

OPEN ACCESS

Eduardo Piedrafita, Universidad San Jorge, Spain

REVIEWED BY
Adriana Duaso-Iriarte,
Saint George University, Spain
Ajith K,
Yenepoya (Deemed to be University), India

*CORRESPONDENCE
Jingrong Li

M 214729284@gg.com

[†]These authors have contributed equally to this work

RECEIVED 24 July 2025
ACCEPTED 06 October 2025
PUBLISHED 16 October 2025

CITATION

Zhao Y, Long Y, Zhu H, He R, Chen Y and Li J (2025) High-intensity interval training versus moderate-intensity continuous training for polycystic ovary syndrome: a meta-analysis of randomized controlled trials. *Front. Endocrinol.* 16:1672257. doi: 10.3389/fendo.2025.1672257

COPYRIGHT

© 2025 Zhao, Long, Zhu, He, Chen and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

High-intensity interval training versus moderate-intensity continuous training for polycystic ovary syndrome: a meta-analysis of randomized controlled trials

Yi Zhao^{1†}, Yu Long^{1†}, Hongjiao Zhu², Run He¹, Yunxia Chen¹ and Jingrong Li^{1*}

¹Reproductive Medicine Center, Dazhou Central Hospital, Dazhou, China, ²Department of Gynecology, Dazhou Central Hospital, Dazhou, China

Objective: Polycystic Ovary Syndrome (PCOS) is the most prevalent endocrine disorder affecting women of reproductive age. Lifestyle modifications, particularly exercise, are cornerstone management strategies, with High-Intensity Interval Training (HIIT) and Moderate-Intensity Continuous Training (MICT) being commonly recommended modalities. Despite their widespread use, high-quality evidence directly comparing HIIT and MICT in women with PCOS is limited. This meta-analysis aims to rigorously compare the effects of HIIT versus MICT in women with PCOS to provide precise and robust evidence for clinical recommendations.

Methods: This meta-analysis adhered to PRISMA guidelines, conducting a comprehensive search across PubMed, EMBASE, Web of Science, and Cochrane Library databases up to April 15, 2025. Randomized controlled trials (RCTs) directly comparing supervised HIIT and MICT interventions of at least 12 weeks in premenopausal women (18–50 years) diagnosed with PCOS were included. Outcome data covered anthropometric measures, cardiorespiratory fitness, glucose and insulin metabolism, lipid profile, and hormonal parameters. Methodological quality was assessed using the Cochrane Risk of Bias Tool (RoB 2), and overall evidence certainty was determined via GRADE methodology. Statistical analyses were performed using Review Manager (RevMan) 5.4.1, with continuous variables analyzed as Weighted Mean Differences (WMD) with 95% Confidence Intervals (CIs).

Results: A total of six RCTs were included in the meta-analysis. The main findings indicate no statistically significant superiority of either HIIT or MICT across anthropometric outcomes (weight, BMI, waist circumference, hip circumference, WHR), cardiorespiratory fitness (VO2max, SBP, DBP), glucose and insulin metabolism (fasting glucose, fasting insulin, HOMA-IR), lipid profile (total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides), or hormonal parameters (testosterone, SHBG, FAI). The certainty of evidence for these outcomes ranged from very low to low.

Conclusion: Based on the current low to very low certainty evidence from RCTs, there is no statistically significant superiority of HIIT over MICT for improving anthropometric, cardiorespiratory, metabolic, or hormonal outcomes in women

with PCOS. These findings suggest that either HIIT or MICT can be recommended based on patient preference, but larger RCTs are needed due to low evidence certainty. This study received no funding.

KEYWORDS

polycystic ovary syndrome, high-intensity interval training, moderate-intensity continuous training, meta-analysis, randomized controlled trials

1 Introduction

Polycystic Ovary Syndrome (PCOS) is a common and complex endocrine disorder, characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovaries (1, 2). With an estimated prevalence of 11-13% among women worldwide (3), PCOS represents a significant public health and economic burden (4, 5). PCOS stands as the most prevalent endocrine disorder affecting women of reproductive age (6). Its diverse clinical presentation encompasses reproductive dysfunctions like infertility and menstrual irregularities, alongside significant metabolic complications including insulin resistance, type 2 diabetes, cardiovascular disease, and obesity (1, 2). Critically, PCOS is the leading cause of anovulatory infertility (7), and a substantial contributor to early-onset type 2 diabetes and various psychological disorders (8). The chronic nature of PCOS and its associated comorbidities necessitate effective and sustainable management strategies.

The underlying pathophysiology of PCOS is multifactorial, involving a complex interplay of genetic predispositions and environmental factors. Key mechanisms include insulin resistance, compensatory hyperinsulinemia, hyperandrogenism, chronic low-grade inflammation, and altered adipose tissue function (1, 2). Current non-pharmacological management recommendations for PCOS primarily focus on lifestyle modifications, including dietary interventions and regular exercise, to address these core pathological features (3). Exercise is recognized as a cornerstone of PCOS management due to its ability to improve insulin sensitivity, reduce androgen levels, mitigate inflammation, enhance body composition, and improve cardiovascular health (9–11).

Among the various exercise modalities, High-Intensity Interval Training (HIIT) and Moderate-Intensity Continuous Training (MICT) are two commonly recommended approaches (3). Typically, HIIT involves bursts at 80-95% of maximum heart rate (HRmax) for 30 seconds to 4 minutes, alternated with recovery at 50-60% HRmax, for 20-40 minutes per session, 3-5 times weekly. MICT entails continuous exercise at 50-70% HRmax for 30-60 minutes per session at similar frequencies (9, 11). HIIT offers notable time efficiency, potentially achieving comparable physiological benefits in less total exercise time, and its perceived enjoyability relative to MICT further contributes to its enhanced adherence potential. Both exercise patterns have been shown to

improve insulin sensitivity, reduce hyperandrogenism, exert antiinflammatory effects, improve body composition, and enhance cardiorespiratory fitness in women with PCOS (12, 13).

Despite the growing interest in exercise as a therapeutic intervention for PCOS, there remains limited high-quality evidence directly comparing the effects of HIIT and MICT head-to-head. Previous systematic reviews, often limited by small sample sizes and the inclusion of broad exercise interventions or non-direct comparisons, have yielded diverse and sometimes inconclusive findings regarding the relative superiority of one modality over another for specific PCOS outcomes (14–17). Therefore, a comprehensive and updated meta-analysis exclusively focusing on randomized controlled trials (RCTs) directly comparing HIIT and MICT in women with PCOS is critically needed to provide precise and robust evidence for clinical recommendations.

