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Background: Bone metastases (BM) are a frequent and clinically relevant
manifestation in patients with metastatic pheochromocytomas and
paragangliomas (mPPGL).

Objective: This narrative review aims to summarize the current understanding of
the pathophysiology, epidemiology, clinical presentation, complications, quality
of life impact, and management of BM in mPPGL.

Summary: Bone and lymph nodes are among the most common metastatic sites
in malignant PPGL. Skeletal involvement—particularly in paragangliomas—is
associated with a high incidence of skeletal-related events (SREs), including
pathological fractures, spinal cord compression, and pain. These complications
lead to reduced mobility, loss of independence, and decreased survival. Advances
in functional and anatomical imaging have improved detection, but optimal
management remains complex and requires a multidisciplinary approach.
Conclusion: Recognizing patients at higher risk and understanding the biological
mechanisms underlying bone dissemination are essential to optimize diagnosis,
prevent SREs, and improve outcomes in this rare and challenging disease.

pheochromocytoma, paraganglioma, bone metastases, neuroendocrine tumor,
skeletal-related event (SRE)

1 Introduction

Pheochromocytomas (PHEOs) and paragangliomas (PGLs) (collectively, PPGLs), are
rare neuroendocrine tumors (NETSs) derived from chromaffin cells of the adrenal medulla
(PHEOs) and extra-adrenal paraganglia (paragangliomas) (1, 2). All PPGLs are considered
to possess metastatic potential, with metastases occurring in approximately 10-15% of
PHEOs and 15-40% of PGLs (3, 4).

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fendo.2025.1671486/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1671486/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1671486/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1671486/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1671486/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2025.1671486&domain=pdf&date_stamp=2025-11-05
mailto:jecs.4815@gmail.com
https://doi.org/10.3389/fendo.2025.1671486
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2025.1671486
https://www.frontiersin.org/journals/endocrinology

Contreras-Saldarriaga and Loaiza-Alzate

Bone metastases (BM) are frequently identified in patients with
solid malignancies, with lung, prostate, and breast cancers being the
most common sources of skeletal involvement (5). In metastatic
pheochromocytomas and paragangliomas (mPPGL), bone is also
one of the principal sites of metastasis, with reported prevalence
varying across studies (6, 7).

BM in patients with PPGLs are a significant clinical concern,
leading to Skeletal-related Events (SREs) that diminish both quality
of life (QoL) and survival. Complications include pain, fractures,
neurological issues like spinal cord compression, rare
hypercalcemia, and interventions such as surgery or radiation
therapy (6). These patients also endure reduced mobility, loss of
autonomy, impaired QoL, and lower overall survival (OS) rates (7),
highlighting the impact of BM on patient outcomes. Early diagnosis
and timely intervention are crucial to reducing the risk of morbidity
and complications associated with BM (7).

Data derived primarily from case reports, retrospective studies,
and, less frequently, clinical trials have demonstrated the efficacy of
various treatments for managing mPPGL. However, treatment
efficacy at specific anatomical sites, such as bone, has not been
extensively addressed due to the rarity and heterogeneity of these
tumors (6).

BM represent thereby a significant clinical challenge in patients
with PPGL. Taking all the above into consideration, this narrative
review aims to provide a comprehensive overview of BM in PPGL.
It outlines the general characteristics, clinical presentation, and
complications of these lesions, and discusses current diagnostic and
therapeutic approaches. Key challenges in management and areas
requiring further research are also highlighted.

2 Materials and methods

This narrative review was based on a comprehensive literature
search conducted in PubMed/MEDLINE and Embase databases,
with Web of Science additionally consulted to cross-check and
confirm the bibliographic completeness of the retrieved references.
The search covered publications from database inception through
July 15, 2025, and the last search was performed on July 15, 2025,
prior to manuscript submission.

Only articles published in English were included, encompassing
original studies, case series, reviews, and clinical guidelines.
Additional references were identified through manual screening
of the bibliographies of retrieved articles and relevant reviews, to
ensure inclusion of studies potentially missed by the
electronic search.

A summary of the detailed search strings for each database, the
Boolean term combinations, and the approximate number of
records screened is provided in Supplementary Appendix 1, Table 1.

Given the narrative design of this review, no formal systematic
review process or quantitative synthesis was performed.
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3 Epidemiology

Population-based studies confirm that PPGL are rare, with
incidence rates ranging from 1.9 to 6.6 cases per million person-
years across regions. Reported estimates include 3.7-5.7 per million
in the Netherlands (8), 6.6 per million in Canada (9), and up to 6.6
per million in Denmark (10), while a global meta-analysis reported
1.9 per million person-years (11). Regarding prevalence, a recent
meta-analysis including only patients with PHEO reported a global
pooled estimate of 19.8 cases per 1,000,000 individuals (=2 per
100,000; 95% CI: 9.6-40.8) (11). In contrast, a Danish nationwide
study encompassing both PHEO and PGL found a point prevalence
of 64.4 per million inhabitants as of 2015 (10). Importantly, PPGLs
display a strong genetic background, with germline mutations
identified in approximately 26-41% of patients across
contemporary mixed PPGL cohorts (12-15), particularly in
younger patients (16, 17), those with bilateral or multifocal
tumors (18, 19), and in extra-adrenal disease (17, 19, 20). The
most frequently involved genes include Succinate Dehydrogenase
Complex Subunit B (SDHB), Succinate Dehydrogenase Complex
Subunit D (SDHD), Von Hippel-Lindau (VHL), RET, Succinate
Dehydrogenase Complex Subunit A (SDHA), Succinate
Dehydrogenase Complex Subunit C (SDHC), Succinate
Dehydrogenase Complex Subunit AF 2 (SDHAF2),
Neurofibromatosis type 1 (NF1), TMEMI127, and MAX also
contributing but at lower frequence (12, 15, 21, 22). Germline
SDHB mutations confer the highest metastatic risk in PPGL, with
metastatic rates ranging from 12-41% across cohorts (21) and an
adjusted odds ratio of 5.68 versus non-SDHB genotypes (23).
Cohort data confirm a ~29% metastatic rate among SDHB
carriers (24). In a Saudi cohort, 28.6% of SDHB carriers
developed metastases, markedly exceeding rates observed in other
genes (22), further confirming SDHB as the predominant driver of
metastatic behavior in PPGL (25). Metastasic risk varies among
non-SDHB genes: SDHD =4%, SDHA =16%, SDHC =23%, and
SDHAF2 none (21); VHL and MEN2A show moderate risk (26),
NF1, TNEM127, MAX, FH and EPASI rarely metastatic (27). These
data highlight the importance of genetic testing for all PPGL
patients, as specific mutations, particularly in SDHB, are closely
linked to metastatic potential, including bone dissemination (21,
28-33).

Bone is one of the primary sites of metastasis in patients with
PPGLs (7, 34-36), and in up to 20% of cases, the skeleton represents
the sole site of metastatic spread (7). mPPGLs are among the solid
tumors with a particularly high tropism for bone, with involvement
rates comparable to those observed in other osteotropic
malignancies such as breast cancer (6, 7, 37). However, data from
reported cohorts indicate that the prevalence of BM is highly
variable and influenced by differences in study populations. The
epidemiological findings across studies are summarized in Figure 1
and in Table S2 (Supplementary Appendix). Direct evidence shows
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FIGURE 1
Frequency of BM in patients with mPPGL, by study.

that germline SDHB and SDHA mutations confer predisposition to
BM in PPGL. SDHB mutations involve bone in up to 80% of
metastatic cases (38), while SDHA mutations also show marked
bone tropism when metastases occur (14, 39).

Further insights into the epidemiology of BM in PPGLs have
been provided by retrospective institutional series. At MD
Anderson Cancer Center, a study involving 128 patients reported
that the median time from primary tumor diagnosis to the
development of BM was 3.4 years (7). In the same study, the
presence of bone-limited disease was associated with a significantly
longer median OS (12 years) compared to patients with both
osseous and non-osseous metastatic involvement (5 years) (7).

A retrospective review from the National Hospital Organization
Kyoto Medical Center, including 40 patients with mPPGL,
identified a significant association between extraskeletal extension
of spinal lesions and the occurrence of SREs (37). In this same
study, the median time from the diagnosis of BM and the onset of
the first SRE was 11.9 months (37).

In a larger cohort of 294 patients with bone-metastatic PPGL,
31% developed SREs, with a median time of 4.4 months (range: 0-
246.6) after BM diagnosis. Among these patients, 22% underwent
surgical treatment and 46% received radiotherapy (36).

