a frontiers ‘ Frontiers in Endocrinology

@ Check for updates

OPEN ACCESS

EDITED BY
Bodhini Dhanasekaran,
Madras Diabetes Research Foundation, India

REVIEWED BY
Doris Pinto-Escalante,

Universidad Auténoma de Yucatan, Mexico
Anna Kiseleva,

National Research Center for Preventive
Medicine, Russia

*CORRESPONDENCE
Yulia A. Medvedeva
Ju.Medvedeva@gmail.com

RECEIVED 24 July 2025
ACCEPTED 25 August 2025
PUBLISHED 10 September 2025

CITATION

Markelova EE, Kononenko IV, Zubritskiy A,
Podshivalova E, Matrosova A, Plaksina E,
Mansour S, Ahtyamov P, Shagimardanova E,
Vagapova GR, Maksimova N, Sydykova LA,
Avzaletdinova DS, Morugova TV,
Dzhambetova PM, Shestakova MV,
Mokrysheva NG and Medvedeva YA (2025)
Genetic and phenotypic heterogeneity

of type 2 diabetes across

Russian ancestry groups.

Front. Endocrinol. 16:1672403.

doi: 10.3389/fendo.2025.1672403

COPYRIGHT

© 2025 Markelova, Kononenko, Zubritskiy,
Podshivalova, Matrosova, Plaksina, Mansour,
Ahtyamov, Shagimardanova, Vagapova,
Maksimova, Sydykova, Avzaletdinova,
Morugova, Dzhambetova, Shestakova,
Mokrysheva and Medvedeva. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Endocrinology

TvpPE Original Research
PUBLISHED 10 September 2025
D01 10.3389/fendo.2025.1672403

Genetic and phenotypic
heterogeneity of type 2 diabetes
across Russian ancestry groups

Ekaterina E. Markelova™?, Irina V. Kononenko?,

Anatoliy Zubritskiy'®, Elizaveta Podshivalova®, Alina Matrosova®,
Evgeniya Plaksina®, Saleem Mansour?, Pavel Ahtyamov>?,

Elena Shagimardanova®®, Gulnar R. Vagapova’,

Nadezhda Maksimova®?, Liubov A. Sydykova®,

Diana S. Avzaletdinova®, Tatyana V. Morugova®,

Petimat M. Dzhambetova'®, Marina V. Shestakova®,

Natalia G. Mokrysheva® and Yulia A. Medvedeva™**

‘Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Sciences,
Moscow, Russia, 2MSU Institute for Artificial Intelligence, Lomonosov Moscow State University,
Moscow, Russia, *Endocrinology Research Center, Moscow, Russia, “Moscow Center for Advanced
Studies, Moscow, Russia, *Skolkovo Institute of Science and Technology, Moscow, Russia, Life
Improvement by Future Technologies (LIFT) Center, Moscow, Russia, “Kazan State Medical Academy,
Kazan, Russia, ®North-Eastern Federal University, Yakutsk, Russia, °Bashkir State Medical University,
Ufa, Russia, *°Chechen State University named after A. A. Kadyrov, Grozny, Russia

Introduction: Type 2 diabetes mellitus (T2D) is a highly polygenic disease
involving multiple biological pathways. Genetic ancestry may influence the
predominant mechanisms driving T2D. Understanding how genetic
background shapes T2D risk is crucial for developing personalized prevention
and treatment strategies.

Methods: We analyzed ancestry-specific differences in T2D mechanisms and
assessed the prevalence of T2D-associated genetic clusters, reflecting biological
mechanisms underlying T2D onset and progression, in individuals from three
Russian ancestry groups: Chechens, Tatars, and Yakuts. Previously developed
polygenic scores were applied to evaluate cluster prevalence and clinical risk
factors across ancestry groups.

Results: Cluster-specific polygenic scores varied significantly between
populations. Yakuts exhibited higher scores for B-cell dysfunction, hyper-
insulin secretion, and lipid metabolism alterations, whereas Chechens and
Tatars had higher scores for obesity-related mechanisms.
Discussion/Conclusions: The predominant mechanisms underlying T2D differ
across populations. These ancestry-specific differences should be considered in
public health recommendations and personalized medicine approaches.
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1 Introduction

The multifactorial nature of type 2 diabetes mellitus (T2D) has
been confirmed by numerous studies. The disease is influenced by
multiple risk factors, including lifestyle, environment, and genetics
(1, 2). The main pathophysiological processes underlying T2D
development focus on the role of obesity, visceral and ectopic fat
accumulation, insulin resistance, and 3 cell dysfunction (3).