This meta-analysis aims to rigorously compare the effects of HIIT versus MICT in women with PCOS. We hypothesize that HIIT and MICT will lead to comparable improvements in PCOS-related outcomes.

2 Methods

2.1 Study design and registration

This meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (18) and was preregistered in the International Prospective Register of Systematic Reviews (PROSPERO) with the registration ID: CRD42025649165. This study received no funding, and all authors declared no conflict of interest. Two independent reviewers (YZ and YL) conducted the literature search, extracted data, assessed the methodological quality of included studies, and performed statistical analyses, with any discrepancies resolved through discussion with a third reviewer (JL).

2.2 Literature search

A comprehensive search was conducted across PubMed, EMBASE, Web of Science, and Cochrane Library databases, including all records available up to April 15, 2025. The search

strategy used the following main search terms: ("high-intensity interval training" OR "HIIT" OR "high-intensity intermittent exercise" OR "interval training") AND ("moderate-intensity continuous training" OR "MICT" OR "moderate-intensity exercise" OR "continuous aerobic training") AND ("polycystic ovary syndrome" OR "PCOS" OR "polycystic ovarian syndrome" OR "hyperandrogenic anovulation"). Terms like 'intermittent' and 'interval' were included to account for synonymous usage in literature, while 'continuous aerobic' captured MICT variants. Screening ensured conceptual consistency by verifying that HIIT protocols featured high-intensity bursts (typically >80% HRmax or equivalent) with recovery, and MICT involved moderate continuous exercise (typically 50-75% HRmax), though we accommodated minor variations as per study reporting to reflect practical implementations. Criteria were applied consistently, with all studies verified for direct HIIT/MICT comparisons. Search queries were tailored to meet the specific requirements of each database (Supplementary Table 1).

2.3 Inclusion and exclusion criteria

Inclusion criteria: (1) studies involving premenopausal women aged 18 to 50 years, diagnosed with PCOS per the Rotterdam Criteria (19); (2) RCTs directly comparing HIIT with MICT as supervised exercise interventions lasting at least 12 weeks, ensuring consistency in all other variables such as diet and medication except the exercise protocol; (3) studies reporting at least one outcome with baseline and endpoint data, covering anthropometric measures, cardiorespiratory fitness, glucose and insulin metabolism, lipid profile, or hormonal parameters.

Exclusion criteria: (1) studies including pregnant participants; (2) studies involving participants using antihypertensive medications, insulin sensitizers, dietary supplements, weight loss medications, or hormonal contraceptives within 3 months prior to enrolment; (3) non-English studies; (4) studies incorporating additional forms of exercise beyond HIIT or MICT.

2.4 Data extraction

Extracted study details included the first author's name, publication year, study location, sample size, patient demographics (age and body mass index [BMI]), PCOS condition, and specifics of both HIIT and MICT intervention. Outcome data were derived as the difference (Δ) between endpoint and baseline values (endpoint values – baseline values) for comparisons between groups, categorized into five major domains: anthropometric measures, cardiorespiratory fitness, glucose and insulin metabolism, lipid profile, and hormonal parameters.

Anthropometric measures included body mass index (BMI in kg/m²), waist and hip circumference (in cm), as well as waist-to-hip ratio (WHR). Cardiorespiratory fitness included maximal oxygen uptake (VO₂max in ml/kg/min), systolic blood pressure (SBP) and diastolic blood pressure (DBP) in mm Hg. Glucose and insulin

metabolism included fasting glucose (in mmol/L), fasting insulin (in $\mu IU/mL$), and homeostatic model assessment of insulin resistance (HOMA-IR). Lipid profile comprised total cholesterol (in mmol/L), high-density lipoprotein cholesterol (HDL cholesterol in mmol/L), low-density lipoprotein cholesterol (LDL cholesterol in mmol/L), and triglycerides (in mmol/L). Hormonal parameters included testosterone (in nmol/L), sex hormone-binding globulin (SHBG in nmol/L), and free androgen index (FAI).

2.5 Quality assessment

The methodological quality of included studies was appraised using the revised Cochrane Risk of Bias Tool (RoB 2) for RCTs (20). This tool evaluated bias across five domains: randomization process, deviations from intended interventions, missing outcome data, measurement of the outcome, and selection of the reported result. Each domain was classified as low risk, high risk, or some concerns based on RoB 2 guidelines. The overall evidence certainty was determined using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) methodology, factoring in risk of bias, inconsistency, indirectness, imprecision, and publication bias, with quality rated as high, moderate, low, or very low. Publication bias was assessed via funnel plots and Egger's test for outcomes with ten or more studies.

2.6 Statistical analysis

Meta-analyses were performed using Review Manager (RevMan) version 5.4.1 (The Cochrane Collaboration, Oxford, UK). Continuous variables were analyzed as Weighted Mean Differences (WMD) with 95% Confidence Intervals (CIs), while dichotomous variables were expressed as pooled Odds Ratios (ORs) with 95% CIs. Heterogeneity was evaluated using Cochrane's Q test and the I² statistic. For analyses with I² <50%, a fixed-effects model was employed, whereas a random-effects model was adopted for I² \geq 50%. Forest plots were used to present the pooled effect sizes, with statistical significance defined as P <0.05.

3 Results

3.1 Study selection and characteristics

A search of PubMed, EMBASE, The Cochrane Library, and Web of Science found 97 studies. After removing 67 duplicates, 30 studies were screened by title and abstract. Of these, 18 were excluded, leaving 12 studies for full-text review and reference checking. After reviewing the full texts, 6 studies were excluded, with 5 (21–25) excluded due to being duplicate publications or secondary analyses of the same cohort (retaining only the initial study with the most comprehensive outcome data) and 1 (26) excluded due to an 8-week unsupervised home-based HIIT and MICT intervention. Finally, a total of 6 RCTs (27–32) were included

(Figure 1). The main details of these studies are presented in Table 1 and Table 2.

3.2 Quality assessment

The quality of the included studies was assessed using the RoB 2 criteria, as illustrated in Figure 2, with no study exhibiting high risk in any domain. The primary "some concerns" were concentrated in the areas of missing outcome data and measurement of the outcomes. Overall, the quality of the included studies was considered moderate.

