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Background: Gestational diabetes mellitus (GDM) and hypertensive disorders of

pregnancy (HDP) often coexist and share pathophysiological features such as

insulin resistance and endothelial dysfunction, increasing the risk of preterm

birth. However, few predictive models have focused specifically on this high-risk

group. This study aimed to develop and externally validate a machine learning

model for this high-risk population and assess its cl inical uti l i ty

and interpretability.

Methods: This retrospective dual-center study included electronic medical

records from 121 and 136 pregnant women with comorbid GDM and HDP,

which served as the development and external validation cohorts, respectively.

Multiple machine learning algorithms, including Least Absolute Shrinkage and

Selection Operator (LASSO) regression, Random Forest (RF), and Naive Bayes

(NB), were applied to construct predictive models. To address class imbalance

and enhance model robustness, the Synthetic Minority Over-sampling

Technique (SMOTE, which generates synthetic samples for the minority class

to balance imbalanced datasets) was employed. Model interpretability was

further assessed using Shapley Additive Explanations (SHAP).

Results: Thirteen variables with univariate significance were entered into Elastic

Net regression, yielding five key predictors: alanine transaminase (ALT), aspartate

transaminase (AST), Albumin, lactate dehydrogenase (LDH), and systolic blood

pressure at 32 – 36 weeks (SBP_32_36). While the LASSO model achieved the

highest area under the receiver operating characteristic curve (AUC, 0.802), the

NB model demonstrated greater clinical net benefit, higher reclassification

performance as measured by the Net Reclassification Improvement (NRI,

which evaluates whether patients are more accurately assigned to higher- or

lower-risk groups, which reflects the average improvement in distinguishing

high-risk from low-risk patients) and Integrated Discrimination Improvement
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(IDI), and greater robustness in SMOTE-based sensitivity analyses. In the external

validation cohort (n = 136), it maintained strong generalization with an AUC of

0.777 (95% confidence interval [CI]: 0.645–0.887), accuracy of 0.801 (95% CI:

0.735–0.860), sensitivity of 0.792, and specificity of 0.804, supporting its

selection as the optimal model for this high-risk population.

Conclusions: The Naive Bayes model exhibited robust predictive ability and

interpretability for identifying preterm birth risk in pregnancies with comorbid

GDM and HDP, and may serve as a transparent, clinically applicable tool for

individualized obstetric risk management.
KEYWORDS

preterm birth, gestational diabetes mellitus, hypertensive disorders of pregnancy,
Shapley Additive Explanations, Elastic Net regression, risk prediction model
1 Introduction

Gestational diabetes mellitus (GDM) and hypertensive

disorders of pregnancy (HDP) are two common pregnancy-

related complications that independently increase the risk of

adverse maternal and neonatal outcomes, including preterm birth,

placental abruption, fetal growth restriction, and perinatal mortality

(1). Recent epidemiological evidence suggests that the prevalence of

GDM has risen to approximately 14% (2), whereas the prevalence of

HDP has increased to around 10% (3). Notably, the incidence of

both GDM and HDP has been rising in recent years, with certain

studies indicating that the combined prevalence may reach up to

30.4% (4).

This upward trend is partly attributed to increasing maternal

age and the implementation of the two-child policy, which have

contributed to a growing number of pregnancies affected by both

conditions, highlighting the importance of focused perinatal

management in this high-risk group (5). Existing studies have

identified that factors such as glycemic control levels, mid-

pregnancy blood pressure, proteinuria, and a history of preterm

birth are closely associated with preterm birth risk (6–9). However,

research focusing on the prediction of preterm birth risk in this

specific high-risk subgroup of pregnant women with comorbid

GDM and HDP remains relatively scarce, with most studies being

single-center and small-sample designs (10), lacking external

validation, which limits the generalizability and clinical

applicability of such models. To date, no prediction models have

been specifically developed and externally validated for women with

comorbid GDM and HDP.

In addition, although traditional logistic regression models offer

good interpretability, they face performance bottlenecks in handling

the complex, nonlinear relationships inherent in high-dimensional

clinical data (11). In recent years, machine learning algorithms,

such as random forest and Extreme Gradient Boosting (XGBoost),

have been widely applied in medical prediction studies due to their

superior modeling capabilities. Meanwhile, the introduction of
02
interpretability tools such as Shapley Additive Explanations

(SHAP) has provided mechanistic explanations for “black-box”

models (12), enhancing the clinical interpretability and

applicability of these models. By integrating traditional logistic

regression and multiple mainstream machine learning algorithms,

and systematically evaluating model discrimination, calibration,

and clinical utility through receiver operating characteristic

(ROC) curves, decision curve analysis (DCA, which evaluates

whether using the model provides greater net benefit for clinical

decision-making compared with treating all or no patients), and

SHAP (which decomposes model predictions to quantify the

contribution of each predictor at both the population and

individual levels), we aimed to develop an accurate, robust, and

interpretable preterm birth risk prediction tool to support early

identification and individualized intervention strategies for high-

risk pregnancies.

We hypothesized that applying machine learning to GDM–

HDP data would yield superior predictive performance for preterm

birth compared with traditional models. Therefore, the present

study aimed to establish a clinically applicable and interpretable

machine learning–based prediction model for preterm birth in

women with comorbid GDM and HDP, systematically evaluating

its discrimination, calibration, clinical utility, and interpretability.
2 Methods

The development cohort included pregnant women who

received antenatal care and delivered at Sichuan Provincial

People’s Hospital between January 1, 2020, and December 31,

2024, while the external validation cohort included women who

delivered at Tongji Hospital, Tongji Medical College, Huazhong

University of Science and Technology between January 1, 2022, and

December 31, 2023, all of whom met the same inclusion and

exclusion criteria. The study was approved by the Ethics

Committees of Sichuan Provincial People’s Hospital (No.
frontiersin.org
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2025462) and Tongji Hospital, Tongji Medical College, Huazhong

University of Science and Technology (No. TJ-IRB20220611), and

all data were anonymized and used solely for research purposes.