The expanding catalog of genetic differences among humans is
helping researchers understand why some individuals and
populations are more prone to common diseases, such as T2D.
Additionally, we are gaining insights that may improve the efficacy
and safety of therapeutic drugs. Genome-wide association studies
(GWAS) have identified over 600 genetic loci associated with T2D,
many of which are involved in beta-cell function, insulin secretion,
and insulin sensitivity (4). Genetic ancestry is one of the key factors
determining predisposition to diabetes (5). The contribution of T2D-
associated loci to disease risk varies significantly across populations
due to differences in allele frequencies and population-specific genetic
architecture (6). Rare variants tend to be specific to certain
populations (7). Ancestry-specific differences in the balance
between insulin secretion and insulin resistance further contribute
to T2D heterogeneity (8). For instance, East Asian populations tend
to have a higher prevalence of beta-cell dysfunction, while European
populations often exhibit stronger associations with insulin resistance
(8). These pathophysiological differences have a crucial impact on the
appropriate preventive and therapeutic approaches, highlighting the
need for population-specific research.

Russia is a multinational country with more than 190 ethnic
groups, making it a unique setting for studying the genetic
architecture of T2D in a diverse population (9). However, most
existing population studies lack ancestral diversity and
predominantly focus on Western European individuals (10). Recent
studies have shown that allele frequencies of various clinically
significant single nucleotide polymorphisms (SNPs) differ
significantly between Russian and Western European populations
(11). This suggests that unique population-specific variants may
influence the genetic risk of T2D in Russia. Populations within
Russia also exhibit differences in the prevalence of carbohydrate
metabolism disorders and T2D (12). These findings highlight the
importance of population-specific research in refining subtype
classification and improving personalized treatment strategies.

Advances in phenotype-based clustering have revealed distinct
subtypes of T2D, each with unique genetic, clinical, and
pathophysiological characteristics (13). Recent studies by several
groups of authors (14, 15) have leveraged genome-wide association
study (GWAS) summary statistics to connect genetic loci to
possible T2D pathological pathways by clustering genetic loci
based on shared patterns of associations across multiple traits
using a soft clustering approach. Smith et al. (14) have identified
twelve genetic clusters and used them to generate partitioned
polygenic scores (pPGSs) linked to distinct cellular and clinical
features. In this work, we applied pPGSs to distinct populations in
Russia to investigate the effect of ancestry on genetic predisposition
to certain mechanisms, while keeping in mind that pPGSs reflect
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the likelihood of certain disease mechanisms occurring rather than
a definitive indicator of individual risk of disease development.

2 Materials and methods
2.1 Study design and sample collection

The study included healthy individuals and patients with T2D
from distinct ancestry groups: Yakuts (Yakutsk), Tatars (Kazan),
and Chechens (Grozny), all of whom provided informed consent to
participate. Ancestry was determined through self-reported data
from participants and two generations of their ancestors. A total of
275 eligible participants were included in this observational study,
which did not influence patient management. Patients with T2D
were recruited at the primary healthcare level in three locations
across Russia. Inclusion criteria were based on medical history,
including a prior diagnosis of diabetes and the use of glucose-
lowering drugs. T2D diagnosis followed WHO criteria (1999).
Exclusion criteria included: 1) individuals with other types of
diabetes; 2) close relatives of other study participants; and 3)
pregnant or lactating individuals. Participants were divided into
three groups based on self-reported ancestry: Yakuts (62 healthy
individuals and 30 T2D patients), Tatars (63 healthy individuals
and 30 T2D patients), and Chechens (60 healthy individuals and 30
T2D patients) (Figure 1A). All participants underwent the
following assessments:

* Admission survey. Participants completed a survey
detailing their supposed ancestry and that of their
relatives across two generations.

* Anthropometric measurements. Height, weight, BMI, waist
circumference (WC), and hip circumference (HC) were
recorded. BMI was calculated as weight (kg)/(height(m))A2,
and waist-hip ratio (WHR) was calculated as waist
circumference (cm)/hip circumference (cm).

 Laboratory tests. Glycosylated hemoglobin (HbAlc) and
blood lipids: total cholesterol (TC), LDL, HDL, and
triglycerides (TG), were measured. Tests were carried out
in local laboratories. The atherogenic index was calculated
as (TC - HDL)/HDL, with all metrics in mmol/L.

