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Background: Gestational diabetes mellitus (GDM) is characterized by vascular

dysfunction and is associated with adverse perinatal outcomes for both the

mother and fetus. Microvascular index (MVI) is a non-invasive marker of

microvascular function assessed by microvascular flow imaging (MV-Flow).

This study aimed to evaluate the performance of conventional Doppler

ultrasound and MV-Flow in delineating the placental microvessels and to

explore the feasibility and potential clinical value of using MV-Flow for

placental function in GDM women.

Methods: This study included women with singleton pregnancies at 28–36

weeks of gestation and was conducted between November 2023 and January

2025. All women underwent routine prenatal ultrasound and MV-Flow. GDM

women were stratified into two subgroups by glycated hemoglobin A1c (HbA1c)

value: GDM1 (HbA1c ≤ 5.5%) and GDM2 (HbA1c > 5.5%). Comparisons of data were

made using parametric and non-parametric tests between the non-GDM group

and the GDM group. Correlation between MVImean and neonate birthweight was

assessed using Pearson’s correlation coefficient. Multivariate analysis was

performed using general linear regression models of factors associated with

GDM. Receiver operating characteristic curve analysis was conducted to

determine the optimal MVI threshold for distinguishing between participants

with GDM and those without.

Results: The study population included 92 controls and 88 women with GDM. In

the GDM group, compared to the control, there was significantly higher MVImean

of placenta (P = 0.031). There was no significant difference between the GDM2

group and the control group in terms of MVImean. There was a moderate

correlation of placental MVImean with neonate birthweight (r = 0.539;

P < 0.001). Based on the Youden index, the placental MVImean threshold that

best discriminated between participants with GDM and those without was

38.95%, with a maximum achievable sensitivity of 62.9% and a specificity

of 69.6%.

Conclusions: Placental microvascular blood flow can be visualized and

quantified in women with GDM using MV-Flow.
KEYWORDS
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Introduction
Gestational diabetes mellitus (GDM) is defined as an abnormal

glucose tolerance first detected during pregnancy, and it affects

approximately 14% of pregnancies annually worldwide (1). GDM is

significantly associated with adverse pregnancy outcomes, including

macrosomia, pre-eclampsia, fetal growth restriction, and preterm

delivery (2). Glycated hemoglobin (HbA1c) reflects the average

blood glucose over the most recent 2- to 3-month period (3).

Although HbA1c has limited utility as a diagnostic tool for GDM,

it has been shown to be a reliable predictor of adverse outcomes

associated with the condition (4, 5). According to the American

Diabetes Association Professional Practice Committee, a target of

HbA1c <6% is optimal during the third trimester (6). In a large

cohort of women with GDM, Barbry et al. (7) found that a baseline

of HbA1c <5.6% predicted an increased risk of several adverse

pregnancy outcomes.

The primary function of the placenta is to facilitate the

exchange of substances between the mother and the fetus,

ensuring the growth and development of the fetus. Mild to

moderate placental dysfunction may impair the supply of

nutrients and oxygen to the fetus, resulting in fetal distress and

acquired brain damage, which may lead to lifelong diseases in the

offspring (8). Previous studies demonstrated that GDM was

associated with impaired placental development, showing villous

immaturity or alterations in villous branching (9, 10). However,

postnatal histopathological examination of the placenta cannot

yield clinical biomarkers to inform the clinical management of

pregnancy. It is uncertain whether placental perfusion changes can

be observed in utero and whether these changes are influenced by

the level of glycemic control in pregnant women.

At present, Doppler ultrasound forms the gold standard for

monitoring placental insufficiency in clinical practice. Absent and

reverse end-diastolic umbilical artery blood flow and the ductus

venosus reversed a-wave indicate fetal death risk (11, 12). However,

Doppler ultrasound is poorly sensitive to subtle changes in placental

function and may not be altered until there are large disruptions.