3.3 Anthropometric measures

Five studies (27–30, 32) involving 181 patients reported body weight (kg). The results showed no significant difference in weight change between the HIIT and MICT groups (WMD: 0.45; 95% CI: -0.35 to 1.26; $I^2 = 0\%$; P = 0.27) (Figure 3A). Similarly, six studies (27–32) with 231 patients reported BMI (kg/m²), indicating no significant difference between groups (WMD: 0.26; 95% CI: -0.06 to

0.59; $I^2 = 0\%$; P = 0.11) (Figure 3B). Three studies (28, 30, 32) involving 116 patients assessed waist circumference (cm), showing no significant difference between the HIIT and MICT groups (WMD: -0.25; 95% CI: -2.11 to 1.62; $I^2 = 0\%$; P = 0.80) (Figure 3C). Two studies (30, 32) with 86 patients reported hip circumference (cm), with no significant difference observed (WMD: 1.19; 95% CI: -0.38 to 2.77; $I^2 = 0\%$; P = 0.14) (Figure 3D). Three studies (29, 30, 32) involving 131 patients reported WHR, showing no significant difference (WMD: 0.01 higher; 95% CI: -0.03 to 0.06; $I^2 = 77\%$; P = 0.57) (Figure 3E).

3.4 Cardiorespiratory fitness

Three studies (28, 30, 31) with 109 patients evaluated VO_2max (mL/min/kg), indicating no significant difference between groups (WMD: 0.93; 95% CI: -0.66 to 2.51; $I^2 = 0\%$; P = 0.25) (Figure 4A). Two studies (28, 31) involving 80 patients reported SBP and DBP (mmHg), with no significant difference observed for SBP (WMD: -1.99; 95% CI: -10.63 to 6.65; $I^2 = 61\%$; P = 0.65) (Figure 4B) or DBP (WMD: -0.56; 95% CI: -4.34 to 3.22; $I^2 = 0\%$; P = 0.77) (Figure 4C).

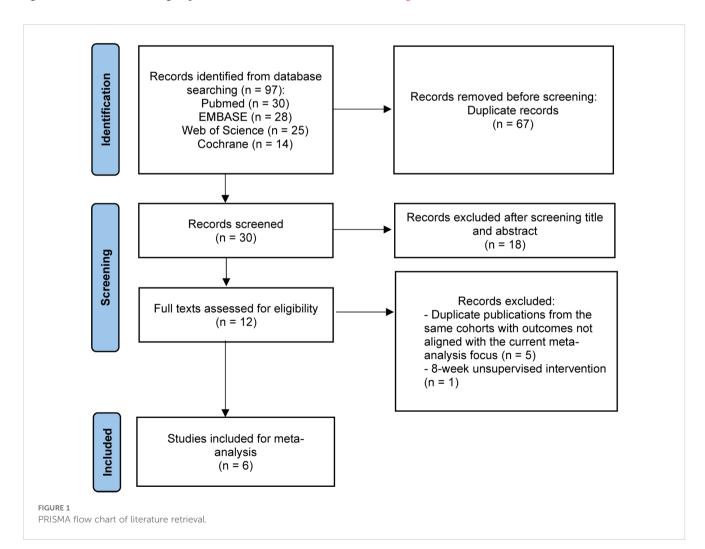


TABLE 1 Characteristics of the included studies.

First author	Year	Study location	Patients, n		Age, y Mean ± SD or Median (IQR)		BMI, kg/m² Mean ± SD or Median (IQR)		PCOS condition
			HIIT	MICT	HIIT	MICT	HIIT	MICT	
Lopes	2018	Brazil	22	23	29.4 ± 4.1	30.2 ± 5.1	29.0 ± 4.8	29.3 ± 5.6	No diabetes, Rotterdam phenotypes 1–4, stratified by BMI (< 30 and ≥30)
Ribeiro	2020	Brazil	29	28	29.0 ± 4.3	29.1 ± 5.3	28.7 ± 4.8	28.4 ± 5.6	No diabetes, Rotterdam phenotypes 1–4, stratified by BMI (< 30 and ≥30)
Benham	2021	Canada	16	14	29.1 ± 4.1	29.5 ± 4.6	31.4 ± 8.6	31.3 ± 9.0	No diabetes, Rotterdam phenotypes 1–4, stratified by BMI (< 28 and ≥28)
Aktas	2022	Turkey	10	10	25.1 ± 4.6	24.6 ± 6.7	28.7 ± 6.9	28.6 ± 4.9	No diabetes, Rotterdam criteria, severity not quantified
Patten	2022	Australia	15	14	29.7 ± 4.8	32.5 ± 6.2	35.5 ± 6.8	35.6 ± 7.0	No diabetes, Rotterdam phenotypes 1–4, BMI >25
Philbois	2022	Brazil	25	25	29 ± 4	29 ± 5	27.8 ± 4.2	27.7 ± 5.7	No diabetes, Rotterdam phenotypes 1–4

HIIT, high-intensity interval training; MICT, moderate-intensity continuous training; n, number; SD, standard deviation; IQR, interquartile range; BMI, body mass index; PCOS, polycystic ovary syndrome.

3.5 Glucose and insulin metabolism

Five studies (27, 28, 30–32) involving 186 patients assessed fasting glucose (mmol/L), indicating no significant difference between the HIIT and MICT groups (WMD: -0.01; 95% CI: -0.13 to 0.11; I^2 = 0%; P = 0.89) (Figure 5A). The same five studies (27, 28, 30–32) reported fasting insulin (μ IU/mL), with no significant difference observed (WMD: -1.17; 95% CI: -3.99 to 1.66; I^2 = 0%; P = 0.42) (Figure 5B). Three studies (28, 31, 32) with 137 patients evaluated HOMA-IR, showing no significant difference (WMD: -0.21; 95% CI: -0.53 to 0.11; I^2 = 0%; P = 0.20) (Figure 5C).

3.6 Lipid profile

Four studies (27, 28, 31, 32) involving 157 patients reported total cholesterol (mmol/L), HDL cholesterol (mmol/L), LDL cholesterol (mmol/L), and triglycerides (mmol/L) (Figure 6). There was no significant difference between groups for total cholesterol (WMD: -0.11; 95% CI: -0.47 to 0.26; $I^2 = 68\%$; P = 0.57) (Figure 6A), HDL cholesterol (WMD: 0.02; 95% CI: -0.05 to 0.09; $I^2 = 0\%$; P = 0.55) (Figure 6B), LDL cholesterol (WMD: -0.13; 95% CI: -0.29 to 0.02; $I^2 = 45\%$; P = 0.10) (Figure 6C), or triglycerides (WMD: -0.11; 95% CI: -0.33 to 0.11; $I^2 = 33\%$; P = 0.31) (Figure 6D).

