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Background: Gestational diabetes mellitus (GDM) and hypertensive disorders of
pregnancy (HDP) often coexist and share pathophysiological features such as
insulin resistance and endothelial dysfunction, increasing the risk of preterm
birth. However, few predictive models have focused specifically on this high-risk
group. This study aimed to develop and externally validate a machine learning
model for this high-risk population and assess its clinical utility
and interpretability.

Methods: This retrospective dual-center study included electronic medical
records from 121 and 136 pregnant women with comorbid GDM and HDP,
which served as the development and external validation cohorts, respectively.
Multiple machine learning algorithms, including Least Absolute Shrinkage and
Selection Operator (LASSO) regression, Random Forest (RF), and Naive Bayes
(NB), were applied to construct predictive models. To address class imbalance
and enhance model robustness, the Synthetic Minority Over-sampling
Technique (SMOTE, which generates synthetic samples for the minority class
to balance imbalanced datasets) was employed. Model interpretability was
further assessed using Shapley Additive Explanations (SHAP).

Results: Thirteen variables with univariate significance were entered into Elastic
Net regression, yielding five key predictors: alanine transaminase (ALT), aspartate
transaminase (AST), Aloumin, lactate dehydrogenase (LDH), and systolic blood
pressure at 32 — 36 weeks (SBP_32_36). While the LASSO model achieved the
highest area under the receiver operating characteristic curve (AUC, 0.802), the
NB model demonstrated greater clinical net benefit, higher reclassification
performance as measured by the Net Reclassification Improvement (NRI,
which evaluates whether patients are more accurately assigned to higher- or
lower-risk groups, which reflects the average improvement in distinguishing
high-risk from low-risk patients) and Integrated Discrimination Improvement
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(IDI), and greater robustness in SMOTE-based sensitivity analyses. In the external
validation cohort (n = 136), it maintained strong generalization with an AUC of
0.777 (95% confidence interval [Cl]: 0.645-0.887), accuracy of 0.801 (95% CI:
0.735-0.860), sensitivity of 0.792, and specificity of 0.804, supporting its
selection as the optimal model for this high-risk population.

Conclusions: The Naive Bayes model exhibited robust predictive ability and
interpretability for identifying preterm birth risk in pregnancies with comorbid
GDM and HDP, and may serve as a transparent, clinically applicable tool for
individualized obstetric risk management.

preterm birth, gestational diabetes mellitus, hypertensive disorders of pregnancy,

Shapley Additive Explanations, Elastic Net regression, risk prediction model

1 Introduction

Gestational diabetes mellitus (GDM) and hypertensive
disorders of pregnancy (HDP) are two common pregnancy-
related complications that independently increase the risk of
adverse maternal and neonatal outcomes, including preterm birth,
placental abruption, fetal growth restriction, and perinatal mortality
(1). Recent epidemiological evidence suggests that the prevalence of
GDM has risen to approximately 14% (2), whereas the prevalence of
HDP has increased to around 10% (3). Notably, the incidence of
both GDM and HDP has been rising in recent years, with certain
studies indicating that the combined prevalence may reach up to
30.4% (4).

This upward trend is partly attributed to increasing maternal
age and the implementation of the two-child policy, which have
contributed to a growing number of pregnancies affected by both
conditions, highlighting the importance of focused perinatal
management in this high-risk group (5). Existing studies have
identified that factors such as glycemic control levels, mid-
pregnancy blood pressure, proteinuria, and a history of preterm
birth are closely associated with preterm birth risk (6-9). However,
research focusing on the prediction of preterm birth risk in this
specific high-risk subgroup of pregnant women with comorbid
GDM and HDP remains relatively scarce, with most studies being
single-center and small-sample designs (10), lacking external
validation, which limits the generalizability and clinical
applicability of such models. To date, no prediction models have
been specifically developed and externally validated for women with
comorbid GDM and HDP.

In addition, although traditional logistic regression models offer
good interpretability, they face performance bottlenecks in handling
the complex, nonlinear relationships inherent in high-dimensional
clinical data (11). In recent years, machine learning algorithms,
such as random forest and Extreme Gradient Boosting (XGBoost),
have been widely applied in medical prediction studies due to their
superior modeling capabilities. Meanwhile, the introduction of
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interpretability tools such as Shapley Additive Explanations
(SHAP) has provided mechanistic explanations for “black-box”
models (12), enhancing the clinical interpretability and
applicability of these models. By integrating traditional logistic
regression and multiple mainstream machine learning algorithms,
and systematically evaluating model discrimination, calibration,
and clinical utility through receiver operating characteristic
(ROC) curves, decision curve analysis (DCA, which evaluates
whether using the model provides greater net benefit for clinical
decision-making compared with treating all or no patients), and
SHAP (which decomposes model predictions to quantify the
contribution of each predictor at both the population and
individual levels), we aimed to develop an accurate, robust, and
interpretable preterm birth risk prediction tool to support early
identification and individualized intervention strategies for high-
risk pregnancies.

We hypothesized that applying machine learning to GDM-
HDP data would yield superior predictive performance for preterm
birth compared with traditional models. Therefore, the present
study aimed to establish a clinically applicable and interpretable
machine learning-based prediction model for preterm birth in
women with comorbid GDM and HDP, systematically evaluating
its discrimination, calibration, clinical utility, and interpretability.