2.2 Genotyping and data processing

Fasting morning venous blood samples were collected and
stored at —80°C in a central biobank. Genomic DNA was isolated
using the MagPure Universal DNA Kit (Magen Biotechnology,
China) and was quantified and assessed using NanoDrop OneC
(ThermoFS, USA). 200-500 ng of DNA samples were used for
genotyping. Genotyping was performed using the 450K Infinium
Global Screening Array (GSA) at the Endocrinology Research
Center, Moscow. Data preprocessing and export to PACKEDPED
format were conducted using Illumina GenomeStudio (16). The
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FIGURE 1

Exploratory analysis of the genetic ancestry in the study dataset. (A) Annotation structure of the study dataset. (B) PCA projection of study
participants (N=275) and ancestry reference donors (N=1878). (C) ADMIXTURE component profiles for K=9. Study participants are marked in dark

gray, and reference donors are marked in light gray.

PLINK package (ver. 2.00a5LM) (17) was used to convert files to
VCEF (Variant Call Format), and the beftools package (ver. 1.20) was
employed to correct the reference allele based on the forward strand
of the genomic reference hg38 (GRCh38.p14). This process led to
the detection of 548,502 SNPs.

2.3 Ancestry reference data collection

For genetic ancestry analysis, an ancestry-specific reference
dataset (N=1,878) was compiled from publicly available sources
(18-29), capturing a range of ancestries present in Russia, though
not all ancestries are fully represented (Figure 1B, Supplementary
Figure S1). Due to the different genotyping platforms, only 40,566
SNPs were successfully detected in all individuals in the
reference set.

2.4 Phasing and imputation

Study and reference data were phased with Eagle (ver. 2.4.1) and
imputed using Beagle (ver. 5.4) with default parameters (burnin = 6,
iterations = 12, imp-segment = 6, ne = 1000000). The 1000
Genomes Project (phase 3, N=3203) served as the reference for
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imputation. Variants with an imputation quality (DR2) > 0.3 were
retained, resulting in 10,314,190 SNPs for downstream analysis.

2.5 Determination of genetic ancestry

Global genetic ancestry was assessed using principal component
analysis (PCA, hail package (30) and admixture proportion
inference (ADMIXTURE) (31). ADMIXTURE was run with K
ranging from 2 to 15, with K=9 selected based on cross-validation
results. Admixture (ancestral) components were named based on
their distribution in populations and following previous admixture
studies of Russian samples (9, 18, 21). Two publicly available
samples with ancestry profiles significantly deviating from their
reported population averages were excluded (Supplementary
Methods). All the 275 study participants’ inferred ancestries
matched their self-reported data (Figures 1A-C).

2.6 Comparison of anthropometric and
clinical measurements between
populations

Linear and logistic regression analyses were conducted using the
ordinary least squares (OLS) and Logit functions, respectively, from
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the statsmodels library (32). Non-normally distributed clinical
measurements (e.g., BMI, TG, WC, HC, WHR, blood pressure, TC,
HDL, atherogenic index, HbAlc) were log-transformed to achieve
normal distribution, following established methodologies (33). The
standardized beta coefficient refers to how many standard deviations
the outcome variable will change per a standard deviation increase in
the predictor variable. P-values for regression coefficients were
obtained via the standard two-tailed t-tests and significance was
assessed after correction for multiple comparisons using the
Benjamini-Hochberg procedure.

2.7 Calculation of partitioned polygenic
scores

Smith et al. (14) identified 12 T2D-associated genetic clusters
based on GWAS summary statistics for 650 T2D-associated SNPs.
These clusters reflect functional traits linked to T2D, including
insulin deficiency (Beta Cell 1, Beta Cell 2, Proinsulin-negative);
insulin resistance (Obesity, Lipodystrophy 1, Lipodystrophy 2,
Hyper Insulin, Cholesterol-negative, Liver-Lipid, ALP-negative
[Alkaline Phosphatase-negative]); mechanisms that are currently
less well understood (Bilirubin, SHBG-LpA - characterized by
reduced sex hormone-binding globulin and elevated lipoprotein
(a)) (Supplementary Table 1).

pPGSs were calculated for each participant by multiplying the
weight of each SNP by 0, 1, or 2 based on their genotype. Only 285
variants with weights > 0.7802 in any cluster were included, as
recommended by Smith et al. (14) and consistent with prior studies
(33, 34) to maximize the signal-to-noise ratio. These scores reflect
an individual’s predisposition to specific T2D mechanisms.