3.7 Hormonal parameters

Four studies (29–32) involving 181 patients reported testosterone levels (nmol/L), with no significant difference observed (WMD: -0.04; 95% CI: -0.41 to 0.32; $I^2 = 0\%$; P = 0.82) (Figure 7A). Three studies (29, 30, 32) with 131 patients assessed

SHBG (nmol/L) and FAI, showing no significant difference for SHBG (WMD: 4.65; 95% CI: -5.36 to 14.66; $I^2 = 0\%$; P = 0.36) (Figure 7B) or FAI (WMD: -1.53; 95% CI: -3.11 to 0.05; $I^2 = 0\%$; P = 0.06) (Figure 7C).

3.8 Quality of evidence

The GRADE methodology was applied to assess the certainty of evidence for each outcome (Table 3). The quality of evidence was very low for WHR, SBP, total cholesterol, and low for other outcomes.

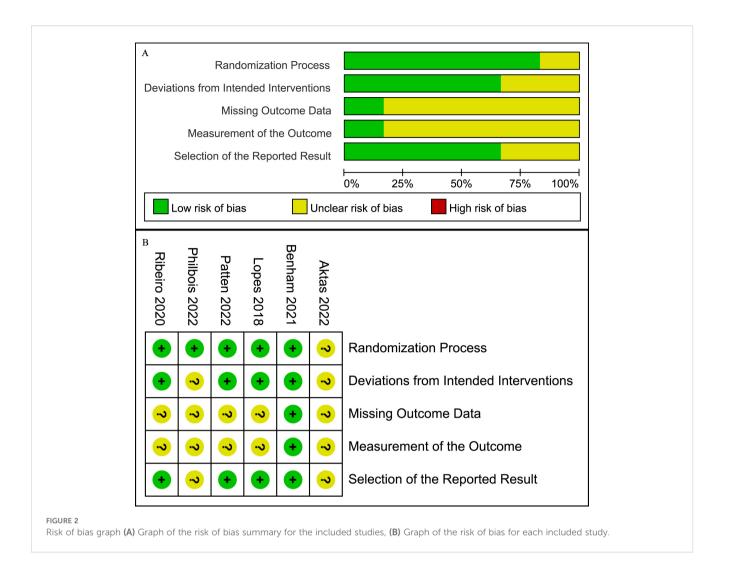
4 Discussion

This meta-analysis synthesized current RCTs on the effects of HIIT versus MICT on women with PCOS. Our findings indicate that neither HIIT nor MICT demonstrated a statistically significant superiority over the other across anthropometric, cardiorespiratory, metabolic, or hormonal outcomes. Notably, the certainty of evidence for these outcomes ranged from very low to low, largely due to small sample sizes and inherent heterogeneity among studies.

Several recent systematic reviews have investigated exercise interventions in women with PCOS, each with distinct scopes and limitations. A 2021 review by Richards et al. (16) concluded Moderate-Intensity Steady State (MISS) exercise was superior for cardiorespiratory fitness and BMI in PCOS, but its scope was not limited to direct HIIT vs. MICT comparisons. Another 2021 review by Santos et al. (17) found HIIT alone significantly decreased HOMA-IR and BMI, but its primary objective was not head-to-head comparison of HIIT and MICT. A 2022 review by Breyley-Smith et al. (14)

TABLE 2 Characteristics of training protocols.

First author	Year	Group	Duration (weeks)	Frequency (times/ week)	Intensity	Duration/ session (min)	Supervision	Equipment
	2010	НІІТ	16	3	65-80% HRmax	30	Supervised by training team	Treadmills (Embreex 570-L/Pro), Polar RS 810
Lopes	Lopes 2018	MICT	16	3	65 HRmax	30	Supervised by training team	Treadmills (Embreex 570-L/Pro), Polar RS 810
Riberiro		HIIT		3	85–90% HRmax (2 min)/ 65–70% HRmax (3 min) 35–45		Supervised by sport scientists	Treadmills (Embreex 570-L/Pro), Polar RS800CX
Riberiro	2020	MICT	16	3	70–80% HRmax	50	Supervised by sport scientists	Treadmills (Embreex 570-L/Pro), Polar RS800CX
Benham	2021	НІІТ	24	3	90% HRR (30 sec)/low (90 sec), 10 cycles	20-30	Partially supervised (2 times/week) + self-monitored	Participant-chosen aerobic equipment, Polar A370, Polar H10
Definant	Benham 2021	MICT	24	3	50–60% HRR	40	Partially supervised (2 times/week) + self-monitored	Participant-chosen aerobic equipment, Polar A370, Polar H10
Aktas	2022	НІІТ	12	3	2 min running alternated with walking	30	Implied supervision by research team	Not specified
AKtas	ARIAS 2022	MICT	12	3	Moderate tempo running	30	Implied supervision by research team	Not specified
Dettor		НІІТ	12	3	90–100% HRpeak (1 min) or 90–95% HRpeak (4 min) with active recovery	30-40	Supervised by accredited exercise physiologists	Stationary cycle ergometer, Polar H10
Patten 2022	MICT	12	3	60–75% HRpeak	45	Supervised by accredited exercise physiologists	Stationary cycle ergometer, Polar H10	
pl ::	2002	HIIT	16	3	85–90% HRR (2 min)/65– 70% HRR (3 min)	35–45	Supervised by professional team	Motorized treadmill, Polar RS810
Philbois	2022	MICT	16	3	70-80% HRR	50	Supervised by professional team	Motorized treadmill, Polar RS810

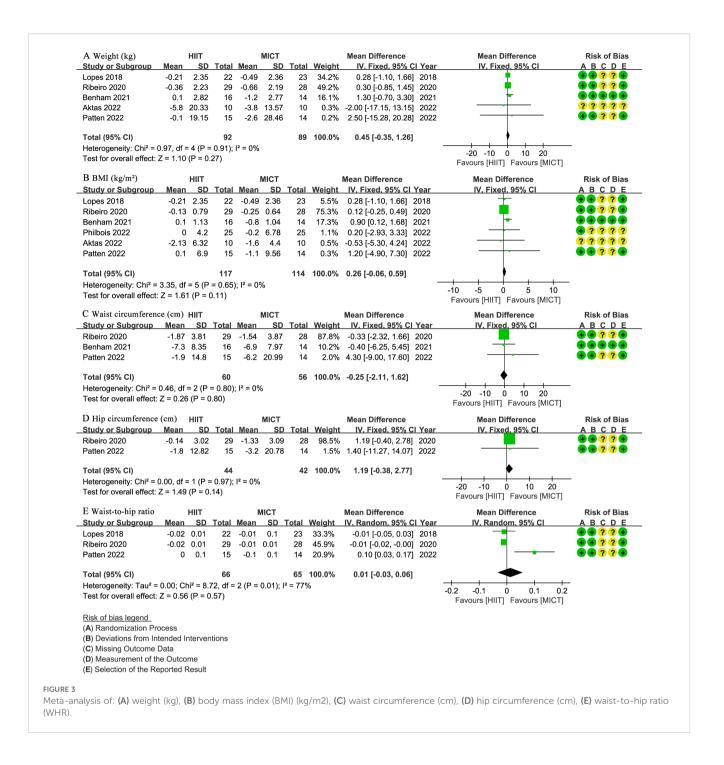

HIIT, high-intensity interval training; MICT, moderate-intensity continuous training; HRmax, maximum heart rate; HRR, heart rate reserve; HRpeak, Peak Heart Rate; m, minutes; w, weeks.