Additionally, a multi-institutional study that included 100
patients with PHEO or sympathetic PGL among a broader NET
population reported BM in 25% of cases (40). However, it is
important to note that this estimate was not limited to
individuals with confirmed metastatic disease, and therefore may
not be directly comparable to studies focused exclusively on
mPPGL cohorts.

Regarding the primary anatomical locations of PPGLs that give
rise to BM it has been reported that these lesions can originate from
both adrenal and extra-adrenal sites. In a recent large multicenter
cohort of 294 patients with PPGL-related BM (36), the most
common primary tumor sites were adrenal PHEOs (41%) and
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abdominal or retroperitoneal PGLs (30%), followed by head and
neck PGLs (14%), with pelvic and thoracic locations being less
frequent (5% each). Interestingly, BM have also been reported to
arise from uncommon sites, such as PGLs located in the sellar
region (41). These findings highlight the anatomical diversity of
PPGLs associated with skeletal dissemination.

4 Pathophysiology

Due to their rarity, the pathophysiology of PPGL-related BM
remains poorly understood; however, it is likely to reflect
mechanisms observed in other malignancies with skeletal
involvement. Bone is considered a preferential site for metastasis
due to the extensive vascularization of the bone marrow. Tumor
cells can express adhesion molecules that facilitate their attachment
to marrow stromal cells, and the subsequent release of growth
factors supports tumor cell proliferation and expansion within the
bone microenvironment (42).

In the specific context of PPGL, it has been hypothesized that
tumor cells strongly express the chemokine receptors CXCR4 and
CCROY, while bone marrow stromal cells and osteoblasts secrete their
corresponding ligands, CXCL12 and CCL25, respectively. This
ligand-receptor interaction may facilitate the recruitment and
homing of mPPGL cells to bone tissue (7, 42, 43).

Once established in the bone, tumor-induced skeletal damage
may result from both catecholamine-dependent and
catecholamine-independent mechanisms. Among the latter,
tumor cells may disrupt the physiological balance between bone
resorption and formation by promoting osteoclast activation and
bone matrix degradation. This results in the development of lytic or
mixed lesions, potentially exacerbated by the secretion of tumor-
derived mediators that alter the bone microenvironment and favor
metastatic progression (44).
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Regarding catecholamine-mediated mechanisms, these
hormones are known to play a significant role in bone
metabolism by inducing imbalanced remodeling through
activation of B-adrenergic receptors (2). In patients with PPGL,
catecholamine excess may lead to increased bone turnover, with
bone resorption surpassing formation (45). One study suggests that
catecholamine excess and sympathetic overstimulation in PHEO
can impair trabecular bone microarchitecture, reduce bone mass,
and increase bone resorption, thus positioning PHEO as a potential
secondary cause of osteoporosis (46). Indirect evidence further
supports this hypothesis, as studies have shown that individuals
treated with beta-blockers (a class of drugs that inhibit B-adrenergic
signaling) exhibit a lower risk of fractures and improved bone
microarchitecture compared to non-users (47, 48). Additional
insights from neuroendocrine neoplasms in general suggest that
bone metastases arise from a “vicious cycle,” in which tumor cells
stimulate osteoclast activation primarily through RANKL
overexpression and suppression of osteoprotegerin, leading to
excessive bone resorption, release of growth factors from the bone
matrix, and further tumor proliferation within a hypoxic, acidic,
and calcium-rich microenvironment (49).

5 Clinical presentation and
complications

BM in PPGLs, although variably prevalent, can result in
significant clinical manifestations and complications that
substantially impair patients’ QoL (7, 34-36). BM most
commonly affect the vertebrae, spine, pelvis, long bones, ribs, and
skull (7, 50), and are predominantly osteolytic (92%) and multiple
(88%) in nature (37). These lesions compromise skeletal integrity
and predispose patients to a range of debilitating complications,
including severe pain, pathological fractures, spinal cord
compression, hypercalcemia, and other SREs, all of which
negatively impact QoL and functional status (7, 36, 42, 51).
Notably, it has been reported that in 31% of patients with SREs,
BM was the initial clinical manifestation that led to the diagnosis of
malignant PPGL, underscoring that in a substantial proportion of
cases, skeletal involvement can precede recognition of the
underlying tumor (7).

PPGLs may also contribute to secondary osteoporosis,
potentially increasing the risk of fragility fractures, particularly of
the vertebrae (52). Notably, extraskeletal invasion of the spine has
been identified as a significant risk factor for SREs, such as vertebral
fractures and spinal cord compression (37). In one study,
extraskeletal spinal invasion was significantly associated with the
development of SREs (p = 0.001), suggesting that this radiological
finding may serve as a valuable clinical risk marker (37).

Skeletal manifestations in this population can be severe and
may require urgent multidisciplinary evaluation by neurosurgical
and/or orthopedic teams, especially in cases involving spinal
instability or neurological compromise (7).

Evaluation of bone health (including bone mineral density
(BMD) and trabecular bone score [TBS]) is important in patients
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with PPGL, as both parameters have been shown to improve
following surgical resection of the tumor (2, 52). Additionally,
mild bone marrow suppression is a frequent finding in patients
with BM from malignant PPGLs (53).

The clinical outcomes of skeletal involvement in PPGL have
been described in several cohorts, whose findings are summarized
in Table 1 to illustrate the frequency and nature of bone-related
complications (7, 36, 37). SREs were common but showed
variability across studies. In the study by Ayala-Ramirez et al. (7),
72% of evaluable patients experienced at least one true SRE, with
severe pain, pathological fractures, and spinal cord compression
occurring in 33%, 27%, and 25% of cases, respectively. In contrast,
Lagana et al. (36) reported a lower overall frequency of SREs (31%)
in a larger cohort (n = 294), with bone pain (49%), pathological
fractures (19%), and spinal cord compression (16%) being the most
common manifestations. Hypercalcemia was rare in both studies.
Similar outcomes were observed in a Japanese cohort of 24 patients
with BM, where 50% developed at least one SRE (Yokomoto-
Umakoshi et al., 2018 (37)). In this group, the most frequent SRE
was radiation to bone (42%), followed by spinal cord compression
(21%), severe bone pain (33%), pathological fracture (8%), and bone
surgery (8%). No cases of hypercalcemia were reported, and the
median time to the first SRE was 11.9 months. These findings,
though derived from a smaller cohort, are consistent with the

TABLE 1 Frequency of SREs in three large cohorts of patients with
bone-metastatic PPGL.

Skeletal-  Ayala-Ramirez Yokomoto-
Related et al, 2013 ( ) Umakoshi
Event etal,2018( )
Inclusion 91 patients with 24 patients with 294 patients
criteria PPGL and BM; 67 PPGL and BM with PPGL
evaluable for SREs and BM
>1 SRE (true 48/67 (71.6%) 12/24 (50%) 90/294
SREs only) (30.6%)
>2 SREs 23/67 (34.3%) 7124 (29.2%) 22/294
(7.5%)
Pathological 13/67 (19%) 2/24 (8.3%) 55/294
fracture (18.7%)
Spinal cord 12/67 (17.9%) 5/24 (20.8%) 47/294
compression (16.0%)
Hypercalcemia 1/67 (1.5%) 0/24 (0%) 11/294
(3.7%)
Severe bone 16/67 (23.8%) 8/24 (33.3%) 144/294
pain (49%)*
Surgery for 12/67 (17.9%) 2/24 (8.3%) 64/294
bone lesions (21.8%)
Radiotherapy 31/67 (46.2%) 10/24 (41.7%) 136/294
for bone (46.3%)
lesions
Time to first 4.3 months 11.9 months 4.4 months
SRE

*Pain in Lagana et al. Was reported as a clinical symptom, not as a formal SRE.
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heterogeneity observed in the larger studies and highlight the need
for prospective evaluation of skeletal complications in mPPGL.

A multi-institutional study that included 100 patients with
PHEO or sympathetic PGL within a broader NET cohort
reported that, in the PPGL subgroup, 20% developed spinal cord
compression—consistent with previous reports. Additionally,
pathological fractures and hypercalcemia were observed in 8%
and 12% of PPGL patients with BM, respectively (40).

Metastatic manifestations of PPGLs can be classified as
synchronous, occurring concurrently with the initial diagnosis, a
scenario less frequently observed but associated with poorer
prognosis (36, 54). Alternatively, they may present as
metachronous metastases, which develop subsequent to the
primary diagnosis and represent the more prevalent pattern (36,
55). In the study by Ayala-Ramirez et al., the median time to the
first SRE was 4.4 months. This time frame is comparable to that
observed in other cancers that often metastasize to the bone, such as
breast cancer (56). In the MD Anderson Cancer Center study, 38%
of patients presented with synchronous BM, while 63% developed
metachronous BM, with a median onset of 3.4 years after the
diagnosis of the primary tumor (7). Similarly, in the cohort reported
by Lagana et al. (2024), 33% of patients had synchronous and 67%
metachronous BM, with a longer median latency of 5.7 years (range,
0-48 years), underscoring the need for long-term surveillance in
patients with PPGL (36).