2.8 SNP association analysis

For the 285 SNPs included in pPGSs calculations, associations
with specific populations were assessed using regression tests from
the PLINK package (ver. 2.00a5LM) (17), comparing one
population against the rest.

2.9 pPGSs associations with populations,
T2D, and clinical phenotypes

After generating individual-level pPGSs, we analyzed the
association of the pPGSs with various clinical phenotypes, studied
populations, and T2D, using linear regression (for continuous
outcomes) or logistic regression (for binary outcomes). We tried
to model T2D association with no covariates, adjusting for age, sex,
and BMI as covariates; adjusting for the aforementioned covariates
plus the inferred ancestries; or with these covariates plus the first 10
components of PCA.
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3 Results

3.1 Patients with and without T2D fit the
ancestry distribution

We analyzed the data of 275 eligible subjects, including 185
healthy donors and 90 patients with T2D. The median age of
participants was 45 years, and 58.5% were women (Figure 1A). To
validate self-reported ancestry, we first visualized the population
structure using principal component analysis (PCA) with publicly
available reference data (Figure 1B). The analysis revealed distinct
clusters corresponding to different genetic ancestries, with most
participants clustering according to their self-reported ancestry. To
further verify global ancestry estimates, we used ADMIXTURE
(Figure 1C). By analyzing all samples together, we identified nine
stable ancestral components. Each population exhibited a unique
ratio profile of these components. In this study, “ancestral
components” refer to the distribution of specific genetic variants
that vary across populations due to differences in ancestry. Based on
these analyses, we categorized the study participants into three
populations: Yakuts (62 healthy individuals and 30 T2D patients),
Tatars (63 healthy individuals and 30 T2D patients), and Chechens
(60 healthy individuals and 30 T2D patients).

3.2 Anthropometric and clinical metrics
differ between ancestries

Descriptive statistics for anthropometric and biochemical
measurements in the healthy control group and the T2D group
are provided in Supplementary Table 2 and Supplementary Table 3,
respectively. To identify significant differences in the association of
ancestry with anthropometric and clinical measurements, we
performed regression analysis with adjustment for T2D status,
age, and sex (Figure 2A). The Tatar population was selected as a
reference category.

Our results indicate that the Chechen population exhibited the
highest BMI (P<0.001), whereas Tatars and Yakuts had similar BMI
levels. Waist-hip ratio (WHR) was the highest in Yakuts (P<0.001)
followed by Chechens (P<0.001) and then Tatars. Waist
circumference (WC) and diastolic blood pressure (dBP) were the
highest in Chechens (P<0.001), followed by Yakuts (P<0.001) and
then Tatars. Hips circumference (HC) and systolic blood pressure
(sBP) were the highest in Chechens (P<0.001) and lower in Yakuts
and Tatars. Looking at blood clinical characteristics, Yakuts differed
from Tatars and Chechens by the highest triglycerides (TG)
(P<0.001) and HDL levels (P<0.001). At the same time, Yakuts
had the lowest atherogenic index of plasma (AIP) (P<0.001).

To investigate the effects that T2D had in a specific population,
we performed the regression analysis of the interaction of ancestry
and T2D features (‘population:T2D’) (Figure 2B), adjusting for the
effects of ancestry, T2D status, age, and sex. Interestingly, most of
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the identified differences were associated with blood clinical
parameters, not anthropometric measurements. Among patients
with T2D, Chechen ancestry was associated with lower HC
(P<0.05), sBP (P<0.05), and HDL levels (P<0.01) compared to
Tatar ancestry. Belonging to Yakut ancestry was associated with
the decrease in sBP (P<0.001), dBP (P<0.005), and the increase in
LDL (P<0.005), TC (P<0.005), and AIP (P<0.005) compared to
belonging to Tatar ancestry. Tatar ancestry itself within T2D was
associated with the lowest TC and AIP levels, and the highest sBP
among the populations.

3.3 T2D pPGSs demonstrate different
ancestry distribution

To explore the genetic basis of ancestral differences and to
investigate the genetic mechanisms underlying T2D, we next
examined pPGSs distributions. We calculated the pPGSs of T2D
genetic clusters proposed by Smith et al. (14) for each of the donors
in our dataset. Among 285 SNPs included in all pPGSs, no SNPs
demonstrated a significant frequency difference between any single
population and the rest of the samples. However, several pPGSs
exhibited ancestry-specific distributions among T2D patients
(Figure 3). Specifically, Yakut T2D patients showed significantly
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C, white blood cells count.

higher pPGS for the Beta Cell 1, Hyper Insulin, and Liver-Lipid
clusters compared to other populations (P < 0.05, Mann-Whitney),
while the Obesity pPGS (P < 0.05) was lower in the Yakut
T2D group.