primarily compared exercise against non-exercising controls, concluding exercise improved cardiorespiratory fitness and waist circumference, with MICT showing greater or more significant improvements. Most recently, the 2023 review by Colombo et al. (15) found no statistically significant differences between HIIT and MICT for various parameters, with low or very low certainty of evidence. Notably, Colombo et al.'s meta-analysis included five RCTs. Three (28, 30, 32) directly compared HIIT and MICT (also in our review), while the other two compared HIIT to Resistance Training (RT) and MICT to MICT+RT.

To our best knowledge, our meta-analysis is the first to exclusively include RCTs directly comparing HIIT and MICT in women with PCOS. This rigorous focus on head-to-head

comparisons, distinct from prior reviews that included broader exercise interventions or non-direct comparisons, ensures a more precise evaluation of their comparative effectiveness. Although the certainty of evidence for many outcomes remains very low to low due to limited studies and small sample sizes, our findings represent the highest quality evidence currently available in this specific comparative domain. Despite conclusions similar to Colombo et al. (15) regarding the lack of clear superiority, our expanded and updated dataset offers a more comprehensive and current perspective.

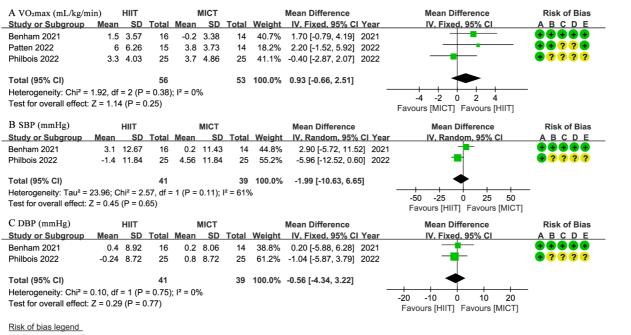
The observed absence of statistically significant superiority between HIIT and MICT, despite their distinct exercise protocols, can be largely attributed to a convergence in their underlying



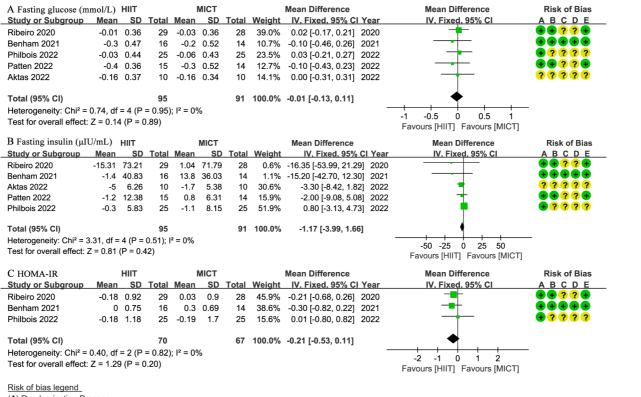
physiological mechanisms that target the core pathophysiological features of PCOS. Both modalities consistently improve insulin sensitivity, a cornerstone in PCOS management, by reducing markers such as fasting insulin and HOMA-IR (12, 13). This is crucial as it impacts the bidirectional link between hyperinsulinemia and hyperandrogenism, central to PCOS pathology (9-11). Beyond metabolic and hormonal improvements, both training types exert significant antiinflammatory effects, mitigating chronic low-grade inflammation by modulating cytokine levels, which is vital for protecting against long-term cardiometabolic risks (14). In terms of body composition, both lead to favorable changes, including reductions in BMI, waist circumference, and overall body fat, while promoting increases in lean muscle mass (15-17). Last, both enhance cardiorespiratory fitness, indicated by improvements in maximal VO2max (15, 16). This broad spectrum of overlapping physiological benefits suggests that the body's adaptive response to chronic exercise, irrespective of intensity, ultimately might converge on similar improvements in key PCOS indicators.

The "very low to low certainty of evidence" in our meta-analysis critically explains the lack of statistical superiority, primarily stemming from significant methodological limitations in existing

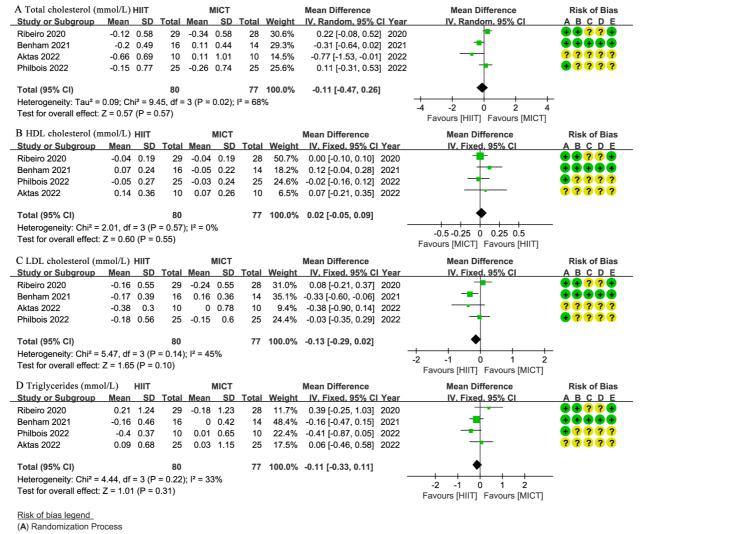
RCTs. A key challenge is the inherent impossibility of participant blinding in exercise interventions, which invariably lowers the quality assessment of included studies. Another significant contributing factor is the consistently small sample sizes (typically 24–110 participants), reducing statistical power and hindering the detection of subtle yet clinically meaningful differences between HIIT and MICT. Heterogeneity across studies also manifests in variable designs, exercise protocols (intensity, duration, frequency, modality), participant characteristics (BMI, insulin resistance, PCOS phenotypes), and inconsistent outcome measurements. Finally, the relatively short duration of most studies (12–24 weeks) may be insufficient to reveal long-term or more significant differential effects in a chronic condition like PCOS.


