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PitNET tissue deconvolution:
tracing normal tissue residues
and immune dynamics
Mattia Dalle Nogare1, Serena Avallone1,2, Luna Picello1,
Daniele Puggina1, Luca Denaro3, Gabriele Sales1,
Giovanni Vazza1 and Gianluca Occhi1*

1Department of Biology, University of Padova, Padova, Italy, 2Endocrine Disease Unit, Department of
Medicine, University of Padova, Padova, Italy, 3Department of Neuroscience, University of Padova,
Padova, Italy
Background: Bulk RNA sequencing (RNA-seq) has substantially advanced the

understanding of pituitary neuroendocrine tumors (PitNETs). However, its limited

ability to resolve cellular heterogeneity – particularly in samples containing

residual non-tumor pituitary cells – remains a significant challenge.

Objective: We developed and validated a tissue deconvolution framework using

a reference dataset derived from single-nucleus RNA sequencing (snRNA-seq) of

normal pituitary tissue, aimed at estimating cellular composition in PitNETs from

bulk RNA-seq data and characterizing the tumor microenvironment (TME).

Methods: Marker-based (CIBERSORT, MuSiC) and single-cell–based

(CIBERSORTx, MuSiC) deconvolution approaches were benchmarked across

simulated, pseudobulk, and bulk RNA-seq datasets to identify the most

reliable tools.

Results:CIBERSORTx demonstrated the highest sensitivity (r > 0.85) for detecting

pituitary cell types, although accuracy decreased for TME components.

Application to ten GH-secreting PitNETs with known histological

contamination and to public datasets consistently revealed residual normal

tissue across hormone-secreting subtypes, excluding silent tumors.

Contaminated samples – averaging 43% ± 19% with CIBERSORTx and 37% ±

22% with CIBERSORT – displayed distinct transcriptomic profiles compared to

uncontaminated, lineage-matched tumors, based on clustering analyses.

Conclusion: This study establishes snRNA-seq–based deconvolution as a robust

strategy for reconstructing cellular composition in PitNETs, mitigating the impact

of histological contamination and improving the reliability of downstream

transcriptomic analyses.
KEYWORDS

pituitary neuroendocrine tumors (PitNETs), bulk RNA sequencing (RNA-seq), single-
nucleus RNA sequencing (snRNA-seq), deconvolution methods, cellular heterogeneity
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1 Introduction

Pituitary neuroendocrine tumors (PitNETs) are benign tumors

arising from the anterior pituitary gland. With an annual incidence

of 3.9 to 7.4 cases per 100,000 individuals and a clinical prevalence

of approximately 1 in 1,000 people (1), PitNETs commonly

manifest through hormonal dysregulation or symptoms

secondary to mass effect (2). Classification is based on tumor cell

lineages, determined through immunohistochemical analysis (IHC)

of key transcription factors (SF1, PIT1, TPIT) and pituitary

hormone secretion (3). This classification includes PIT1 lineage

tumors (lactotroph, somatotroph, thyrotroph, and silent PIT1

tumors), TPIT lineage tumors (corticotroph and silent TPIT

tumors), SF1 lineage tumors (gonadotroph and silent SF1

tumors), null cell tumors (lacking both transcription factors and

hormone expression), and plurihormonal tumors. Although

typically benign, a subset of PitNETs displays aggressive clinical

features, including rapid growth, treatment resistance, and invasion

of adjacent structures (4). These features highlight the need for

deeper molecular characterization to enhance our understanding of

PitNET biology and clinical behavior.

Neoplastic transformation is characterized by profound

alterations in the transcriptional landscape, reflecting the

multistep process driven by oncogene activation and tumor

suppressor gene inactivation. This dynamic rewiring contributes

to the molecular heterogeneity observed within tumor entities (5–8)

and often correlates with diagnostic and prognostic features (9, 10).

Transcriptomic analyses have long been central to cancer research,

from early genome-wide profiling approaches such as microarrays

(5) to more recent next-generation sequencing technologies (11).

Pituitary tumors are no exception. Bulk RNA transcriptomic (RNA-

seq) studies have been extensively applied to PitNETs, revealing

dysregulated molecular pathways and providing insights into tumor

heterogeneity (12–14). These studies have often stratified tumors

based on clinical and pathological features, including treatment

status, invasiveness, and cytokeratin-based granulation patterns

(15–17).