We did not identify significant differences in the pPGS between
healthy individuals and T2D patients, either across the entire cohort
or within specific ancestry groups, except for ‘SHBG-LpA’” pPGSs,
which showed a 4.64, 95% CI [1.56, 13.77] T2D odds ratio for
Chechens (P <
pPGSs were not specifically designed to distinguish between
individuals with T2D and those without the condition, and the
sample size of the current study might be too small.

To address the limitation of small sample size within each

0.05). This outcome is not unexpected, as these

ancestry group, we evaluated pPGSs distributions across the entire
cohort, adjusting for T2D status (Figure 4). The Tatar population
was selected as the reference category. The Yakut population
exhibited higher pPGS for the Beta Cell 1 (P < 0.001), Hyper
Insulin (P <0.001), and SHBG-LpA (P < 0.01) clusters compared to
Tatars. Conversely, Yakuts displayed the lowest Obesity pPGS (adj.
P < 0.001). Chechens showed higher Beta Cell 1 pPGS (P < 0.05)
than Tatars, but, lower than Yakuts. Tatars exhibited the lowest
Hyper Insulin and SHBG-LpA pPGSs.

Interestingly, the Yakut population demonstrated the highest
pPGS values for both the Beta Cell 1 and Hyper Insulin clusters,
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FIGURE 3

T2D genetic cluster pPGSs prevalence in the patients with T2D of different ancestries. P-values were assessed using the Mann-Whitney test,

presented as *P< 0.05; **P < 0.01; ***P < 0.001.

which are associated with contrasting phenotypic traits. The Hyper
Insulin pPGS is linked to increased corrected insulin response (CIR)
and disposition index (DI), whereas the Beta Cell 1 pPGS is
associated with reduced CIR and DI. Analysis of the correlation
between these pPGSs in the Yakut population and all populations
combined revealed a weak association (Pearson’s correlation = 0.07)
(Supplementary Figure S2).

3.4 T2D genetic clusters show variation in
the ancestry space

To explore the variation in T2D mechanistic pathways across
different genetic ancestries, we analyzed pPGSs for T2D clusters using
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a combined dataset that included both our study participants and
publicly available ancestry-annotated data (Figure 5). This approach
allowed us to assess the distribution of pPGSs across a broader genetic
ancestry spectrum. Although T2D status information was unavailable
for these samples, the results remained consistent. pPGSs for Beta
Cell 1, Hyper Insulin are dramatically higher in eastern populations,
while pPGS for Obesity is higher in western populations. We found
that the distribution reflected known population characteristics from
the literature. For instance, the Khanty population showed one of the
highest scores for the Cholesterol Negative pPGS, which aligns with
previous studies reporting their significantly lower cholesterol levels
compared to Europeans (35). The results reveal distinct patterns of
pPGS variation, underscoring the influence of genetic ancestry on
T2D-related pathways.
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4 Discussion

Our analysis of anthropometric and clinical data across the
three studied populations — Chechens, Tatars, and Yakuts —
revealed significant ancestry-specific differences in phenotypic
traits and T2D-associated genetic clusters. Chechens exhibited
higher BMI and weight compared to Tatars and Yakuts,
consistent with findings by Kononenko et al. (12), who reported
that North Caucasus populations, including Chechens, have higher
BMI but a lower prevalence of carbohydrate metabolism disorders
(e.g., T2D and prediabetes) compared to other Russian populations.
This discrepancy may be attributed to the presence of genetic
protective traits in Chechens. The findings align with the study by
Loos&Yeo (36), which suggests that genetic factors can modulate
metabolic disease risk even in the presence of obesity.

In contrast, the Yakuts, the closest population to the East-Asian
populations (28, 37), displayed distinct metabolic profiles, including
the highest waist-hip ratio (WHR), triglycerides (TG), and HDL
levels, alongside the lowest atherogenic index. These observations
are in line with the traits of the East-Asian populations and may
reflect adaptations to chronic cold exposure, as observed in Arctic
populations, where improved fat utilization, increased insulin
sensitivity, and reduced circulating insulin concentrations have
been documented (38, 39). The Yakut population’s pPGS profile,
characterized by elevated Liver-Lipid (especially in T2D patients)
and reduced Obesity scores, supports this hypothesis. Yakuts
showed higher pPGS for Beta Cell 1, suggesting that P-cell
dysfunction pathways play a larger role in T2D pathogenesis for
them than obesity-related insulin resistance. The same fact was
shown by Yabe et al. for East Asians in comparison to Caucasians
(8). Increased Hyper Insulin pPGS in Yakuts suggests
compensatory insulin production, often seen in early disease
stages. Interestingly, Yakuts exhibited the highest pPGS for the
phenotypically opposing Beta Cell 1 and Hyper Insulin clusters.
However, the lack of correlation between these scores suggests that
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these traits are driven by distinct genetic mechanisms within
the population.