Metachronous cases illustrate that skeletal metastases can occur
even decades after initial diagnosis (57, 58), with intervals of up to 46
years (59) and even 52 years after the initial diagnosis in a reported case
of PGL (51). This underscores the need for long-term follow-up in
patients with PPGLs. The mechanisms driving the prolonged
dormancy of certain metastatic PGL remain unclear. Bone-residing
metastatic cells can stay quiescent for extended periods, ranging from
months to decades. Reactivation of these dormant cells is hypothesized
to result from alterations in chromatin structure and shifts in the tumor
microenvironment (60).

In the study from MD Anderson Cancer Center, SREs often
occurred after BM diagnosis and, in some cases, were the first sign
of malignancy (7). See Figure 2 which graphically shows the SREs in
patients with mPPGL.

6 Risk factors of SREs

Risk factors for SREs in patients with mPPGL have been evaluated in
both single-center and multicenter cohorts, revealing complementary
insights. In a smaller Japanese series, Yokomoto-Umakoshi et al. (37)
identified extraskeletal invasion of the spine as a strong predictor
of SREs, with affected patients showing a significantly higher
likelihood of developing one or more SREs compared to those
without this radiological feature (73% vs. 0%, p = 0.001). This
anatomical marker of local aggressiveness also correlated with the
occurrence of multiple SREs during follow-up (75% vs. 7%, p = 0.002),
while no associations were found with clinical variables such as age,
tumor size, functional type, or extent of metastases. In contrast, the large
multicenter study by Lagana et al. (36) identified the presence of liver
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metastases—a marker of systemic disease aggressiveness—as an
independent risk factor for SREs in multivariable analysis (p=0.046),
reinforcing the link between disseminated tumor burden and skeletal
complications. Notably, treatment with '*'I-Meta-iodobenzylguanidine
(**'I-MIBG) radionuclide therapy was associated with a reduced
risk of SREs in both studies (significantly so in Lagana et al.),
suggesting a potential protective effect. While Yokomoto et al.
emphasized the importance of local skeletal invasion, Lagana et al.
highlighted the prognostic impact of systemic dissemination. Together,
these findings underscore the multifactorial nature of SRE risk in
mPPGL, involving both local anatomical features and overall disease
burden, and support a tailored approach to surveillance and bone-
targeted therapy.

7 Quality of life

QoL in patients with mPPGL has not been systematically
evaluated using standardized instruments. Existing studies have
assessed QoL in PGL patients more broadly, without focusing
specifically on those with BM. In a cohort of 174 patients with
PGLs, van Hulsteijn et al. employed three validated questionnaires
(HADS, MFI-20, and SF-36) and found that individuals with
mPPGL reported significantly greater mental fatigue and lower
general health perception compared to those with benign disease
(61). Furthermore, patients with PGLs (regardless of metastatic
status) report worse QoL compared to the general population, with
increased fatigue, poorer physical functioning, and psychological
and social impairments. These effects are more pronounced in
individuals experiencing disease-related symptoms (61).

Although formal QoL assessments are lacking in studies focused
exclusively on bone-metastatic PPGL, the available evidence
strongly suggests a considerable impact. Retrospective studies
have consistently highlighted the physical and functional burden
associated with SREs, including complications such as bone pain,
pathological fractures, and spinal cord compression (7, 36, 37).
Metastatic bone lesions are particularly detrimental to QoL, as they
can severely impair patients’ ability to carry out daily activities due
to the significant pain and risk of fractures they cause (62). These
events frequently result in reduced mobility, loss of independence,
hospitalizations, and the need for intensive interventions, factors
that are widely recognized as detrimental to QoL.

Further supporting this, von Moos et al, in a comprehensive
review of metastatic bone pain across various advanced cancers (not
limited to PPGL) (63), emphasized that skeletal complications
significantly compromise QoL by contributing to persistent pain,
impaired physical functioning, sleep disturbance, and emotional
distress. The authors advocate for early and individualized
management—including analgesia, radiotherapy, and bone-targeted
agents—to mitigate the cumulative burden of BM on patient well-
being (63). In addition, recent reviews in neuroendocrine tumors have
highlighted that validated QoL instruments, such as the EORTC QLQ-
C30, QLQ-GI.NET21, and Norfolk QoL-NET, include items
specifically addressing bone or musculoskeletal pain, which represent
a key determinant of reduced QoL in this population (64). While these
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FIGURE 2
SREs in patients with mPPGL.

data are derived from broader NET cohorts, they reinforce the
relevance of systematically assessing bone pain and related symptoms
in patients with mPPGL and BM.

Multidisciplinary management and the use of targeted therapies,
such as bone resorption inhibitors and therapeutic radionuclides, can
enhance symptom control and, in some cases, improve QoL in
patients with BM. However, current evidence suggests that
symptomatic relief does not always translate into prolonged
survival, highlighting the need for individualized therapeutic goals
based on clinical context and patient preferences (65). In this context,
supportive care focused on pain control and the prevention of SREs is
essential to preserving QoL in these patients (66).

In conclusion, the available evidence highlights the significant
impact of BM on QoL in patients with PPGL. These findings
underscore the importance of early supportive care,
multidisciplinary management, and timely use of systemic and
bone-targeted therapies to mitigate morbidity in this population.

8 Prognosis

The prognosis of patients with PPGL and BM is influenced by a
range of clinical, histopathological, biochemical, and molecular
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features. However, most available data derive from studies on
mPPGL in general, with limited evidence specifically addressing
bone involvement. This section summarizes current knowledge
regarding prognostic factors, survival differences related SREs,
and the impact of selected treatments.

8.1 Prognostic factors associated with BM

In patients with mPPGL, several prognostic factors have been
associated with worse outcomes. Independent predictors of shorter
disease-specific survival (DSS) include age >30 years (Hazard Ratio
[HR] 6.2; p < 0.0001), synchronous metastases (HR 4.9; p < 0.0001),
elevated plasma methoxytyramine (MTY) levels (HR 2.4; p = 0.0010),
and extensive metastatic burden (>5 lesions or >2 organs;
HR 2.0; p = 0.0290) (67). Additional factors linked to poorer OS or
more aggressive disease include older age at tumor diagnosis, male sex,
larger primary tumor size, synchronous metastases, dopamine-secreting
tumors, and absence of primary tumor resection (55). Histopathological
features associated with distant metastases (including BM) are
abdominal location (66.7%), tumor size >5.1 cm, >3 mitoses/10 HPF,
SDHB loss, vascular and capsular invasion, nuclear pleomorphism,
and confluent necrosis (68). Furthermore, older age at diagnosis
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andPASS score >7 have been associated with worse OS (24),
while hormonal hypersecretion was the only independent predictor of
poor prognosis in another cohort (HR 3.02; p=0.0004) (69).

While most prognostic data in mPPGL derive from general
metastatic cohorts, a few studies have specifically addressed
prognostic factors related to BM. One study reported that patients
with PGL had a significantly higher risk of developing BM compared to
those with PHEO (80% vs. 40%; p = 0.02) (37). The same study
identified extraskeletal extension of spinal metastases—defined as
invasion beyond the cortical bone—as a strong predictor of
SRE development, occurring in 73% of patients with SREs versus
none in those without (p = 0.001) (37). A large multicenter study
focusing exclusively on patients with PPGL-related BM identified
several prognostic factors (36). Lower risk of SREs was associated
with *'I-MIBG therapy (HR 0.536; p = 0.027), absence of hepatic
metastases (HR 0.638; p = 0.046), and, in univariate analysis, the
presence of sclerotic bone lesions (HR 0.248; p = 0.007). Regarding OS,
favorable outcomes were independently associated with age <48 years
at PPGL diagnosis (HR 0.558; p = 0.002) and absence of liver
metastases (HR 0.618; p = 0.034), while primary PHEO (as opposed
to PGL) was linked to worse OS (HR 3.191; p = 0.001).

