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Background: Gestational diabetes mellitus (GDM) is characterized by vascular
dysfunction and is associated with adverse perinatal outcomes for both the
mother and fetus. Microvascular index (MVI) is a non-invasive marker of
microvascular function assessed by microvascular flow imaging (MV-Flow).
This study aimed to evaluate the performance of conventional Doppler
ultrasound and MV-Flow in delineating the placental microvessels and to
explore the feasibility and potential clinical value of using MV-Flow for
placental function in GDM women.

Methods: This study included women with singleton pregnancies at 28-36
weeks of gestation and was conducted between November 2023 and January
2025. All women underwent routine prenatal ultrasound and MV-Flow. GDM
women were stratified into two subgroups by glycated hemoglobin A;. (HbA.)
value: GDM; (HbA:. < 5.5%) and GDM,, (HbA,. > 5.5%). Comparisons of data were
made using parametric and non-parametric tests between the non-GDM group
and the GDM group. Correlation between MVl ,can and neonate birthweight was
assessed using Pearson’s correlation coefficient. Multivariate analysis was
performed using general linear regression models of factors associated with
GDM. Receiver operating characteristic curve analysis was conducted to
determine the optimal MVI threshold for distinguishing between participants
with GDM and those without.

Results: The study population included 92 controls and 88 women with GDM. In
the GDM group, compared to the control, there was significantly higher MVl ean
of placenta (P = 0.031). There was no significant difference between the GDM,
group and the control group in terms of MVlyean. There was a moderate
correlation of placental MVlyean With neonate birthweight (r = 0.539;
P < 0.001). Based on the Youden index, the placental MVl ean threshold that
best discriminated between participants with GDM and those without was
38.95%, with a maximum achievable sensitivity of 62.9% and a specificity
of 69.6%.

Conclusions: Placental microvascular blood flow can be visualized and
quantified in women with GDM using MV-Flow.
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Introduction

Gestational diabetes mellitus (GDM) is defined as an abnormal
glucose tolerance first detected during pregnancy, and it affects
approximately 14% of pregnancies annually worldwide (1). GDM is
significantly associated with adverse pregnancy outcomes, including
macrosomia, pre-eclampsia, fetal growth restriction, and preterm
delivery (2). Glycated hemoglobin (HbA;.) reflects the average
blood glucose over the most recent 2- to 3-month period (3).
Although HbA, has limited utility as a diagnostic tool for GDM,
it has been shown to be a reliable predictor of adverse outcomes
associated with the condition (4, 5). According to the American
Diabetes Association Professional Practice Committee, a target of
HbA,. 6% is optimal during the third trimester (6). In a large
cohort of women with GDM, Barbry et al. (7) found that a baseline
of HbA,. <5.6% predicted an increased risk of several adverse
pregnancy outcomes.

The primary function of the placenta is to facilitate the
exchange of substances between the mother and the fetus,
ensuring the growth and development of the fetus. Mild to
moderate placental dysfunction may impair the supply of
nutrients and oxygen to the fetus, resulting in fetal distress and
acquired brain damage, which may lead to lifelong diseases in the
offspring (8). Previous studies demonstrated that GDM was
associated with impaired placental development, showing villous
immaturity or alterations in villous branching (9, 10). However,
postnatal histopathological examination of the placenta cannot
yield clinical biomarkers to inform the clinical management of
pregnancy. It is uncertain whether placental perfusion changes can
be observed in utero and whether these changes are influenced by
the level of glycemic control in pregnant women.