Previous studies have shown that microvascular flow imaging (MV-

Flow) can display the stem villi and their branches and quantify

placental microvascular structure (13, 14). The placental

microvascular index (MVI) is a sensitive indicator of placental

microcirculation (15). Chen et al. (16) found that the placental MVI

in the group with congenital heart diseases and extracardiac

malformations was significantly lower than that in the normal

control group by MV-Flow. However, there is limited

information about placental microvascular function in women

with GDM. The placenta is a highly vascularized organ with

branches of the umbilical artery and umbilical vein in the villi

(17). Microvascular disease is a specific complication of diabetes

mellitus (18, 19). The typical changes include microvascular

basement membrane thickening and microcirculation

dysfunction (20).

The objectives of this study were to accurately define placental

microvascular function using MV-Flow in women with GDM and
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to compare these data to those obtained from women

without GDM.
Materials and methods

Study population

A prospective cohort study design was utilized in this study. All

pregnant women who participated in this study were recruited from

November 2023 to January 2025 in our hospital and provided

written or oral informed consent. This study was approved by the

Ethics Committee of Obstetrics and Gynecology Hospital of Fudan

University (Approval number: kyy2022-165). Singleton pregnancies

with living fetuses and a gestational age (GA) of 28–36 weeks were

identified in the cohort. The inclusion criteria were diagnosis of

GDM confirmed by the oral glucose tolerance test (OGTT), age ≥18

years, and a pre-gestational body mass index (pre-BMI) <35 kg/m2.

The inclusion criteria of the control group were as follows: 1)

healthy women, 2) with euglycemia during pregnancy, and 3) with

normal ultrasound scans and Doppler results. The common

exclusion criteria for both groups were multiple pregnancies,

major fetal abnormalities, abnormal karyotype, and pre-existing

diabetes mellitus. A diagnosis of GDM was made at 24–28 weeks of

gestation if the plasma glucose levels measured from the 75-g

OGTT were met or exceeded in any of the following stages: 1)

fasting: ≥ 5.1 mmol/L; 2) 1 h: ≥10.0 mmol/L; and 3) 2 h: ≥8.5 mmol/

L (21). Women with GDM were categorized based on their HbA1c

values before delivery as GDM1 (HbA1c ≤ 5.5%) or GDM2 (HbA1c >

5.5%) (6, 7, 22).
Maternal and fetal characteristics

We recorded information on maternal age, pre-BMI, pre-

pregnant weight, pre-labor weight, gestational age at delivery,

ultrasound scan, OGTT result, HbA1c value before delivery,

gravidity, parity, mode of delivery, neonate gender, Apgar score,

and birthweight. At the clinic visit, we measured pre-pregnant and

pre-labor weight and calculated gestational weight gain.
Ultrasound imaging protocol

The prenatal ultrasound examinations were performed by an

experienced sonographer transabdominally using the Samsung

Hera W10 ultrasound systems (Samsung Medison Co., Gangwon-

do, Korea) equipped with a curved transducer (2–9 MHz) and MV-

Flow™ imaging technique. The name of the participant from the

work list of the department was searched and checked, the date of

the last menstrual period was entered, the appropriate obstetrical

examination condition was set, and prenatal ultrasonography on

the participant was performed according to the International

Society of Ultrasound in Obstetrics and Gynecology (ISUOG)

practice guidelines (23–26). Key metrics were recorded including
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placental thickness, maturity grade, umbilical artery (UmA) peak

systolic velocity/end diastolic velocity (S/D), resistive index (RI),

middle cerebral artery (MCA), pulsatility index (PI), RI, peak

systolic velocity (PSV), uterine artery (UtA) PI, and UtA RI.

