statistical parameters for the 2-, 3-, and 4-group

trajectory models are shown in Supplementary Table S1. Based on

model-adequacy criteria and interpretability, three distinct Ln(SIRI)

trajectory groups were identified: low-stable (n = 2,095), middle-

stable (n = 6,712), and high-stable (n = 2,816) (Figure 3). Table 3

summarizes the baseline characteristics of these trajectory groups.

Participants in higher Ln(SIRI) trajectory groups were more likely

to be male and have higher rates of diabetes, hypertension, smoking,

alcohol consumption, and higher levels of BMI, TG, SIRI index, SII

index, PLR and NLR index (all p < 0.001). As Ln(SIRI) index

trajectories increased, the risk of the progression of CAS increased

(Table 3). These findings suggest a significant correlation between

Ln(SIRI) trajectories and CAS progression. Figure 4 presents the

Kaplan-Meier survival curves for CAS progression by trajectory

group (log-rank test, p < 0.001).
3.4 Associations between Ln(SIRI) index
trajectories and CAS progression

The association between Ln(SIRI) trajectory patterns and CAS

progression is outlined in Table 4. When Compared to the low-

stable group, both the middle-stable group and high-stable group

demonstrated a higher likelihood of CAS progression. Following

adjustments for covariates including age, FPG, SBP, and BMI, the

high-stable group exhibited a 1.166-fold risk of CAS progression

(HR = 1.166, 95% CI 1.021–1.333, p = 0.024). Additionally, the

middle-stable group did not show a significant association with

CAS progression (HR = 1.064, 95% CI 0.944–1.199, p = 0.310).
4 Discussion

In this large-scale longitudinal cohort study based on routine

health examinations, we investigated the association between

baseline SIRI levels, their long-term trajectories, and the

progression of CAS. Elevated baseline SIRI values were
frontiersin.org
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TABLE 2 Hazard ratios (95% confidence intervals) of CAS progression by baseline Ln (SIRI) index.

Ln (SIRI) index CAS progression (N)
Unadjusted
HR (95%CI)

P value
Model 1 HR
(95%CI)

P value
Model 2 HR
(95%CI)

P value

Quartile1 535/2929 Reference Reference Reference

Quartile2 628/3050 1.092 (0.970-1.230) 0.147 1.060 (0.939-1.196) 0.345 1.049 (0.929-1.184) 0.440

Quartile3 603/2739 1.126 (1.088-1.383) 0.001 1.233 (1.091-1.394) 0.001 1.212 (1.072-1.371) 0.002

Quartile4 694/2905 1.279 (1.138-1.437) 0.000 1.209 (1.074-1.362) 0.002 1.186 (1.052-1.337) 0.005

Per 1 SD 2460/11623 1.189 (1.10-1.285) 0.000 1.136 (1.050-1.229) 0.001 1.121 (1.035-1.213) 0.005
F
rontiers in Endocrino
logy
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 fr
Model1: Adjusted for age, SBP and FPG;
Model2: Adjusted for age, SBP, FPG and BMI.
TABLE 1 Baseline characteristics of study participants according to quartiles of SIRI index.

Characteristics Quartiles of ln (SIRI) index
P for trend

Q1 (< -0.86) Q2 (-0.86~ -0.51) Q3 (-0.51~ -0.18) Q4 (> -0.18)

n 2929 3050 2739 2905

Age (years) 48 (40-55) 47 (39-54) 47 (39-53) 47 (40-54) .017

Male, n (%) 1610 (55%) 1963 (64.4%) 1924 (70.2%) 2161 (74.4%) .000

BMI (kg/m2) 23.52 (21.5-25.7) 24.08 (22.1-26.1) 24.32 (22.5-26.6) 24.54 (22.6-26.6) .000

