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Introduction: Type 2 diabetes mellitus (T2D) is a highly polygenic disease

involving multiple biological pathways. Genetic ancestry may influence the

predominant mechanisms driving T2D. Understanding how genetic

background shapes T2D risk is crucial for developing personalized prevention

and treatment strategies.

Methods: We analyzed ancestry-specific differences in T2D mechanisms and

assessed the prevalence of T2D-associated genetic clusters, reflecting biological

mechanisms underlying T2D onset and progression, in individuals from three

Russian ancestry groups: Chechens, Tatars, and Yakuts. Previously developed

polygenic scores were applied to evaluate cluster prevalence and clinical risk

factors across ancestry groups.

Results: Cluster-specific polygenic scores varied significantly between

populations. Yakuts exhibited higher scores for b-cell dysfunction, hyper-

insulin secretion, and lipid metabolism alterations, whereas Chechens and

Tatars had higher scores for obesity-related mechanisms.

Discussion/Conclusions: The predominant mechanisms underlying T2D differ

across populations. These ancestry-specific differences should be considered in

public health recommendations and personalized medicine approaches.
KEYWORDS

type 2 diabetes, genotyping, ancestry, risk scores, genetic mechanism, Russian
population, genetic association, beta cell dysfunction
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1 Introduction

The multifactorial nature of type 2 diabetes mellitus (T2D) has

been confirmed by numerous studies. The disease is influenced by

multiple risk factors, including lifestyle, environment, and genetics

(1, 2). The main pathophysiological processes underlying T2D

development focus on the role of obesity, visceral and ectopic fat

accumulation, insulin resistance, and b cell dysfunction (3).

The expanding catalog of genetic differences among humans is

helping researchers understand why some individuals and

populations are more prone to common diseases, such as T2D.

Additionally, we are gaining insights that may improve the efficacy

and safety of therapeutic drugs. Genome-wide association studies

(GWAS) have identified over 600 genetic loci associated with T2D,

many of which are involved in beta-cell function, insulin secretion,

and insulin sensitivity (4). Genetic ancestry is one of the key factors

determining predisposition to diabetes (5). The contribution of T2D-

associated loci to disease risk varies significantly across populations

due to differences in allele frequencies and population-specific genetic

architecture (6). Rare variants tend to be specific to certain

populations (7). Ancestry-specific differences in the balance

between insulin secretion and insulin resistance further contribute

to T2D heterogeneity (8). For instance, East Asian populations tend

to have a higher prevalence of beta-cell dysfunction, while European

populations often exhibit stronger associations with insulin resistance

(8). These pathophysiological differences have a crucial impact on the

appropriate preventive and therapeutic approaches, highlighting the

need for population-specific research.

Russia is a multinational country with more than 190 ethnic

groups, making it a unique setting for studying the genetic

architecture of T2D in a diverse population (9). However, most

existing population studies lack ancestral diversity and

predominantly focus on Western European individuals (10). Recent

studies have shown that allele frequencies of various clinically

significant single nucleotide polymorphisms (SNPs) differ

significantly between Russian and Western European populations

(11). This suggests that unique population-specific variants may

influence the genetic risk of T2D in Russia. Populations within

Russia also exhibit differences in the prevalence of carbohydrate

metabolism disorders and T2D (12). These findings highlight the

importance of population-specific research in refining subtype

classification and improving personalized treatment strategies.

Advances in phenotype-based clustering have revealed distinct

subtypes of T2D, each with unique genetic, clinical, and

pathophysiological characteristics (13). Recent studies by several

groups of authors (14, 15) have leveraged genome-wide association

study (GWAS) summary statistics to connect genetic loci to

possible T2D pathological pathways by clustering genetic loci

based on shared patterns of associations across multiple traits

using a soft clustering approach. Smith et al. (14) have identified

twelve genetic clusters and used them to generate partitioned

polygenic scores (pPGSs) linked to distinct cellular and clinical

features. In this work, we applied pPGSs to distinct populations in

Russia to investigate the effect of ancestry on genetic predisposition

to certain mechanisms, while keeping in mind that pPGSs reflect
Frontiers in Endocrinology 02
the likelihood of certain disease mechanisms occurring rather than

a definitive indicator of individual risk of disease development.
2 Materials and methods