A two-dimensional transabdominal scan was performed to

acquire a distinct image of the sagittal plane of the placenta. The

instrument was set to the MV-Flow mode (frame avg = 8, dynamic

range = 27, smooth = 1, filter = 3, sensitivity = 32, color map = 2),

with the mechanical index and the thermal index adjusted to safe

levels. The area of interest (ROI) was traced elliptically and

displayed in square centimeters. Two-dimensional ultrasound

images of the placental microvascular perfusion of the upper,

middle, and lower sites were obtained, and the MVI values of the

placenta were measured automatically (Figure 1). To represent the

overall vessel microperfusion of the placenta, the mean MVI value

(MVImean) of the three sites was calculated for analysis. All placental

MV-Flow analyses were performed by the study sonographer who

underwent training with radiologist expertise in placental

microvascular flow imaging and was blinded to maternal

characteristics and GDM status. To assess the reproducibility of

measurements, 40 cases from the control and GDM group were

selected by stratified samplings, and measurements were taken by

an expert investigator and then by the study sonographer, both of

whom were blinded to previous measurements.
Statistical analysis

Statistical analyses and graphs were conducted using SPSS 26.0

(IBM Corp., Armonk, NY, USA) and GraphPad Prism 9.5

(GraphPad Software, San Diego, CA, USA). Normally distributed

continuous variables were presented as mean ± SD, and variables

not following a normal distribution were presented as median
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(interquartile range, IQR). Nominal variables were summarized as

number and percentage. The Student’s t-test or the Kruskal–Wallis

test and the chi-square test were used to perform between-group

comparisons of continuous and categorical variables, respectively,

using post hoc SNK correction to adjust for multiple comparisons

when necessary. Pearson correlation was used to evaluate the

bivariate correlation between birthweight and MVImean. General

linear regression modeling was used to determine the associations

between MVImean (%), pre-BMI (kg/m2), and pregnancy weight

gain (kg) with birthweight (g). Standardized beta coefficients were

estimated via multiple regression analysis to identify the variable

most strongly associated with neonate birthweight. Independent

variables did not show evidence of multicollinearity, with bivariate

correlation coefficients <0.80. Intraclass correlation analysis was

used to assess the intra- and interobserver variability of measuring

placental MVI. Intraclass correlation coefficient (ICC) >0.70 was

generally considered to be a good agreement. A P-value <0.05 was

considered statistically significant.
Results

Baseline characteristics

A total of 88 women with GDM and 92 non-diabetic pregnant

controls were included in the analysis. With the exception of 10

participants in the GDM group who lacked complete medical

records, all the other participants had a complete dataset. Baseline

characteristics and birth outcomes of the two groups are given in

Table 1. Compared with controls, women with GDM were

significantly older (P = 0.001), had a heavier pre-pregnant weight

(59.89 ± 9.99 vs. 55.15 ± 6.06 kg, P < 0.001), had a higher pre-BMI

(22.77 ± 3.42 vs. 20.92 ± 2.31 kg/m2, P < 0.001), and had a thinner
FIGURE 1

Demonstration of placental assessment using MV-Flow.
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TABLE 1 Demographic characteristics of the participants included in the study.

Characteristics Non-GDM (n = 92) GDM (n = 88) P

Age (years) 30.5 (28, 33) 32 (30, 35) 0.001*

Height (m) 1.63 ± 0.05 1.62 ± 0.05 0.514

Pre-pregnant weight (kg) 55.15 ± 6.06 59.89 ± 9.99 <0.001*

Pre-BMI (kg/m2) 20.92 ± 2.31 22.77 ± 3.42 <0.001*

Gestational weight gain (kg) 14 (10.5, 16.39) 10.9 (7.05, 15.15) <0.001*

GA at scan (weeks) 29.6 (28.9, 33.7) 32.65 (30.3, 34.68) <0.001*

Parity 0.033*

Parous

Previous GDM 0 (0.0) 1 (1.28)

No previous GDM 15 (16.30) 23 (29.49)

Nulliparous 77 (83.70) 54 (69.23)

Treatment for GDM

Diet – 56 (71.79)

Insulin – 16 (20.51)

Insulin with metformin – 6 (7.69)