At present, Doppler ultrasound forms the gold standard for
monitoring placental insufficiency in clinical practice. Absent and
reverse end-diastolic umbilical artery blood flow and the ductus
venosus reversed a-wave indicate fetal death risk (11, 12). However,
Doppler ultrasound is poorly sensitive to subtle changes in placental
function and may not be altered until there are large disruptions.
Previous studies have shown that microvascular flow imaging (MV-
Flow) can display the stem villi and their branches and quantify
placental microvascular structure (13, 14). The placental
microvascular index (MVI) is a sensitive indicator of placental
microcirculation (15). Chen et al. (16) found that the placental MVI
in the group with congenital heart diseases and extracardiac
malformations was significantly lower than that in the normal
control group by MV-Flow. However, there is limited
information about placental microvascular function in women
with GDM. The placenta is a highly vascularized organ with
branches of the umbilical artery and umbilical vein in the villi
(17). Microvascular disease is a specific complication of diabetes
mellitus (18, 19). The typical changes include microvascular
basement membrane thickening and microcirculation
dysfunction (20).

The objectives of this study were to accurately define placental
microvascular function using MV-Flow in women with GDM and
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to compare these data to those obtained from women
without GDM.

Materials and methods
Study population

A prospective cohort study design was utilized in this study. All
pregnant women who participated in this study were recruited from
November 2023 to January 2025 in our hospital and provided
written or oral informed consent. This study was approved by the
Ethics Committee of Obstetrics and Gynecology Hospital of Fudan
University (Approval number: kyy2022-165). Singleton pregnancies
with living fetuses and a gestational age (GA) of 28-36 weeks were
identified in the cohort. The inclusion criteria were diagnosis of
GDM confirmed by the oral glucose tolerance test (OGTT), age >18
years, and a pre-gestational body mass index (pre-BMI) <35 kg/m>.
The inclusion criteria of the control group were as follows: 1)
healthy women, 2) with euglycemia during pregnancy, and 3) with
normal ultrasound scans and Doppler results. The common
exclusion criteria for both groups were multiple pregnancies,
major fetal abnormalities, abnormal karyotype, and pre-existing
diabetes mellitus. A diagnosis of GDM was made at 24-28 weeks of
gestation if the plasma glucose levels measured from the 75-g
OGTT were met or exceeded in any of the following stages: 1)
fasting: > 5.1 mmol/L; 2) 1 h: 210.0 mmol/L; and 3) 2 h: 28.5 mmol/
L (21). Women with GDM were categorized based on their HbA, .
values before delivery as GDM; (HbA,. <5.5%) or GDM, (HbA,. >
5.5%) (6, 7, 22).

Maternal and fetal characteristics

We recorded information on maternal age, pre-BMI, pre-
pregnant weight, pre-labor weight, gestational age at delivery,
ultrasound scan, OGTT result, HbA;. value before delivery,
gravidity, parity, mode of delivery, neonate gender, Apgar score,
and birthweight. At the clinic visit, we measured pre-pregnant and
pre-labor weight and calculated gestational weight gain.

Ultrasound imaging protocol

The prenatal ultrasound examinations were performed by an
experienced sonographer transabdominally using the Samsung
Hera W10 ultrasound systems (Samsung Medison Co., Gangwon-
do, Korea) equipped with a curved transducer (2-9 MHz) and MV-
Flow' " imaging technique. The name of the participant from the
work list of the department was searched and checked, the date of
the last menstrual period was entered, the appropriate obstetrical
examination condition was set, and prenatal ultrasonography on
the participant was performed according to the International
Society of Ultrasound in Obstetrics and Gynecology (ISUOG)
practice guidelines (23-26). Key metrics were recorded including
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placental thickness, maturity grade, umbilical artery (UmA) peak
systolic velocity/end diastolic velocity (S/D), resistive index (RI),
middle cerebral artery (MCA), pulsatility index (PI), RI, peak
systolic velocity (PSV), uterine artery (UtA) PI, and UtA RL