Beyond statistical and methodological considerations, the practical implications of these findings warrant discussion. While our meta-analysis indicates no statistical superiority in efficacy, HIIT often achieves comparable physiological benefits in significantly less total exercise time compared to MICT. One study reported HIIT requiring 27.5% less total exercise time and approximately 25% less energy expenditure than MICT to achieve similar adaptations (33). This "time efficiency" is a crucial practical advantage that can significantly enhance patient adherence and

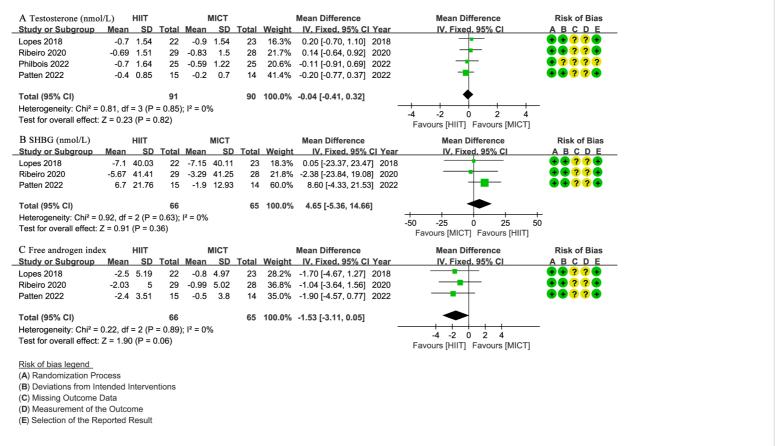
long-term sustainability in real-world settings (34). However, a recent systematic review found that HIIT showed no advantage over MICT in unsupervised settings, as participants often exercised at lower-than-prescribed intensities (35). Despite our included studies being supervised and excluding those shorter than 12 weeks, these studies did not comprehensively report adherence, highlighting an important area for future research.


This meta-analysis has several limitations that warrant consideration. First, despite conducting a comprehensive search and including all eligible RCTs, the total number of studies and participants available for direct comparison between HIIT and

MICT remains relatively small. Second, the heterogeneity in exercise protocols (such as exact intensity, duration of intervals, rest periods, overall weekly volume, and supervision levels) among the included studies, even within the broad categories of HIIT and MICT, makes it challenging to draw highly specific conclusions about optimal exercise prescription. This stems in part from methodological limitations of the review process, including our broad search strategy, which, while ensuring comprehensive capture of relevant studies, led to inclusion of trials with variations in practical parameters, with some minor adaptations as reported. Although inclusion criteria were consistently applied to verify direct HIIT versus MICT comparisons,


- (A) Randomization Process
- (B) Deviations from Intended Interventions
- (C) Missing Outcome Data
- (D) Measurement of the Outcome
- (E) Selection of the Reported Result

Meta-analysis of: (A) VO2max (mL/min/kg), (B) systolic blood pressure (SBP) (mmHg), (C) diastolic blood pressure (DBP) (mmHg).


- (A) Randomization Process
- (B) Deviations from Intended Interventions
- (C) Missing Outcome Data
- (D) Measurement of the Outcome
- (E) Selection of the Reported Result

Meta-analysis of: (A) fasting glucose (mmol/L), (B) fasting insulin (µIU/mL), (C) homeostatic model assessment for insulin resistance (HOMA-IR).

- (B) Deviations from Intended Interventions
- (C) Missing Outcome Data
- (D) Measurement of the Outcome
- (E) Selection of the Reported Result

Meta-analysis of: (A) total cholesterol (mmol/L), (B) high-density lipoprotein (HDL) cholesterol (mmol/L), (C) low-density lipoprotein (LDL) cholesterol (mmol/L), (D) triglycerides (mmol/L).

Meta-analysis of: (A) testosterone levels (nmol/L), (B) sex hormone binding globulin (SHBG) (nmol/L), (C) free testosterone index (FAI).

10.3389/fendo.2025.1672257 Zhao et al.

TABLE 3 GRADE summary of findings.

HIIT versus MICT for PCOS patients

Patient or population: PCOS Intervention: HIIT training Comparison: MICT training

Comparison: MIC				
Outcomes	Effect estimate	95% CI	No of Participants (studies)	Quality of the evidence (GRADE)
Weight (kg)	WMD: 0.45 higher in the interventional group.	0.35 lower to 1.26 higher	181 (5 studies)	⊕⊕⊝⊝ low
BMI (kg/m²)	WMD: 0.26 higher in the interventional group.	0.06 lower to 0.59 higher	231 (6 studies)	⊕⊕⊝⊝ low
Waist circumference (cm)	WMD: 0.25 lower in the interventional group.	2.11 lower to 1.62 higher	116 (3 studies)	⊕⊕⊝⊝ low
Hip circumference (cm)	WMD: 1.19 higher in the interventional group	0.38 lower to 2.77 higher	86 (2 studies)	⊕⊕⊝⊝ low
WHR	WMD: 0.01 higher in the interventional group.	0.03 lower to 0.06 higher	131 (3 studies)	⊕⊝⊝ very low
VO _{2max} (mL/kg/min)	WMD: 0.93 higher in the interventional group.	0.66 lower to 2.51 higher	109 (3 studies)	⊕⊕⊝⊝ low
SBP (mmHg)	WMD: 1.99 lower in the interventional group.	10.63 lower to 6.65 higher	80 (2 studies)	⊕⊝⊝ very low
DBP (mmHg)	WMD: 0.56 lower in the interventional group.	4.34 lower to 3.22 higher	80 (2 studies)	⊕⊕⊝⊝ low
Fasting glucose (mmol/L)	WMD: 0.01 lower in the interventional group.	0.13 lower to 0.11 higher	186 (5 studies)	⊕⊕⊝⊝ low
Fasting insulin (µIU/mL)	WMD: 1.17 lower in the interventional group.	3.99 lower to 1.66 higher	186 (5 studies)	⊕⊕⊝⊝ low
HOMA-IR	WMD: 0.21 lower in the interventional group.	0.53 lower to 0.11 higher	137 (3 studies)	⊕⊕⊝⊝ low
Total cholesterol (mmol/L)	WMD: 0.11 lower in the interventional group.	0.47 lower to 0.26 higher	157 (4 studies)	⊕⊝⊝ very low
HDL cholesterol (mmol/L)	WMD: 0.02 higher in the interventional group.	0.05 lower to 0.09 higher	157 (4 studies)	⊕⊕⊝⊝ low
LDL Cholesterol (mmol/L)	WMD: 0.13 lower in the interventional group.	0.29 lower to 0.02 higher	157 (4 studies)	⊕⊕⊝⊝ low
Triglycerides (mmol/L)	WMD: 0.11 lower in the interventional group.	0.33 lower to 0.11 higher	157 (4 studies)	⊕⊕⊝⊝ low
Testosterone (nmol/L)	WMD: 0.04 lower in the interventional group.	0.41 lower to 0.32 higher	181 (4 studies)	⊕⊕⊝⊝ low
SHBG (nmol/L)	WMD: 4.65 higher in the interventional group.	5.36 lower to 14.66 higher	131 (3 studies)	⊕⊕⊝⊝ low
FAI	WMD: 1.53 lower in the interventional group.	3.11 lower to 0.05 higher	131 (3 studies)	⊕⊕⊝⊝ low