Nevertheless, bulk RNA-seq analyses are inherently limited by

the composition of surgical specimens. PitNETs frequently infiltrate

surrounding healthy tissue, entrapping non-neoplastic cells (18). As

a result, even morphologically confirmed tumor samples may be

contaminated by non-tumor elements, potentially biasing

molecular analyses (19). Sampling core tumor regions – ideally

guided by intraoperative collaboration between neurosurgeons and

pathologists (12) – can help mitigate this issue, though it is not

always feasible in routine clinical practice. Moreover, components

of the tumor microenvironment (TME), such as inflammatory

infiltrates and stromal fibroblasts, actively shape the bulk

transcriptome. Yet their specific contributions remain obscured,

adding complexity to data interpretation.

To address these challenges, high-resolution profiling methods

such as flow cytometry (20), single-cell RNA sequencing (scRNA-

seq) (21), and spatial transcriptomics (22) have been developed,

offering unprecedented resolution of the cellular composition

within tumors. These technologies have been applied to PitNETs,
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contributing to a more refined understanding of their cellular

heterogeneity (23–25). Despite their transformative potential,

however, these approaches remain technically demanding, cost-

prohibitive, and impractical for large-scale or routine studies.

As a complementary strategy, computational deconvolution

methods have emerged as powerful tools to infer cellular

composition directly from bulk gene expression profiles (GEPs)

(26). Algorithms such as CIBERSORT (27) and MuSiC (28)

leverage either predefined marker genes or reference scRNA-seq

datasets to estimate the proportions of distinct cell types within

complex tissues. These computational approaches offer a scalable,

cost-effective alternative to experimental single-cell techniques.

They enable a more nuanced interpretat ion of bulk

transcriptomic data and facilitate the analysis of TME dynamics,

even when high-resolution experimental data are unavailable.

Building on these developments, the present study aims to

generate a cell-type-specific signature matrix derived from single-

nucleus RNA-seq (snRNA-seq) datasets. This matrix will enable

robust estimation of cellular composition in PitNET samples

analyzed by bulk RNA-seq. As a secondary aim, we seek to

leverage this approach to characterize the composition of the

TME, providing insights into stromal, immune, and other non-

neoplastic components that may influence PitNET biology and

clinical behavior.
2 Materials and methods

2.1 Data sources and code availability

Four normal adult human pituitary samples analyzed by

snRNA-seq were obtained from Zhang et al. (GEO: GSE178454)

(29). Additionally, 23 PitNETs analyzed by scRNA-seq were

retrieved from Yan et al., accessible at http://lifeome.net/supp/

pituitary (30). Bulk RNA-seq raw counts were obtained from

Neou et al. (E-MTAB-7768) (12) and da Silva-Júnior et al.

(GSE209903) (31). All computational codes used in this study are

available upon request.
2.2 Data preprocessing and quality control

Data preprocessing and quality control were performed in R (v.

4.4.1) using the Seurat package (version 5.2.1) separately for both

snRNA-seq and scRNA-seq datasets, following the workflow

described below. In the initial step, low-quality cells were filtered

out. Only cells with 1,000 < nFeature_RNA < 5,000, nCount_RNA >

200, and mitochondrial RNA content < 5% were retained. Cells

predicted as doublets by the DoubletFinder R package (version

2.0.4) were removed.

Pituitary samples were integrated using the merge function,

with batch effects corrected via the Harmony algorithm. Principal

Component Analysis (PCA) was applied to scaled data to reduce

dimensionality and technical noise, retaining the first 30 principal

components. Cell clustering was conducted using the FindClusters
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function, setting resolution = 0.6 for snRNA-seq and 0.5 for scRNA-

seq. UMAP embeddings were used for visualization. Cell cluster

annotation was based on classical pituitary cell-type markers (29,

32) (see Supplementary Table 1), in combination with automated

annotation using the SingleR package (version 2.6.0), applying the

label.main output and using the HumanPrimaryCellAtlasData as

a reference.
2.3 Cell type deconvolution algorithms

We employed two distinct strategies to estimate cell-type

composition: marker-based deconvolution and snRNA-seq-

based deconvolution.

For marker-based methods, we first normalized UMI (unique

molecular identifier) counts from processed snRNA-seq data to

counts per million (CPM), followed by natural-log transformation.