8.2 Survival differences in patients with or
without SREs

In the multicenter study by Lagana et al. (36), SREs occurred in
31% of patients with bone-metastatic PPGL, most within the first four
months after BM diagnosis. The presence of SREs was not significantly
associated with worse overall survival (HR 0.808; p = 0.226), although
these events represented an early and disabling complication in the
clinical course of the disease. Similarly, in the cohort reported by Ayala-
Ramirez et al. (7), overall survival was significantly shorter in patients
with both bone and visceral metastases (median: 5 years) compared
with those with only BM (12 years) or only non-osseous metastases
(7.5 years; p = 0.005). However, survival differences specifically based
on the presence or absence of SREs were not evaluated in that study.
Collectively, these data suggest that while SREs do not independently
impact overall survival, their early onset and disabling nature
underscore the importance of prompt prevention and supportive
management to mitigate morbidity and preserve QoL.

8.3 Impact of certain treatments on
survival

In the study by Lagana et al. (36), certain treatments were
significantly associated with improved OS in patients with mPPGL
and BM. Specifically, treatment with bisphosphonates or
denosumab (HR 0.598; p = 0.010) and "*'I-MIBG therapy (HR
0.444; p = 0.001) were independently linked to longer OS. In
contrast, chemotherapy was associated with worse prognosis,
likely reflecting its use in patients with more aggressive disease.
Similarly, in the cohort reported by Ayala-Ramirez et al. (7),
systemic therapies and bone-targeted agents were associated with
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a significantly lower incidence of SREs: 79% of patients who did not
develop SREs had received such treatments, compared to only 21%
of those who experienced SREs (p < 0.0001). Although survival
outcomes were not directly analyzed in that study, these findings
support a potential protective role of antiresorptive and systemic
therapies in mitigating skeletal complications and preserving QoL.

9 Imaging diagnosis

The evaluation of BM in PPGL requires a multimodal strategy
that integrates anatomical and functional imaging, both for
diagnosis and for assessing treatment response, which is
commonly evaluated using RECIST criteria (4, 32, 70). However,
no validated criteria currently exist for assessing skeletal response
specifically in PPGL. The following section focuses on the role of
imaging in the diagnosis and evaluation of BM in patients with
mPPGL. In this section, we use the following abbreviations:
computed tomography (CT), magnetic resonance imaging (MRI),
and positron emission tomography/computed tomography
(PET/CT).

9.1 Computed tomography

CT is valuable in the initial evaluation and follow-up of mPPGL
patients with BM, providing detailed anatomic information on
lesion site, size, extent, and complications (e.g., fractures or
adjacent invasion) (71); the 2025 National Comprehensive Cancer
Network (NCCN) guidelines recommend multiphasic CT (or MRI)
with chest CT in suspected metastatic disease, correlated with
functional imaging such as Somatostatin receptor (SSTR)-PET/
CT or FDG-PET/CT (72). However, its sensitivity for BM
detection is markedly lower than that of ®*Ga-DOTATATE PET/
CT: in a prospective cohort of 43 patients with spinal metastases,
per-lesion detection reached 98.7% for 68Ga-DOTATATE PET/CT
versus 44.8% for CT (p < 0.001) (73). These results should be
interpreted with caution, as the cohort was relatively small and
limited to spinal lesions, which may introduce spectrum bias. CT
remains recommended in diagnostic protocols and follow-up,
particularly to monitor the progression of known lesions and to
assess structural response to therapy, although it may miss small or
low-contrast lesions, especially in early stages or in bones with
degenerative changes (73-75). Moreover, CT provides essential
anatomical information for planning local interventions,
including radiotherapy or surgery (31). For optimal staging, it
should be complemented by functional imaging (73).

9.2 Magnetic resonance imaging

MRI is highly sensitive for detecting skeletal involvement in
PPGL, particularly bone marrow lesions, allowing earlier detection
than CT (76). Spinal MRI has shown a higher per-lesion detection
rate than whole-body CT (80.6% vs. 44.8%), though it is
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outperformed by °®*Ga-DOTATATE PET/CT (73). Beyond
detection, MRI provides detailed characterization of marrow
infiltration and cortical involvement, and is especially
recommended for surveillance of patients with hereditary risk,
such as carriers of SDHB, SDHD, or VHL mutations (1). Whole-
body MRI (WB-MRI) demonstrates sensitivity and specificity (82%
and 97%) comparable to MIBG scintigraphy (70). During follow-
up, MRI is useful for monitoring treatment response through
marrow signal changes indicating necrosis, fibrosis, or
progression, and its lack of ionizing radiation makes it suitable
for long-term surveillance, particularly in younger or genetically
predisposed patients (76).

9.3 Scintigraphy with lodine-*>meta-
iodobenzylguanidine or ®*'meta-
iodobenzylguanidine

21/ -MIBG scintigraphy provides moderate sensitivity and
high specificity for detecting metastatic PPGL, including bone
involvement. In a multicenter study of 140 patients, '*’I-MIBG
achieved 82% sensitivity and 82% specificity, with higher
performance in adrenal pheochromocytoma (88%) than in extra-
adrenal paraganglioma (67%) (77). A recent cohort evaluating
candidates for '*'I-MIBG therapy reported 83-95% sensitivity and
specificity, confirming its reliability when adequate norepinephrine-
transporter uptake is present (70). Sensitivity declines in extra-adrenal,
SDHB-mutated, or dedifferentiated tumors (78).

According to NANETS 2021 guidelines (6), SSTR-PET/CT is
the first-line functional modality for staging, while MIBG is
reserved for therapeutic selection and monitoring. '*'I-MIBG can
occasionally detect early bone lesions missed on conventional bone
scans (79), but its incremental diagnostic value over CT/MRI is
limited, and °®*Ga-DOTATATE PET/CT generally provides
superior sensitivity, particularly for skeletal disease (80).

Clinically, MIBG imaging remains essential for identifying patients
eligible for *'I-MIBG therapy—positive uptake is a prerequisite—and
for post-therapy follow-up, where imaging at 3-6 months predicts
treatment response and survival (65). Thus, MIBG retains a focused yet
important role in the modern management of PPGL, complementing
PET-based functional imaging rather than replacing it.

9.4 PET/CT with ®®Ga-labeled somatostatin
analogues

%Ga-DOTATATE PET/CT is the most sensitive functional
modality for detecting PPGL BM, owing to the high expression of
somatostatin receptor subtype 2 (SSTR2) (73). In prospective
comparative studies, it demonstrates a per-lesion detection rate of
approximately 98-99%, markedly higher than A18F-FDG PET/CT
(49-85%, depending on genetic background). In patients with
spinal BM, sensitivity reaches 98.7% per lesion and 100% per
patient versus 72.0% and 90.2%, respectively, for A18F-FDG PET/
CT (73, 81, 82). This superiority is observed in both sporadic and
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SDHB-mutated metastatic PPGL, and is consistent with
international guidelines recognizing A68Ga-DOTATATE PET/CT
as the preferred modality for detecting skeletal lesions (32).
Compared with MRI and CT, it achieves higher detection rates
(98.7% vs. 80.6% and 44.8%, respectively) and improves staging,
therapy planning, and selection of candidates for Peptide Receptor
Radionuclide Therapy (PRRT) (73, 80-84).

9.5 Positron emission tomography/
computed tomography with fluorine-18-
labeled fluorodeoxyglucose

"8E-EDG PET/CT plays an important role in detecting and
monitoring BM in PPGL, especially in metastatic disease and
tumors with SDHB mutations. Its sensitivity exceeds 90% and
surpasses CT and MRI for osseous lesions (32, 73, 74, 85). FDG
uptake correlates with tumor aggressiveness, reaching lesion-based
sensitivities of ~83% in SDHB-positive tumors, while being lower in
SDHB-negative cases (32). This modality often reveals additional
metastatic sites, influencing staging and treatment decisions (75,
86), and is useful in follow-up to assess response and progression
(87). Despite its value, ®*Ga-DOTATATE PET/CT generally offers
superior sensitivity and is preferred when available (73, 75, 88).

9.6 Positron emission tomography/
computed tomography with fluorine-18-
labeled fluorodopa (*8F-L-3,4-
Dihydroxyphenylalanine)

The performance of '*E-FDOPA PET/CT depends on tumor
subtype and genetic background. It shows high sensitivity for
pheochromocytomas, both primary and metastatic, particularly in
tumors without SDHB/SDHx mutations (83, 85, 89). For BM,
however, its sensitivity is lower than that of %8Ga-DOTANOC
PET/CT; for example, lesion-based detection reached 66.1% with
"SE_FDOPA versus 96.2% with **Ga-DOTANOC (89). Thus, in
sympathetic PGL, mPPGL, or SDHx-related disease, %8Ga-labeled
analogues are preferred (83, 85, 89). Nonetheless, 8E_FDOPA
retains value in non-metastatic PHEOs and tumors without
SDHx mutations, where its sensitivity may equal or exceed that of
other functional modalities, and has shown greater accuracy
than '*’I-MIBG in recurrence or progression assessment (90).