2 Methods

The development cohort included pregnant women who
received antenatal care and delivered at Sichuan Provincial
People’s Hospital between January 1, 2020, and December 31,
2024, while the external validation cohort included women who
delivered at Tongji Hospital, Tongji Medical College, Huazhong
University of Science and Technology between January 1, 2022, and
December 31, 2023, all of whom met the same inclusion and
exclusion criteria. The study was approved by the Ethics
Committees of Sichuan Provincial People’s Hospital (No.
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2025462) and Tongji Hospital, Tongji Medical College, Huazhong
University of Science and Technology (No. TJ-IRB20220611), and
all data were anonymized and used solely for research purposes.

The inclusion criteria were as follows. (1) Eligible participants
were pregnant women aged over 18 years. (2) All participants met
the diagnostic criteria for both GDM and HDP according to the
guidelines of the Chinese Society of Obstetrics and Gynecology
(CSOG) (13, 14). GDM was diagnosed by a 75-g oral glucose
tolerance test (OGTT) performed at 24 - 28 gestational weeks if
any of the following plasma glucose thresholds were met: fasting
>5.1 mmol/L, 1-hour >10.0 mmol/L, or 2-hour >8.5 mmol/L. HDP
was diagnosed as systolic blood pressure (SBP) 2140 mmHg and/or
diastolic blood pressure (DBP) 290 mmHg after 20 weeks of
gestation, confirmed by at least two measurements taken >4
hours apart, or a single measurement of SBP 2160 mmHg and/or
DBP >110 mmHg, without subtype differentiation. (3) Participants
were required to have received continuous and systematic perinatal
management in the hospital from early pregnancy (8 - 15 weeks),
with no fewer than five prenatal examinations. (4) Only singleton
pregnancies with live births were included.

The exclusion criteria were as follows. (1) Pregnancies
complicated by severe chronic systemic diseases, such as systemic
lupus erythematosus or malignancies, that could affect pregnancy
outcomes were excluded. (2) Pregnancies with major fetal
malformations were also excluded. (3) Cases with missing key
variables that could not be restored through imputation
were excluded.

The primary outcome of interest was preterm birth, defined as
delivery occurring prior to 37 gestational weeks (15). Outcome data
were obtained from the discharge records, labor course records, and
ultrasound information in the electronic medical records system
and were independently confirmed by two researchers. Continuous
variables were tested for normality using the Shapiro-Wilk test.
Normally distributed variables were expressed as mean + standard
deviation (SD), and non-normally distributed variables as median
with interquartile range (IQR). Categorical variables were
summarized as frequencies (percentages). Group comparisons
were performed using the t-test or the Mann-Whitney U test for
continuous variables and the Chi-square or Fisher’s exact test for
categorical variables, as appropriate. To address missing data, the
MissForest algorithm—a non-parametric multiple imputation
method based on random forests—was applied. All variables had
missing values below 10%, which is generally considered acceptable
and unlikely to bias the results. This approach iteratively imputes
missing values using regression or classification trees trained on
observed data, thereby preserving nonlinear relationships among
variables. Ten-fold imputation was conducted separately within the
development and validation cohorts to prevent information leakage
and maintain dataset integrity.

The candidate predictors encompassed several domains:
demographic characteristics (Age, body mass index [BMI]) (16);
obstetric history (Adverse Pregnancy History and Primiparity) (17,
18); mode of conception (natural conception or in vitro fertilization
and embryo transfer [IVF-ET]); pregnancy complications
(specifically, the use of antihypertensive medications); and
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longitudinal measurements of systolic and diastolic blood
pressure (SBP and DBP) collected across six gestational intervals:
8+0to15+6,16+0t019+6,20+0t023 +6,24+0t0o27+6,28
+ 0 to 31 + 6, and 32 + 0 to 36 + 6 weeks. Time-specific blood
pressure variables were denoted using the format SBP_X_Y or
DBP_X_Y, where X_Y indicates the corresponding gestational
week range. For example, SBP_32_36 refers to SBP measurements
taken between 32 + 0 and 36 + 6 weeks of gestation. Laboratory
variables included the mid-pregnancy OGTT (24-28 weeks), with
glucose concentrations measured at 0 hours (OGTT-0h), 1 hour
(OGTT-1h), and 2 hours (OGTT-2h) after glucose load; liver
function markers, including alanine aminotransferase (ALT),
aspartate aminotransferase (AST), and lactate dehydrogenase
(LDH); as well as Uric Acid, Albumin, and Anemia, totaling
more than 30 candidate variables. All variables were collected
before the occurrence of outcomes, and outcome data were
blinded during data processing to prevent information leakage.
To address the relatively small sample size and the imbalance in
outcome distribution, the Synthetic Minority Over-sampling
Technique (SMOTE) was applied exclusively to the training folds
within cross-validation, while validation and test sets
remainedunchanged to avoid information leakage. In this dataset,
preterm birth cases represented the minority class, whereas non-
preterm cases were the majority class; the minority class was
oversampled to achieve a 1:1 ratio with the majority class. We
optimized SMOTE’s neighborhood parameter (k) using grid search,
selecting k = 5. This value was chosen because it achieved the
highest overall and negative class F1 scores (the harmonic mean of
precision and recall) during a three-fold cross-validation on the
development cohort. This strategy enhanced the model’s sensitivity
to preterm prediction while minimizing potential bias introduced
by synthetic data. A two-step variable selection process was then
implemented. First, univariate logistic regression was conducted to
screen candidate predictors, and those with a P-value < 0.20 were
retained for further modeling, in accordance with Steyerberg’s
recommendation in Clinical Prediction Models to preserve
variables with potential predictive value (19). Guided by the
events-per-variable (EPV) principle, we aimed to maintain a
relatively high EPV value to reduce the risk of overfitting given
the limited sample size (development cohort: 121 participants, 31
events). To further address the potential impact of a lower EPV in
this context, we applied Elastic Net regularization, combined with
three-fold cross-validation, to enhance model stability, and
conducted external validation and sensitivity analyses to ensure
robustness and generalizability. To reduce multicollinearity and
avoid overfitting while maintaining a minimum EPV ratio of at least
10 (20), Elastic Net regression—combining the L1 penalty of Least
Absolute Shrinkage and Selection Operator (LASSO) and the L2
penalty of Ridge Regression—was applied to identify the most
predictive features. Three-fold cross-validation was used to
improve model stability. The final model selection was based on
cross-validation performance. It is noteworthy that the use of the
Naive Bayes (NB) model was pre-specified in our analysis plan,
given its advantages in small-sample scenarios and its probabilistic
interpretability. It was not chosen post-hoc based on its performance
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on an external validation set. A total of five key predictors were
ultimately retained for final model development.