A two-dimensional transabdominal scan was performed to
acquire a distinct image of the sagittal plane of the placenta. The
instrument was set to the MV-Flow mode (frame avg = 8, dynamic
range = 27, smooth = 1, filter = 3, sensitivity = 32, color map = 2),
with the mechanical index and the thermal index adjusted to safe
levels. The area of interest (ROI) was traced elliptically and
displayed in square centimeters. Two-dimensional ultrasound
images of the placental microvascular perfusion of the upper,
middle, and lower sites were obtained, and the MVT values of the
placenta were measured automatically (Figure 1). To represent the
overall vessel microperfusion of the placenta, the mean MVT value
(MVTI,can) of the three sites was calculated for analysis. All placental
MV-Flow analyses were performed by the study sonographer who
underwent training with radiologist expertise in placental
microvascular flow imaging and was blinded to maternal
characteristics and GDM status. To assess the reproducibility of
measurements, 40 cases from the control and GDM group were
selected by stratified samplings, and measurements were taken by
an expert investigator and then by the study sonographer, both of
whom were blinded to previous measurements.

Statistical analysis

Statistical analyses and graphs were conducted using SPSS 26.0
(IBM Corp., Armonk, NY, USA) and GraphPad Prism 9.5
(GraphPad Software, San Diego, CA, USA). Normally distributed
continuous variables were presented as mean + SD, and variables
not following a normal distribution were presented as median

10.3389/fendo.2025.1674480

(interquartile range, IQR). Nominal variables were summarized as
number and percentage. The Student’s t-test or the Kruskal-Wallis
test and the chi-square test were used to perform between-group
comparisons of continuous and categorical variables, respectively,
using post hoc SNK correction to adjust for multiple comparisons
when necessary. Pearson correlation was used to evaluate the
bivariate correlation between birthweight and MV, .. General
linear regression modeling was used to determine the associations
between MV can (%), pre-BMI (kg/mz), and pregnancy weight
gain (kg) with birthweight (g). Standardized beta coefficients were
estimated via multiple regression analysis to identify the variable
most strongly associated with neonate birthweight. Independent
variables did not show evidence of multicollinearity, with bivariate
correlation coefficients <0.80. Intraclass correlation analysis was
used to assess the intra- and interobserver variability of measuring
placental MVL. Intraclass correlation coefficient (ICC) >0.70 was
generally considered to be a good agreement. A P-value <0.05 was
considered statistically significant.

Results
Baseline characteristics

A total of 88 women with GDM and 92 non-diabetic pregnant
controls were included in the analysis. With the exception of 10
participants in the GDM group who lacked complete medical
records, all the other participants had a complete dataset. Baseline
characteristics and birth outcomes of the two groups are given in
Table 1. Compared with controls, women with GDM were
significantly older (P = 0.001), had a heavier pre-pregnant weight
(59.89 £ 9.99 vs. 55.15 * 6.06 kg, P < 0.001), had a higher pre-BMI
(22.77 £ 3.42 vs. 20.92 + 2.31 kg/mz, P < 0.001), and had a thinner

FIGURE 1
Demonstration of placental assessment using MV-Flow.
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TABLE 1 Demographic characteristics of the participants included in the study.

Characteristics Non-GDM (n = 92) GDM (n = 88) P

Age (years) 305 (28, 33) 32 (30, 35) 0.001*
Height (m) 1.63 + 0.05 1.62 + 0.05 0.514
Pre-pregnant weight (kg) 55.15 + 6.06 59.89 +9.99 <0.001*
Pre-BMI (kg/mz) 20.92 £ 231 22.77 + 342 <0.001*
Gestational weight gain (kg) 14 (10.5, 16.39) 10.9 (7.05, 15.15) <0.001*
GA at scan (weeks) 29.6 (28.9, 33.7) 32.65 (30.3, 34.68) <0.001*
Parity 0.033*
Parous

Previous GDM 0 (0.0) 1(1.28)

No previous GDM 15 (16.30) 23 (29.49)

Nulliparous 77 (83.70) 54 (69.23)

Treatment for GDM

Diet - 56 (71.79)

Insulin - 16 (20.51)

Insulin with metformin - 6 (7.69)