GRADE, Grading of Recommendations, Assessment, Development and Evaluation; WMD, Weighted mean differences; HIIT, High-intensity interval training; MICT, Moderate-intensity continuous training; CI, Confidence interval; BMI, Body mass index; WHR, Waist-to-hip ratio; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; HOMA-IR, Homeostatic model assessment for insulin resistance; HDL, High-density lipoprotein; LDL, Low-density lipoprotein; SHBG, Sex hormone-binding globulin; FAI, Free androgen index. GRADE Working Group grades of evidence

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

these parameter variations may contribute to heterogeneity and compromise synthesis validity. Future meta-analyses could mitigate this by incorporating stricter subgroup analyses or protocol standardization. Third, while we aimed to isolate the effects of exercise, some studies included concurrent interventions like dietary advice, which, even if consistent across groups, could influence outcomes. Fourth, the majority of included studies involved women who were overweight or obese, and often had baseline cardiometabolic parameters within normal ranges. This limits the generalizability of our findings to lean women with PCOS or those with more severe metabolic abnormalities, where exercise might show more pronounced effects. Last, our review primarily focused on cardiometabolic and hormonal outcomes and did not extensively cover psychological aspects or long-term adherence beyond the intervention period, which are also crucial for comprehensive PCOS management.

5 Conclusion

Based on the current low to very low certainty evidence from RCTs, there is no statistically significant superiority of HIIT over MICT for improving anthropometric, cardiorespiratory, metabolic, or hormonal outcomes in women with PCOS. Given these findings, individuals with PCOS may select either HIIT or MICT based on personal preference and feasibility. Future large-scale, high-quality RCTs with standardized protocols and detailed reporting of participant phenotypes are needed.

Author contributions

YZ: Data curation, Formal Analysis, Methodology, Software, Visualization, Writing – original draft. YL: Data curation, Formal Analysis, Methodology, Software, Writing – original draft. HZ: Writing – review & editing. RH: Writing – review & editing. YC: Writing – review & editing. JL: Conceptualization, Supervision, Writing – review & editing.

References

- 1. Joham AE, Norman RJ, Stener-Victorin E, Legro RS, Franks S, Moran LJ, et al. Polycystic ovary syndrome. *Lancet Diabetes Endocrinol.* (2022) 10:668–80. doi: 10.1016/s2213-8587(22)00163-2
- 2. Stener-Victorin E, Teede H, Norman RJ, Legro R, Goodarzi MO, Dokras A, et al. Polycystic ovary syndrome. *Nat Rev Dis Primers*. (2024) 10:27. doi: 10.1038/s41572-024-00511-3
- 3. Teede HJ, Tay CT, Laven J, Dokras A, Moran LJ, Piltonen TT, et al. Recommendations from the 2023 international evidence-based guideline for the assessment and management of polycystic ovary syndrome. *Fertility sterility*. (2023) 120:767–93. doi: 10.1016/j.fertnstert.2023.07.025
- 4. Riestenberg C, Jagasia A, Markovic D, Buyalos RP, Azziz R. Health care-related economic burden of polycystic ovary syndrome in the United States: pregnancy-related and long-term health consequences. *J Clin Endocrinol Metab.* (2022) 107:575–85. doi: 10.1210/clinem/dgab613
- 5. Yadav S, Delau O, Bonner AJ, Markovic D, Patterson W, Ottey S, et al. Direct economic burden of mental health disorders associated with polycystic ovary

Funding

The author(s) declare that no financial support was received for the research, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2025.1672257/full#supplementary-material

- syndrome: Systematic review and meta-analysis. eLife. (2023) 12:e85338 doi: 10.7554/eLife.85338
- 6. Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. *Fertility sterility*. (2016) 106:6–15. doi: 10.1016/j.fertnstert.2016.05.003
- 7. Hamilton-Fairley D, Taylor A. Anovulation. BMJ (Clinical Res ed). (2003) 327:546–9. doi: $10.1136/\mathrm{bmj}.327.7414.546$
- 8. Dokras A, Stener-Victorin E, Yildiz BO, Li R, Ottey S, Shah D, et al. Androgen Excess-Polycystic Ovary Syndrome Society: position statement on depression, anxiety, quality of life, and eating disorders in polycystic ovary syndrome. *Fertility sterility*. (2018) 109:888–99. doi: 10.1016/j.fertnstert.2018.01.038
- 9. Gu Y, Zhou G, Zhou F, Wu Q, Ma C, Zhang Y, et al. Life modifications and PCOS: old story but new tales. Front Endocrinol. (2022) 13:808898. doi: 10.3389/fendo.2022.808898
- 10. Patten RK, Boyle RA, Moholdt T, Kiel I, Hopkins WG, Harrison CL, et al. Exercise interventions in polycystic ovary syndrome: A systematic review and meta-analysis. *Front Physiol.* (2020) 11:606. doi: 10.3389/fphys.2020.00606