Highly differentially expressed genes (DEGs) were identified across

clusters using Seurat’s FindMarkers function (“bimod” method,

min.pct = 0.25). DEGs with adjusted p-value ≤ 0.05 and natural-log

fold change (logFC) > 1 were considered significant marker. To

ensure specificity, we applied a minimum expression threshold of

>1 CPM in at least one cell type within the final signature matrix.

We then generated gene expression signature (GES) reference

matrices by selecting the top 50, 100, 200, and 300 most highly

expressed genes per cell type (GES50, GES100, GES150, GES200,

GES300; Supplementary Table 2). These matrices were used for

deconvolution via the CIBERSORT R package (v0.1.0) (27),

applying a support vector regression (SVR) algorithm with 100

permutations to assess statistical significance. Deconvolution was

also performed with the MuSiC R package (v1.0.0) (28) using the

music_prop function with markers as arguments.

For snRNA-seq-based methods, we applied deconvolution

approaches that leverage full snRNA-seq-derived gene expression

matrices, avoiding reliance on predefined markers. Specifically, we

utilized CIBERSORTx and MuSiC. For CIBERSORTx (33), the full

gene expression matrix of single nuclei was analyzed locally using

the official Docker image (https://cibersortx.stanford.edu/), where

signature matrices were generated internally. The analysis was

performed with batch correction set to B-mode, quantile

normalization disabled, relative run mode, and 100 permutations.

Similarly, in MuSiC, raw expression matrices were used to compute

cross-subject-consistent cell-type proportions, following manual

parameter settings.
2.4 Validation on simulated and PitNET
pseudobulk data from snRNA-seq and
scRNA-seq

We validated our approach using both simulated and tumor

pseudobulk data (see below) derived from scRNA-seq and snRNA-

seq datasets respectively. For the simulation, gene expression

matrices, normalized to CPM, were extracted from individual

cells in the processed snRNA-seq dataset and used to generate
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pseudobulk profiles with the SimBu R package (v1.6.0). A random

mixing scenario was applied, selecting 500 single cells per

pseudobulk sample to generate 150 samples, without applying a

scaling factor. The simulation produced a pseudobulk expression

matrix alongside the corresponding true cellular proportions for

each bulk sample. To evaluate the accuracy of the deconvolution

algorithms, we performed a Pearson correlation coefficient analysis

using the cor function in base R, comparing true cellular

proportions with the estimated values for each cell type across all

software tools. Estimations with p-value < 0.05 and correlation

coefficient (r) > 0.70 were considered validated and robust.

Deconvolution results were visualized using correlation plots and

boxplots, generated with the ggplot2 R package (v3.5.1).

Additionally, we extracted normalized gene expression matrices

from 23 PitNET-derived scRNA-seq datasets to validate the method

on tumor-origin tissues, ensuring robustness across real biological

pseudobulk samples.
2.5 Processing and RNA-seq analysis of
GH-PitNETs

The study was conducted in accordance with ethical guidelines

consistent with the Declaration of Helsinki and was approved by the

Ethical Committee of Azienda Ospedaliera di Padova (approval no.

AOP1782). 10 GH-PitNETs were collected from active acromegalic

patients diagnosed according to current consensus criteria (34) and

treated with trans-sphenoidal surgery at Padova University/

Hospital. Tissue specimens underwent histopathological

processing, including fixation in 10% buffered formalin, paraffin

embedding, and hematoxylin/eosin staining for diagnostic

evaluation. Immunohistochemical analyses assessed pituitary

hormone and transcription factors expression following

international guidelines (35). A second fragment from each

sample was preserved in RNAlater (Ambion), stored at 4 °C for

24 hours, then maintained at −20 °C until RNA extraction.

Total RNA was extracted using the Quick-DNA/RNA kit

(Zymo Research, California, USA), following the manufacturer’s

protocol. RNA integrity and yield were assessed using an Agilent

2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) and a

NanoDrop spectrophotometer (NanoDrop Technologies),

respectively. DNA contamination was removed using the Turbo

DNA-free kit (Ambion).

RNA-seq libraries were prepared using KAPA™ RNA

HyperPrep with RiboErase (Roche, Indiana, USA) following

manufacturer’s recommendations. Sequencing on a NovaSeq X

Plus 25B (Illumina) generated 150 bp paired-end reads. Raw

FASTQ files underwent quality control using FastQC (v0.12.1)

and trimming of low-quality reads using Trimmomatic (v0.39).