Model performance was evaluated across multiple dimensions:
(1) discrimination was assessed using ROC curves and area under
the curve (AUC) values; (2) calibration was evaluated using the
Hosmer-Lemeshow test and calibration plots to assess agreement
between predicted probabilities and observed outcomes; (3) clinical
utility was examined using DCA to estimate net benefit under
different threshold probabilities; (4) interpretability was evaluated
using SHAP to quantify the direction and contribution of each
predictor to individual predictions; (5) generalizability was assessed
using an external validation cohort; and (6) reclassification
performance was evaluated using integrated discrimination
improvement (IDI) and net reclassification improvement (NRI)
indices. All statistical analyses were conducted using R (version
4.2.3) and Python (version 3.12), with a two-sided P-value < 0.05
considered statistically significant.

3 Results
3.1 Characteristics of participants

A total of 257 pregnant women diagnosed with GDM and HDP
were included in this study. The development cohort comprised 121
cases from Sichuan Provincial People’s Hospital, among whom 31
(25.62%) experienced preterm birth and 90 (74.38%) had non-
preterm birth. The external validation cohort included 136 cases
from Tongji Hospital, Tongji Medical College, Huazhong
University of Science and Technology, among whom 24 (17.65%)
experienced preterm birth and 112 (82.35%) had non-preterm
birth. Baseline characteristics were compared between the
development and validation cohorts to evaluate their population
comparability. Significant differences were observed in several key
variables, including ALT, AST, Total Bilirubin, and DBP across
multiple gestational weeks (8-31 weeks). All P-values were less
than 0.001.

Additionally, the incidence rates of History of HDP,
Medication, Cardiovascular Disease, Anemia, Twin Pregnancy,
FPG_32_36, and IVF-ET differed significantly between the two
cohorts. These discrepancies might be attributable to variations in
clinical management practices or differences in population
characteristics between the two centers. However, no statistically
significant differences were found in Age, BMI, OGTT results,
Albumin, Creatinine, or most Weight measurements.
Importantly, the proportion of preterm births did not differ
significantly between the two groups (P = 0.161), indicating
general comparability in the outcome of interest, as detailed
in Table 1.

It can be concluded from Table 2, based on the results of
univariate logistic regression analysis, that eight variables were
found to be significantly associated with preterm birth (P < 0.05).
Among them, albumin acted as a protective factor (odds ratio [OR]
= 0.735, 95% confidence interval [CI]: 0.639-0.844, P < 0.001),
indicating that higher albumin levels were associated with a lower
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risk of preterm birth. In contrast, elevated levels of LDH, systolic
blood pressure (SBP_32_36 and SBP_28_31), diastolic blood
pressure (DBP_32_36), Twin Pregnancy, Medication, and IVF-ET
were identified as significant risk factors. For example, IVF-ET
showed a strong positive association with preterm birth (OR =
5.160, 95% CI: 1.349 - 19.731, P = 0.016). Additionally, variables
such as Total Bilirubin, ALT, and AST demonstrated potential
associations with the outcome (P < 0.20), indicating potential
predictive value. Given their potential predictive value, these
varijables were retained as candidate predictors for inclusion in
the subsequent Elastic Net modeling process.

Based on univariate analysis (P < 0.20), thirteen candidate
predictors were included in the Elastic Net regression model. To
select the optimal features, Elastic Net regression was performed
using three-fold cross-validation, and the minimum mean squared
error criterion (A-min) was applied. As a result, five predictors—
ALT, AST, Albumin, LDH, and SBP_32_36—were ultimately
retained for model development (the antihypertensive medication
variable, although initially considered among the candidates, was
not retained). The coefficient path is illustrated in Figure 1. Elastic
Net regression retained a set of predictors that were most
informative for preterm birth risk. The selected predictors,
together with their regression coefficients and direction of
association, are summarized in Table 3. These coefficients reflect
the relative importance of each predictor within the penalized
regression framework, where larger absolute values indicate
stronger contributions to the model.