Medical history

HDP 5 (5.43) 11 (14.10) 0.054

SLE/APS 0 (0.0) 2 (2.56) 0.209

GA at delivery (weeks) 39.6 (38.7, 40.25) 39.2 (38.4, 39.9) 0.053

Mode of delivery 0.183

Vaginal birth 61 (66.30) 59 (75.64)

Cesarean section 31 (33.70) 19 (24.36)

HbA1c 4.8 (4.6, 5) 5.2 (5, 5.4) <0.001*

BW (g) 3,285 (3,085, 3,492.5) 3,210 (3,035, 3,425) 0.153

BW category 0.082

SGA 0 (0.0) 3 (3.85)

AGA 91 (98.9) 72 (92.30)

LGA 1 (1.1) 3 (3.85)

Male neonatal sex 47 (51.1) 45 (57.69) 0.389

Preterm birth 0 (0.0) 5 (6.41) 0.044*

1-min Apgar score <7 0 (0.0) 3 (3.84) 0.189

Acidosis (pH ≤7.0 or lactate >6) 0 (0.0) 2 (2.56) 0.209

NICU admission 0 (0.0) 1 (1.28) 0.459

Respiratory distress 0 (0.0) 2 (2.56) 0.209

Hyperglycemia 0 (0.0) 2 (2.56) 0.209
F
rontiers in Endocrinology
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Data are shown as mean ± SD, median (interquartile range), or n (%). Comparisons between groups were made using chi-square or Fisher’s exact test for categorical variables and Student’s t-test
or Mann–Whitney U-test for continuous variables.
GA, gestational age; BMI, body mass index; HDP, hypertensive disorders of pregnancy; SLE, systemic lupus erythematosus; APS, antiphospholipid syndrome; BW, birthweight; SGA, small for
gestational age; AGA, appropriate for gestational age; LGA, large for gestational age; NICU, neonatal intensive care unit.
*P < 0.05.
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gestational weight gain [10.9 (IQR, 7.05–15.15) vs. 14 (IQR, 10.5–

16.39) kg, P < 0.001]. The gestational age at the time of a scan was

later in the GDM group [32.65 (IQR, 30.3–34.68) vs. 29.6 (IQR,

28.9–33.7) weeks, P < 0.001). Among the GDM participants, 20.51%

were on insulin alone, 7.69% were on insulin and metformin in

combination, and 71.79% were on dietary management. Four cases

followed spontaneous labor with intact membranes, and one case

followed preterm premature rupture of the membranes. GDM

pregnancies were associated with a significantly increased rate of

preterm delivery (6.41% vs. 0%, P = 0.044), but insignificantly

reduced final birthweight [3,210 (IQR, 3,035–3,425) vs. 3,285 (IQR,

3,085–3,492.5) g, P = 0.153]. No significant differences were

observed between the two groups with respect to maternal height,

prevalence of maternal hypertensive disorders of pregnancy,

gestational age at delivery, rate of male neonate, neonatal NICU

admission, respiratory distress, or hyperglycemia. Of note,

prothrombin time (P = 0.392), activated partial thromboplastin

time (P = 0.372), fibrinogen (P = 0.315), thrombin time (P = 0.836),

and D-dimer (P = 0.13) did not differ significantly between the

two groups.
Ultrasound assessment at 28–36 weeks of
gestation

Ultrasound measurements for participants with GDM or

uncomplicated pregnancies are summarized in Table 2. There was

no significant difference in the prevalence of bilateral notch uterine
Frontiers in Endocrinology 05
artery at 11–14 weeks between the control and GDM1 group, but

the GDM2 group had higher values compared to the other two

groups. Women in the GDM2 group, compared with those in the

GDM1 group, had greater MCA PI during pregnancy. Compared

with controls, women with GDM had significantly higher placental

MVImean (P = 0.031, Figure 2). The placental MVImean of the

control or GDM2 group was significantly lower than that of the

GDM1 group (all P < 0.05). Figure 2 also shows group comparisons

between the control, the GDM1 group, and the GDM2 group

regarding each of the three MV-Flow parameters obtained in the

placenta. Participants in the GDM1 group had greater MVI values

in the upper or lower parts of the placenta than participants in the

control and GDM2 group (all P < 0.05). None of the MVI in the

other parts of the placenta showed group differences. There was no

significant difference in mean UtA PI, mean UtA RI, UmA PI, UmA

RI, UmA S/D, MCA RI, MCA PSV, cerebroplacental ratio, placental

thickness, and maturity grading between the groups.