9.7 8F-Dopamine positron emission
tomography/computed tomography

'E-FDA functions as a dopamine analogue and demonstrates
enhanced affinity for the norepinephrine transporter system located
in cellular membranes (91, 92). In a comparative study, 18E_FDA
was able to detect a greater proportion of BM in affected patients,
with a detection rate of 90%, outperforming bone scintigraphy
(82%), CT/MRI (78%), and '*F-FDG PET/CT (76%) (93).
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9.8 Other imaging techniques

Exploratory studies with '*F-fluorothymidine (‘*F-FLT) PET
have shown limited proliferative activity in PPGL BM, with peri-
tumoral uptake possibly reflecting reactive marrow changes (94). In
clinical practice, patients with high-risk features—such as large
primary tumors, extra-adrenal location, or SDHB mutations—
require close imaging surveillance, with '*F-FDG PET/CT
particularly useful in this subgroup (7). Overall, **Ga-
DOTATATE PET/CT remains the modality of choice for
evaluating BM, complemented by MRI for anatomical assessment
and follow-up, while CT and MIBG scintigraphy serve secondary or
context-dependent roles (70, 73, 75, 83, 85, 95).

These imaging modalities not only facilitate early and accurate
diagnosis but also have direct implications for patient management,
therapeutic planning, and prognostication in mPPGL with
bone involvement.

10 Management

Currently, there are no randomized controlled trials or open-
label studies to establish evidence-based guidelines for the
management of metastatic bone disease in mPPGL. Treatment
strategies should be individualized for each patient, and whenever
possible, decisions should be guided by the recommendations of a
multidisciplinary endocrine tumor board (6).

Therapeutic approaches can be broadly categorized into three main
groups: (1) general measures and supportive care, (2) management
of localized bone disease, and (3) systemic treatment strategies. An
overview of these treatment domains is illustrated in Figure 3.

10.1 General measures and supportive care

When considering therapeutic strategies and/or goals of care for
patients with BM in mPPGL—as with other malignancies—several
key parameters should be evaluated: the extent of skeletal
involvement (including bone structural integrity and the presence
or absence of pathological fractures), the rate of progression of bone
disease, the status of extra-skeletal metastatic sites, the presence or
absence of symptoms (particularly pain), and the need to restore or
preserve functional capacity and prevent disease-related
complications (6).

General recommendations involve screening patients with
PPGLs for secondary osteoporosis and providing sufficient
calcium and vitamin D supplementation to maintain bone health
and minimize fracture risk. Evaluating and addressing bone loss in
individuals with secondary osteoporosis from PPGL should be a
priority to improve outcomes and prevent fractures (96).

Prompt initiation of measures to control catecholamine excess
is essential to prevent clinical deterioration and maintain QoL (97).
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Bone pain management, prevention of SREs (e.g., with
bisphosphonates or denosumab), and control of hypertension
secondary to catecholamine excess are essential components of
care in all patients (35, 98, 99).

10.2 Local disease

10.2.1 Surgery

Surgical intervention plays a key role in the multidisciplinary
management BM from PPGL. Indications for surgery may be
guided by clinical decision-making tools and individualized
assessment of factors such as the presence or risk of pathological
fractures, intractable pain, or impending neurological compromise
due to spinal cord or nerve root compression (6). In cases of spinal
cord compression, prompt surgical decompression is indicated,
typically followed by radiotherapy to achieve durable local control
and preserve neurological function (97).

Beyond the management of skeletal complications, surgical
resection of the primary catecholamine-producing tumor also has
systemic benefits. Bone health is often compromised in patients
with PPGL due to the effects of catecholamine excess on bone
metabolism. Therefore, it is important to evaluate both BMD and
trabecular bone score (TBS), as both parameters have been shown
to improve following tumor resection (2, 52). A recent meta-
analysis demonstrated that patients with PPGL exhibit lower TBS
values and elevated levels of bone turnover markers such as cross-
linked C-telopeptide of type I collagen (CTx) and bone-specific
alkaline phosphatase (BS-ALP). Surgical removal of the tumor via
adrenalectomy led to measurable improvements in these
parameters, underscoring the metabolic benefits of tumor control
(45, 96, 100).

In addition to conventional resection and stabilization
procedures, innovative surgical techniques have also been
reported. Kitagawa et al. described a case of PGL-related BM
successfully treated with liquid nitrogen-frozen autologous bone
reconstruction. Bone fusion was achieved without local recurrence,
and the patient’s QoL remained preserved. This approach highlights
promising advances in the surgical management of metastatic bone
lesions (101).

10.2.2 Radiation therapy

RT plays a crucial role in managing PPGL-related BM,
particularly when systemic treatments are ineffective or
unavailable, and patients present with symptoms. It offers rapid
pain relief and contributes to localized tumor control, either as a
standalone option or following surgical intervention (6, 97).
Postoperative radiotherapy is a viable option in patients with
spinal cord compression due to osseous metastases, helping
prevent recurrence and preserve neurological function (97).

Overall, RT administered at doses exceeding 40 gray has been
shown to achieve local tumor control and symptomatic relief in
metastatic lesions across various sites, including soft tissue, liver,
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Overview of treatment strategies for BM in PPGL. Management integrates local (surgery, radiotherapy, ablation), systemic (radionuclide therapy, TKIs,
chemotherapy, bone-targeted agents), and supportive measures (pain control, calcium/vitamin D optimization, catecholamine management).
Adapted from NANETS (6), ESMO-EURACAN (54) and NCCN v2.2025 (72)

and bone (102, 103). However, some authors have also reported
successful outcomes with lower radiation doses, such as 20 Gy (58).

External beam radiation therapy (EBRT) has been employed for
both symptomatic and local control of these lesions. In the study by
Vogel et al. (104), radiographic outcomes were assessed, showing
that 86.7% of lesions treated with EBRT achieved stable disease,
while 13% demonstrated progression. Additionally, symptomatic
relief was reported in 81.1% of treated lesions. Although specific
outcomes for bone lesions in the context of combination therapy
with *'I-MIBG were not detailed, these findings suggest that EBRT
may be effective for achieving local control of osseous metastases in
these malignant tumors.

According to the NANETS consensus recommendations, EBRT
is recognized as a valuable palliative modality for symptomatic BM,
particularly in the presence of pain or risk of pathological fracture.
While data on tumor control remain limited, its therapeutic benefit
centers on symptom alleviation and structural stabilization (6). This
recommendation is also echoed in the updated National
Comprehensive Cancer Network (NCCN 2025) guidelines, which
endorse EBRT as part of the multimodal management of
symptomatic PPGL-related BM when surgery is not feasible (72).
Importantly, the NANETS and NCCN 2021 guidelines recommend
pre-radiotherapy alpha-adrenergic blockade in hormonally active
PPGLs to prevent catecholamine-related complications, with expert
consensus supporting its use in biochemically active cases (31, 72).

Furthermore, advanced techniques such as hypofractionated
intensity-modulated radiotherapy (IMRT) have also shown
promising results. In particular, IMRT has demonstrated efficacy
in achieving local control of advanced or recurrent PPGL lesions,
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with significant improvement in catecholamine-related symptoms
reported in 91% of cases. Although not specific to BM, these
findings support the broader therapeutic role of modern RT
modalities in this disease (105).

Patients should be closely monitored during RT, as RT-induced
inflammation of metastatic lesions may, in rare cases, trigger
massive catecholamine release and hypertensive crisis (106).

10.2.3 Local ablative therapy

A variety of nonsurgical, image-guided ablative techniques are
accessible for the treatment of metastatic lesions, including
radiofrequency ablation (RFA), cryoablation, and percutaneous
ethanol injection (97). These therapies have demonstrated efficacy
in limited studies and may serve as treatment options for patients
who are unsuitable for surgery or as non-surgical alternatives (6).

Percutaneous tumor ablation is most effective in patients with
one or a few relatively small lesions (ideally <3-4 cm). With
appropriate periprocedural management, ablation can be safely
performed at various metastatic sites, including soft tissue, bone,
lung, and liver (107-112).

In a retrospective study involving 31 patients with metastatic PPGL,
123 lesions were treated with percutaneous ablation—most commonly
using RFA, cryoablation, or ethanol injection. At a median follow-up of
60 months, radiographic local control was achieved in 86% of evaluable
lesions, and 92% of procedures resulted in symptomatic improvement.
Two-thirds of the interventions were complication-free, and most
adverse events were mild to moderate (111).