2.1 Study design and sample collection

The study included healthy individuals and patients with T2D

from distinct ancestry groups: Yakuts (Yakutsk), Tatars (Kazan),

and Chechens (Grozny), all of whom provided informed consent to

participate. Ancestry was determined through self-reported data

from participants and two generations of their ancestors. A total of

275 eligible participants were included in this observational study,

which did not influence patient management. Patients with T2D

were recruited at the primary healthcare level in three locations

across Russia. Inclusion criteria were based on medical history,

including a prior diagnosis of diabetes and the use of glucose-

lowering drugs. T2D diagnosis followed WHO criteria (1999).

Exclusion criteria included: 1) individuals with other types of

diabetes; 2) close relatives of other study participants; and 3)

pregnant or lactating individuals. Participants were divided into

three groups based on self-reported ancestry: Yakuts (62 healthy

individuals and 30 T2D patients), Tatars (63 healthy individuals

and 30 T2D patients), and Chechens (60 healthy individuals and 30

T2D patients) (Figure 1A). All participants underwent the

following assessments:
• Admission survey. Participants completed a survey

detailing their supposed ancestry and that of their

relatives across two generations.

• Anthropometric measurements. Height, weight, BMI, waist

circumference (WC), and hip circumference (HC) were

recorded. BMI was calculated as weight (kg)/(height(m))^2,

and waist-hip ratio (WHR) was calculated as waist

circumference (cm)/hip circumference (cm).

• Laboratory tests. Glycosylated hemoglobin (HbA1c) and

blood lipids: total cholesterol (TC), LDL, HDL, and

triglycerides (TG), were measured. Tests were carried out

in local laboratories. The atherogenic index was calculated

as (TC - HDL)/HDL, with all metrics in mmol/L.
2.2 Genotyping and data processing

Fasting morning venous blood samples were collected and

stored at −80°C in a central biobank. Genomic DNA was isolated

using the MagPure Universal DNA Kit (Magen Biotechnology,

China) and was quantified and assessed using NanoDrop OneC

(ThermoFS, USA). 200–500 ng of DNA samples were used for

genotyping. Genotyping was performed using the 450K Infinium

Global Screening Array (GSA) at the Endocrinology Research

Center, Moscow. Data preprocessing and export to PACKEDPED

format were conducted using Illumina GenomeStudio (16). The
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https://doi.org/10.3389/fendo.2025.1672403
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Markelova et al. 10.3389/fendo.2025.1672403
PLINK package (ver. 2.00a5LM) (17) was used to convert files to

VCF (Variant Call Format), and the bcftools package (ver. 1.20) was

employed to correct the reference allele based on the forward strand

of the genomic reference hg38 (GRCh38.p14). This process led to

the detection of 548,502 SNPs.
2.3 Ancestry reference data collection

For genetic ancestry analysis, an ancestry-specific reference

dataset (N=1,878) was compiled from publicly available sources

(18–29), capturing a range of ancestries present in Russia, though

not all ancestries are fully represented (Figure 1B, Supplementary

Figure S1). Due to the different genotyping platforms, only 40,566

SNPs were successfully detected in all individuals in the

reference set.
2.4 Phasing and imputation

Study and reference data were phased with Eagle (ver. 2.4.1) and

imputed using Beagle (ver. 5.4) with default parameters (burnin = 6,

iterations = 12, imp-segment = 6, ne = 1000000). The 1000

Genomes Project (phase 3, N=3203) served as the reference for
Frontiers in Endocrinology 03
imputation. Variants with an imputation quality (DR2) ≥ 0.3 were

retained, resulting in 10,314,190 SNPs for downstream analysis.
2.5 Determination of genetic ancestry

Global genetic ancestry was assessed using principal component

analysis (PCA, hail package (30) and admixture proportion

inference (ADMIXTURE) (31). ADMIXTURE was run with K

ranging from 2 to 15, with K=9 selected based on cross-validation

results. Admixture (ancestral) components were named based on

their distribution in populations and following previous admixture

studies of Russian samples (9, 18, 21). Two publicly available

samples with ancestry profiles significantly deviating from their

reported population averages were excluded (Supplementary

Methods). All the 275 study participants’ inferred ancestries

matched their self-reported data (Figures 1A-C).
2.6 Comparison of anthropometric and
clinical measurements between
populations