In addition, MV-Flow imaging was able to depict smaller, slow-

flow vessels within the placenta, which were not visible using

routine Doppler ultrasound (Figure 3). Figure 2 shows group

comparisons between the control, the GDM1 group, and the

GDM2 group regarding each of the three MV-Flow parameters

obtained in the placenta. Participants in the GDM1 group had

greater MVI values in the upper or lower parts of the placenta than

participants in the control and GDM2 group (all P < 0.05). None of

the MVI in the other parts of the placenta showed group differences.

There was a moderate correlation between MVImean (%) and

birthweight (g) in the GDM1 group (Pearson: r = 0.539;
TABLE 2 Ultrasound parameters.

Variable
Group

P
Control (n = 92) GDM1 (n = 70) GDM2 (n = 18)

Mean UtA PI 1.65 ± 0.55 1.61 ± 0.49 1.82 ± 0.52 0.372

Mean UtA RI 0.73 (0.66–0.82) 0.74 (0.66–0.79) 0.75 (0.72–0.82) 0.308

Bilateral notch UtA 13 (14.13%) 7 (12.96%) 8 (53.33%)ab 0.003*

UmA PI 0.96 ± 0.16 0.97 ± 0.15 1 ± 0.19 0.489

UmA RI 0.63 (0.58–0.66) 0.64 (0.59–0.66) 0.64 (0.59–0.71) 0.593

UmA S/D 2.68 (2.39–2.94) 2.69 (2.45–2.91) 2.79 (2.42–3.5) 0.379

MCA PI 2.06 ± 0.4 1.89 ± 0.29 2.19 ± 0.36b 0.006*

MCA RI 0.86 (0.81–0.9) 0.84 (0.81–0.88) 0.88 (0.86–0.9) 0.132

MCA PSV (cm/s) 40.88 ± 6.84 39.08 ± 8.12 40.8 ± 9.64 0.345

Cerebroplacental ratio 2.07 (1.81–2.54) 1.93 (1.73–2.32) 2.29 (1.99–2.53) 0.076

Placental parameters

Thickness (mm) 31.37 ± 4.27 33.17 ± 4.44 32.65 ± 3.71 0.211

Maturity grading 2 (1–2) 2 (1–2) 2 (1–2) 0.456

MVImean (%) 37.25 (35.93–40.28) 40.35 (36.38–45.08)a 35.95 (26.75–42.1)b 0.004*
Data are given as mean ± SD, median (range), or n (%).
UtA, uterine artery; UmA, umbilical artery; MCA, middle cerebral artery; PI, pulsatility index; RI, resistive index; PSV, peak systolic velocity; S/D, peak systolic velocity/end diastolic velocity;
MVImean, mean microvascular index.
aP < 0.05 vs. control.
bP < 0.05 vs. GDM1; *P < 0.05.
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P < 0.001). However, there was no significant correlation between

MVImean (%) and birthweight (g) in the GDM2 group (Pearson: r =

−0.416; P = 0.109). In the secondary analyses within GDM1, higher

MVImean (40.81% ± 7.83%) was significantly associated with higher

neonate birthweight (3,135.41 ± 370.64 g) (adj.R2 = 0.28, F = 24.22,

P < 0.001; t = 4.92, P < 0.001; standardized b = 0.539) (Figure 4).