3.2 Model performance

Using these five variables, we constructed predictive models
with Logistic Regression, Random Forest (RF), NB, Support Vector
Machine (SVM), and other algorithms. All models were tuned and
trained using three-fold cross-validation in the development cohort,
and SMOTE was applied to address class imbalance before model
training. In the external validation cohort, the LASSO model
achieved the highest discrimination performance with an AUC of
0.802, followed closely by the Multilayer Perceptron (MLP, AUC =
0.798) and Logistic Regression with mini-batch gradient descent
(LR MBGD, AUC = 0.789). The AUCs of XGBoost, NB, and
AdaBoost models were 0.786, 0.777, and 0.772, respectively,
indicating moderate discriminative ability. Notably, the Naive
Bayes model demonstrated reasonable discrimination (AUC =
0.777), ranking in the upper-middle range among all tested
algorithms. Although its AUC was slightly lower than those of
LASSO, MLP, and some relatively well-performing ensemble
models such as XGBoost, it outperformed several classical
approaches, such as Classification and Regression Tree (CART,
AUC = 0.767), Random Forest (AUC = 0.760), and SVM (AUC =
0.711). In contrast, the K-Nearest Neighbor (KNN, AUC = 0.673)
model showed the weakest discriminative power. These findings
suggest that the LASSO model provided the best discriminatory
power for identifying preterm birth risk; however, notably, the
Naive Bayes model also demonstrated acceptable and stable
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TABLE 1 Baseline characteristics of the development and validation
cohorts.

Variable
Age (years) 3221 + 451 32.85 + 3.87 0.231
BMI (kg/mz) 25.00 (22.70 - 27.70) 23.95 (22.00 - 26.62) 0.107
Adverse
Pregnancy 9 (7.44%) 10 (7.35%) 1.000
History
Primiparity 80 (66.12%) 106 (77.94%) 0.048
IVE_ET 10 (8.26%) 24 (17.65%) 0.042
Medication 57 (47.11%) 10 (7.35%) <0.001
SBP_8_15
- 126.00 (118.00 - 134.00) | 128.00 (124.00 - 131.25) = 0.055
(mmHg)
SBP_16_19
N 126.00 (116.00 - 134.00) 126.00 (122.00 - 130.00) | 0.696
(mmHg)
SBP_20_23
127.36 + 11.84 129.00 (124.00 - 135.00) | 0.172
(mmHg)
SBP_24 27
127.85 £ 9.97 129.00 (126.00 - 134.00) | 0.082
(mmHg)
SBP_28 31 128.60 £ 11.73 129.64 £ 11.23 0.472
(mmHg)
BP_32
SBP_32_36 136.82 + 12.68 134.17 + 14.72 0.127
(mmHg)
Preterm Birth 31 (25.62%) 24 (17.65%) 0.161
DBP_8_15
80.00 (72.00 - 85.00) 86.00 (81.00 - 90.00) <0.001
(mmHg)
DBP_16_19
76.69 + 10.73 82.00 (79.00 - 87.25) <0.001
(mmHg)
DBP_20_23
77.50 = 10.02 82.00 (79.00 - 88.00) <0.001
(mmHg)
DBP_24_27
79.07 £ 9.95 83.00 (80.00 - 87.25) <0.001
(mmHg)
DBP_28_31
80.17 + 9.35 84.97 + 8.89 <0.001
(mmHg)
DBP_32_36
85.00 (78.00 - 92.00) 86.00 (81.00 - 92.00) 0.265
(mmHg)
ALT(U/L) 18.00 (11.00 - 34.00) 13.00 (9.00 - 18.00) <0.001
AST(U/L) 23.00 (16.00 - 34.00) 17.00 (14.00 - 22.00) <0.001
Albumin (g/L) 35.80 (33.10 - 37.90) 36.40 (32.50 - 39.00) 0.561
Anemia 23 (19.01%) 2 (1.47%) <0.001
Creatini
reatinine 51.10 (4530 - 59.50) 52.00 (45.00 - 60.00) 0.940
(umol/L)
FPG_32_36
4.85 (4.36 - 5.40) 5.18 (4.62 - 5.75) 0.002
(mmol/L)
LDH (U/L) 200.00 (173.00 - 225.00) 189.50 (163.00 - 208.25) | 0.046
OGTT-0h
5.16 (4.80 - 5.41) 5.13 (4.68 - 5.49) 0.769
(mmol/L)
(Continued)
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TABLE 1 Continued

Variable A (n=121) B (n=136) P
TT-1h
oG 10.11 (8.95 - 11.11) 10.26 + 1.81 0.389
(mmol/L)
TT-2h
oG 8.52 (7.46 - 9.50) 8.77 (8.00 - 9.46) 0.110
(mmol/L)
Total Bilirubin
10.40 (6.30 - 12.60) 4.85 (3.60 - 6.90) <0.001
(umol/L)
Uric Acid
371.00 (311.00 - 431.00)  352.45 + 91.63 0.048
(umol/L)
E .
ducational 0.091
Level
-Lower
Secondary or | 49 (40.50%) 41 (30.15%)
Below
‘Terti
UV O 49 (40.50%) 55 (40.44%)
Above
-Upper
23 (19.01%) 40 (29.41%)
Secondary
Cardiovascular
i 11 (9.09%) 0 (0.00%) 0.001
Disease
Cesarean Scar
22 (18.18%) 34 (25.00%) 0.242
Uterus
History of 0 )
GDM 5 (4.13%) 0 (0.00%) 0.052
History of 0 )
HDP 14 (11.57%) 0 (0.00%) <0.001
Placenta Previa | 1 (0.83%) 3 (2.21%) 0.699
Twin
10 (8.26%) 0 (0.00%) 0.002
Pregnancy
Weight_24_27
(kg) 70.00 (63.00 - 77.60) 70.35 (63.00 - 79.00) 0.941
Weight_28_31
(kg) 73.00 (65.60 - 80.50) 71.00 (64.15 - 81.05) 0.504
Weight_32_36
Clghloo 73.30 (66.70 - 81.30) 73.65 (6638 - 83.00) 0.944