Linear and logistic regression analyses were conducted using the

ordinary least squares (OLS) and Logit functions, respectively, from
FIGURE 1

Exploratory analysis of the genetic ancestry in the study dataset. (A) Annotation structure of the study dataset. (B) PCA projection of study
participants (N=275) and ancestry reference donors (N=1878). (C) ADMIXTURE component profiles for K=9. Study participants are marked in dark
gray, and reference donors are marked in light gray.
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the statsmodels library (32). Non-normally distributed clinical

measurements (e.g., BMI, TG, WC, HC, WHR, blood pressure, TC,

HDL, atherogenic index, HbA1c) were log-transformed to achieve

normal distribution, following established methodologies (33). The

standardized beta coefficient refers to how many standard deviations

the outcome variable will change per a standard deviation increase in

the predictor variable. P-values for regression coefficients were

obtained via the standard two-tailed t-tests and significance was

assessed after correction for multiple comparisons using the

Benjamini–Hochberg procedure.
2.7 Calculation of partitioned polygenic
scores

Smith et al. (14) identified 12 T2D-associated genetic clusters

based on GWAS summary statistics for 650 T2D-associated SNPs.

These clusters reflect functional traits linked to T2D, including

insulin deficiency (Beta Cell 1, Beta Cell 2, Proinsulin-negative);

insulin resistance (Obesity, Lipodystrophy 1, Lipodystrophy 2,

Hyper Insulin, Cholesterol-negative, Liver-Lipid, ALP-negative

[Alkaline Phosphatase-negative]); mechanisms that are currently

less well understood (Bilirubin, SHBG-LpA – characterized by

reduced sex hormone-binding globulin and elevated lipoprotein

(a)) (Supplementary Table 1).

pPGSs were calculated for each participant by multiplying the

weight of each SNP by 0, 1, or 2 based on their genotype. Only 285

variants with weights > 0.7802 in any cluster were included, as

recommended by Smith et al. (14) and consistent with prior studies

(33, 34) to maximize the signal-to-noise ratio. These scores reflect

an individual’s predisposition to specific T2D mechanisms.
2.8 SNP association analysis

For the 285 SNPs included in pPGSs calculations, associations

with specific populations were assessed using regression tests from

the PLINK package (ver. 2.00a5LM) (17), comparing one

population against the rest.
2.9 pPGSs associations with populations,
T2D, and clinical phenotypes

After generating individual-level pPGSs, we analyzed the

association of the pPGSs with various clinical phenotypes, studied

populations, and T2D, using linear regression (for continuous

outcomes) or logistic regression (for binary outcomes). We tried

to model T2D association with no covariates, adjusting for age, sex,

and BMI as covariates; adjusting for the aforementioned covariates

plus the inferred ancestries; or with these covariates plus the first 10

components of PCA.
Frontiers in Endocrinology 04
3 Results

3.1 Patients with and without T2D fit the
ancestry distribution

We analyzed the data of 275 eligible subjects, including 185

healthy donors and 90 patients with T2D. The median age of

participants was 45 years, and 58.5% were women (Figure 1A). To

validate self-reported ancestry, we first visualized the population

structure using principal component analysis (PCA) with publicly

available reference data (Figure 1B). The analysis revealed distinct

clusters corresponding to different genetic ancestries, with most

participants clustering according to their self-reported ancestry. To

further verify global ancestry estimates, we used ADMIXTURE

(Figure 1C). By analyzing all samples together, we identified nine

stable ancestral components. Each population exhibited a unique

ratio profile of these components. In this study, “ancestral

components” refer to the distribution of specific genetic variants

that vary across populations due to differences in ancestry. Based on

these analyses, we categorized the study participants into three

populations: Yakuts (62 healthy individuals and 30 T2D patients),

Tatars (63 healthy individuals and 30 T2D patients), and Chechens

(60 healthy individuals and 30 T2D patients).
3.2 Anthropometric and clinical metrics
differ between ancestries

Descriptive statistics for anthropometric and biochemical

measurements in the healthy control group and the T2D group

are provided in Supplementary Table 2 and Supplementary Table 3,

respectively. To identify significant differences in the association of

ancestry with anthropometric and clinical measurements, we

performed regression analysis with adjustment for T2D status,

age, and sex (Figure 2A). The Tatar population was selected as a

reference category.