Tatars, on the other hand, showed the lowest WHR, waist
circumference and diastolic blood pressure (dBP) levels. These
findings highlight the unique characteristics of Tatars, which
may contribute to their distinct T2D risk profile. The decreased
Hyper Insulin and SHBG-LpA pPGSs in Tatars further underscore
the role of ancestry-specific genetic factors in shaping
T2D pathophysiology.

Our results underscore the importance of studying diverse
ancestral populations to uncover population-specific genetic and
metabolic traits. However, several limitations must be
acknowledged. First, the relatively small sample sizes within each
ancestry group may have limited our ability to detect significant
associations, particularly for rare variants. This issue is
compounded by sampling bias, which can affect allele frequency
estimates and ancestry inference, as discussed by Risso et al. (40),
Shringarpure & Xing (41), and Marchini et al. (4). Second, the
availability of genetic data from the Russian Federation remains
limited, with fewer than 2,000 publicly available genomes,
predominantly of European ancestry (Supplementary Figure S1).
This highlights the need for broader genetic research initiatives to
include underrepresented populations, as emphasized in large-scale
multi-ancestry studies (42).

Discovery and transferability studies across ancestries promise
to be integral in advancing our understanding of the genetic basis of
T2D and providing insights into differences in the prevalence and
physiology of the disease between ancestries. Our results emphasize
the importance of analyzing diverse ancestral populations.
Translating genetic discoveries into clinical practice remains
challenging, mainly due to the abundance of non-coding variants
and the complex interplay of multiple genetic and environmental
factors (4). However, innovative approaches, such as pPGSs, offer
promising avenues for understanding T2D heterogeneity. pPGSs,
which cluster genetic loci based on shared association patterns,
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FIGURE 5

pPGSs distribution in the combined data of the study and public ancestry reference. The same PCA components as in Figure 1B are used. Population

clusters are colored based on the median value of a specific pPGS.

provide insights into distinct pathological pathways and can guide
personalized treatment strategies. For example, individuals with a
high pPGS for B cell dysfunction may benefit from early
interventions to preserve f3 cell function. In contrast, those with a
high pPGS associated with insulin resistance mechanisms may
require targeted therapies to improve insulin sensitivity. Summing
up, studying these T2D-related biological processes could help
move closer to personalized treatment plans for patients, based
on their genetic makeup.

The low representation of ancestral diversity in modern
population studies reduces our ability to translate genetic research
into clinical practice, making conclusions dangerously incomplete
or even flawed. For example, attempts to apply genetic risk
estimates obtained from Western Europeans to Russian
populations may lead to underestimating the risk due to
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differences in allele frequencies and genetic architecture. This
underscores the need for large-scale genetic studies in Russia to
identify population-specific risk variants and improve the accuracy
of risk prediction models.

Despite these limitations, our findings contribute to a growing
body of evidence demonstrating the utility of pPGS in elucidating
T2D mechanisms. Building on Smith et al’s framework of T2D
clusters (14), our work uniquely applies this method to
underrepresented populations in Russia. While pPGS provide
valuable insights into the genetic architecture of T2D, their
clinical application requires further refinement. For instance,
current pPGS models cannot definitively assign individuals to
specific genetic subtypes, and functional validation through
experimental models is needed to confirm the biological relevance
of identified clusters (34). Nevertheless, the use of pPGS as
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mechanistic “signatures” holds promise for improving T2D
stratification and advancing precision medicine approaches.

In conclusion, our study demonstrates that similar patterns of
T2D genetic clusters occur across multiple populations but with
varying frequencies. These ancestry-specific differences in genetic
and metabolic traits underscore the importance of considering
genetic background in T2D risk assessment and management.
Future research should focus on expanding genetic datasets to
include underrepresented populations, validating pPGS in
experimental models, and developing precision medicine
strategies tailored to specific T2D mechanisms. Such efforts will
deepen our understanding of T2D heterogeneity and pave the way
for more personalized and effective interventions.
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