Diabetes mellitus, n (%) 52 (1.8%) 63 (2.1%) 57 (2.1%) 81 (2.8%) 0.055

Hypertension, n (%) 104 (3.6%) 143 (4.7%) 150 (5.5%) 169 (5.8%) 0.000

Alcohol consumption, n (%) 148 (5.1%) 205 (6.7%) 230 (8.4%) 251 (8.6%) 0.000

Smoking, n (%) 311 (10.6%) 422 (13.8%) 510 (18.6%) 669 (23.0%) 0.000

H. Pylori positive, n (%) 780 (10.3%) 799 (10.6%) 791 (10.5%) 855 (11.3%) 0.039

SBP (mmHg) 122 (112-133) 123 (113-135) 124 (114-136) 124 (115-136) .000

DBP (mmHg) 74 (66-82) 75 (67-83) 76 (68-84) 76 (69-85) .000

LDL (mmol/L) 2.6 (2.2-3.1) 2.6 (2.2-3.1) 2.6 (2.2-3.1) 2.6 (2.1-3.0) 0.04

HDL (mmol/L) 1.4 (1.3-1.7) 1.4 (1.3-1.7) 1.4 (1.2-1.5) 1.3 (1.2-1.5) .000

TC (mmol/L) 5.0 (4.5-5.6) 5.0 (4.4-5.6) 4.9 (4.4-5.6) 4.9 (4.3-5.5) .000

TG (mmol/L) 1.4 (0.9-2.1) 1.5 (1.0-2.2) 1.6 (1.1-2.4) 1.6 (1.1-2.5) .000

FPG (mmol/L) 5.0 (4.7-5.4) 5.0 (4.7-5.4) 5.0 (4.6-5.4) 5.0 (4.6-5.4) 0.149

Leukocytes
(1000 cell/mL)

5.2 (4.5-5.9) 5.8 (5.1-6.6) 6.4 (5.7-7.3) 7.5 (6.5-8.5) .000

Neutrophil count (1000 cell/mL) 2.6 (2.2-3) 3.3 (2.9-3.7) 3.8 (3.4-4.3) 4.8 (4.1-5.5) .000

Platelet count (1000 cell/mL) 225 (196-258) 235 (203-269) 240 (210-277) 246 (210-282) .000

Lymphocyte count (1000 cell/mL) 2.1 (1.8-2.5) 2.1 (1.7-2.5) 2 (1.7-2.4) 2.0 (1.6-2.4) .000

Monocyte count (1000 cell/mL) 0.3 (0.2-0.3) 0.3 (0.3-0.4) 0.4 (0.3-0.4) 0.5 (0.4-0.5) .000

SIRI 0.3 (0.3-0.4) 0.5 (0.5-0.6) 0.7 (0.7-0.8) 1.1 (0.9-1.3) .000

SII 273.7 (219.7-339.6) 367.1 (304.7-445.7) 441.5 (366.0-534.5) 594.8 (477.9-738.8) .000

NLR 1.2 (1.0-1.4) 1.6 (1.4-1.8) 1.9 (1.6-2.1) 2.4 (2.1-2.9) .000

PLR 106.3 (86.9-130.0) 113.9 (93.7-137.4) 116.8 (965.0-141.7) 125.0 (101.6-155.0) .000

LMR 8 (7-9.5) 6.3 (5.7-7.3) 5.4 (4.8-6.0) 4.3 (3.6-5.0) .000

CAS progression, n (%) 535 (18.3%) 628 (20.6%) 603 (22.0%) 694 (23.9%) .000
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significantly linked to CAS progression, whether analyzed as

continuous variables or categorized into quartiles. Additionally,

we identified three distinct SIRI trajectory patterns—low-stable,

middle-stable, and high-stable—each associated with varying risks

of CAS progression. Notably, the high-stable SIRI trajectory

independently predicted CAS progression, even after accounting

for baseline SIRI levels. These findings highlight the potential role of

sustained systemic inflammation in driving the development and

progression of CAS.

In recent years, the SIRI has acquired significant attention in the

field of atherosclerotic cardiovascular disease (ASCVD) and
Frontiers in Endocrinology 06
coronary artery calcification. Dziedzic et al. revealed a positive

correlation between the SIRI index and both the severity of

coronary artery disease and the incidence of acute coronary

syndrome (38). Hui Sun et al. further elucidated that elevated

SIRI levels in patients with acute myocardial infarction (AMI) act

as an independent risk factor, influencing the severity of coronary

artery disease and holding predictive value (39). Tomasz

Urbanowicz demonstrated that patients with an SIRI above 1.22

(area under the curve: 0.725, p < 0.001) had a significantly higher

likelihood of developing single and complex coronary disease (40).