Transcript abundances for human genes in ENSEMBL (release 113)

were estimated with Salmon (36) and summarized at the gene level

using tximport (37). Gene filtering followed expression-based

criteria outlined by Chen et al. (38), implemented in edgeR

(v4.2.2). Raw data are available upon request from the

corresponding author.
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2.6 Bulk RNA-seq deconvolution validation

To evaluate the performance of the signature in bulk RNA-seq

datasets, raw counts from both the in-silico dataset (12, 31) and 10

GH-PitNETs were converted to CPM using the cpm function from

the edgeR package. Each dataset was processed separately using the

best-performing deconvolution software and the optimal signature.

To investigate the expression patterns of specific cell type

marker genes (Supplementary Table 1) across the 10 GH-PitNET,

a heatmap was generated using the pheatmap package (v1.0.12) in

R, based on log-transformed expression values log10(CPM + 1).

To assess global transcriptomic heterogeneity and evaluate the

impact of normal residual tissue on sample distribution, the 10 GH-

PitNET samples were integrated with two external datasets and batch-

corrected using ComBat from the sva package (v3.54.0). For sample

clustering analysis, Euclidean distances were computed on the top 500

most variable genes using the dist() function. Hierarchical clustering was

performed with the complete linkage method via the base R function

hclust() and visualized using the dendextend package (v1.19.0).
3 Results

The results presented below stem from the analytical workflow

outlined in Supplementary Figure 1, which integrates datasets from

both normal pituitary tissue and PitNET. This framework enabled

the identification of cell type–specific gene signatures, their

validation using simulated bulk profiles, and subsequent

deconvolution analyses across multiple PitNET datasets.
3.1 Construction of integrated snRNA-seq
reference data

To establish a robust reference for deconvolution analyses, we

analyzed snRNA-seq data from four normal adult human anterior

pituitary samples (two male and two female donors) (29). After

applying stringent quality control, normalization, and integration,

we retained 18,367 high-quality single-nucleus transcriptomes for

downstream analysis. Cell type annotation, performed using

canonical marker genes (Supplementary Table 1) and the SingleR

package, enabled the identification of distinct cell populations

within the tissue (Figure 1).

Our analysis captured the full spectrum of all major endocrine

cell types, including somatotrophs, lactotrophs, thyrotrophs,

gonadotrophs, corticotrophs, PIT1-lineage progenitors (Pro-

PIT1), and resident stem cells (Figure 1A). Non-endocrine

populations were categorized into two functionally distinct

groups: (i) stromal and extracellular matrix-associated cells – such

as smooth muscle cells, endothelial cells, fibroblasts, astrocytes,

neurons, and epithelial cells – and (ii) immune cells, including

dendritic cells, macrophages, natural killer cells, monocytes, T cells,

and B cells (Figure 1B).
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3.2 Deconvolution methods validation on
simulated and PitNET pseudobulk RNA-seq

Using the snRNA-seq reference established above, we

systematically evaluated four deconvolution methods – grouped

into marker-based and snRNA-seq-based approaches – to

determine the most effective strategy for resolving tumor

composition and detecting residual normal tissue.

For marker-based deconvolution, cell-type-specific GES were

derived from snRNA-seq data (Supplementary Table 2) and applied

to deconvolute both simulated and PitNET-derived pseudobulk

datasets. CIBERSORT and MuSiC showed comparable overall

performance across the different GES sizes, with optimal results

observed for GES300 (CIBERSORT) and GES200 (MuSiC),

respectively (Figure 2A, Supplementary Figure 2A-B). Notably,

despite achieving high overall correlation, CIBERSORT

demonstrated reduced accuracy in detecting corticotroph cells

(Supplementary Figure 2A). In contrast, MuSiC achieved r > 0.8

across all major cell types in the simulated dataset, although its

performance decreased for populations representing <5% of total

cells (Supplementary Figure 2B). In the analysis of 23 PitNET-

derived pseudobulk samples, CIBERSORT showed greater precision

in detecting tumor cell populations, particularly somatotrophs.

However, both methods displayed limited accuracy in

characterizing silent and null cell tumors (Supplementary Table 3).