Pregnancy weight gain, pre-BMI, MVImean, and birthweight were

included in the multivariable analysis. MVImean, pregnancy weight

gain, and pre-BMI were positively associated with birthweight

(standardized b = 0.532, P < 0.001; standardized b = 0.236,

P = 0.027; standardized b = 0.307, P = 0.004, respectively). The

receiver operating characteristic (ROC) curve analysis indicated

that MVImean can well discriminate the normal and GDM

pregnancies, with an area under the curve (AUC) value of 0.593

([95% CI, 0.507–0.68]; P = 0.031; Figure 5). The sensitivity and

specificity of MVImean for discriminating between normal and

GDM pregnancies were 56.8% and 69.6%, respectively. After the

GDM2 group was excluded from the GDM group, the results
Frontiers in Endocrinology 06
suggested that MVImean was able to separate well GDM

pregnancies from normal pregnancies, with an AUC value of

0.639 ([95% CI, 0.547–0.731]; P = 0.003; Figure 5). The Youden

index, indicating the optimal point along the ROC curve for GDM

prediction, was calculated at the MVImean level of 38.95%, with a

specificity of 69.6% and sensitivity of 62.9% at this level.
Repeatability test

The placental MVImean measurements were performed twice

on placentas from 20 women in the control group, 15 women in

the GDM1 group, and 5 women in the GDM2 group by the

study sonographer. The consistency of the study sonographer’s

measurements was good. The ICC values for the study sonographer’s

measurements (conducted twice) were 0.80, 0.94, and 0.84, respectively.

The consistency between the values of the two doctors’ measurements

was good, with ICC values of 0.90, 0.93, and 0.72, respectively.
FIGURE 3

Placental imaging by routine Doppler ultrasound (left) and MV-Flow (right).
FIGURE 2

Box plots of MVI values in the control (n = 92), GDM (n = 88), GDM1 (n = 70), and GDM2 (n = 18) groups. Statistics was performed by the Mann–Whitney
or Kruskal–Wallis test. **P < 0.01; *P < 0.05; nsP > 0.05.
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Discussion

Main findings

To our knowledge, this is the first study to evaluate the

association between placental MVImean and neonate birthweight

in participants with GDM. Our main findings were that placental

MVImean were moderately associated with neonate birthweight in

participants who had GDM with good glycemic control. Of the

variables evaluated in this paper, placental MVImean was found to be

most strongly associated with neonate birthweight. In this study, we

demonstrated that women with GDM, compared to those without

GDM, showed an increase in placental function. There were no

significant differences between the normal pregnancies and the
Frontiers in Endocrinology 07
GDM group with poor glycemic control in placental MVImean

assessed by MV-Flow. These data suggest that cerebroplacental

ratio, placental thickness, and maturity grading have not been

affected within the development of GDM so far and that MV-

Flow imaging is a sensitive ultrasonic Doppler imaging technology

to assess early placental functional changes in women with GDM.
Interpretation

Our work in GDM women demonstrated that the placental

MVImean initially increased and subsequently decreased when

comparing the GDM1 group to the GDM2 group, which was

partly consistent with a previous study (27). However, the

previous study did not include GDM women with poor glycemic

control . Driven by maternal hyperglycemia and fetal

hyperinsulinemia in pregnancies complicated by GDM, fetal

metabolic demands increase significantly, resulting in a relatively

placental hypoxic environment (28). This condition activates key

signaling pathways, including HIF-1a and VEGF, thereby

triggering the placental angiogenic response (29). This initial

response is evident on MV-Flow imaging as elevated placental

MVI. Continuous high-glucose environments can activate the

glycolysis pathway and induce excessive reactive oxygen species

production, increasing oxidative stress, which causes mitochondrial

defects, cellular apoptosis, and inflammation (30). Placentas from

women with GDM have decreased regulatory T cells and increased

NK cells, neutrophil infiltration and activation, and macrophage

activation (31). Significantly upregulated pathways in GDM

placentas included several immune responses (IL-1b, IL-2, IL-6,
TNFa, IFNg, TGF-b) and downregulation of glycolysis and cell

cycle pathways (31–33). This pro-inflammatory and pro-oxidative

environment promotes the upregulation of sFlt-1 (anti-angiogenic

factor) while simultaneously reducing the reactivity of vascular
FIGURE 5

ROC analysis of MVImean to discriminate normal and GDM pregnancies. Left figure, control group and the GDM group. Right figure, control group
and the GDM1 group. AUC, area under the curve; MVImean, mean microvascular index.
FIGURE 4