Collectively, these studies underscore the independent association
FIGURE 3

SIRI index trajectory groups and percentage of the participants in the grou SIRI, systemic inflammation response index.
FIGURE 2

Kaplan–Meier survival analysis curves for CAS progression based on quartiles of baseline SIRI index. Ln(SIRI) index: Q1 (< -0.86),Q2 (-0.86 ~ -0.51),
Q3 (-0.51 ~ -0.18), Q4(> -0.18). CAS, carotid atherosclerosis; SIRI, systemic inflammation response index.
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of the SIRI index with the incidence, development, progression, and

adverse outcomes of ASCVD. Man Liao et al. reported significantly

higher SIRI values in individuals with carotid atherosclerosis

compared to those without, with logistic regression analysis

corroborating the link between SIRI and carotid atherosclerosis

(21). Our results are consistent with and significantly extend the

growing body of evidence linking SIRI to cardiovascular disease. A

recent retrospective cohort study by Nai et al (23). similarly found

that a higher baseline SIRI was associated with an increased

incidence of carotid plaque in a Chinese population free of

baseline atherosclerosis. While their study established the

prognostic value of a single SIRI measurement, our study

advances this concept by demonstrating that tracking the

trajectory of SIRI over time provides superior risk insight. We
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identified that individuals maintaining a high-stable SIRI pattern

faced the greatest risk, suggesting that chronic, sustained

inflammation is more deleterious than transient elevations.

Furthermore, the association between SIRI and CAS appears

robust across different patient populations. A cross-sectional

study by Wang et al. in patients with chronic kidney disease

(CKD) reported significant associations between SIRI and other

novel inflammatory indices (e.g., SII, AISI, MHR) with the presence

of carotid plaques. Their study importantly highlighted the partial

mediating role of renal function (eGFR) in this relationship,

illustrating the complex interplay between inflammation and end-

organ damage in a high-risk cohort. Our study complements these

findings by showing that SIRI remains a powerful predictor of CAS

progression even in a general population without advanced CKD,
TABLE 3 Baseline characteristics of study participants according to trajectories of the Ln (SIRI) index.

Characteristic Low-stable Middle-stable High-stable P value

n 2095 6712 2816

Age (years) 48 (40-55) 47 (39-54) 47 (39-54) .075

Male, n (%) 1064 (50.8%) 4354 (64.9%) 2240 (79.5%) .000

BMI (kg/m2) 23.5 (21.6-25.6) 24.1 (22.1-26.2) 24.66 (22.6-26.8) .000

Diabetes mellitus, n (%) 35 (1.7%) 132 (2.0%) 86 (3.1%) 0.001

Hypertension, n (%) 68 (3.2%) 315 (4.7%) 183 (6.5%) 0.000

Alcohol consumption, n (%) 90 (4.3%) 486 (7.2%) 258 (9.2%) 0.000

Smoking, n (%) 177 (8.4%) 1047 (15.6%) 688 (24.4%) 0.000

H. Pylori positive, n (%) 544 (7.2%) 1891 (25.0%) 790(10.4&) 0.304

SBP (mmHg) 121 (111-132) 123 (113-135) 125 (115-137) .000

DBP (mmHg) 73 (66-81) 75 (67-83) 76 (69-85) .000

LDL (mmol/L) 2.63 (2.2-3.2) 2.60 (2.2-3.1) 2.58 (2.2-3.1) 0.061

HDL (mmol/L) 1.46 (1.3-1.7) 1.38 (1.2-1.6) 1.31 (1.2-1.5) .000

TC (mmol/L) 5.05 (4.48-5.71) 4.95 (4.38-5.58) 4.91 (4.335-5.54) .000

TG (mmol/L) 1.36 (0.4-2.1) 1.48 (1.0-2.3) 1.63 (1.1-2.5) .000

FPG (mmol/L) 4.98 (4.7-5.3) 4.99 (4.7-5.3) 4.99 (4.6-5.4) 0.212

Leukocytes
(1000 cell/mL)