(kg)

Dynamic variables, including systolic blood pressure (SBP) and diastolic blood pressure
(DBP), maternal weight, and glucose measurements [fasting plasma glucose (FPG), oral
glucose tolerance test (OGTT)], were collected longitudinally across specific gestational
intervals (e.g., 8-15, 16-19, ..., 32-36 weeks). Each is labeled in the format SBP_X_Y,
DBP_X_Y, Weight_X_Y, or FPG_X_Y, where X and Y indicate the starting and ending
gestational weeks (X+0 to Y+6). For example, SBP_32_36 denotes systolic blood pressure
measured between 32+0 and 36+6 weeks of gestation, and Weight_24_27 refers to maternal
weight during 24+0 to 27+6 weeks. OGTT-related variables follow the format OGTT-T, where
T indicates the sampling time in hours (Oh, 1h, or 2h) during the oral glucose tolerance test.
Continuous variables are expressed as mean + standard deviation (SD) when both groups
were normally distributed, and as median (interquartile range [IQR]) otherwise. Between-
group differences were assessed using the independent-samples t-test or Mann-Whitney U
test as appropriate. Categorical variables are shown as n (%) and compared using the x? test or
Fisher’s exact test. Percentages are calculated within each cohort (A: n=121; B: n=136) and
may not sum to 100% due to rounding. Blood pressure values are measured in mmHg with
discrete increments, which may yield identical medians across time windows; the
accompanying IQRs reflect the underlying distribution. Missing values were imputed using
the MissForest algorithm. Cohorts: A = Sichuan Provincial People’s Hospital (development
cohort); B = Tongji Hospital, Tongji Medical College, Huazhong University of Science and
Technology (external validation cohort). OR, odds ratio; BMI, body mass index; IVF-ET, in
vitro fertilization and embryo transfer; SBP, systolic blood pressure; DBP, diastolic blood
pressure; ALT, alanine aminotransferase; AST, aspartate aminotransferase; FPG, fasting
plasma glucose; LDH, lactate dehydrogenase; OGTT, oral glucose tolerance test; GDM,
gestational diabetes mellitus; HDP, hypertensive disorders of pregnancy.

frontiersin.org


https://doi.org/10.3389/fendo.2025.1665935
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Kang et al.

TABLE 2 Univariate logistic regression results.

Variable P OR (95% CI)
Age (years) 0.452 1.035 (0.946 - 1.132)
BMI (kg/m?) 0.928 1.004 (0.924 - 1.091)
Adverse Pregnancy

History 0.584 1.500 (0.352 - 6.397)
Primiparity 0.273 1.664 (0.669 - 4.142)
IVF-ET 0.016 5.160 (1.349 - 19.731)
Medication 0.009 3.150 (1.329 - 7.467)
SBP_8_15 (mmHg) 0.650 0.993 (0.965 - 1.022)
SBP_16-19 (mmHg) 0.751 0.995 (0.967 - 1.025)
SBP_20_23 (mmHg) 0.878 1.003 (0.969 - 1.038)
SBP_24_27 (mmHg) 0.386 1.018 (0.977 - 1.061)
SBP_28_31 (mmHg) 0.043 1.040 (1.001 - 1.081)
SBP_32_36 (mmHg) 0.001 1.069 (1.027 - 1.113)
DBP_8_15 (mmHg) 0.905 0.998 (0.957 - 1.039)
DBP_16_19 (mmHg) 0.775 1.006 (0.968 - 1.045)
DBP_20_23 (mmHg) 0.639 1.010 (0.969 - 1.052)
DBP_24_27 (mmHg) 0.173 1.030 (0.987 - 1.074)
DBP_28_31 (mmHg) 0.080 1.043 (0.995 - 1.093)
DBP_32_36 (mmHg) 0.039 1.049 (1.003 - 1.098)
ALT (U/L) 0.086 1.005 (0.999 - 1.011)
AST (U/L) 0.112 1.011 (0.997 - 1.025)
Albumin (U/L) <0.001 0.735 (0.639 - 0.844)
Anemia 0.558 1.349 (0.496 - 3.668)
Creatinine (umol/L) 0.723 0.998 (0.984 - 1.011)
FPG_32_36 (mmol/L) 0.454 0.861 (0.583 - 1.273)
LDH (U/L) <0.001 1.014 (1.006 - 1.023)
OGTT-0h (mmol/L) 0.363 1.321 (0.725 - 2.407)
OGTT-1h (mmol/L) 0.237 1.131 (0.922 - 1.386)
OGTT-2h (mmol/L) 0.217 1.128 (0.932 - 1.365)
Total Bilirubin (umol/L) 0.079 1.090 (0.990 - 1.201)
Uric Acid (umol/L) 0.375 1.002 (0.998 - 1.005)
Educational Level 0.356 0.806 (0.510 - 1.274)
Cardiovascular Disease 0.557 0.621 (0.127 - 3.043)
Cesarean Scar Uterus 0.206 1.888 (0.704 - 5.061)
History of GDM 0.770 0.717 (0.077 - 6.668)
History of HDP 0.788 1.185 (0.343 - 4.091)
Placenta Previa 1.000 5.192e+14 (0.000-inf)
Twin Pregnancy 0.003 8.458 (2.032 - 35.205)
Weight_24_27 (kg) 0.973 0.999 (0.968 - 1.032)
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TABLE 2 Continued