Significant association between birthweight and MVImean for the
GDM1 group. The dotted lines represent the 95% confidence
interval.
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endothelial cells to VEGF and PlGF (pro-angiogenic factors),

thereby interfering with the balance of angiogenic factors (34, 35).

However, this vascular proliferation represents a spectrum of

adaptation—from successful “adaptive compensation” to failed

“pathological decompensation.” The ultimate impact on

pregnancy outcomes depends on the structural and functional

integrity of the newly formed blood vessels (36). Studies of gross

morphology and histoarchitecture in placentas delivered from

GDM pregnancies consistently reported increased placental size,

weight, thickness, chronic parenchymal inflammation, villous

immaturity, and vascular thrombosis when compared to

uncomplicated pregnancies (37–39).

To assess the whole placental status of our participants, we also

used the Doppler ultrasound technique, which provides information

on UtA and UmA hemodynamics. Our results demonstrated no

statistically significant differences in the hemodynamic parameters

(PI, RI, and S/D) of the UtA and UmA across the three groups. Prior

literature has observed UmA Doppler deterioration in severe cases

with placental vascular dysfunction (40–42). This means the results of

umbilical artery Doppler imaging may be a late marker of placental

dysfunction. MV-Flow can detect early changes in placental

microvascular density, representing a key advantage over

traditional Doppler techniques. It can also offer a clearer display of

villi and a greater sensitivity to low flow. In addition, our analysis

found that fetal MCA-PI in GDM2 pregnancies is higher than in

GDM1 pregnancies, indicating a greater degree of fetal hypoxia,

which is consistent with a previous study (43).

A well-developed placental microvascular network provides a

more efficient interface for maternal–fetal exchange and ensures a

more robust blood supply to support fetal development. This directly

enhances the fetal uptake of essential nutrients, including glucose,

amino acids, and fatty acids, thereby supporting normal and, in some

cases, accelerated growth (44, 45). Our finding of a positive

relationship between MVImean and birthweight in the GDM1

group, which is approximately in line with a previous work using a

large-scale sample, shows that the placental–fetal growth nexus is

reflected by a positive correlation (r = 0.6) between the placenta and

birthweight (46). Therefore, this discovery provides direct imaging

evidence that placental microvascular network serves as an important

factor of fetal weight. In the subgroup with poor glycemic control, the

association between MVImean and birthweight was attenuated or no

longer evident, potentially attributable to microvascular dysfunction.

This MVImean cannot represent the efficiency of material exchange in

the placental microcirculation. Prolonged exposure of the fetus to a

hyperglycemia-induced hyperinsulinemic environment resulting

from maternal hyperglycemia enhances protein and fat synthesis,

thereby promoting excessive fetal growth and increasing the risk of

macrosomia (47). Chronic hyperglycemia may result in dysfunction

of villous vascular endothelial cells, thickening of the vascular

basement membrane, and even microthrombosis (48). The

presence of both 6.25% small-for-gestational-age and 18.75% large-

for-gestational-age infants in the poor glycemic control group was

observed, which is consistent with the aforementioned finding.