5.2 (4.5-6.0) 6.1 (5.3-7.0) 7.2 (6.2-8.3) .000

Neutrophil count (1000 cell/mL) 2.6 (2.2-3) 3.5 (2.9-4.1) 4.5 (3.8-5.3) .000

Platelet count (1000 cell/mL) 223 (194-257) 236.5 (205-270) 244 (210-282) .000

Lymphocyte count (1000 cell/mL) 2.1 (1.8-2.5) 2.1 (1.7-2.5) 2 (1.6-2.4) .000

Monocyte count (1000 cell/mL) 0.3 (0.2-0.3) 0.3 (0.3-0.4) 0.4 (0.4-0.5) .000

SIRI 0.3 (0.3-0.4) 0.6 (0.5-0.7) 1.0 (0.8-1.3) .000

SII 274.8 (217.2-349.6) 394.1 (313.5-479.2) 548.3 (436.7-693.8) .000

NLR 1.2 (1.0-1.5) 1.7 (1.4-2.0) 2.3 (1.9-2.8) .000

PLR 106.0 (87.1-130.0) 115.0 (94.5-140.0) 122.5 (100.4-151.8) .000

LMR 8 (6.7-9.5) 6 (5-7) 4.5 (3.8-5.3) .000

CAS progression, n (%) 377 (18.0%) 1392 (20.7%) 691 (21.2%) .000
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indicating that its predictive value is not solely dependent on the

backdrop of significant renal impairment (24).

Our baseline analysis revealed that participants with higher SIRI

values were more likely to be male and, interestingly, tended to be

younger. This observation is supported by previous studies and can

be explained by several factors. The well-documented sexual

dimorphism in immune response may account for the gender

disparity, with males often exhibiting stronger innate immunity,

while females typically mount a stronger adaptive immune

response, influenced in part by the immunomodulatory effects of

sex hormones like estrogen (41–43). The inverse association with

age may initially seem paradoxical but likely reflects our study’s

exclusion criteria. By excluding individuals with existing major

diseases, we may have selected a cohort of healthier older adults

with lower baseline inflammation (“healthy survivor effect”) (44). In

this context, a high SIRI in a younger individual could be a

particularly sensitive marker of pathological, premature

inflammation, identifying a subgroup at heightened risk for future

cardiovascular events (45, 46). This underscores the clinical utility

of SIRI for early risk stratification.

The restricted cubic spline analysis revealed a complex non-

linear relationship between SIRI and CAS progression risk. The risk
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increased progressively until reaching an inflection point at

approximately SIRI = 0.35, beyond which the association

plateaued. This plateauing effect may suggest a saturation

phenomenon where extremely high levels of systemic

inflammation do not confer additional risk, possibly due to

immune exhaustion or competing risk factors. The point at which

the hazard ratio crossed 1.0 was observed at SIRI = 0.5, providing a

potential clinical threshold for risk stratification.

To ensure the study focused on chronic inflammatory status

and existing atherosclerosis, we excluded individuals with potential

acute infections, defined by leukocyte counts ≥14×109/L. Unlike

composite indices, individual blood cell counts are susceptible to

variations caused by changes in fluid balance. In our study,

individuals in the highest quartile of SIRI and the High-stable

SIRI group often exhibited neutrophilia, monocytosis, and

lymphocytopenia, indicating a combination of nonspecific

inflammation and damage in the adaptive immune response (47).

We propose that the interplay between these cellular changes

creates a self-amplifying cycle of immune dysregulation that

critically drives plaque progression and vulnerability. The

observed monocytosis is particularly consequential in the context

of established mechanisms of plaque infiltration. Circulating
FIGURE 4

Kaplan–Meier survival analysis curves for CAS progression based on trajectories of the SIRI index. CAS, carotid atherosclerosis; SIRI, systemic
inflammation response index.
TABLE 4 Hazard ratios (95% confidence intervals) of CAS progression by trajectory groups of Ln (SIRI) index.