Another study demonstrated that interventional radiology
procedures can delay the onset of severe SREs in patients with
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mPPGL, particularly in those with moderate bone tumor burden—
defined as five or fewer lesions or none exceeding 2 cm—
highlighting their value in multidisciplinary management (113).

Both the 2021 NANETS and the updated 2025 NCCN
guidelines support the use of local ablative therapies in carefully
selected patients with mPPGL, particularly when surgical resection
is not feasible (6, 72). NANETS emphasizes their utility for
symptom control, reduction of tumor burden, and prevention of
local complications in symptomatic or progressive disease (6). In
alignment with these recommendations, the 2020 ESMO-
EURACAN guidelines also acknowledge the role of locoregional
interventions (such as RFA, cryoablation, microwave ablation, and
chemoembolization) in selected patients with metastatic PPGL,
especially for symptom relief and prevention of bone-related
complications, including SREs (54). Collectively, these
recommendations underscore the relevance of ablative therapies
as part of a multidisciplinary strategy focused on localized disease
control and the preservation of patient QoL.

10.2.4 Vertebroplasty

Vertebroplasty, although supported by limited clinical evidence,
has demonstrated therapeutic benefit and may serve as a feasible
alternative for patients with metastatic PPGL who are not suitable
candidates for conventional surgical intervention (6). Among
localized interventions aimed at reducing the incidence of SREs,
vertebroplasty represents a targeted option for stabilizing
structurally compromised weight-bearing bones affected by Iytic
metastatic lesions, contributing to symptomatic relief and
mechanical reinforcement (113).

10.3 Systemic disease

In patients with mPPGL presenting with diffuse or widespread
disease, particularly when bone is not the only organ involved, as is
most often the case (7), surgical or locoregional therapies are
generally not feasible. In such scenarios, management strategies
typically rely on either systemic therapies or active surveillance,
depending on the clinical context and disease burden. Most
available studies have not specifically evaluated or reported the
efficacy of systemic treatments based on the site of metastatic
involvement (e.g., bone). This remains a challenge to be
addressed in future research and highlights the current need to
individualize treatment strategies according to patient-specific
clinical contexts.

For patients with asymptomatic, indolent disease, observation is
preferred over systemic therapy, as potential side effects may
outweigh the benefits. Treatment should be initiated if symptoms
develop or the disease progresses (114).

Systemic therapies are particularly appropriate for extensively
metastatic, progressing, or symptomatic disease when localized
approaches cannot adequately address the overall tumor burden
(6). In this context, various of the systemic options might delay or
prevent the onset of SREs (7). CVD chemotherapy is recommended
particularly in rapidly progressing cases or those with a high visceral
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tumor burden requiring tumor shrinkage, due to its high ORRs (4,
6, 115, 116). For patients with moderate to rapidly progressive
disease ineligible for chemotherapy, treatment relies on molecular
targeted therapy, focusing on key molecules in cancer growth and
survival. The choice depends on radionuclide imaging positivity:
SSTR2-positive cases are treated with PRRT, while MIBG-positive
cases receive *'I-MIBG therapy, using either high- or low-specific
activity formulations (4, 115-119). In cases with no positivity in
radionuclide imaging, the treatment of choice is Tyrosine kinase
inhibitors (TKIs) such as Sunitinib or Cabozantinib. Finally,
patients with Slowly progressive disease, and SSTR positive
disease, Somatostatin analogs (SSAs) could be an option (6, 97).

A proposed algorithm for management options in systemic
disease can be found at Figure 4. A summary of systemic treatment
regimens, including dosages and key adverse effects, is provided
in Table 2.

10.3.1 Bone targeted agents

Since the late 1990s, parenteral bisphosphonates have been
employed to prevent SREs in patients with lytic BM from
malignancies such as breast cancer and multiple myeloma (120,
121). Furthermore, analyses of randomized studies in patients with
castration-resistant prostate cancer (122) and a meta-analysis in those
with metastatic castration-sensitive prostate cancer (123) have shown
that bone-targeted therapies are associated with improved prognosis.

Although the direct evidence supporting the use of
antiresorptive agents for BM in mPPGL is limited, extrapolation
from studies in other solid tumors provides a rationale for their use.
The NANETS guidelines (6) recommend considering antiresorptive
or BTA—such as denosumab, zoledronic acid, or pamidronate—in
patients with focally extensive or disseminated disease, irrespective
of systemic treatment. These agents have demonstrated efficacy in
reducing the incidence of SREs, including pathologic fractures and
the need for radiotherapy, in patients with metastatic disease from
breast, prostate, and lung cancers. Among available options,
denosumab has been suggested to offer the most significant
clinical benefit (124). In patients with PPGL specifically,
denosumab has been associated with notable improvements in
severe bone pain (7).

Commonly used regimens (derived from clinical experience in
other malignancies)include denosumab 120 mg administered
subcutaneously every three months or zoledronic acid 4 mg
intravenously every three months, with treatment generally
continued throughout the course of disease progression (63).
Importantly, in a case series involving patients with PPGL, two
individuals with severe bone pain achieved complete symptom relief
following monthly administration of denosumab at 120 mg
subcutaneously (7). Additionally, an exceptional response to
zoledronic acid has been reported in a patient with bone-
predominant metastatic PGL who had experienced multiple
relapses. After one year of therapy, complete resolution of
lymphadenopathy and somatostatin receptor-avid lesions was
observed by PET-CT with 68Ga-DOTATATE, and disease
stability was maintained for several years thereafter (125).
Supporting this, primary culture studies of PPGL cells have also
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TABLE 2 Systemic therapies for mPPGL: commonly dosing regimens used and main adverse events reported.

Treatment Typical dosage/regimen Main adverse effects

Chemotherapy Cyclophosphamide 750 mg/m* IV (day Myelosuppression, nausea/vomiting, alopecia, peripheral neuropathy (vincristine), fatigue, rare
(CVD: 1); Vincristine 1.4 mg/m?* IV (max 2 hemorrhagic cystitis or secondary malignancies

cyclophosphamide, = mg, day 1); Dacarbazine 600 mg/m? IV

vincristine, (days 1-2). Cycle every 21-28 days

dacarbazine)

(35,99, 169-171)

Temozolomide - 150-200 mg/m” orally once daily on hematologic (lymphopenia, thrombocytopenia, neutropenia, anemia; grade 3-4 cytopenias in ~14-17%),
monotherapy (134,  days 1-5 of a 28-day cycle; dose fatigue, nausea, vomiting, constipation, alopecia, headache, anorexia. Less common but serious toxicities
172) escalation to 200 mg/m” if tolerated include hepatotoxicity, opportunistic infections (notably Pneumocystis jirovecii pneumonia in

without significant myelosuppression prolonged lymphopenia, requiring prophylaxis), and rare secondary malignancies (MDS/AML).

Belzutifan (139, 120 mg orally once daily (adults and Anemia (very common, grade 3 in ~22 %), fatigue, musculoskeletal pain, dyspnea, hypoxia, and

140) >12 years, 240 kg); 80 mg daily if <40 hypertension (each clinically significant). Other frequent events include nausea, constipation, dizziness,
kg. Continue until progression or headache, edema, lymphopenia, and elevated liver enzymes. Serious adverse events occurred in ~11 %
unacceptable toxicity; dose adjustments of patients in the phase 2 trial and ~36 % in pooled safety data from the prescribing information; fatal
as needed events were rare (< 1 %).

Sunitinib (141, 37.5 mg orally once daily, continuous fatigue/asthenia, hypertension (overall up to 29%, grade 3-4 in 7-13%), thrombocytopenia,

143) dosing until progression or unacceptable = hepatotoxicity (rarely fatal), and cardiovascular events (CHF, QT prolongation). Other risks: bleeding,
toxicity (alternative: 50 mg daily, 4 proteinuria, thyroid dysfunction, hypoglycemia, osteonecrosis of the jaw, impaired wound healing, and
weeks on/2 weeks off). GI symptoms. Rare but serious: RPLS, thrombotic microangiopathy, tumor lysis syndrome.