The inclusion criteria were as follows. (1) Eligible participants

were pregnant women aged over 18 years. (2) All participants met

the diagnostic criteria for both GDM and HDP according to the

guidelines of the Chinese Society of Obstetrics and Gynecology

(CSOG) (13, 14). GDM was diagnosed by a 75-g oral glucose

tolerance test (OGTT) performed at 24 – 28 gestational weeks if

any of the following plasma glucose thresholds were met: fasting

≥5.1 mmol/L, 1-hour ≥10.0 mmol/L, or 2-hour ≥8.5 mmol/L. HDP

was diagnosed as systolic blood pressure (SBP) ≥140 mmHg and/or

diastolic blood pressure (DBP) ≥90 mmHg after 20 weeks of

gestation, confirmed by at least two measurements taken ≥4

hours apart, or a single measurement of SBP ≥160 mmHg and/or

DBP ≥110 mmHg, without subtype differentiation. (3) Participants

were required to have received continuous and systematic perinatal

management in the hospital from early pregnancy (8 – 15 weeks),

with no fewer than five prenatal examinations. (4) Only singleton

pregnancies with live births were included.

The exclusion criteria were as follows. (1) Pregnancies

complicated by severe chronic systemic diseases, such as systemic

lupus erythematosus or malignancies, that could affect pregnancy

outcomes were excluded. (2) Pregnancies with major fetal

malformations were also excluded. (3) Cases with missing key

variables that could not be restored through imputation

were excluded.

The primary outcome of interest was preterm birth, defined as

delivery occurring prior to 37 gestational weeks (15). Outcome data

were obtained from the discharge records, labor course records, and

ultrasound information in the electronic medical records system

and were independently confirmed by two researchers. Continuous

variables were tested for normality using the Shapiro–Wilk test.

Normally distributed variables were expressed as mean ± standard

deviation (SD), and non-normally distributed variables as median

with interquartile range (IQR). Categorical variables were

summarized as frequencies (percentages). Group comparisons

were performed using the t-test or the Mann-Whitney U test for

continuous variables and the Chi-square or Fisher’s exact test for

categorical variables, as appropriate. To address missing data, the

MissForest algorithm—a non-parametric multiple imputation

method based on random forests—was applied. All variables had

missing values below 10%, which is generally considered acceptable

and unlikely to bias the results. This approach iteratively imputes

missing values using regression or classification trees trained on

observed data, thereby preserving nonlinear relationships among

variables. Ten-fold imputation was conducted separately within the

development and validation cohorts to prevent information leakage

and maintain dataset integrity.

The candidate predictors encompassed several domains:

demographic characteristics (Age, body mass index [BMI]) (16);

obstetric history (Adverse Pregnancy History and Primiparity) (17,

18); mode of conception (natural conception or in vitro fertilization

and embryo transfer [IVF-ET]); pregnancy complications

(specifically, the use of antihypertensive medications); and
Frontiers in Endocrinology 03
longitudinal measurements of systolic and diastolic blood

pressure (SBP and DBP) collected across six gestational intervals:

8 + 0 to 15 + 6, 16 + 0 to 19 + 6, 20 + 0 to 23 + 6, 24 + 0 to 27 + 6, 28

+ 0 to 31 + 6, and 32 + 0 to 36 + 6 weeks. Time-specific blood

pressure variables were denoted using the format SBP_X_Y or

DBP_X_Y, where X_Y indicates the corresponding gestational

week range. For example, SBP_32_36 refers to SBP measurements

taken between 32 + 0 and 36 + 6 weeks of gestation. Laboratory

variables included the mid-pregnancy OGTT (24–28 weeks), with

glucose concentrations measured at 0 hours (OGTT-0h), 1 hour

(OGTT-1h), and 2 hours (OGTT-2h) after glucose load; liver

function markers, including alanine aminotransferase (ALT),

aspartate aminotransferase (AST), and lactate dehydrogenase

(LDH); as well as Uric Acid, Albumin, and Anemia, totaling

more than 30 candidate variables. All variables were collected

before the occurrence of outcomes, and outcome data were

blinded during data processing to prevent information leakage.

To address the relatively small sample size and the imbalance in

outcome distribution, the Synthetic Minority Over-sampling

Technique (SMOTE) was applied exclusively to the training folds

within cross-validation, while validation and test sets

remainedunchanged to avoid information leakage. In this dataset,

preterm birth cases represented the minority class, whereas non-

preterm cases were the majority class; the minority class was

oversampled to achieve a 1:1 ratio with the majority class. We

optimized SMOTE’s neighborhood parameter (k) using grid search,

selecting k = 5. This value was chosen because it achieved the

highest overall and negative class F1 scores (the harmonic mean of

precision and recall) during a three-fold cross-validation on the

development cohort. This strategy enhanced the model’s sensitivity

to preterm prediction while minimizing potential bias introduced

by synthetic data. A two-step variable selection process was then

implemented. First, univariate logistic regression was conducted to

screen candidate predictors, and those with a P-value < 0.20 were

retained for further modeling, in accordance with Steyerberg’s

recommendation in Clinical Prediction Models to preserve

variables with potential predictive value (19). Guided by the

events-per-variable (EPV) principle, we aimed to maintain a

relatively high EPV value to reduce the risk of overfitting given

the limited sample size (development cohort: 121 participants, 31

events). To further address the potential impact of a lower EPV in

this context, we applied Elastic Net regularization, combined with

three-fold cross-validation, to enhance model stability, and

conducted external validation and sensitivity analyses to ensure

robustness and generalizability. To reduce multicollinearity and

avoid overfitting while maintaining a minimum EPV ratio of at least

10 (20), Elastic Net regression—combining the L1 penalty of Least

Absolute Shrinkage and Selection Operator (LASSO) and the L2

penalty of Ridge Regression—was applied to identify the most

predictive features. Three-fold cross-validation was used to

improve model stability. The final model selection was based on

cross-validation performance. It is noteworthy that the use of the

Naive Bayes (NB) model was pre-specified in our analysis plan,

given its advantages in small-sample scenarios and its probabilistic

interpretability. It was not chosen post-hoc based on its performance
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on an external validation set. A total of five key predictors were

ultimately retained for final model development.