Our results indicate that the Chechen population exhibited the

highest BMI (P<0.001), whereas Tatars and Yakuts had similar BMI

levels. Waist-hip ratio (WHR) was the highest in Yakuts (P<0.001)

followed by Chechens (P<0.001) and then Tatars. Waist

circumference (WC) and diastolic blood pressure (dBP) were the

highest in Chechens (P<0.001), followed by Yakuts (P<0.001) and

then Tatars. Hips circumference (HC) and systolic blood pressure

(sBP) were the highest in Chechens (P<0.001) and lower in Yakuts

and Tatars. Looking at blood clinical characteristics, Yakuts differed

from Tatars and Chechens by the highest triglycerides (TG)

(P<0.001) and HDL levels (P<0.001). At the same time, Yakuts

had the lowest atherogenic index of plasma (AIP) (P<0.001).

To investigate the effects that T2D had in a specific population,

we performed the regression analysis of the interaction of ancestry

and T2D features (‘population:T2D’) (Figure 2B), adjusting for the

effects of ancestry, T2D status, age, and sex. Interestingly, most of
frontiersin.org

https://doi.org/10.3389/fendo.2025.1672403
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Markelova et al. 10.3389/fendo.2025.1672403
the identified differences were associated with blood clinical

parameters, not anthropometric measurements. Among patients

with T2D, Chechen ancestry was associated with lower HC

(P<0.05), sBP (P<0.05), and HDL levels (P<0.01) compared to

Tatar ancestry. Belonging to Yakut ancestry was associated with

the decrease in sBP (P<0.001), dBP (P<0.005), and the increase in

LDL (P<0.005), TC (P<0.005), and AIP (P<0.005) compared to

belonging to Tatar ancestry. Tatar ancestry itself within T2D was

associated with the lowest TC and AIP levels, and the highest sBP

among the populations.
3.3 T2D pPGSs demonstrate different
ancestry distribution

To explore the genetic basis of ancestral differences and to

investigate the genetic mechanisms underlying T2D, we next

examined pPGSs distributions. We calculated the pPGSs of T2D

genetic clusters proposed by Smith et al. (14) for each of the donors

in our dataset. Among 285 SNPs included in all pPGSs, no SNPs

demonstrated a significant frequency difference between any single

population and the rest of the samples. However, several pPGSs

exhibited ancestry-specific distributions among T2D patients

(Figure 3). Specifically, Yakut T2D patients showed significantly
Frontiers in Endocrinology 05
higher pPGS for the Beta Cell 1, Hyper Insulin, and Liver-Lipid

clusters compared to other populations (P ≤ 0.05, Mann-Whitney),

while the Obesity pPGS (P ≤ 0.05) was lower in the Yakut

T2D group.

We did not identify significant differences in the pPGS between

healthy individuals and T2D patients, either across the entire cohort

or within specific ancestry groups, except for ‘SHBG-LpA’ pPGSs,

which showed a 4.64, 95% CI [1.56, 13.77] T2D odds ratio for

Chechens (P ≤ 0.05). This outcome is not unexpected, as these

pPGSs were not specifically designed to distinguish between

individuals with T2D and those without the condition, and the

sample size of the current study might be too small.

To address the limitation of small sample size within each

ancestry group, we evaluated pPGSs distributions across the entire

cohort, adjusting for T2D status (Figure 4). The Tatar population

was selected as the reference category. The Yakut population

exhibited higher pPGS for the Beta Cell 1 (P ≤ 0.001), Hyper

Insulin (P ≤ 0.001), and SHBG-LpA (P ≤ 0.01) clusters compared to

Tatars. Conversely, Yakuts displayed the lowest Obesity pPGS (adj.

P ≤ 0.001). Chechens showed higher Beta Cell 1 pPGS (P ≤ 0.05)

than Tatars, but, lower than Yakuts. Tatars exhibited the lowest

Hyper Insulin and SHBG-LpA pPGSs.