Medical history

HDP 5 (5.43) 11 (14.10) 0.054

SLE/APS 0 (0.0) 2 (2.56) 0.209
GA at delivery (weeks) 39.6 (38.7, 40.25) 39.2 (38.4, 39.9) 0.053
Mode of delivery 0.183

Vaginal birth 61 (66.30) 59 (75.64)

Cesarean section 31 (33.70) 19 (24.36)

HbA . 4.8 (4.6, 5) 52 (5, 5.4) <0.001*
BW (g) 3,285 (3,085, 3,492.5) 3,210 (3,035, 3,425) 0.153
BW category 0.082

SGA 0 (0.0) 3 (3.85)

AGA 91 (98.9) 72 (92.30)

LGA 1(1.1) 3 (3.85)

Male neonatal sex 47 (51.1) 45 (57.69) 0.389
Preterm birth 0 (0.0) 5 (6.41) 0.044*
1-min Apgar score <7 0 (0.0) 3(3.84) 0.189
Acidosis (pH <7.0 or lactate >6) 0 (0.0) 2 (2.56) 0.209
NICU admission 0 (0.0) 1(1.28) 0.459
Respiratory distress 0 (0.0) 2 (2.56) 0.209
Hyperglycemia 0 (0.0) 2 (2.56) 0.209

Data are shown as mean + SD, median (interquartile range), or 7 (%). Comparisons between groups were made using chi-square or Fisher’s exact test for categorical variables and Student’s ¢-test
or Mann-Whitney U-test for continuous variables.

GA, gestational age; BMI, body mass index; HDP, hypertensive disorders of pregnancy; SLE, systemic lupus erythematosus; APS, antiphospholipid syndrome; BW, birthweight; SGA, small for
gestational age; AGA, appropriate for gestational age; LGA, large for gestational age; NICU, neonatal intensive care unit.

*P < 0.05.
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gestational weight gain [10.9 (IQR, 7.05-15.15) vs. 14 (IQR, 10.5-
16.39) kg, P < 0.001]. The gestational age at the time of a scan was
later in the GDM group [32.65 (IQR, 30.3-34.68) vs. 29.6 (IQR,
28.9-33.7) weeks, P < 0.001). Among the GDM participants, 20.51%
were on insulin alone, 7.69% were on insulin and metformin in
combination, and 71.79% were on dietary management. Four cases
followed spontaneous labor with intact membranes, and one case
followed preterm premature rupture of the membranes. GDM
pregnancies were associated with a significantly increased rate of
preterm delivery (6.41% vs. 0%, P = 0.044), but insignificantly
reduced final birthweight [3,210 (IQR, 3,035-3,425) vs. 3,285 (IQR,
3,085-3,492.5) g, P = 0.153]. No significant differences were
observed between the two groups with respect to maternal height,
prevalence of maternal hypertensive disorders of pregnancy,
gestational age at delivery, rate of male neonate, neonatal NICU
admission, respiratory distress, or hyperglycemia. Of note,
prothrombin time (P = 0.392), activated partial thromboplastin
time (P = 0.372), fibrinogen (P = 0.315), thrombin time (P = 0.836),
and D-dimer (P = 0.13) did not differ significantly between the
two groups.

Ultrasound assessment at 28—36 weeks of
gestation

Ultrasound measurements for participants with GDM or
uncomplicated pregnancies are summarized in Table 2. There was
no significant difference in the prevalence of bilateral notch uterine

TABLE 2 Ultrasound parameters.