Model performance was evaluated across multiple dimensions:

(1) discrimination was assessed using ROC curves and area under

the curve (AUC) values; (2) calibration was evaluated using the

Hosmer-Lemeshow test and calibration plots to assess agreement

between predicted probabilities and observed outcomes; (3) clinical

utility was examined using DCA to estimate net benefit under

different threshold probabilities; (4) interpretability was evaluated

using SHAP to quantify the direction and contribution of each

predictor to individual predictions; (5) generalizability was assessed

using an external validation cohort; and (6) reclassification

performance was evaluated using integrated discrimination

improvement (IDI) and net reclassification improvement (NRI)

indices. All statistical analyses were conducted using R (version

4.2.3) and Python (version 3.12), with a two-sided P-value < 0.05

considered statistically significant.
3 Results

3.1 Characteristics of participants

A total of 257 pregnant women diagnosed with GDM and HDP

were included in this study. The development cohort comprised 121

cases from Sichuan Provincial People’s Hospital, among whom 31

(25.62%) experienced preterm birth and 90 (74.38%) had non-

preterm birth. The external validation cohort included 136 cases

from Tongji Hospital, Tongji Medical College, Huazhong

University of Science and Technology, among whom 24 (17.65%)

experienced preterm birth and 112 (82.35%) had non-preterm

birth. Baseline characteristics were compared between the

development and validation cohorts to evaluate their population

comparability. Significant differences were observed in several key

variables, including ALT, AST, Total Bilirubin, and DBP across

multiple gestational weeks (8–31 weeks). All P-values were less

than 0.001.

Additionally, the incidence rates of History of HDP,

Medication, Cardiovascular Disease, Anemia, Twin Pregnancy,

FPG_32_36, and IVF-ET differed significantly between the two

cohorts. These discrepancies might be attributable to variations in

clinical management practices or differences in population

characteristics between the two centers. However, no statistically

significant differences were found in Age, BMI, OGTT results,

Albumin, Creatinine, or most Weight measurements .

Importantly, the proportion of preterm births did not differ

significantly between the two groups (P = 0.161), indicating

general comparability in the outcome of interest, as detailed

in Table 1.

It can be concluded from Table 2, based on the results of

univariate logistic regression analysis, that eight variables were

found to be significantly associated with preterm birth (P < 0.05).

Among them, albumin acted as a protective factor (odds ratio [OR]

= 0.735, 95% confidence interval [CI]: 0.639–0.844, P < 0.001),

indicating that higher albumin levels were associated with a lower
Frontiers in Endocrinology 04
risk of preterm birth. In contrast, elevated levels of LDH, systolic

blood pressure (SBP_32_36 and SBP_28_31), diastolic blood

pressure (DBP_32_36), Twin Pregnancy, Medication, and IVF-ET

were identified as significant risk factors. For example, IVF-ET

showed a strong positive association with preterm birth (OR =

5.160, 95% CI: 1.349 – 19.731, P = 0.016). Additionally, variables

such as Total Bilirubin, ALT, and AST demonstrated potential

associations with the outcome (P < 0.20), indicating potential

predictive value. Given their potential predictive value, these

variables were retained as candidate predictors for inclusion in

the subsequent Elastic Net modeling process.

Based on univariate analysis (P < 0.20), thirteen candidate

predictors were included in the Elastic Net regression model. To

select the optimal features, Elastic Net regression was performed

using three-fold cross-validation, and the minimum mean squared

error criterion (l-min) was applied. As a result, five predictors—

ALT, AST, Albumin, LDH, and SBP_32_36—were ultimately

retained for model development (the antihypertensive medication

variable, although initially considered among the candidates, was

not retained). The coefficient path is illustrated in Figure 1. Elastic

Net regression retained a set of predictors that were most

informative for preterm birth risk. The selected predictors,

together with their regression coefficients and direction of

association, are summarized in Table 3. These coefficients reflect

the relative importance of each predictor within the penalized

regression framework, where larger absolute values indicate

stronger contributions to the model.
3.2 Model performance

Using these five variables, we constructed predictive models

with Logistic Regression, Random Forest (RF), NB, Support Vector

Machine (SVM), and other algorithms. All models were tuned and

trained using three-fold cross-validation in the development cohort,

and SMOTE was applied to address class imbalance before model

training. In the external validation cohort, the LASSO model

achieved the highest discrimination performance with an AUC of

0.802, followed closely by the Multilayer Perceptron (MLP, AUC =

0.798) and Logistic Regression with mini-batch gradient descent

(LR MBGD, AUC = 0.789). The AUCs of XGBoost, NB, and

AdaBoost models were 0.786, 0.777, and 0.772, respectively,

indicating moderate discriminative ability. Notably, the Naive

Bayes model demonstrated reasonable discrimination (AUC =

0.777), ranking in the upper-middle range among all tested

algorithms. Although its AUC was slightly lower than those of

LASSO, MLP, and some relatively well-performing ensemble

models such as XGBoost, it outperformed several classical

approaches, such as Classification and Regression Tree (CART,

AUC = 0.767), Random Forest (AUC = 0.760), and SVM (AUC =

0.711). In contrast, the K-Nearest Neighbor (KNN, AUC = 0.673)

model showed the weakest discriminative power. These findings

suggest that the LASSO model provided the best discriminatory

power for identifying preterm birth risk; however, notably, the

Naive Bayes model also demonstrated acceptable and stable
frontiersin.org
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TABLE 1 Baseline characteristics of the development and validation
cohorts.