Interestingly, the Yakut population demonstrated the highest

pPGS values for both the Beta Cell 1 and Hyper Insulin clusters,
FIGURE 2

Association of ancestry and T2D (within an ancestry) with anthropometric and clinical measurements in individuals. (A) The estimated effect of
ancestry on anthropometric and clinical measurements, adjusted for T2D status, age, and sex. (B) The estimated effect of T2D within a specific
ancestry on anthropometric and clinical measurements, adjusted for ancestry, age, and sex. The Tatar population was used as a reference category.
Adjusted p-value presented as *P≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. WHR, waist-hip ratio; sBP, systolic blood pressure; dBP, diastolic blood pressure;
TG, triglycerides; TC, total cholesterol; AIP, atherogenic index of plasma; WBC, white blood cells count.
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which are associated with contrasting phenotypic traits. The Hyper

Insulin pPGS is linked to increased corrected insulin response (CIR)

and disposition index (DI), whereas the Beta Cell 1 pPGS is

associated with reduced CIR and DI. Analysis of the correlation

between these pPGSs in the Yakut population and all populations

combined revealed a weak association (Pearson’s correlation = 0.07)

(Supplementary Figure S2).
3.4 T2D genetic clusters show variation in
the ancestry space

To explore the variation in T2D mechanistic pathways across

different genetic ancestries, we analyzed pPGSs for T2D clusters using
Frontiers in Endocrinology 06
a combined dataset that included both our study participants and

publicly available ancestry-annotated data (Figure 5). This approach

allowed us to assess the distribution of pPGSs across a broader genetic

ancestry spectrum. Although T2D status information was unavailable

for these samples, the results remained consistent. pPGSs for Beta

Cell 1, Hyper Insulin are dramatically higher in eastern populations,

while pPGS for Obesity is higher in western populations. We found

that the distribution reflected known population characteristics from

the literature. For instance, the Khanty population showed one of the

highest scores for the Cholesterol Negative pPGS, which aligns with

previous studies reporting their significantly lower cholesterol levels

compared to Europeans (35). The results reveal distinct patterns of

pPGS variation, underscoring the influence of genetic ancestry on

T2D-related pathways.
FIGURE 3

T2D genetic cluster pPGSs prevalence in the patients with T2D of different ancestries. P-values were assessed using the Mann-Whitney test,
presented as *P≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.
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4 Discussion

Our analysis of anthropometric and clinical data across the

three studied populations — Chechens, Tatars, and Yakuts —

revealed significant ancestry-specific differences in phenotypic

traits and T2D-associated genetic clusters. Chechens exhibited

higher BMI and weight compared to Tatars and Yakuts,

consistent with findings by Kononenko et al. (12), who reported

that North Caucasus populations, including Chechens, have higher

BMI but a lower prevalence of carbohydrate metabolism disorders

(e.g., T2D and prediabetes) compared to other Russian populations.

This discrepancy may be attributed to the presence of genetic

protective traits in Chechens. The findings align with the study by

Loos&Yeo (36), which suggests that genetic factors can modulate

metabolic disease risk even in the presence of obesity.

In contrast, the Yakuts, the closest population to the East-Asian

populations (28, 37), displayed distinct metabolic profiles, including

the highest waist-hip ratio (WHR), triglycerides (TG), and HDL

levels, alongside the lowest atherogenic index. These observations

are in line with the traits of the East-Asian populations and may

reflect adaptations to chronic cold exposure, as observed in Arctic

populations, where improved fat utilization, increased insulin

sensitivity, and reduced circulating insulin concentrations have

been documented (38, 39). The Yakut population’s pPGS profile,

characterized by elevated Liver-Lipid (especially in T2D patients)

and reduced Obesity scores, supports this hypothesis. Yakuts

showed higher pPGS for Beta Cell 1, suggesting that b-cell
dysfunction pathways play a larger role in T2D pathogenesis for

them than obesity-related insulin resistance. The same fact was

shown by Yabe et al. for East Asians in comparison to Caucasians

(8). Increased Hyper Insulin pPGS in Yakuts suggests

compensatory insulin production, often seen in early disease

stages. Interestingly, Yakuts exhibited the highest pPGS for the

phenotypically opposing Beta Cell 1 and Hyper Insulin clusters.

However, the lack of correlation between these scores suggests that
Frontiers in Endocrinology 07
these traits are driven by distinct genetic mechanisms within

the population.