- 11. Woodward A, Klonizakis M, Broom D. Exercise and polycystic ovary syndrome. *Adv Exp Med Biol.* (2020) 1228:123–36. doi: 10.1007/978-981-15-1792-1 8
- 12. Luo Y, Zhang J, Jia H, Mu X, Huang J. Effects of high intensity interval training and moderate intensity continuous training on enjoyment and affective responses in overweight or obese people: a meta-analysis. *Front Public Health*. (2024) 12:1487789. doi: 10.3389/fpubh.2024.1487789
- 13. Yin M, Chen Z, Nassis GP, Liu H, Li H, Deng J, et al. Chronic high-intensity interval training and moderate-intensity continuous training are both effective in increasing maximum fat oxidation during exercise in overweight and obese adults: A meta-analysis. *J Exercise Sci fitness*. (2023) 21:354–65. doi: 10.1016/j.jesf.2023.08.001
- 14. Breyley-Smith A, Mousa A, Teede HJ, Johnson NA, Sabag A. The effect of exercise on cardiometabolic risk factors in women with polycystic ovary syndrome: A systematic review and meta-analysis. *Int J Environ Res Public Health.* (2022) 19 (3):1386. doi: 10.3390/ijerph19031386
- 15. Colombo GE, Bouzo XD, Patten RK, Mousa A, Tay CT, Pattuwage L, et al. Comparison of selected exercise training modalities in the management of PCOS: a systematic review and meta-analysis to inform evidence-based guidelines. *JSAMS Plus*. (2023) 2:100024. doi: 10.1016/j.jsampl.2023.100024
- 16. Richards CT, Meah VL, James PE, Rees DA, Lord RN. HIIT'ing or MISS'ing the optimal management of polycystic ovary syndrome: A systematic review and meta-analysis of high- versus moderate-intensity exercise prescription. *Front Physiol.* (2021) 12:715881. doi: 10.3389/fphys.2021.715881
- 17. Santos IKD, Nunes F, Queiros VS, Cobucci RN, Dantas PB, Soares GM, et al. Effect of high-intensity interval training on metabolic parameters in women with polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. *PloS One.* (2021) 16:e0245023. doi: 10.1371/journal.pone.0245023
- 18. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. *BMJ (Clinical Res ed)*. (2009) 339:b2700. doi: 10.1136/bmj.b2700
- 19. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). *Hum Reprod (Oxford England)*. (2004) 19:41–7. doi: 10.1093/humrep/deh098
- 20. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ (Clinical Res ed)*. (2019) 366:14898. doi: 10.1136/bmj.14898
- 21. Benham JL, Booth JE, Goldfield G, Friedenreich CM, Rabi DM, Sigal RJ. Self-reported sleep quality and exercise in polycystic ovary syndrome: A secondary analysis of a pilot randomized controlled trial. *Clin Endocrinol.* (2023) 98:700–8. doi: 10.1111/cen.14900
- 22. Patten RK, Bourke M, McIlvenna LC, Moreno-Asso A, Woessner MN, Stepto NK, et al. Longitudinal affective response to high-intensity interval training and moderate-intensity continuous training in overweight women with polycystic ovary syndrome: A randomised trial. *Psychol sport Exercise*. (2023) 64:102325. doi: 10.1016/j.psychsport.2022.102325
- 23. Patten RK, McIlvenna LC, Moreno-Asso A, Hiam D, Stepto NK, Rosenbaum S, et al. Efficacy of high-intensity interval training for improving mental health and health-related quality of life in women with polycystic ovary syndrome. *Sci Rep.* (2023) 13:3025. doi: 10.1038/s41598-023-29503-1

- 24. Ribeiro VB, Lopes IP, Dos Reis RM, Silva RC, Mendes MC, Melo AS, et al. Continuous versus intermittent aerobic exercise in the improvement of quality of life for women with polycystic ovary syndrome: A randomized controlled trial. *J Health Psychol.* (2021) 26:1307–17. doi: 10.1177/1359105319869806
- 25. Ribeiro VB, Pedroso DCC, Kogure GS, Lopes IP, Santana BA, Dutra de Souza HC, et al. Short-term aerobic exercise did not change telomere length while it reduced testosterone levels and obesity indexes in PCOS: A randomized controlled clinical trial study. *Int J Environ Res Public Health*. (2021) 18(21):11274. doi: 10.3390/ijerph182111274
- 26. Wang A, Noel M, Christ JP, Corley J, Lenhart N, Cedars MI, et al. Vigorous vs. moderate exercise to improve glucose metabolism in inactive women with polycystic ovary syndrome and insulin resistance: a pilot randomized controlled trial of two home-based exercise routines. F&S Rep. (2024) 5:80–6. doi: 10.1016/j.xfre.2023.12.004
- 27. Aktaş H, Uzun YE, Kutlu O, Pençe HH, Özçelik F, Çil E, et al. The effects of high intensity-interval training on vaspin, adiponectin and leptin levels in women with polycystic ovary syndrome. *Arch Physiol Biochem.* (2022) 128:37–42. doi: 10.1080/13813455.2019.1662450
- 28. Benham JL, Booth JE, Corenblum B, Doucette S, Friedenreich CM, Rabi DM, et al. Exercise training and reproductive outcomes in women with polycystic ovary syndrome: A pilot randomized controlled trial. *Clin Endocrinol.* (2021) 95:332–43. doi: 10.1111/cen.14452
- 29. Lopes IP, Ribeiro VB, Reis RM, Silva RC, Dutra de Souza HC, Kogure GS, et al. Comparison of the effect of intermittent and continuous aerobic physical training on sexual function of women with polycystic ovary syndrome: randomized controlled trial. *J sexual Med.* (2018) 15:1609–19. doi: 10.1016/j.jsxm.2018.09.002
- 30. Patten RK, McIlvenna LC, Levinger I, Garnham AP, Shorakae S, Parker AG, et al. High-intensity training elicits greater improvements in cardio-metabolic and reproductive outcomes than moderate-intensity training in women with polycystic ovary syndrome: a randomized clinical trial. *Hum Reprod (Oxford England)*. (2022) 37:1018–29. doi: 10.1093/humrep/deac047
- 31. Philbois SV, Ribeiro VB, Tank J, Dos Reis RM, Gerlach DA, Souza HCD. Cardiovascular autonomic modulation differences between moderate-intensity continuous and high-intensity interval aerobic training in women with PCOS: A randomized trial. *Front Endocrinol.* (2022) 13:1024844. doi: 10.3389/fendo.2022.1024844
- 32. Ribeiro VB, Kogure GS, Lopes IP, Silva RC, Pedroso DCC, de Melo AS, et al. Effects of continuous and intermittent aerobic physical training on hormonal and metabolic profile, and body composition in women with polycystic ovary syndrome: A randomized controlled trial. *Clin Endocrinol.* (2020) 93:173–86. doi: 10.1111/cen.14194
- 33. Sawyer BJ, Tucker WJ, Bhammar DM, Ryder JR, Sweazea KL, Gaesser GA. Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. *J Appl Physiol (Bethesda Md: 1985).* (2016) 121:279–88. doi: 10.1152/japplphysiol.00024.2016
- 34. Bartlett JD, Close GL, MacLaren DP, Gregson W, Drust B, Morton JP. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. *J sports Sci.* (2011) 29:547–53. doi: 10.1080/02640414.2010.545427
- 35. Ekkekakis P, Biddle SJH. Extraordinary claims in the literature on high-intensity interval training (HIIT): IV. Is HIIT associated with higher long-term exercise adherence? *Psychol sport Exercise*. (2023) 64:102295. doi: 10.1016/j.psychsport.2022.102295