For snRNA-seq-based deconvolution, full expression matrices

were used without predefined markers. MuSiC exhibited lower

sensitivity than CIBERSORTx, particularly for corticotroph (r =

0.54) and gonadotroph cells (r = 0.30), both below the correlation

threshold (Figure 2A). In contrast, CIBERSORTx demonstrated

high sensitivity (r > 0.85) in estimating normal (Figure 2B) and

PitNET derived samples, except for silent and null tumors

(Supplementary Table 3). Given its robust performance,

CIBERSORTx was applied without pre-grouping cell types into

broader categories. The analysis included all cell populations

identified from the snRNA-seq dataset, except for dendritic cells,

fibroblasts, and B cells, which were excluded due to low

representation (fewer than 50 nuclei). CIBERSORTx maintained

high sensitivity for most cell types; however, its performance was

suboptimal for neurons (r = 0.05), NK cells (r = 0), smooth muscle

cells (r = 0.75), and astrocyte-like cells (r = 0.70). Despite

correlation values above the minimum threshold for the latter

two populations, the corresponding scatter plots showed greater

dispersion of data points (Supplementary Figure 2C), indicating

lower predictive consistency. In tumor samples, these poorly

correlated cell types – particularly neurons and smooth muscle

cells – were consistently overestimated. This overestimation may

have contributed to the underestimation of the pituitary cell

component observed across samples (Supplementary Table 3).

Based on overall performance in simulated and PitNET-derived

datasets, CIBERSORT with GES300 and CIBERSORTx were

selected as the optimal approaches for marker-based and single-

cell-based deconvolution, respectively.
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3.3 Cell-type estimation on bulk RNA-seq

To validate the selected deconvolution methods for detecting

normal tissue contamination in bulk RNA-seq data, we selected ten

surgically resected GH-PitNET from our biobank, pre-

characterized by IHC (Supplementary Table 1). The cohort

included five samples with no evidence of residual normal

pituitary tissue, and five samples with confirmed contamination

by anterior pituitary remnants. Notably, one of the latter also

contained fragments of the posterior pituitary.

Bulk RNA-seq was performed at an average depth of ~131.5 million

reads per sample. Transcriptomic deconvolution using the selected best-

performing methods consistently identified normal pituitary

components in the contaminated samples, in agreement with IHC

findings (Figure 3A). A heatmap of cell type–specific marker gene

expression further supported these observations. The five contaminated

samples clustered separately from the uncontaminated tumors and

exhibited higher expression of non-somatotroph pituitary lineage

markers (Figure 3B). Notably, sample S6 showed transcriptomic

evidence of posterior pituitary contamination not detected by IHC,

with marker gene expression confirming its presence. Conversely,

sample S9, identified by IHC as containing posterior pituitary

fragments, showed no matching transcriptomic signatures, displaying

instead a clear marker gene profile.

To further validate the deconvolution methods across other

PitNET subtypes, we analyzed two publicly available bulk RNA-seq

datasets encompassing various PitNET subtypes (12, 31). Across

both datasets, the selected deconvolution approaches consistently

demonstrated robust performance in estimating cell-type

proportions within hormonally active tumors. However, their
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accuracy declined substantially when applied to silent or null cell

PitNETs, consistent with previously reported limitations

(Supplementary Table 1).

Despite prior microdissection aimed at enriching neoplastic

content in both datasets, we identified additional samples with

normal tissue contamination. To assess the transcriptomic impact

of contamination, we performed hierarchical clustering of secreting

tumors (n = 114), integrating our samples with the two external

datasets. Seventeen samples, including our five contaminated ones,

consistently clustered either in a distinct group or with tumors of a

lineage different from their annotated origin (Figure 4). In

particular, the residual tissue often belonged to a pituitary lineage

distinct from the one indicated by the histotype. According to

CIBERSORTx and CIBERSORT, these samples exhibited average

contamination levels of 43% ± 19% and 37% ± 22%, respectively.