10.3389/fendo.2025.1674480

artery at 11-14 weeks between the control and GDM; group, but
the GDM, group had higher values compared to the other two
groups. Women in the GDM, group, compared with those in the
GDM,; group, had greater MCA PI during pregnancy. Compared
with controls, women with GDM had significantly higher placental
MVl ean (P = 0.031, Figure 2). The placental MVI,,,, of the
control or GDM, group was significantly lower than that of the
GDM,; group (all P < 0.05). Figure 2 also shows group comparisons
between the control, the GDM1 group, and the GDM2 group
regarding each of the three MV-Flow parameters obtained in the
placenta. Participants in the GDM1 group had greater MVT values
in the upper or lower parts of the placenta than participants in the
control and GDM2 group (all P < 0.05). None of the MVT in the
other parts of the placenta showed group differences. There was no
significant difference in mean UtA PI, mean UtA RI, UmA PI, UmA
RI, UmA S/D, MCA RI, MCA PSV, cerebroplacental ratio, placental
thickness, and maturity grading between the groups.

In addition, MV-Flow imaging was able to depict smaller, slow-
flow vessels within the placenta, which were not visible using
routine Doppler ultrasound (Figure 3). Figure 2 shows group
comparisons between the control, the GDM; group, and the
GDM, group regarding each of the three MV-Flow parameters
obtained in the placenta. Participants in the GDM; group had
greater MVT values in the upper or lower parts of the placenta than
participants in the control and GDM, group (all P < 0.05). None of
the MVT in the other parts of the placenta showed group differences.
There was a moderate correlation between MVI .., (%) and
birthweight (g) in the GDM,; group (Pearson: r = 0.539;

Group
Variable
Control (n = 92) GDM; (n = 70) GDM, (n = 18)

Mean UtA PI 1.65 + 0.55 1.61 + 0.49 1.82 + 0.52 0.372
Mean UtA RI 0.73 (0.66-0.82) 0.74 (0.66-0.79) 0.75 (0.72-0.82) 0.308
Bilateral notch UtA 13 (14.13%) 7 (12.96%) 8 (53.33%)™ 0.003*
UmA PI 0.96 + 0.16 0.97 + 0.15 1+0.19 0.489
UmA RI 0.63 (0.58-0.66) 0.64 (0.59-0.66) 0.64 (0.59-0.71) 0.593
UmA $/D 2.68 (2.39-2.94) 2.69 (2.45-2.91) 2.79 (2.42-3.5) 0.379
MCA PI 2.06 + 0.4 1.89 +0.29 2.19 + 036" 0.006*
MCA RI 0.86 (0.81-0.9) 0.84 (0.81-0.88) 0.88 (0.86-0.9) 0.132
MCA PSV (cm/s) 40.88 + 6.84 39.08 + 8.12 40.8 + 9.64 0.345
Cerebroplacental ratio 2.07 (1.81-2.54) 1.93 (1.73-2.32) 2.29 (1.99-2.53) 0.076
Placental parameters

Thickness (mm) 31.37 + 4.27 33.17 + 4.44 32.65 + 3.71 0211
Maturity grading 2 (1-2) 2 (1-2) 2 (1-2) 0.456
MVIean (%) 37.25 (35.93-40.28) 40.35 (36.38-45.08)* 35.95 (26.75-42.1)" 0.004*

Data are given as mean + SD, median (range), or n (%).

UtA, uterine artery; UmA, umbilical artery; MCA, middle cerebral artery; P, pulsatility index; RI, resistive index; PSV, peak systolic velocity; S/D, peak systolic velocity/end diastolic velocity;
MVI,can, mean microvascular index.

“P < 0.05 vs. control.