Variable A (n=121) B (n=136) P

Age (years) 32.21 ± 4.51 32.85 ± 3.87 0.231

BMI (kg/m²) 25.00 (22.70 - 27.70) 23.95 (22.00 - 26.62) 0.107

Adverse
Pregnancy
History

9 (7.44%) 10 (7.35%) 1.000

Primiparity 80 (66.12%) 106 (77.94%) 0.048

IVF_ET 10 (8.26%) 24 (17.65%) 0.042

Medication 57 (47.11%) 10 (7.35%) <0.001

SBP_8_15
(mmHg)

126.00 (118.00 - 134.00) 128.00 (124.00 - 131.25) 0.055

SBP_16_19
(mmHg)

126.00 (116.00 - 134.00) 126.00 (122.00 - 130.00) 0.696

SBP_20_23
(mmHg)

127.36 ± 11.84 129.00 (124.00 - 135.00) 0.172

SBP_24_27
(mmHg)

127.85 ± 9.97 129.00 (126.00 - 134.00) 0.082

SBP_28_31
(mmHg)

128.60 ± 11.73 129.64 ± 11.23 0.472

SBP_32_36
(mmHg)

136.82 ± 12.68 134.17 ± 14.72 0.127

Preterm Birth 31 (25.62%) 24 (17.65%) 0.161

DBP_8_15
(mmHg)

80.00 (72.00 - 85.00) 86.00 (81.00 - 90.00) <0.001

DBP_16_19
(mmHg)

76.69 ± 10.73 82.00 (79.00 - 87.25) <0.001

DBP_20_23
(mmHg)

77.50 ± 10.02 82.00 (79.00 - 88.00) <0.001

DBP_24_27
(mmHg)

79.07 ± 9.95 83.00 (80.00 - 87.25) <0.001

DBP_28_31
(mmHg)

80.17 ± 9.35 84.97 ± 8.89 <0.001

DBP_32_36
(mmHg)

85.00 (78.00 - 92.00) 86.00 (81.00 - 92.00) 0.265

ALT(U/L) 18.00 (11.00 - 34.00) 13.00 (9.00 - 18.00) <0.001

AST(U/L) 23.00 (16.00 - 34.00) 17.00 (14.00 - 22.00) <0.001

Albumin (g/L) 35.80 (33.10 - 37.90) 36.40 (32.50 - 39.00) 0.561

Anemia 23 (19.01%) 2 (1.47%) <0.001

Creatinine
(μmol/L)

51.10 (45.30 - 59.50) 52.00 (45.00 - 60.00) 0.940

FPG_32_36
(mmol/L)

4.85 (4.36 - 5.40) 5.18 (4.62 - 5.75) 0.002

LDH (U/L) 200.00 (173.00 - 225.00) 189.50 (163.00 - 208.25) 0.046

OGTT-0h
(mmol/L)

5.16 (4.80 - 5.41) 5.13 (4.68 - 5.49) 0.769

(Continued)
F
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TABLE 1 Continued

Variable A (n=121) B (n=136) P

OGTT-1h
(mmol/L)

10.11 (8.95 - 11.11) 10.26 ± 1.81 0.389

OGTT-2h
(mmol/L)

8.52 (7.46 - 9.50) 8.77 (8.00 - 9.46) 0.110

Total Bilirubin
(μmol/L)

10.40 (6.30 - 12.60) 4.85 (3.60 - 6.90) <0.001

Uric Acid
(μmol/L)

371.00 (311.00 - 431.00) 352.45 ± 91.63 0.048

Educational
Level

0.091

·Lower
Secondary or
Below

49 (40.50%) 41 (30.15%)

·Tertiary or
Above

49 (40.50%) 55 (40.44%)

·Upper
Secondary

23 (19.01%) 40 (29.41%)

Cardiovascular
Disease

11 (9.09%) 0 (0.00%) 0.001

Cesarean Scar
Uterus

22 (18.18%) 34 (25.00%) 0.242

History of
GDM

5 (4.13%) 0 (0.00%) 0.052

History of
HDP

14 (11.57%) 0 (0.00%) <0.001

Placenta Previa 1 (0.83%) 3 (2.21%) 0.699

Twin
Pregnancy

10 (8.26%) 0 (0.00%) 0.002

Weight_24_27
(kg)

70.00 (63.00 - 77.60) 70.35 (63.00 - 79.00) 0.941

Weight_28_31
(kg)

73.00 (65.60 - 80.50) 71.00 (64.15 - 81.05) 0.504

Weight_32_36
(kg)

73.30 (66.70 - 81.30) 73.65 (66.38 - 83.00) 0.944
frontie
Dynamic variables, including systolic blood pressure (SBP) and diastolic blood pressure
(DBP), maternal weight, and glucose measurements [fasting plasma glucose (FPG), oral
glucose tolerance test (OGTT)], were collected longitudinally across specific gestational
intervals (e.g., 8–15, 16–19, …, 32–36 weeks). Each is labeled in the format SBP_X_Y,
DBP_X_Y, Weight_X_Y, or FPG_X_Y, where X and Y indicate the starting and ending
gestational weeks (X+0 to Y+6). For example, SBP_32_36 denotes systolic blood pressure
measured between 32+0 and 36+6 weeks of gestation, and Weight_24_27 refers to maternal
weight during 24+0 to 27+6 weeks. OGTT-related variables follow the format OGTT-T, where
T indicates the sampling time in hours (0h, 1h, or 2h) during the oral glucose tolerance test.
Continuous variables are expressed as mean ± standard deviation (SD) when both groups
were normally distributed, and as median (interquartile range [IQR]) otherwise. Between-
group differences were assessed using the independent-samples t-test or Mann–Whitney U
test as appropriate. Categorical variables are shown as n (%) and compared using the c² test or
Fisher’s exact test. Percentages are calculated within each cohort (A: n=121; B: n=136) and
may not sum to 100% due to rounding. Blood pressure values are measured in mmHg with
discrete increments, which may yield identical medians across time windows; the
accompanying IQRs reflect the underlying distribution. Missing values were imputed using
the MissForest algorithm. Cohorts: A = Sichuan Provincial People’s Hospital (development
cohort); B = Tongji Hospital, Tongji Medical College, Huazhong University of Science and
Technology (external validation cohort). OR, odds ratio; BMI, body mass index; IVF-ET, in
vitro fertilization and embryo transfer; SBP, systolic blood pressure; DBP, diastolic blood
pressure; ALT, alanine aminotransferase; AST, aspartate aminotransferase; FPG, fasting
plasma glucose; LDH, lactate dehydrogenase; OGTT, oral glucose tolerance test; GDM,
gestational diabetes mellitus; HDP, hypertensive disorders of pregnancy.
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discrimination, thereby justifying its inclusion in further evaluation.

Figure 2A presents the ROC curves along with the corresponding

AUC values for the models in the external validation cohort.

Detailed performance metrics, including accuracy, F1 score,

sensitivity, specificity, positive predictive value, and negative

predictive value for each model in the development and external

validation cohorts, are presented in Supplementary Table S1.