Variable P OR (95% Cl)
Weight_28_31 (kg) 0.693 ‘ 1.006 (0.976 - 1.038)
Weight_32_36 (kg) 0.583 ‘ 1.009 (0.978 - 1.040)

Note: Dynamic variables, including systolic blood pressure (SBP) and diastolic blood pressure
(DBP), maternal weight, and glucose measurements [fasting plasma glucose (FPG), oral
glucose tolerance test (OGTT)], were collected longitudinally across specific gestational
intervals (e.g., 8-15, 16-19, ..., 32-36 weeks). Each is labeled in the format SBP_X_Y,
DBP_X_Y, Weight_X_Y, or FPG_X_Y, where X and Y indicate the starting and ending
gestational weeks (X+0 to Y+6). For example, SBP_32_36 denotes systolic blood pressure
measured between 32+0 and 36+6 weeks of gestation, and Weight_24_27 refers to maternal
weight during 24+0 to 27+6 weeks. OGTT-related variables follow the format OGTT-T, where
T indicates the sampling time in hours (Oh, 1h, or 2h) during the oral glucose tolerance test.
OR, odds ratio; 95% CI, 95% confidence interval; BMI, body mass index; IVF-ET, in vitro
fertilization and embryo transfer; SBP, systolic blood pressure; DBP, diastolic blood pressure;
ALT, alanine aminotransferase; AST, aspartate aminotransferase; FPG, fasting plasma
glucose; LDH, lactate dehydrogenase; OGTT, oral glucose tolerance test; GDM, gestational
diabetes mellitus; HDP, hypertensive disorders of pregnancy.

discrimination, thereby justifying its inclusion in further evaluation.
Figure 2A presents the ROC curves along with the corresponding
AUC values for the models in the external validation cohort.
Detailed performance metrics, including accuracy, F1 score,
sensitivity, specificity, positive predictive value, and negative
predictive value for each model in the development and external
validation cohorts, are presented in Supplementary Table S1.

The calibration performance of all models was evaluated using
calibration curves and Brier scores in the external validation cohort
(Figure 2B). Models with curves closer to the diagonal line
demonstrated better alignment between predicted probabilities
and observed outcomes. Among the tested models, K-Nearest
Neighbor exhibited the best calibration performance, with the
lowest Brier score of 0.092, indicating high prediction reliability.
Other well-calibrated models included Random Forest (0.111),
XGBoost (0.112), and SVM RBF (0.113).

Although the Naive Bayes model demonstrated acceptable
discriminatory ability, its calibration performance was
suboptimal, with a Brier score of 0.146. The calibration curve
deviated upward from the diagonal in the low-to mid-probability
range, indicating a tendency to underestimate the actual risk.
Similarly, AdaBoost (0.170) and CART (0.163) displayed
suboptimal calibration, with predicted probabilities deviating
more from actual event rates.

3.3 Clinical utility of the model

DCA was performed to evaluate the clinical utility of each
model across a range of threshold probabilities in the external
validation cohort (Figure 2C). Overall, XGBoost, Random Forest,
and MLP models yielded the highest net benefit across the clinically
relevant threshold range of 0.2 - 0.6, suggesting superior
performance in guiding clinical decision-making. In contrast,
models such as CART and AdaBoost exhibited consistently lower
or even negative net benefit values, particularly in mid-to-high
threshold ranges, indicating limited clinical value. Naive Bayes
demonstrated modest net benefit in the low-threshold range
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Elastic Net regression coefficient path plot. The abscissa shows A on a logarithmic scale (larger A indicates stronger regularization); the ordinate
reports the mean area under the receiver operating characteristic (ROC) curve (AUC). Red markers joined by a line represent the mean AUC
obtained from three-fold cross-validation at each A. Grey vertical bars denote +1 standard error (SE), reflecting variability across folds. The blue
dashed line marks the Best A (Amin = 26), which yields the best mean AUC, whereas the green dashed line marks A-1SE (79.2); selecting A-1SE gives

a more parsimonious model at negligible loss of discrimination.

(below 0.3), suggesting limited but potentially useful clinical utility
for early risk screening. These findings suggest that while ensemble
and deep learning models offer greater potential for risk-based
intervention strategies, Naive Bayes still retains some value in early-
risk screening contexts. To identify the most clinically useful model,
we further compared all candidate algorithms using reclassification
metrics, including NRI and IDI. As illustrated in the heatmaps
(Figures 3A, B), the Naive Bayes model outperformed most other
candidates in both Test-NRI and Test-IDI, demonstrating the

TABLE 3 Retained predictors and coefficients from elastic net
regression.

Predictor Coefficient Relationship
ALT (U/L) 0.123 Positive
AST (U/L) -0.087 Negative
Albumin (U/L) -0.145 Negative
LDH (U/L) 0.256 Positive
SBP_32_36 (mmHg) 0.178 Positive

Coefficients are standardized and retained to three decimal places. Positive coefficients
indicate increased risk of preterm birth, while negative coefficients indicate a protective
association. SBP_32_36 refers to systolic blood pressure measured between 32+0 and 36+6
weeks of gestation.