PP < 0.05 vs. GDMj; *P < 0.05.
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P < 0.001). However, there was no significant correlation between
MV hean (%) and birthweight (g) in the GDM, group (Pearson: r =
-0.416; P = 0.109). In the secondary analyses within GDM;, higher
MV hean (40.81% + 7.83%) was significantly associated with higher
neonate birthweight (3,135.41 + 370.64 g) (adj.R2 =0.28, F=24.22,
P < 0.001; t = 4.92, P < 0.001; standardized f = 0.539) (Figure 4).
Pregnancy weight gain, pre-BMI, MVI,,c.n, and birthweight were
included in the multivariable analysis. MV1I,e,n, pregnancy weight
gain, and pre-BMI were positively associated with birthweight
(standardized B = 0.532, P < 0.001; standardized = 0.236,
P = 0.027; standardized 8 = 0.307, P = 0.004, respectively). The
receiver operating characteristic (ROC) curve analysis indicated
that MVI,..n can well discriminate the normal and GDM
pregnancies, with an area under the curve (AUC) value of 0.593
([95% CI, 0.507-0.68]; P = 0.031; Figure 5). The sensitivity and
specificity of MVIe.n for discriminating between normal and
GDM pregnancies were 56.8% and 69.6%, respectively. After the
GDM, group was excluded from the GDM group, the results

suggested that MVI,,.,, was able to separate well GDM
pregnancies from normal pregnancies, with an AUC value of
0.639 ([95% CI, 0.547-0.731]; P = 0.003; Figure 5). The Youden
index, indicating the optimal point along the ROC curve for GDM
prediction, was calculated at the MVI,,,.., level of 38.95%, with a
specificity of 69.6% and sensitivity of 62.9% at this level.

Repeatability test

The placental MVI,,.., measurements were performed twice
on placentas from 20 women in the control group, 15 women in
the GDM; group, and 5 women in the GDM, group by the
study sonographer. The consistency of the study sonographer’s
measurements was good. The ICC values for the study sonographer’s
measurements (conducted twice) were 0.80, 0.94, and 0.84, respectively.
The consistency between the values of the two doctors’ measurements
was good, with ICC values of 0.90, 0.93, and 0.72, respectively.

FIGURE 3

Placental imaging by routine Doppler ultrasound (left) and MV-Flow (right).
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FIGURE 4

Significant association between birthweight and MVl ean for the
GDM; group. The dotted lines represent the 95% confidence
interval.

Discussion
Main findings

To our knowledge, this is the first study to evaluate the
association between placental MVI, .., and neonate birthweight
in participants with GDM. Our main findings were that placental
MVI,;ean were moderately associated with neonate birthweight in
participants who had GDM with good glycemic control. Of the
variables evaluated in this paper, placental MV1,,.., was found to be
most strongly associated with neonate birthweight. In this study, we
demonstrated that women with GDM, compared to those without
GDM, showed an increase in placental function. There were no
significant differences between the normal pregnancies and the

Sensitivity%

—— AUC=0.593

0r' I I I I
40 60 80

100% - Specificity%

1
100

FIGURE 5
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GDM group with poor glycemic control in placental MVIcan
assessed by MV-Flow. These data suggest that cerebroplacental
ratio, placental thickness, and maturity grading have not been
affected within the development of GDM so far and that MV-
Flow imaging is a sensitive ultrasonic Doppler imaging technology
to assess early placental functional changes in women with GDM.

Interpretation

Our work in GDM women demonstrated that the placental
MVTI,ean initially increased and subsequently decreased when
comparing the GDM; group to the GDM, group, which was
partly consistent with a previous study (27). However, the
previous study did not include GDM women with poor glycemic
control. Driven by maternal hyperglycemia and fetal
hyperinsulinemia in pregnancies complicated by GDM, fetal
metabolic demands increase significantly, resulting in a relatively
placental hypoxic environment (28). This condition activates key
signaling pathways, including HIF-1oo and VEGF, thereby
triggering the placental angiogenic response (29). This initial
response is evident on MV-Flow imaging as elevated placental
MVI. Continuous high-glucose environments can activate the
glycolysis pathway and induce excessive reactive oxygen species
production, increasing oxidative stress, which causes mitochondrial
defects, cellular apoptosis, and inflammation (30). Placentas from
women with GDM have decreased regulatory T cells and increased
NK cells, neutrophil infiltration and activation, and macrophage
activation (31). Significantly upregulated pathways in GDM
placentas included several immune responses (IL-1B, IL-2, IL-6,
TNFa, IFNY, TGF-B) and downregulation of glycolysis and cell
cycle pathways (31-33). This pro-inflammatory and pro-oxidative
environment promotes the upregulation of sFlt-1 (anti-angiogenic
factor) while simultaneously reducing the reactivity of vascular