The calibration performance of all models was evaluated using

calibration curves and Brier scores in the external validation cohort

(Figure 2B). Models with curves closer to the diagonal line

demonstrated better alignment between predicted probabilities

and observed outcomes. Among the tested models, K-Nearest

Neighbor exhibited the best calibration performance, with the

lowest Brier score of 0.092, indicating high prediction reliability.

Other well-calibrated models included Random Forest (0.111),

XGBoost (0.112), and SVM RBF (0.113).

Although the Naive Bayes model demonstrated acceptable

discriminatory ability, its calibration performance was

suboptimal, with a Brier score of 0.146. The calibration curve

deviated upward from the diagonal in the low-to mid-probability

range, indicating a tendency to underestimate the actual risk.

Similarly, AdaBoost (0.170) and CART (0.163) displayed

suboptimal calibration, with predicted probabilities deviating

more from actual event rates.
3.3 Clinical utility of the model

DCA was performed to evaluate the clinical utility of each

model across a range of threshold probabilities in the external

validation cohort (Figure 2C). Overall, XGBoost, Random Forest,

and MLP models yielded the highest net benefit across the clinically

relevant threshold range of 0.2 – 0.6, suggesting superior

performance in guiding clinical decision-making. In contrast,

models such as CART and AdaBoost exhibited consistently lower

or even negative net benefit values, particularly in mid-to-high

threshold ranges, indicating limited clinical value. Naive Bayes

demonstrated modest net benefit in the low-threshold range
TABLE 2 Univariate logistic regression results.

Variable P OR (95% CI)

Age (years) 0.452 1.035 (0.946 - 1.132)

BMI (kg/m²) 0.928 1.004 (0.924 - 1.091)

Adverse Pregnancy
History

0.584 1.500 (0.352 - 6.397)

Primiparity 0.273 1.664 (0.669 - 4.142)

IVF-ET 0.016 5.160 (1.349 - 19.731)

Medication 0.009 3.150 (1.329 - 7.467)

SBP_8_15 (mmHg) 0.650 0.993 (0.965 - 1.022)

SBP_16-19 (mmHg) 0.751 0.995 (0.967 - 1.025)

SBP_20_23 (mmHg) 0.878 1.003 (0.969 - 1.038)

SBP_24_27 (mmHg) 0.386 1.018 (0.977 - 1.061)

SBP_28_31 (mmHg) 0.043 1.040 (1.001 - 1.081)

SBP_32_36 (mmHg) 0.001 1.069 (1.027 - 1.113)

DBP_8_15 (mmHg) 0.905 0.998 (0.957 - 1.039)

DBP_16_19 (mmHg) 0.775 1.006 (0.968 - 1.045)

DBP_20_23 (mmHg) 0.639 1.010 (0.969 - 1.052)

DBP_24_27 (mmHg) 0.173 1.030 (0.987 - 1.074)

DBP_28_31 (mmHg) 0.080 1.043 (0.995 - 1.093)

DBP_32_36 (mmHg) 0.039 1.049 (1.003 - 1.098)

ALT (U/L) 0.086 1.005 (0.999 - 1.011)

AST (U/L) 0.112 1.011 (0.997 - 1.025)

Albumin (U/L) <0.001 0.735 (0.639 - 0.844)

Anemia 0.558 1.349 (0.496 - 3.668)

Creatinine (μmol/L) 0.723 0.998 (0.984 - 1.011)

FPG_32_36 (mmol/L) 0.454 0.861 (0.583 - 1.273)

LDH (U/L) <0.001 1.014 (1.006 - 1.023)

OGTT-0h (mmol/L) 0.363 1.321 (0.725 - 2.407)

OGTT-1h (mmol/L) 0.237 1.131 (0.922 - 1.386)

OGTT-2h (mmol/L) 0.217 1.128 (0.932 - 1.365)

Total Bilirubin (μmol/L) 0.079 1.090 (0.990 - 1.201)

Uric Acid (μmol/L) 0.375 1.002 (0.998 - 1.005)

Educational Level 0.356 0.806 (0.510 - 1.274)

Cardiovascular Disease 0.557 0.621 (0.127 - 3.043)

Cesarean Scar Uterus 0.206 1.888 (0.704 - 5.061)

History of GDM 0.770 0.717 (0.077 - 6.668)

History of HDP 0.788 1.185 (0.343 - 4.091)

Placenta Previa 1.000 5.192e+14 (0.000-inf)

Twin Pregnancy 0.003 8.458 (2.032 - 35.205)

Weight_24_27 (kg) 0.973 0.999 (0.968 - 1.032)

(Continued)
TABLE 2 Continued

Variable P OR (95% CI)

Weight_28_31 (kg) 0.693 1.006 (0.976 - 1.038)

Weight_32_36 (kg) 0.583 1.009 (0.978 - 1.040)
Note: Dynamic variables, including systolic blood pressure (SBP) and diastolic blood pressure
(DBP), maternal weight, and glucose measurements [fasting plasma glucose (FPG), oral
glucose tolerance test (OGTT)], were collected longitudinally across specific gestational
intervals (e.g., 8–15, 16–19, …, 32–36 weeks). Each is labeled in the format SBP_X_Y,
DBP_X_Y, Weight_X_Y, or FPG_X_Y, where X and Y indicate the starting and ending
gestational weeks (X+0 to Y+6). For example, SBP_32_36 denotes systolic blood pressure
measured between 32+0 and 36+6 weeks of gestation, and Weight_24_27 refers to maternal
weight during 24+0 to 27+6 weeks. OGTT-related variables follow the format OGTT-T, where
T indicates the sampling time in hours (0h, 1h, or 2h) during the oral glucose tolerance test.
OR, odds ratio; 95% CI, 95% confidence interval; BMI, body mass index; IVF-ET, in vitro
fertilization and embryo transfer; SBP, systolic blood pressure; DBP, diastolic blood pressure;
ALT, alanine aminotransferase; AST, aspartate aminotransferase; FPG, fasting plasma
glucose; LDH, lactate dehydrogenase; OGTT, oral glucose tolerance test; GDM, gestational
diabetes mellitus; HDP, hypertensive disorders of pregnancy.
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(below 0.3), suggesting limited but potentially useful clinical utility

for early risk screening. These findings suggest that while ensemble

and deep learning models offer greater potential for risk-based

intervention strategies, Naive Bayes still retains some value in early-

risk screening contexts. To identify the most clinically useful model,

we further compared all candidate algorithms using reclassification

metrics, including NRI and IDI. As illustrated in the heatmaps

(Figures 3A, B), the Naive Bayes model outperformed most other

candidates in both Test-NRI and Test-IDI, demonstrating the
Frontiers in Endocrinology 07
strongest ability to improve risk stratification across clinically

relevant thresholds. Although its AUC and calibration

performance were only moderate, these reclassification

advantages, combined with adequate discriminatory ability, led to

its selection as the final model for individual-level prediction and

clinical interpretation.