ALT, alanine aminotransferase; AST, aspartate aminotransferase; LDH, lactate
dehydrogenase; SBP, systolic blood pressure.

Frontiers in Endocrinology

strongest ability to improve risk stratification across clinically
relevant thresholds. Although its AUC and calibration
performance were only moderate, these reclassification
advantages, combined with adequate discriminatory ability, led to
its selection as the final model for individual-level prediction and
clinical interpretation.

To further explain the contribution and directionality of each
predictor, SHAP analysis was applied. A SHAP summary plot was
generated to visualize the global feature importance across all
samples (Figure 4A). Each point represents an individual case,
with color indicating the feature value (red for high, blue for low),
and horizontal position denoting the SHAP value, which reflects the
magnitude and direction of impact on the model’s output. Among
the five selected predictors, Albumin, LDH, and SBP at 32 - 36
weeks exhibited the strongest influence, confirming their central
role in risk prediction. Notably, lower albumin and higher LDH
levels were associated with increased predicted risk, consistent with
known clinical mechanisms.

To illustrate the model’s behavior at the individual level, SHAP
force plots were generated for two representative patients
(Figures 4B, C). Figure 4B depicts a high-risk case with a
predicted preterm birth probability of 1.00. In this individual,
elevated albumin levels unexpectedly emerged as the dominant
positive contributor, illustrating case-specific variability in SHAP
explanations. In contrast, Figure 4C presents a low-risk individual,
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Comprehensive evaluation of predictive models in the external validation cohort. (A) Receiver operating characteristic (ROC) curves of predictive
models in the external validation cohort. X-axis: False positive rate (FPR); Y-axis: True positive rate (TPR). The curves show each model's ability to
discriminate between positive and negative outcomes. A curve closer to the top-left corner indicates better performance. The area under the curve
(AUC) for each model is reported in the legend. (B) Calibration curves of different models. X-axis: Mean Predicted Value (probability of positive
outcome); Y-axis: Fraction of Positives (observed outcome rate). The dashed diagonal line represents perfect calibration. The closer a model's curve
is to this line, the better its predicted probabilities align with observed outcomes. Each model's Brier score is shown in the legend, with lower scores
indicating more accurate calibration. (C) Decision curve analysis (DCA) of different models. X-axis: Threshold probability; Y-axis: Net benefit. The
curves assess the clinical utility of each model across a range of threshold probabilities. Dashed lines represent the “no intervention” (black) and “full
intervention” (red) strategies. Curves above these lines indicate greater net benefit. FPR, False Positive Rate; TPR, True Positive Rate; LASSO, Least
Absolute Shrinkage and Selection Operator; MLP, Multilayer Perceptron; LR MBGD, Logistic Regression trained with Mini-Batch Gradient Descent;
XGBoost, Extreme Gradient Boosting; AdaBoost, Adaptive Boosting; CART, Classification and Regression Tree; Extra Trees, Extremely Randomized
Trees; SVM RBF, Support Vector Machine with Radial Basis Function kernel; KNN, K-Nearest Neighbors.
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FIGURE 3

Pairwise reclassification performance of predictive models in the external validation cohort. (A) Pairwise net reclassification improvement (NRI)
comparison between models in the external validation cohort. X-axis: Comparator model; Y-axis: Reference model. Each cell displays the NRI value
comparing the model on the y-axis with that on the x-axis. Positive values represent better reclassification by the x-axis model. Cooler colors
indicate performance gain; warmer colors indicate performance loss. (B) Pairwise integrated discrimination improvement (IDI) comparison between
models in the external validation cohort. X-axis: Comparator model; Y-axis: Reference model. Each cell displays the IDI value when comparing the
model on the y-axis with the model on the x-axis. Positive values indicate that the x-axis model outperforms the y-axis model in terms of
discrimination. Color intensity indicates the magnitude and direction of improvement. XGBoost, Extreme Gradient Boosting; SVM RBF, Support
Vector Machine with Radial Basis Function kernel; MLP, Multilayer Perceptron; LR MBGD, Logistic Regression trained with Mini-Batch Gradient
Descent; LASSO, Least Absolute Shrinkage and Selection Operator; KNN, K-Nearest Neighbors; Extra Trees, Extremely Randomized Trees; CART,
Classification and Regression Tree; AdaBoost, Adaptive Boosting.
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FIGURE 4

Interpretation of model predictions for preterm birth risk using Shapley additive explanations (SHAP) analysis. (A) SHAP summary plot illustrating the
importance and direction of influence of the top five features included in the final model. The x-axis represents SHAP values, which indicate the
magnitude and direction of each feature’s contribution to the predicted risk (positive = higher predicted risk, negative = lower predicted risk). The y-
axis lists the features ranked by mean absolute SHAP value. The color bar encodes the feature's original value (red = higher value, blue = lower
value). Each point corresponds to an individual sample. (B) SHAP force plot for an individual case with high predicted risk (predicted probability =
1.00). Red segments indicate predictors increasing risk, while blue segments indicate predictors reducing risk. (C) SHAP force plot for an individual
case with low predicted risk (predicted probability = 0.00). Blue segments dominate, indicating overall protective contributions. The balance
between positive (red) and negative (blue) contributions determines the final prediction output. SBP_32_36, systolic blood pressure measured
between 3240 and 36+6 weeks of gestation. AST, aspartate aminotransferase; ALT, alanine aminotransferase; LDH, lactate dehydrogenase; SBP,
systolic blood pressure.
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FIGURE 5