Cabozantinib (145, = 60 mg orally once daily on an empty Diarrhea, fatigue, palmar-plantar erythrodysesthesia (PPE), decreased appetite, hypertension, nausea,

173) stomach until progression or vomiting, weight loss, constipation, and mucositis. Grade 3-4 toxicities include hypertension (~21%),
unacceptable toxicity (40 mg daily if fatigue (~13%), diarrhea (~11%), PPE, mucositis, nausea, anorexia, neutropenia, and lymphopenia.
<40 kg). Serious risks: hemorrhage, GI perforation/fistula, thrombotic events, hepatotoxicity, adrenal

insufficiency, proteinuria, osteonecrosis of the jaw, impaired wound healing, RPLS, thyroid dysfunction,
and hypocalcemia

PRRT (""Lu- 7.4 GBq (200 mCi) IV every 8 weeks x Myelosuppression (lymphopenia most common; grade >3 up to 45%), thrombocytopenia, neutropenia,
DOTATATE) 4 cycles (cumulative 29.6 GBq), with anemia; renal toxicity (rare with amino acid protection); transient hepatotoxicity; secondary MDS/AML
(146-152) concurrent long-acting octreotide 30 mg  (rare, late onset); catecholamine release syndrome (~17% in PPGL, requires antihypertensive

IM after each cycle and monthly precautions); infusion/hypersensitivity reactions; neuroendocrine crises (flushing, diarrhea,

thereafter. bronchospasm, hypotension); common mild AEs: nausea, vomiting, headache, fatigue. Dose reductions

(to 3.7 GBq) or discontinuation may be needed for significant hematologic/renal toxicity.

1311-MIBG (154, Standard dose 150-200 mCi (5.55-7.4 Hematologic toxicities (grade 3-4 neutropenia, thrombocytopenia, leukopenia, lymphopenia; risk

174, 175) GBq) IV per session; repeatable at increases with high or repeated dosing), rarely irreversible marrow aplasia. Non-hematologic effects
intervals of several months. High-dose include nausea, appetite loss, constipation, and acute hypertension during/after infusion. Less common
regimens (up to ~12 mCi/kg or 800- serious events: ARDS, infection, MDS/AML, hypogonadism, renal toxicity, and thyroid dysfunction
1,160 mCi) may be used in select cases, (preventable with blockade). Most adverse effects are manageable and reversible

sometimes requiring stem cell support

Octreotide (162, Doses ranged from 20-30 mg monthly. Hyperglycemia, gastrointestinal symptoms, and diarrhea leading to discontinuation

176)

Lanreotide limited data limited data

Immunotherapy Pembrolizumab 200 mg IV every 3 Fatigue, rash, diarrhea, hypothyroidism, decreased appetite. Immune-related toxicities include thyroid
(165) weeks; Nivolumab 240 mg IV every 2 dysfunction, adrenal insufficiency, hepatitis, colitis, and pneumonitis.

weeks or 3 mg/kg IV q2w; Ipilimumab 1
mg/kg IV every 6 weeks (in
combination)

BTA (Denosumab, = Denosumab: 120 mg SC every 3 months = Denosumab: Hypocalcemia, osteonecrosis of the jaw, atypical femoral fractures, and rebound vertebral
Zoledronic acid (commonly used); in some reports, fractures after discontinuation

and Pamidronate) monthly dosing has also shown pain

(6, 7, 63, 124, 125) relief in some cases

Zoledronic acid: 4 mg IV every 3-4 Biphosphonates: Hypocalcemia, osteonecrosis of the jaw, atypical femoral fractures, and rebound
weeks vertebral fractures upon abrupt discontinuation, nephrotoxicity, flu-like symptoms.

Pamidronate: 90 mg IV every 3 months.

*Doses are reported as used in metastatic PPGL in general; specific data for bone metastases are limited or unavailable in some cases.

demonstrated a direct antitumor effect of zoledronic acid, is well established in malignant hypercalcemia across cancers.
suggesting a possible therapeutic benefit beyond SRE prevention. Zoledronic acid (4 mg IV) is the preferred bisphosphonate due to

Although direct evidence for the resolution of hypercalcemia  greater efficacy and longer duration compared to pamidronate (90
with bisphosphonates in PPGL-related BM is lacking, their benefit ~ mg IV), achieving calcium normalization in ~88% of cases and
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FIGURE 4
Management options for systemic disease in mPPGL.

sustaining the response for longer periods (126, 127). Therefore,
their use can be reasonably extrapolated to PPGL patients with BM
who present with hypercalcemia.

If disease progression occurs while on one BTA, or new skeletal
lesions develop, switching to an alternative antiresorptive therapy
should be considered. These agents, however, are not without risks.
Reported complications include hypocalcemia, osteonecrosis of the
jaw, atypical femoral fractures, and rebound vertebral fractures
upon abrupt discontinuation (128). To reduce the likelihood of
adverse events, it is recommended to ensure adequate calcium and
vitamin D levels and to perform a thorough dental evaluation prior
to initiation of therapy (6).

Vitamin D deficiency has been linked to worse overall survival
in gastroenteropancreatic NETs and a higher incidence of bone
metastases in lung NETs. In addition, patients with intestinal NET's
receiving SAs often develop vitamin D deficiency, highlighting the
need for nutritional monitoring (64). Although data are lacking in
PPGL, these findings suggest that vitamin D status may influence
skeletal outcomes in NETs.

Prospective studies investigating the use of BT A in patients with
PPGL at the time of BM diagnosis would provide much-needed
evidence to guide clinical decision-making in this rare disease.

10.3.2 Citotoxic chemotherapy -
cyclophosphamide, vincristine, dacarbazine

Data on the efficacy of CVD chemotherapy specifically regarding
bone-related outcomes in patients with mPPGL are limited. Clinically,
in the study by Ayala-Ramirez et al. (2013) (7), although specific
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radiologic responses of BM to CVD were not reported, systemic
treatment (including chemotherapy and antiresorptives) was
associated with a reduced risk of SREs. From a biochemical and
imaging standpoint, additional evidence has been reported in case
studies and small series. In a case described by Patel et al. (1995) (129),
a patient with a bulky retroperitoneal tumor and a solitary T12 BM
achieved a partial response to CVD chemotherapy. After surgical
resection of the primary tumor, biopsy of the vertebral lesion showed
no residual disease, indicating resolution of the BM (129). Similarly, in
the study by Huang et al. (2008) (130), 67% of patients had BM. Bone
scan improvement was observed in four patients, all of whom also had
radiographic and biochemical responses to CVD, suggesting a
concordant therapeutic effect in bone lesions among responders. In
another study, Tanabe et al. (2013) (131): decreased '**I-MIBG uptake
was observed in BM of two patients, despite no change in lesion size on
CT. This suggests a potential functional response to CVD
chemotherapy not reflected by anatomical imaging.

In mPPGL in general (not specifically limited to BM),
international guidelines and systematic reviews position
chemotherapy as a treatment option reserved for patients with
rapidly progressive disease, high tumor burden, symptomatic, or
when the use of targeted therapies such as '*'I-MIBG or PRRT is
not feasible, or in tumors with a high proliferative index (35, 72).
NANETS guidelines highlight its benefit for tumor control,
especially in SDHB-mutated cases (6).

Treatment with CVD is generally well tolerated. The most
common toxicities are mild myelosuppression, periperal

neuropathy, and gastrointestinal toxicity (6, 132).
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FIGURE 5

Serial **'|-MIBG scintigraphy demonstrating partial response to therapy in a patient with metastatic PPGL. (A) Post-therapeutic scan acquired eight
days after administration of 300 mCi of **'|-MIBG shows radiotracer uptake in the skull, mediastinum, retroperitoneum, left internal iliac region, and
right inguinal area. (B) Follow-up scan six months later, using 5 mCi of *!I-MIBG, reveals resolution of most lesions, with persistent uptake only in

the mediastinum and liver.

10.3.3 Chemotherapy - temozolomide

Temozolomide is indicated in mPPGL, particularly in patients
with SDHB mutations or MGMT promoter hypermethylation. It is
considered for progressive, symptomatic, or unresectable disease
due to its favorable toxicity profile and potential for tumor and
biochemical response, although most data refer to metastatic PPGL
in general and not specifically to BM (6, 133, 134).

10.3.4 Chemotherapy - other regimens

Although not specifically focused on BM, other regimens have
demonstrated utility in metastatic PPGL, including gemcitabine
(135), gemcitabine combined with paclitaxel (136), docetaxel (137)
and paclitaxel monotherapy (138). Carboplatin and etoposide-
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based regimens have also been used as palliative therapy in cases
of advanced PPGL (41). However, further evidence is needed to
confirm their efficacy.