Sensitivity%

S —— AUC=0.639

0+ T T T | 1
40 60 80 100

100% - Specificity%

ROC analysis of MVlyean to discriminate normal and GDM pregnancies. Left figure, control group and the GDM group. Right figure, control group
and the GDM; group. AUC, area under the curve; MVlean, mean microvascular index.
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endothelial cells to VEGF and PIGF (pro-angiogenic factors),
thereby interfering with the balance of angiogenic factors (34, 35).
However, this vascular proliferation represents a spectrum of
adaptation—from successful “adaptive compensation” to failed

»

“pathological decompensation.” The ultimate impact on
pregnancy outcomes depends on the structural and functional
integrity of the newly formed blood vessels (36). Studies of gross
morphology and histoarchitecture in placentas delivered from
GDM pregnancies consistently reported increased placental size,
weight, thickness, chronic parenchymal inflammation, villous
immaturity, and vascular thrombosis when compared to
uncomplicated pregnancies (37-39).

To assess the whole placental status of our participants, we also
used the Doppler ultrasound technique, which provides information
on UtA and UmA hemodynamics. Our results demonstrated no
statistically significant differences in the hemodynamic parameters
(PL RIL and S/D) of the UtA and UmA across the three groups. Prior
literature has observed UmA Doppler deterioration in severe cases
with placental vascular dysfunction (40-42). This means the results of
umbilical artery Doppler imaging may be a late marker of placental
dysfunction. MV-Flow can detect early changes in placental
microvascular density, representing a key advantage over
traditional Doppler techniques. It can also offer a clearer display of
villi and a greater sensitivity to low flow. In addition, our analysis
found that fetal MCA-PI in GDM, pregnancies is higher than in
GDM; pregnancies, indicating a greater degree of fetal hypoxia,
which is consistent with a previous study (43).

A well-developed placental microvascular network provides a
more efficient interface for maternal-fetal exchange and ensures a
more robust blood supply to support fetal development. This directly
enhances the fetal uptake of essential nutrients, including glucose,
amino acids, and fatty acids, thereby supporting normal and, in some
cases, accelerated growth (44, 45). Our finding of a positive
relationship between MVI,.,, and birthweight in the GDM,
group, which is approximately in line with a previous work using a
large-scale sample, shows that the placental-fetal growth nexus is
reflected by a positive correlation (r = 0.6) between the placenta and
birthweight (46). Therefore, this discovery provides direct imaging
evidence that placental microvascular network serves as an important
factor of fetal weight. In the subgroup with poor glycemic control, the
association between MVI,,,.,, and birthweight was attenuated or no
longer evident, potentially attributable to microvascular dysfunction.
This MVI,e,n cannot represent the efficiency of material exchange in
the placental microcirculation. Prolonged exposure of the fetus to a
hyperglycemia-induced hyperinsulinemic environment resulting
from maternal hyperglycemia enhances protein and fat synthesis,
thereby promoting excessive fetal growth and increasing the risk of
macrosomia (47). Chronic hyperglycemia may result in dysfunction
of villous vascular endothelial cells, thickening of the vascular
The
presence of both 6.25% small-for-gestational-age and 18.75% large-

basement membrane, and even microthrombosis (48).

for-gestational-age infants in the poor glycemic control group was
observed, which is consistent with the aforementioned finding.