Tatars, on the other hand, showed the lowest WHR, waist

circumference and diastolic blood pressure (dBP) levels. These

findings highlight the unique characteristics of Tatars, which

may contribute to their distinct T2D risk profile. The decreased

Hyper Insulin and SHBG-LpA pPGSs in Tatars further underscore

the role of ancestry-specific genetic factors in shaping

T2D pathophysiology.

Our results underscore the importance of studying diverse

ancestral populations to uncover population-specific genetic and

metabolic traits. However, several limitations must be

acknowledged. First, the relatively small sample sizes within each

ancestry group may have limited our ability to detect significant

associations, particularly for rare variants. This issue is

compounded by sampling bias, which can affect allele frequency

estimates and ancestry inference, as discussed by Risso et al. (40),

Shringarpure & Xing (41), and Marchini et al. (4). Second, the

availability of genetic data from the Russian Federation remains

limited, with fewer than 2,000 publicly available genomes,

predominantly of European ancestry (Supplementary Figure S1).

This highlights the need for broader genetic research initiatives to

include underrepresented populations, as emphasized in large-scale

multi-ancestry studies (42).

Discovery and transferability studies across ancestries promise

to be integral in advancing our understanding of the genetic basis of

T2D and providing insights into differences in the prevalence and

physiology of the disease between ancestries. Our results emphasize

the importance of analyzing diverse ancestral populations.

Translating genetic discoveries into clinical practice remains

challenging, mainly due to the abundance of non-coding variants

and the complex interplay of multiple genetic and environmental

factors (4). However, innovative approaches, such as pPGSs, offer

promising avenues for understanding T2D heterogeneity. pPGSs,

which cluster genetic loci based on shared association patterns,
FIGURE 4

Cluster prevalence in the studied populations (individuals with T2D and non-T2D together). Linear regression was performed with adjustment for
T2D status. Adjusted p-values (two-sided t-test) are presented as *P≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. CI, confidence interval.
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provide insights into distinct pathological pathways and can guide

personalized treatment strategies. For example, individuals with a

high pPGS for b cell dysfunction may benefit from early

interventions to preserve b cell function. In contrast, those with a

high pPGS associated with insulin resistance mechanisms may

require targeted therapies to improve insulin sensitivity. Summing

up, studying these T2D-related biological processes could help

move closer to personalized treatment plans for patients, based

on their genetic makeup.

The low representation of ancestral diversity in modern

population studies reduces our ability to translate genetic research

into clinical practice, making conclusions dangerously incomplete

or even flawed. For example, attempts to apply genetic risk

estimates obtained from Western Europeans to Russian

populations may lead to underestimating the risk due to
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differences in allele frequencies and genetic architecture. This

underscores the need for large-scale genetic studies in Russia to

identify population-specific risk variants and improve the accuracy

of risk prediction models.

Despite these limitations, our findings contribute to a growing

body of evidence demonstrating the utility of pPGS in elucidating

T2D mechanisms. Building on Smith et al.’s framework of T2D

clusters (14), our work uniquely applies this method to

underrepresented populations in Russia. While pPGS provide

valuable insights into the genetic architecture of T2D, their

clinical application requires further refinement. For instance,

current pPGS models cannot definitively assign individuals to

specific genetic subtypes, and functional validation through

experimental models is needed to confirm the biological relevance

of identified clusters (34). Nevertheless, the use of pPGS as
FIGURE 5

pPGSs distribution in the combined data of the study and public ancestry reference. The same PCA components as in Figure 1B are used. Population
clusters are colored based on the median value of a specific pPGS.
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mechanistic “signatures” holds promise for improving T2D

stratification and advancing precision medicine approaches.

In conclusion, our study demonstrates that similar patterns of

T2D genetic clusters occur across multiple populations but with

varying frequencies. These ancestry-specific differences in genetic

and metabolic traits underscore the importance of considering

genetic background in T2D risk assessment and management.

Future research should focus on expanding genetic datasets to

include underrepresented populations, validating pPGS in

experimental models, and developing precision medicine

strategies tailored to specific T2D mechanisms. Such efforts will

deepen our understanding of T2D heterogeneity and pave the way

for more personalized and effective interventions.
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