Our study investigating the diagnostication of GDM1 based on

the placental MVImean alone in the third trimester reported an AUC
Frontiers in Endocrinology 08
of 0.639. Its clinical utility and diagnostic power are fundamentally

limited. MV-Flow may capture a component of the placental

pathophysiological changes associated with GDM but lacks the

discriminatory strength to serve as a robust standalone diagnostic

or screening tool. The limited diagnostic accuracy of MV-Flow may

be attributed to inherent limitations in its technical principles as

well as a high degree of operator dependency (49). MV-Flow is

designed to visualize low-velocity blood flow; however, this

capability may increase susceptibility to motion artifacts and

could be constrained by the probe’s penetration depth and spatial

resolution. Based on the above limitations, we believe that the role

of MV-Flow in clinical practice should be redefined as an

exploratory and auxiliary tool. Its main value lies in

complementing rather than replacing traditional color Doppler

ultrasound and other mature imaging methods (such as contrast-

enhanced ultrasound or magnetic resonance imaging). We believe

that it is more accurate to position placental MVImean as a

functional imaging biomarker, which has both prognostic and

monitoring potential, but it is not yet suitable for independent

diagnosis. There are conflicting reports of the impact of GDM on

sFLt-1, PlGF, and its ratio. While Pankiewicz et al. (50) and Noonan

et al. (51) found no significant difference in the sFlt-1/PlGF ratio

when comparing individuals with GDM and pre-eclampsia (PE)

and individuals with PE, Nuzzo et al. (34) found that the sFlt-1/

PlGF ratio was significantly lower in individuals with GDM-PE

than individuals with PE. Gibbons et al. (43) reported that low

cerebroplacental ratio was associated with poorer neonatal outcome

in women with GDM. However, Cardinali et al. (52) showed that

cerebroplacental ratio is associated but not predictive of adverse

perinatal outcome in pregnancies complicated by gestational

diabetes. Future research should focus on integrating MVImean

with other clinical, biochemical, or sonographic markers within a

multivariate model to determine if it can provide incremental value

in improving overall predictive performance.
Strengths and limitations

To our knowledge, this is the first study to investigate placental

microvascular function in GDM throughout the third trimester

rather than during different gestational age. We used a non-invasive

and reproducible technique, which has been shown to offer

information for placental microvascular network and perfusion in

GDM women. We also considered women with GDM on different

levels of glycemic control separately and as an independent group,

allowing more detailed characterization of placental microvascular

architecture in pregnancies complicated by GDM compared to

routine color Doppler ultrasound. In addition, placental MVI

measurements are technically feasible in a busy public clinic.

The main limitations of this study are that our population was

primarily Asians. It is known that different races/ethnic groups vary

in body composition, insulin sensitivity, susceptibility to diabetes,

and the risk of pregnancy-related complications. Thus, our results

might not be applicable to women of other racial origins. Second,

superb microvascular imaging measurements may vary when
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equipment from different vendors is used for analysis. This

variability should be taken into account when comparing results

across studies, and efforts should be made to standardize

measurement protocols across platforms. Third, limitations of our

study include the absence of histological confirmation of placenta.

Furthermore, we acknowledge that a formal sample size calculation

was not performed prior to the study. The study utilized a

convenience sample of 180 (control:GDM1:GDM2 = 92:70:18)

participants, which was constrained by successful clinical

management of GDM at present. Consequently, further

investigations involving larger, multi-ethnic, and multicenter

cohorts are needed to validate and substantiate the clinical value

of placental MVI measurement in identifying placental

dysfunction accurately.
Conclusion

In women with GDM, there are subtle placental functional

changes, and these can be detected using MV-Flow. Compared with

traditional color Doppler ultrasound, the advantages of placental

microvascular imaging are revolutionary, achieving a leap from

assessing “macroscopic blood flow” to displaying “microscopic

structure.” The microvascular scans of the placenta were

demonstrated approaching real t ime, which enabled

measurements and rendering of placental villus structure features.

MV-Flow may help supplement traditional color Doppler

ultrasound and magnetic resonance imaging in diagnosing and

monitoring various placenta-related pregnancy diseases. Further

studies are needed to describe the placental pathology alterations in

women with GDM and to verify our prenatal findings.
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