Ln (SIRI) index
trajectories

CAS
progression (N)

Unadjusted HR
(95%CI)

P value
Model 1 HR
(95%CI)

P value
Model 2 HR
(95%CI)

P value

Low-stable 377/2095 Reference Reference Reference

Middle-stable 1392/6712 1.111 (0.988-1.250) 0.079 1.078 (0.956-1.214) 0.220 1.064 (0.944-1.199) 0.310

High-stable 691/2816 1.305 (1.146-1.486) <0.001 1.194 (1.046-1.363) 0.009 1.166 (1.021-1.333) 0.024
fro
Model1: Adjusted for age, SBP and FPG;
Model2: Adjusted for age, SBP, FPG and BMI.
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monocytes are heterogenous, and distinct subsets contribute

differentially to atherogenesis (48). Classical monocytes

(CD14++CD16-), which are likely predominant in our cohort, are

rapidly recruited to sites of endothelial injury via interactions

between CCR2 and its ligand MCP-1 (CCL2), which is highly

expressed in inflamed vasculature (49). Upon entry into the

plaque, they differentiate into inflammatory macrophages,

extensively phagocytose oxidized lipids, and become foam cells—

the hallmark of atheroma. Conversely, non-classical monocytes

(CD14+CD16+) patrol the endothelium via CX3CR1 and may

contribute to late-stage plaque progression through matrix

metalloproteinase production, potentially undermining the fibrous

cap’s stability (48, 50). The concomitant neutrophilia suggests an

additional, potent driver of endothelial dysfunction. Activated

neutrophils exacerbate vascular damage not only through

degranulation but also via the release of neutrophil extracellular

traps (NETs) (51, 52). NETs, web-like structures of chromatin and

cytotoxic enzymes, directly inflict damage on endothelial cells,

impairing their function and promoting a pro-thrombotic state

(53). Furthermore, NETs can activate macrophages, prompting

them to release potent pro-inflammatory cytokines such as IL-1b
and IL-6, thereby intensifying the local inflammatory cascade

within the plaque (54). This inflammatory milieu is further

compounded by lymphocytopenia. The reduction in lymphocyte

count, potentially driven by activation-induced apoptosis, signifies a

loss of immunoregulatory control. A critical deficit in regulatory T

cells (Tregs) diminishes a vital source of anti-inflammatory

cytokines (e.g., IL-10 and TGF-b), allowing innate immune

activation to proceed unchecked (55). Paradoxically, the apoptosis

of lymphocytes itself may not be benign. The engulfment of

apoptotic lymphocytes by macrophages can stimulate, rather than

suppress, further pro-inflammatory cytokine production (e.g., TNF-

a), creating a vicious cycle that perpetuates endothelial dysfunction
and plaque growth (56, 57). Our findings suggest that SIRI

integrates key mechanisms—NETs, foam cell formation, and

immune dysregulation—into a single, clinically accessible metric.

Targeting the interactions between these cell types may offer

innovative therapeutic avenues for mitigating chronic

inflammation in CAS.

The primary strength of this study lies in its large-scale,

longitudinal, population-based cohort design, which included

repeated assessments of SIRI and carotid ultrasound findings. The

use of LCTM provided detailed insight into temporal changes in

inflammatory activity. However, several limitations should be

noted. First, the outcomes were qualitatively assessed;

incorporating quantitative measures could improve the precision

of analyses between SIRI levels and carotid intima-media thickness

or plaque progression. Second, as a retrospective study, it is

susceptible to certain biases. Third, diabetes was defined based on

a single fasting blood glucose measurement (≥7.0 mmol/L) or self-

reported physician diagnosis. Although this approach is common in

large epidemiological studies (58), it deviates from standard clinical

practice, which typically requires a second confirmatory test. This

may have led to misclassification—for example, by including

individuals with transient hyperglycemia.
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5 Conclusions

This study revealed that individuals with a elevated baseline

SIRI levels or a high-stable SIRI trajectory face a significantly higher

risk of CAS progression. These findings underscore the importance

of closely monitoring the SIRI index during regular health

assessments to promptly identify the development of carotid

atherosclerosis, thereby facilitating more effective prevention and

treatment strategies.
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