Eight samples (P002, P003, P0016; P054, P061; P063; P071; P120)

had already been annotated as displaying a mixed cellular

composition in Supplementary Table 1 of reference (12), further

supporting the presence of mixed histological architecture in these

tumors. The remaining samples showed lower average contamination

levels – 7% ± 10% with CIBERSORTx and 10% ± 14% with

CIBERSORT – mainly due to infiltration by subgroups within the

same pituitary lineage. This type of contamination is likely to have a

more limited effect on the overall tumor transcriptome.
4 Discussion

Bulk RNA-seq has provided valuable insights into the molecular

mechanisms and heterogeneity of PitNETs (12–17). However, a
FIGURE 1

UMAP plots of four normal pituitary snRNA-seq samples. (A) UMAP plot showing the integrated single-nucleus RNA-seq data from four normal
pituitary samples, with the major pituitary cell populations highlighted. (B) UMAP plot displaying only the pituitary microenvironmental cells subset,
with distinct stromal and immune cell populations identified using the SingleR package.
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major limitation of this approach is its inability to resolve the

distinct cellular components within tumor specimens, which

frequently include entrapped non-neoplastic pituitary cells (18,

39). Such cellular heterogeneity, if not adequately removed during

tissue processing, can distort gene expression profiles and confound

the interpretation of tumor-intrinsic transcriptional programs (19).

To overcome this limitation, several computational

deconvolution strategies have been developed to estimate the

cellular composition of samples analyzed using bulk RNA-seq

(26). These approaches rely either on predefined sets of marker

genes or on full gene expression matrices derived from scRNA-seq

or snRNA-seq datasets, enabling the inference of cell-type
Frontiers in Endocrinology 06
contribution to the observed transcriptomic profiles (27, 28, 33).

In the present study, we designed and validated a deconvolution

framework using different strategies and comparing methods (i.e.,

CIBERSORT, MuSiC, and CIBERSORTx) leveraging snRNA-seq

data from normal anterior pituitary tissue as a reference (26–28).

Using this reference, we achieved a highly accurate estimation of

cell-type composition in both simulated pseudobulk datasets and

PitNET-derived pseudobulk (30), offering a novel perspective on

intratumoral complexity and the presence of residual non-

neoplastic components. Applying full expression matrices,

CIBERSORTx consistently outperformed alternative methods in

both sensitivity and accuracy, particularly in hormonally active
FIGURE 2

Comparison of the performance of deconvolution methods in estimating individual cell types. (A) Bar plot showing the Pearson correlation
coefficients (r) between the estimated and true cell-type proportions across 150 simulated samples for each deconvolution method. The dashed line
indicates the limit performance threshold (r = 0.70). (B) Scatter plots displaying the correlation between estimated and true proportions for each cell
population using CIBERSORTx. MC: marker-based SC: single-cell based.
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tumors. Moreover, the use of CIBERSORTx at full resolution –

without collapsing cell types into broader categories – enabled the

identification of diverse cellular subsets within TME at higher

granularity. This approach demonstrated reliable performance

across diverse tumor profiles and captured the full spectrum of

cellular diversity. MuSiC and CIBERSORT, when applied with

curated gene signatures, yielded satisfactory results in simulated

datasets. However, MuSiC’s performance markedly declined in

PitNET samples, especially when estimating GH-PitNETs,

highlighting that CIBERSORT is preferable for marker-based

deconvolution. Nevertheless, marker-based tools overall

demonstrated limited sensitivity in resolving the diversity of TME

cell populations (data not shown), relative to the level of resolution

provided by CIBERSORTx.

CIBERSORTx offers greater analytical sensitivity, particularly

through batch correction strategies such as B-mode and S-mode,

which enhance both the robustness and comparability of

deconvolution across datasets (33, 40) Nevertheless, its broader use

may be limited by substantial computational demands and reliance

on cloud-based infrastructure. In contrast, CIBERSORT can be run

locally within the R environment, making it a practical choice for

preliminary analyses or use in settings with limited computational

resources (27). However, lower resolution and limited ability to

accurately capture the cellular diversity of the TME make it less

suitable for fine-grained profiling. A recurring limitation across all

evaluated deconvolution methods is their reduced reliability when
Frontiers in Endocrinology 07
applied to silent or null cell PitNETs – a challenge that is likely

attributable to extensive transcriptional alterations affecting key

lineage-specific marker genes (12, 31). In such cases, the molecular

identity of the tumor may be lost or severely blurred, making

conventional deconvolution approaches insufficient for their

accurate classification. This highlights the urgent need to identify

more specific and lineage-resilient transcriptional markers – a need

that, as discussed later, applies not only to these PitNETs subtypes but

to all other forms as well. Equally important is the integration of

transcriptomic data with complementary modalities, including

spatial and proteomic profiling, to achieve a more comprehensive

and biologically accurate characterization of tumor identity.