Our study investigating the diagnostication of GDM, based on
the placental MV, alone in the third trimester reported an AUC
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of 0.639. Its clinical utility and diagnostic power are fundamentally
limited. MV-Flow may capture a component of the placental
pathophysiological changes associated with GDM but lacks the
discriminatory strength to serve as a robust standalone diagnostic
or screening tool. The limited diagnostic accuracy of MV-Flow may
be attributed to inherent limitations in its technical principles as
well as a high degree of operator dependency (49). MV-Flow is
designed to visualize low-velocity blood flow; however, this
capability may increase susceptibility to motion artifacts and
could be constrained by the probe’s penetration depth and spatial
resolution. Based on the above limitations, we believe that the role
of MV-Flow in clinical practice should be redefined as an
exploratory and auxiliary tool. Its main value lies in
complementing rather than replacing traditional color Doppler
ultrasound and other mature imaging methods (such as contrast-
enhanced ultrasound or magnetic resonance imaging). We believe
that it is more accurate to position placental MVI .., as a
functional imaging biomarker, which has both prognostic and
monitoring potential, but it is not yet suitable for independent
diagnosis. There are conflicting reports of the impact of GDM on
sFLt-1, PIGF, and its ratio. While Pankiewicz et al. (50) and Noonan
et al. (51) found no significant difference in the sFlt-1/PIGF ratio
when comparing individuals with GDM and pre-eclampsia (PE)
and individuals with PE, Nuzzo et al. (34) found that the sFlt-1/
PIGF ratio was significantly lower in individuals with GDM-PE
than individuals with PE. Gibbons et al. (43) reported that low
cerebroplacental ratio was associated with poorer neonatal outcome
in women with GDM. However, Cardinali et al. (52) showed that
cerebroplacental ratio is associated but not predictive of adverse
perinatal outcome in pregnancies complicated by gestational
diabetes. Future research should focus on integrating MVI,can
with other clinical, biochemical, or sonographic markers within a
multivariate model to determine if it can provide incremental value

in improving overall predictive performance.

Strengths and limitations

To our knowledge, this is the first study to investigate placental
microvascular function in GDM throughout the third trimester
rather than during different gestational age. We used a non-invasive
and reproducible technique, which has been shown to offer
information for placental microvascular network and perfusion in
GDM women. We also considered women with GDM on different
levels of glycemic control separately and as an independent group,
allowing more detailed characterization of placental microvascular
architecture in pregnancies complicated by GDM compared to
routine color Doppler ultrasound. In addition, placental MVI
measurements are technically feasible in a busy public clinic.

The main limitations of this study are that our population was
primarily Asians. It is known that different races/ethnic groups vary
in body composition, insulin sensitivity, susceptibility to diabetes,
and the risk of pregnancy-related complications. Thus, our results
might not be applicable to women of other racial origins. Second,
superb microvascular imaging measurements may vary when
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equipment from different vendors is used for analysis. This
variability should be taken into account when comparing results
across studies, and efforts should be made to standardize
measurement protocols across platforms. Third, limitations of our
study include the absence of histological confirmation of placenta.
Furthermore, we acknowledge that a formal sample size calculation
was not performed prior to the study. The study utilized a
convenience sample of 180 (control:GDM;:GDM, = 92:70:18)
participants, which was constrained by successful clinical
management of GDM at present. Consequently, further
investigations involving larger, multi-ethnic, and multicenter
cohorts are needed to validate and substantiate the clinical value
of placental MVI measurement in identifying placental
dysfunction accurately.

Conclusion

In women with GDM, there are subtle placental functional
changes, and these can be detected using MV-Flow. Compared with
traditional color Doppler ultrasound, the advantages of placental
microvascular imaging are revolutionary, achieving a leap from
assessing “macroscopic blood flow” to displaying “microscopic
structure.” The microvascular scans of the placenta were
demonstrated approaching real time, which enabled
measurements and rendering of placental villus structure features.
MV-Flow may help supplement traditional color Doppler
ultrasound and magnetic resonance imaging in diagnosing and
monitoring various placenta-related pregnancy diseases. Further
studies are needed to describe the placental pathology alterations in
women with GDM and to verify our prenatal findings.
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