To further explain the contribution and directionality of each

predictor, SHAP analysis was applied. A SHAP summary plot was

generated to visualize the global feature importance across all

samples (Figure 4A). Each point represents an individual case,

with color indicating the feature value (red for high, blue for low),

and horizontal position denoting the SHAP value, which reflects the

magnitude and direction of impact on the model’s output. Among

the five selected predictors, Albumin, LDH, and SBP at 32 – 36

weeks exhibited the strongest influence, confirming their central

role in risk prediction. Notably, lower albumin and higher LDH

levels were associated with increased predicted risk, consistent with

known clinical mechanisms.

To illustrate the model’s behavior at the individual level, SHAP

force plots were generated for two representative patients

(Figures 4B, C). Figure 4B depicts a high-risk case with a

predicted preterm birth probability of 1.00. In this individual,

elevated albumin levels unexpectedly emerged as the dominant

positive contributor, illustrating case-specific variability in SHAP

explanations. In contrast, Figure 4C presents a low-risk individual,
FIGURE 1

Elastic Net regression coefficient path plot. The abscissa shows l on a logarithmic scale (larger l indicates stronger regularization); the ordinate
reports the mean area under the receiver operating characteristic (ROC) curve (AUC). Red markers joined by a line represent the mean AUC
obtained from three-fold cross-validation at each l. Grey vertical bars denote ±1 standard error (SE), reflecting variability across folds. The blue
dashed line marks the Best l (lmin = 26), which yields the best mean AUC, whereas the green dashed line marks l−1SE (79.2); selecting l−1SE gives
a more parsimonious model at negligible loss of discrimination.
TABLE 3 Retained predictors and coefficients from elastic net
regression.

Predictor Coefficient Relationship

ALT (U/L) 0.123 Positive

AST (U/L) -0.087 Negative

Albumin (U/L) -0.145 Negative

LDH (U/L) 0.256 Positive

SBP_32_36 (mmHg) 0.178 Positive
Coefficients are standardized and retained to three decimal places. Positive coefficients
indicate increased risk of preterm birth, while negative coefficients indicate a protective
association. SBP_32_36 refers to systolic blood pressure measured between 32+0 and 36+6
weeks of gestation.
ALT, alanine aminotransferase; AST, aspartate aminotransferase; LDH, lactate
dehydrogenase; SBP, systolic blood pressure.
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FIGURE 2

Comprehensive evaluation of predictive models in the external validation cohort. (A) Receiver operating characteristic (ROC) curves of predictive
models in the external validation cohort. X-axis: False positive rate (FPR); Y-axis: True positive rate (TPR). The curves show each model’s ability to
discriminate between positive and negative outcomes. A curve closer to the top-left corner indicates better performance. The area under the curve
(AUC) for each model is reported in the legend. (B) Calibration curves of different models. X-axis: Mean Predicted Value (probability of positive
outcome); Y-axis: Fraction of Positives (observed outcome rate). The dashed diagonal line represents perfect calibration. The closer a model’s curve
is to this line, the better its predicted probabilities align with observed outcomes. Each model’s Brier score is shown in the legend, with lower scores
indicating more accurate calibration. (C) Decision curve analysis (DCA) of different models. X-axis: Threshold probability; Y-axis: Net benefit. The
curves assess the clinical utility of each model across a range of threshold probabilities. Dashed lines represent the “no intervention” (black) and “full
intervention” (red) strategies. Curves above these lines indicate greater net benefit. FPR, False Positive Rate; TPR, True Positive Rate; LASSO, Least
Absolute Shrinkage and Selection Operator; MLP, Multilayer Perceptron; LR MBGD, Logistic Regression trained with Mini-Batch Gradient Descent;
XGBoost, Extreme Gradient Boosting; AdaBoost, Adaptive Boosting; CART, Classification and Regression Tree; Extra Trees, Extremely Randomized
Trees; SVM RBF, Support Vector Machine with Radial Basis Function kernel; KNN, K-Nearest Neighbors.
FIGURE 3

Pairwise reclassification performance of predictive models in the external validation cohort. (A) Pairwise net reclassification improvement (NRI)
comparison between models in the external validation cohort. X-axis: Comparator model; Y-axis: Reference model. Each cell displays the NRI value
comparing the model on the y-axis with that on the x-axis. Positive values represent better reclassification by the x-axis model. Cooler colors
indicate performance gain; warmer colors indicate performance loss. (B) Pairwise integrated discrimination improvement (IDI) comparison between
models in the external validation cohort. X-axis: Comparator model; Y-axis: Reference model. Each cell displays the IDI value when comparing the
model on the y-axis with the model on the x-axis. Positive values indicate that the x-axis model outperforms the y-axis model in terms of
discrimination. Color intensity indicates the magnitude and direction of improvement. XGBoost, Extreme Gradient Boosting; SVM RBF, Support
Vector Machine with Radial Basis Function kernel; MLP, Multilayer Perceptron; LR MBGD, Logistic Regression trained with Mini-Batch Gradient
Descent; LASSO, Least Absolute Shrinkage and Selection Operator; KNN, K-Nearest Neighbors; Extra Trees, Extremely Randomized Trees; CART,
Classification and Regression Tree; AdaBoost, Adaptive Boosting.
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FIGURE 4