The application of deconvolution methods to our bulk RNA-seq

dataset from GH-PitNETs, proved effective in detecting non-

tumoral pituitary components in samples previously flagged as

contaminated by IHC. In samples S6 and S9, however,

transcriptomic and histological assessments yielded partially

divergent results regarding the type and extent of pituitary

contamination. Since the IHC and RNA-seq analyses were

performed on spatially distinct regions of the same specimen, this

discordance likely reflects genuine intratumoral heterogeneity,

which is part of the complex tissue architecture of PitNETs (41).

These findings underscore the importance of integrating post-

sequencing quality control strategies to assess both tissue integrity

and representativeness, particularly in highly heterogeneous tissues

such as PitNETs (42).
FIGURE 3

Bulk RNA-seq deconvolution of 10 GH-PitNETs. (A) Stacked bar plots representing the estimated proportions of pituitary cell types in 10 GH-PitNETs
(5 clean and 5 contaminated), obtained using CIBERSORT with the GES_300 signature (left) and CIBERSORTx (right). (B) Heatmap showing Z-score
normalized expression of marker genes for each pituitary cell type (as defined in Supplementary Table 1) across the 10 GH-PitNETs. Samples were
clustered using non-hierarchical clustering. Samples without normal residual tissue by IHC are highlighted in red; contaminated samples are in blue.
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To test our approach across different PitNET subtypes, we

extended deconvolution analyses to two independent public

RNA-seq datasets chosen for their robust experimental design

(12, 31). In both studies, tissue microdissection was performed

prior to RNA-seq to reduce contamination from residual normal

pituitary tissue. Our analysis identified some tumors with non-

negligible residual normal pituitary cell content, including all those

previously reported as having a heterogeneous composition by

Neou et al. (12). Interestingly, clustering analysis of the

aggregated dataset revealed that samples with contamination

levels exceeding 40% displayed divergent transcriptomic profiles

compared to lineage-matched tumors. This effect was especially

pronounced when contamination originated from histological

lineages distinct from the tumor. Notably, a considerable subset

of these samples, drawn from across all three datasets, formed a

separate transcriptomic cluster. This apparent distinct molecular

entity, however, was clearly a misleading artifact of contamination.

The clustering of contaminated samples from independent cohorts

validates the robustness of our deconvolution pipeline in

consistently resolving biologically confounded profiles. These

results underscore the significant risk of misinterpretation in bulk

transcriptomic studies when contamination is not properly addressed
Frontiers in Endocrinology 08
(43). In this context, deconvolution methods serve not only as

essential quality control tools for bulk RNA-seq workflows, but also

as effective strategies for detecting hidden non-tumoral components,

even in well-processed samples. Moreover, by enabling the detection

and exclusion of biologically contaminated samples, deconvolution

methods facilitate the integration of heterogeneous datasets within a

shared compositional framework. This enhances cross-study

comparability based on cell-type representation complementing

technical batch adjustment strategies.

The broader applicability of deconvolution methods also has

important implications for the design of future transcriptomic

studies. Notably, the Neou et al. dataset of microdissected

samples shows contamination in approximately 10% of cases. In

contrast, our unpublished RNA-seq cohort, which was generated

without such refinement, shows contamination in about 20% of

cases. These figures offer a useful benchmark for anticipating the

impact of tissue heterogeneity and estimating the sample size

needed to maintain statistical power in contamination-aware

analyses (44).

Beyond contamination-aware analysis, deconvolution also

enables deeper investigation of the tumor microenvironment. In

this study, we aimed to derive a signature for identifying TME
FIGURE 4

Hierarchical clustering of 114 secreting PitNETs across three integrated datasets. Clustering was performed on the 500 most variable genes after
batch correction (distance: Euclidean; linkage: complete). Annotation bars indicate the histological classification of each tumor and the relative
proportion of pituitary cell types inferred by CIBERSORTx deconvolution. Samples enclosed in the orange box or marked with a triangle show
transcriptomic profiles that diverge from their histological assignment, reflecting contamination from other pituitary lineages.
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cellular populations, focusing in particular on immune components

that critically influence tumor progression across cancers (45). In

PitNETs, this area remains underexplored, though recent scRNA-

seq studies have begun to provide valuable insights (25, 30, 46).