10.3.5 Belzutifan

Belzutifan, a selective hypoxia-inducible factor-20. (HIF-20t)
inhibitor, has been approved by the FDA for the treatment of
advanced or metastatic pheochromocytoma and paraganglioma
(mPPGL) in patients aged 12 years and older (139). This
indication is supported by the phase 2 international LITESPARK-
015 trial (140), which enrolled 72 patients with unresectable or
metastatic disease and reported an objective response rate of 26%
and a disease-control rate of 85%, with a median progression-free
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survival of 22.3 months. Most responses were durable, and
treatment was generally well tolerated. However, specific
outcomes in patients with bone metastases remain to be defined.

10.3.6 Tyrosine kinase inhibitors
10.3.6.1 Sunitinib

The strongest evidence for the use of sunitinib in mPPGL in
general comes from the FIRSTMAPPP trial, which included 78
patients with progressive disease. Sunitinib significantly improved
12-month progression-free survival (PFS) (36% vs. 19%) with
manageable toxicity. Although bone-specific outcomes were not
detailed, many patients had skeletal disease, and the overall benefit
is considered applicable (141). Additional prospective and
retrospective studies, such as SUTNET and SNIPP, confirm
sunitinib’s activity in advanced disease, showing disease control
rates over 80%, objective responses around 15%, and PFS between
8.9 and 14 months, including clinical and radiologic benefit in BM,
though without dedicated subgroup analyses (142, 143).

10.3.6.2 Cabozantinib

Cabozantinib is an antiangiogenic multi-tyrosine kinase
inhibitor that has demonstrated improvement in bone health in
patients with various malignancies. A phase II trial (144)evaluated
cabozantinib in patients with BM from non-breast, non-prostate
solid tumors. While the study did not include patients with PPGL, it

10.3389/fendo.2025.1671486

provides evidence of cabozantinib’s activity in BM. No SREs
occurred, and significant reductions in bone turnover markers
(serum C-telopeptide and N-telopeptide) were observed. The drug
was generally well tolerated and showed antitumor activity.

In the setting of PPGL, Cabozantinib presents a viable substitute
for chemotherapy in patients with mPPGLs exhibiting moderate to
rapid disease progression. A phase II clinical study involving 17
individuals diagnosed with malignant PHEO or PGL showed that
cabozantinib achieved an objective response rate (ORR) of
25% (145).

10.3.7 Radionuclide therapies
10.3.7.1 Peptide receptor radionuclide therapy

PRRT with Lutetium-177-DOTATATE (*’’Lu-DOTATATE)
has demonstrated significant clinical efficacy in patients with
metastatic NETs involving the skeleton. In contemporary cohorts,
the objective response rate for BM ranges from 23% to 31%, with
disease control rates exceeding 75%. Notably, substantial
symptomatic benefit has been reported, including complete
resolution of bone pain in approximately 39% of patients and
partial improvement in more than 50% (146-148). The median
PES in patients with BM ranges from 27 to 33 months, while
median OS ranges from 35 to 46 months, even among subgroups
with extensive skeletal disease (146-148). The extent of skeletal
metastatic burden does not appear to significantly impact the

Challenges in the Management
of Bone Metastases in mPPGL
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objective response rate (146). Regarding safety, SREs (such as
fractures, spinal cord compression, etc.) occur in approximately
20% of patients with BM (146). QoL improves significantly
following treatment, even in patients with extensive skeletal
involvement (147).

Although BM in mPPGL have not been specifically studied,
patients with moderately progressive mPPGL expressing SSTRs
may benefit from PRRT with lutetium '7"Lu- DOTATATE. This
therapy has demonstrated clinical and biochemical efficacy in
functional mPPGL, with a favorable safety profile. Treatment
benefits include tumor shrinkage and symptom relief, with
eligibility determined by SSTR expression on **Ga-DOTATATE
PET-CT (149-152).

10.3.7.2 **YI-MIBG

Alongside Belzutifan, '>'I-MIBG remains the only U.S. Food
and Drug Administration (FDA)-approved systemic therapy for
patients with mPPGL (4, 116). Clinical evidence supports the use of
iobenguane "*'I-MIBG in PPGL-related BM, provided there is
demonstrable MIBG avidity on functional imaging. High-specific-
activity (HSA) MIBG has shown disease control rates of 55-86%,
with partial responses in 20-30% and disease stabilization in most
patients, including those with skeletal involvement (65, 72,
153-158).

Importantly, Lagana et al. (36) study demonstrated that
treatment with MIBG radionuclide therapy was associated with a
reduced risk of SREs in both univariable and multivariable analyses,
supporting its role as a protective therapeutic strategy in patients
with PPGL.

Figure 5 shows a representative case with partial resolution of
previously identified metastatic lesions following high-dose '*'I-
MIBG, as demonstrated by comparative pre- and post-treatment
scans. This observation is consistent with isolated case reports of
vertebral metastases responding to repeated MIBG therapy,
supporting the potential for disease control in bone lesions under
specific circumstances (159).

Main toxicities include reversible myelosuppression (grade 3-4
cytopenias in up to 80%) (156), as well as nausea, fatigue,
hypothyroidism, and gonadal failure at high cumulative doses
(154, 155). Severe renal or cardiovascular toxicity is uncommon
with HSA-MIBG (153, 155).

10.3.8 Somatostatin analogues

In NETs, SSAs represent a cornerstone of therapy due to their
efficacy in symptom control, tumor stabilization, and favorable
safety profile, even at escalated doses (160). Evidence in mPPGL,
however, remains limited. While early studies did not demonstrate
significant benefit (161, 162), more recent reports suggest sustained
disease control, with a 100% disease control rate at three months
among six treated patients, median time to progression not reached,
and 75% progression-free survival at 23 months (4). Lanreotide has
similarly shown disease stabilization in small series (163) and is
currently under evaluation in a dedicated clinical trial
(NCT03946527). Potential benefit appears greater in tumors with
high SSTR2 expression, such as SDHB-mutated PPGLs (163).
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Although data regarding bone outcomes are lacking, SSAs may be
considered in selected patients with functional disease, slow
progression, or low tumor burden.

10.3.9 Immunotherapy

Evidence for immunotherapy in PPGL-related BM is limited, with
no strong clinical trial data. Current insights mainly come from
preclinical studies and case reports suggesting potential benefit of
immune checkpoint inhibitors. Combined immunotherapy in mouse
models has shown reduced metastases through activation of innate and
adaptive immunity, with CD8+ cells playing a key role (164). However,
these findings have not been confirmed in humans and cannot yet be
applied to clinical practice. Immune checkpoint inhibitors are being
studied in ongoing trials, with some case reports available, but clinical
experience remains limited and current data are insufficient for clear
recommendations (116, 165-167). Additionally, these tumors show
low PD-L1, minimal immune cell infiltration, and poor antigenicity,
indicating limited responsiveness to standard immunotherapy (168).
Guidelines view immunotherapy as experimental in clinical trials, not
standard care for BM in PPGL.

11 Conclusion

In summary, BM are common in patients with mPPGL and are
associated with a high incidence of SREs, underscoring the importance
of long-term monitoring and proactive management. Early
identification and appropriate treatment of bone involvement are
essential to improve both QoL and OS. The potential for late-onset
metastatic spread, even years after the initial diagnosis, should
always be considered. An integrated, multidisciplinary approach
(encompassing endocrinology, oncology, nuclear medicine, palliative
care, radiotherapy, orthopedic surgery, and neurosurgery) is
fundamental to providing optimal care for these complex patients.
To aid clinical decision-making, a proposed algorithm outlining
challenges and possible solutions is presented in Figure 6.
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Glossary

18F-FDA Fluorodopamine (O] Overall Survival

BM Bone Metastases PET/CT Positron Emission Tomography/Computed Tomography
BMD Bone Mineral Density PES Progression-Free Survival

CT Computed Tomography PGLs Paragangliomas

EBRT External Beam Radiotherapy PHEOs Pheochromocytomas

FDA U.S. Food and Drug Administration PPGL Pheochromocytomas and Paragangliomas
FDG Fluorodeoxyglucose PRRT Peptide Receptor Radionuclide Therapy
FDOPA Fluorodopa QoL Quality of Life

FLT 18F-Fluorothymidine SDHB Succinate Dehydrogenase Complex Subunit B
HSA High-Specific-Activity SDHD Succinate Dehydrogenase Complex Subunit D
IMRT Intensity-Modulated Radiotherapy SSAs Somatostatin analogs

MIBG Meta-Iodobenzylguanidine SRE Skeletal-Related Events

mPPGLs Metastatic Pheochromocytoma and Paraganglioma SSTR Somatostatin Receptor

MRI Magnetic Resonance Imaging TKIs Tyrosine Kinase Inhibitors

NCCN National Comprehensive Cancer Network VHL von Hippel-Lindau

NET Neuroendocrine Tumors
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