Interpretation of model predictions for preterm birth risk using Shapley additive explanations (SHAP) analysis. (A) SHAP summary plot illustrating the
importance and direction of influence of the top five features included in the final model. The x-axis represents SHAP values, which indicate the
magnitude and direction of each feature’s contribution to the predicted risk (positive = higher predicted risk, negative = lower predicted risk). The y-
axis lists the features ranked by mean absolute SHAP value. The color bar encodes the feature’s original value (red = higher value, blue = lower
value). Each point corresponds to an individual sample. (B) SHAP force plot for an individual case with high predicted risk (predicted probability =
1.00). Red segments indicate predictors increasing risk, while blue segments indicate predictors reducing risk. (C) SHAP force plot for an individual
case with low predicted risk (predicted probability = 0.00). Blue segments dominate, indicating overall protective contributions. The balance
between positive (red) and negative (blue) contributions determines the final prediction output. SBP_32_36, systolic blood pressure measured
between 32+0 and 36+6 weeks of gestation. AST, aspartate aminotransferase; ALT, alanine aminotransferase; LDH, lactate dehydrogenase; SBP,
systolic blood pressure.
FIGURE 5

Comparison of model F1 scores before and after applying the Synthetic Minority Over-sampling Technique (SMOTE). X-axis: Number of nearest
neighbors parameter k in SVMSMOTE (k = 0 indicates the original dataset); Y-axis: F1 score. Each point represents the mean F1 score across cross-
validation folds for positive and negative classes, with error bars indicating standard deviation. The blue line tracks F1 scores for the positive class,
while the orange line represents the negative class.
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where negative contributions from LDH, Albumin, AST, and ALT

outweighed a small positive effect of SBP_32_36, resulting in a near-

zero predicted. These visualizations reflect the model’s nuanced

understanding of inter-feature dependencies and support its utility

in personalized risk assessment.
3.4 Sensitivity analysis

Figure 5 illustrates the effect of varying the number of neighbors

(k) in SVMSMOTE on F1 scores for both positive and negative

classes. The model exhibited improved and more stable

performance for the minority class when k ≥ 5. Performance

trends help identify the optimal k for balanced classification.

Considering discrimination, calibration, reclassification

performance, individual interpretability, and clinical net benefit,

the Naive Bayes model was identified as the optimal preterm birth

risk prediction model in this study, demonstrating good external

generalizability and practical application prospects.
4 Discussion

Preterm birth remains a leading contributor to perinatal

morbidity and mortality (4), and prediction continues to be

particularly challenging in women with comorbid GDM and

HDP. Population-based data demonstrate markedly higher risks

in GDM–HDP pregnancies compared to either condition alone

(21). Prior prediction models have typically addressed only GDM or

HDP in isolation, reporting moderate discrimination and limited

clinical utility (22). To our knowledge, no existing model specifically

targets the combined GDM–HDP population, despite its elevated

baseline risk. By focusing on this high-risk group and performing

external validation, the present study adds important evidence to

this limited domain and proposes a clinically interpretable model

that balances predictive performance with translational feasibility.

Recent advances in AI and interpretable machine learning further

support the feasibility of deploying such models in obstetric

practice (23).

Modern ensemble algorithms such as Random Forest and

XGBoost have frequently been highlighted for superior

discrimination in obstetric prediction (24, 25). However, their

complexity and limited interpretability have restricted clinical

translation, echoing concerns raised in other obstetric risk

prediction tasks, including postpartum hemorrhage (25, 26). In

our cohorts, LASSO achieved the highest AUC, and ensembles

demonstrated favorable net benefit in decision-curve analyses (27,

28). However, the Naive Bayes (NB) model, while showing a slightly

lower AUC (~0.78), achieved superior reclassification (NRI/IDI)

and maintained competitive calibration. More importantly, its

transparent probabil ist ic framework provides directly

interpretable risk probabilities, which we considered a decisive

advantage for practical obstetric risk counseling. This

interpretability, combined with the model’s simplicity and routine

clinical availability of its predictors, underscores its translational
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potential in obstetric practice despite the modest AUC. Given the

modest sample size and the comparison of multiple algorithms, we

acknowledge the potential risk of overfitting and the post hoc nature

of model selection. This deliberate trade-off underscores that

marginal improvements in AUC may be less clinically meaningful

than ensuring interpretability and usability in high-risk care

pathways. Accordingly, NB was prioritized for primary reporting,

as its simplicity and interpretability enhance translational potential

and reduce the risk of overfitting in modest obstetric datasets,

aligning with prior calls for clinically explainable prediction

models (23).

Beyond model performance, the retained predictors also reflect

strong biological plausibility. Elevated hepatic enzymes (ALT, AST)

have consistently been associated with preeclampsia severity and

adverse maternal outcomes (29–31), and our findings extend this

evidence by demonstrating their predictive value in a

multimorbidity cohort where hepatocellular injury and systemic

inflammation may converge with metabolic stress from GDM (32).

Albumin, although underused in prior prediction models, has been

linked to endothelial dysfunction, maternal malnutrition, and fluid

imbalance (32), and its inclusion here emphasizes the interplay

between hepatic reserve and vascular integrity in dual-risk

pregnancies. Similarly, LDH has long been reported as a marker

of cellular injury and oxidative stress in severe HDP (33). While

earlier studies positioned LDH primarily as a late indicator of

disease severity, our results suggest a broader role in the GDM–

HDP setting, integrating systemic hypoxic stress with metabolic

dysregulation to capture maternal–placental strain more

comprehensively. Compared with organ-specific enzymes, LDH

reflects systemic cascades, consistent with recent arguments on

systemic predictors of pregnancy complications (35).

Hemodynamic adaptation in late gestation further reinforces

this multi-domain perspective. Blood pressure has long been

recognized as central to pregnancy outcomes (35), yet most prior

prediction models have focused on early-pregnancy measures for

anticipatory stratification (36). Our identification of systolic blood

pressure at 32 – 36 weeks (SBP_32_36) as an independent predictor

highlights the prognostic significance of late-gestational dynamics.

Elevated SBP in this window likely reflects cumulative vascular

burden and declining compensatory capacity, suggesting that

temporal patterns of blood pressure provide additional prognostic

information. By incorporating such longitudinal measures, our

approach moves prediction closer to real-time surveillance,

consistent with precision obstetric care initiatives (37).