These tumors display a heterogeneous TME (30), with immune

composition influenced by tumor hormone secretion: immune cells

account for about 3% in functioning tumors and up to 7% in non-

functioning ones (30, 47). Among immune cells, macrophages are

the most abundant, followed by T cells, and NK cells, while B cells,

dendritic cells, neutrophils, and eosinophils are less represented (47,

4 8 ) . F u n c t i o n a l l y , l ym p h o i d - d om i n a n t immu n e

microenvironments are associated with early recurrence, and T

cells tend to be more frequent in invasive tumors (47, 49).

Macrophages subsets also interact with tumor cells, modulating

growth and invasiveness (25). In this context, CIBERSORTx proved

useful for estimating immune cell composition. However, its

accuracy was limited by the underrepresentation of stromal and

immune cells in the snRNA-seq dataset (29) used to build the

reference matrix. This affected the estimation of populations such as

dendritic cells, fibroblasts, and B cells, and reduced the precision for

identifying neurons, NK cells, and astrocyte-like cells. Nevertheless,

the inferred immune infiltration pattern aligned with previous

descriptions of pituitary inflammatory microenvironments,

predominantly involving macrophages (25, 30), monocytes (50),

T cells (30, 46), and capillary endothelial cells. Unfortunately, the

low number of immune cells in the dataset prevented the derivation

of a specific signature to distinguish activated from non-activated

immune states – an area where CIBERSORTx has shown strong

performance in other tumor contexts (51).

Despite the clear benefits of applying deconvolution methods to

pituitary bulk RNA-seq data, this study also presents notable

limitations. A key issue concerns the reference signatures, which

were derived exclusively from normal pituitary tissue. While

methodologically pragmatic, this choice introduces interpretative bias

when analyzing tumor-derived bulk samples. PitNETs often undergo

profound transcriptomic remodeling due to oncogenic transformation,

hormonal dysregulation, and lineage plasticity. These changes can lead

deconvolution algorithms to misassign expression patterns to

unrelated cell types, especially when using static, physiology-based

reference matrices. A representative example is found in

somatotropinomas: several samples showed apparent proPIT1 or

lactotroph signatures. These signals likely reflect tumor-intrinsic

reprogramming – such as hormone co-secretion or lineage overlap –

rather than true contamination by normal cells. This highlights a

broader limitation: current deconvolution methods often lack the

resolution to distinguish between bona fide residual tissue from

neoplastic mimicry, particularly in transcriptionally unstable or

mixed-lineage tumors. At present, integrating immunohistochemical

data may help validate or refine deconvolution outputs and reduces

biases from normal tissue references. However, the lack of tumor-

specific single-cell atlases limits the development of tailored reference

profiles. Until such resources become available, healthy tissue-based

matrices will remain a practical but suboptimal solution for dissecting

tumor complexity.
Frontiers in Endocrinology 09
In summary, this study shows that integrating snRNA-seq data

with deconvolution methods improves the interpretation of bulk

transcriptomic data in PitNETs. Despite limitations related to the

biology complexity of pituitary tumors and the incomplete cellular

coverage of current single-cell references, this approach may

represent a key step toward more precise, reproducible, and

clinically meaningful transcriptomic profiling. By clarifying tumor

heterogeneity and cellular composition, it may support prognostic

assessment and guide patient-specific therapies. Still, its full

potential depends on the development of a comprehensive single-

cell atlas that includes all tumor subtypes, normal and stromal

components, and both functional and non-functional conditions.
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Schematic overview of the workflow used for signature derivation, method

validation, and application of deconvolution techniques to PitNET datasets.

SUPPLEMENTARY FIGURE 2

This figure illustrates correlation plots comparing the performance of
marker-based and single-cell–based deconvolution methods across

normal pituitary and stromal cell populations.

SUPPLEMENTARY TABLE 1

This table lists the marker genes used to identify cell populations in the
snRNA-seq analysis. It also includes immunohistochemistry results from 10

GH-PitNETs. Finally, it reports the deconvolution outputs generated by

CIBERSORT and CIBERSORTx for the 10 GH-PitNETs, as well as for samples
from Neou et al. and Silva-J. studies.

SUPPLEMENTARY TABLE 2

This table reports the five generated gene expression signature used as
reference for CIBERSORT

SUPPLEMENTARY TABLE 3

This table reports the true cell-type proportions of the 150 simulated bulk

RNA-seq samples, the cell-type proportions obtained from single-cell RNA-
seq pro!les of 23 PitNET samples, and the estimated proportions generated by

the various deconvolution methods applied to these samples.
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