Taken together, these findings both corroborate and extend

existing literature. They confirm the roles of hepatic enzymes (29–

31), LDH (34), and blood pressure trajectories (35), but in a broader

context that integrates multimorbidity rather than single

conditions. By situating individual predictors within the dual-risk

framework of GDM–HDP, our study highlights not only their

continued relevance but also new dimensions, such as the

overlooked predictive value of late-gestational SBP. Divergences

from prior reports likely reflect differences in study populations,

sample sizes, and timing of data collection, but they also underscore

the distinctive pathophysiology of multimorbidity. Thus, our study
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provides a more integrated and clinically relevant framework for

preterm birth prediction. Importantly, the interpretability of the

model strengthens its applicability in clinical practice. SHAP-based

visualizations at both population and individual levels allowed us to

bridge predictive accuracy with explainability (38), a recognized

barrier to adoption of Artificial Intelligence in obstetrics. SHAP

summary plots consistently ranked LDH, albumin, and SBP_32_36

among the most influential predictors, reinforcing their biological

plausibility and echoing recent applications of SHAP in preeclampsia

and postpartum hemorrhage models. Notably, SHAP plots also

suggested a tendency to underestimate risk among the lowest-risk

strata, which may reflect data imbalance and calibration limitations.

In parallel, patient-level SHAP force plots decomposed individual risk

profiles into positive and negative contributions, offering a pathway

to targeted monitoring and intervention. In addition, we leveraged

the intrinsic transparency of the Naive Bayes model itself, whose

conditional probabilities directly reflect the contribution of each

predictor to the overall risk. This NB-specific interpretability

complements the SHAP explanations, providing clinicians with a

more intuitive understanding of risk attribution. Although SHAP

may introduce approximation errors and relies on assumptions of

feature independence, these limitations are mitigated within the

simple probabilistic structure of NB.

Clinical relevance further underscores the potential utility of our

model. Because all five predictors are routinely measured in antenatal

care, the model can be seamlessly applied in real-world workflows

without additional testing burden. In particular, SBP measured at 32

– 36 weeks provides a practical window to inform delivery planning

and closer surveillance. While the model may add limited value in

cases of overtly severe GDM or HDP, it offers important guidance in

borderline or ambiguous presentations, helping clinicians to stratify

risk more objectively. Moreover, by integrating multiple predictors,

the model can reveal hidden risk profiles that may not be apparent

when considering single variables in isolation. This potential to

enhance workflow efficiency and provide early warnings highlights

its clinical value. However, the model should be viewed as a decision-

support tool that may aid in risk stratification and clinical

management, rather than one that directly improves outcomes.

To evaluate real-world robustness, we also assessed the impact

of class imbalance. The rarity of adverse outcomes often limits

model performance, and prior work has noted the instability of

ensemble methods under imbalance (39). In our analyses, the NB

model maintained stable calibration and discrimination following

SMOTE while improving recall. Sensitivity analyses further

indicated that SMOTE improved recall and balanced accuracy

without substantially altering the AUC or calibration, suggesting

that the oversampling procedure effectively mitigated class

imbalance without introducing significant bias. Comparable

trends were observed without SMOTE, albeit with slightly

reduced discrimination, supporting the robustness of the findings.

This indicates that NB, combined with oversampling, may be

particularly suitable for obstetric applications where event rates

are low and interpretability is essential.

Finally, strengths and limitations warrant consideration. This

is, to our knowledge, the first study to develop and externally
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validate a preterm birth prediction model specifically for women

with comorbid GDM and HDP. Strengths include the use of dual-

center data to enhance generalizability; the integration of five

clinically accessible, biologically coherent predictors spanning

complementary physiological domains; variable selection

through Elastic Net to address multicollinearity, followed by a

robust yet simple NB classifier; and a comprehensive multi-metric

evaluation covering discrimination, calibration, clinical utility,

reclassification, and interpretability. Limitations include

its retrospective design, the relatively small sample size

(particularly in the external validation cohort), potential

selection bias, the absence of intervention-based validation, and

the possibility that the findings may not be directly generalizable

to populations outside China. In addition, we recognize the

possibility of overfitting due to modest sample size and the post

hoc nature of model choice. Moreover, some clinically relevant

domains such as psychosocial, nutritional, or imaging biomarkers

were not included. Medication variables were also coarse, with

antihypertensive use captured only as a binary yes/no indicator

and glucose-lowering therapies not systematically recorded, which

may limit interpretability. Future research should pursue

prospective and multicenter validation, explore integration into

clinical workflows via electronic health records or mobile/desktop

applications, and evaluate whether model-guided interventions

can improve maternal and neonatal outcomes.
5 Conclusions

In this study, we developed and externally validated multiple

predictive models to assess the risk of preterm birth in pregnancies

complicated by both GDM and HDP. Among the evaluated

algorithms, the Naive Bayes classifier demonstrated the most

favorable balance across discrimination, reclassification,

interpretability, and robustness, and was ultimately selected as the

optimal model for clinical application. Through Elastic Net

regression, five physiologically meaningful predictors—ALT, AST,

albumin, LDH, and systolic blood pressure at 32 – 36 weeks—were

identified and incorporated into model development. These

variables capture distinct domains relevant to preterm labor

pathophysiology, including hepatic dysfunction, systemic

inflammation, vascular insufficiency, and hemodynamic

instability. To enhance transparency and clinical utility, SHAP-

based interpretation techniques were applied at both the global and

individual levels. Summary plots highlighted the dominant

predictors at the population level, while force plots provided case-

specific insights into individualized risk contributions. Additionally,

SMOTE-based sensitivity analysis confirmed the Naive Bayes

model’s robustness under class imbalance, further supporting its

generalizability and deployment potential.

The proposed Naive Bayes model may assist clinicians in early

identification and personalized risk management of high-risk

pregnancies affected by GDM and HDP, and represents a step

toward the implementation of transparent, evidence-based decision

support in obstetric practice. Future studies should aim to validate
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this model in larger, multicenter cohorts and explore its integration

into real-time clinical decision support systems.
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