Comparison of model F1 scores before and after applying the Synthetic Minority Over-sampling Technique (SMOTE). X-axis: Number of nearest
neighbors parameter k in SYMSMOTE (k = O indicates the original dataset); Y-axis: F1 score. Each point represents the mean F1 score across cross-
validation folds for positive and negative classes, with error bars indicating standard deviation. The blue line tracks F1 scores for the positive class,
while the orange line represents the negative class.
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where negative contributions from LDH, Albumin, AST, and ALT
outweighed a small positive effect of SBP_32_36, resulting in a near-
zero predicted. These visualizations reflect the model’s nuanced
understanding of inter-feature dependencies and support its utility
in personalized risk assessment.

3.4 Sensitivity analysis

Figure 5 illustrates the effect of varying the number of neighbors
(k) in SVMSMOTE on FI scores for both positive and negative
classes. The model exhibited improved and more stable
performance for the minority class when k > 5. Performance
trends help identify the optimal k for balanced classification.
Considering discrimination, calibration, reclassification
performance, individual interpretability, and clinical net benefit,
the Naive Bayes model was identified as the optimal preterm birth
risk prediction model in this study, demonstrating good external
generalizability and practical application prospects.

4 Discussion

Preterm birth remains a leading contributor to perinatal
morbidity and mortality (4), and prediction continues to be
particularly challenging in women with comorbid GDM and
HDP. Population-based data demonstrate markedly higher risks
in GDM-HDP pregnancies compared to either condition alone
(21). Prior prediction models have typically addressed only GDM or
HDP in isolation, reporting moderate discrimination and limited
clinical utility (22). To our knowledge, no existing model specifically
targets the combined GDM-HDP population, despite its elevated
baseline risk. By focusing on this high-risk group and performing
external validation, the present study adds important evidence to
this limited domain and proposes a clinically interpretable model
that balances predictive performance with translational feasibility.
Recent advances in Al and interpretable machine learning further
support the feasibility of deploying such models in obstetric
practice (23).

Modern ensemble algorithms such as Random Forest and
XGBoost have frequently been highlighted for superior
discrimination in obstetric prediction (24, 25). However, their
complexity and limited interpretability have restricted clinical
translation, echoing concerns raised in other obstetric risk
prediction tasks, including postpartum hemorrhage (25, 26). In
our cohorts, LASSO achieved the highest AUC, and ensembles
demonstrated favorable net benefit in decision-curve analyses (27,
28). However, the Naive Bayes (NB) model, while showing a slightly
lower AUC (~0.78), achieved superior reclassification (NRI/IDI)
and maintained competitive calibration. More importantly, its
transparent probabilistic framework provides directly
interpretable risk probabilities, which we considered a decisive
advantage for practical obstetric risk counseling. This
interpretability, combined with the model’s simplicity and routine
clinical availability of its predictors, underscores its translational
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potential in obstetric practice despite the modest AUC. Given the
modest sample size and the comparison of multiple algorithms, we
acknowledge the potential risk of overfitting and the post hoc nature
of model selection. This deliberate trade-off underscores that
marginal improvements in AUC may be less clinically meaningful
than ensuring interpretability and usability in high-risk care
pathways. Accordingly, NB was prioritized for primary reporting,
as its simplicity and interpretability enhance translational potential
and reduce the risk of overfitting in modest obstetric datasets,
aligning with prior calls for clinically explainable prediction
models (23).

Beyond model performance, the retained predictors also reflect
strong biological plausibility. Elevated hepatic enzymes (ALT, AST)
have consistently been associated with preeclampsia severity and
adverse maternal outcomes (29-31), and our findings extend this
evidence by demonstrating their predictive value in a
multimorbidity cohort where hepatocellular injury and systemic
inflammation may converge with metabolic stress from GDM (32).
Albumin, although underused in prior prediction models, has been
linked to endothelial dysfunction, maternal malnutrition, and fluid
imbalance (32), and its inclusion here emphasizes the interplay
between hepatic reserve and vascular integrity in dual-risk
pregnancies. Similarly, LDH has long been reported as a marker
of cellular injury and oxidative stress in severe HDP (33). While
earlier studies positioned LDH primarily as a late indicator of
disease severity, our results suggest a broader role in the GDM-
HDP setting, integrating systemic hypoxic stress with metabolic
dysregulation to capture maternal-placental strain more
comprehensively. Compared with organ-specific enzymes, LDH
reflects systemic cascades, consistent with recent arguments on
systemic predictors of pregnancy complications (35).

Hemodynamic adaptation in late gestation further reinforces
this multi-domain perspective. Blood pressure has long been
recognized as central to pregnancy outcomes (35), yet most prior
prediction models have focused on early-pregnancy measures for
anticipatory stratification (36). Our identification of systolic blood
pressure at 32 — 36 weeks (SBP_32_36) as an independent predictor
highlights the prognostic significance of late-gestational dynamics.
Elevated SBP in this window likely reflects cumulative vascular
burden and declining compensatory capacity, suggesting that
temporal patterns of blood pressure provide additional prognostic
information. By incorporating such longitudinal measures, our
approach moves prediction closer to real-time surveillance,
consistent with precision obstetric care initiatives (37).

Taken together, these findings both corroborate and extend
existing literature. They confirm the roles of hepatic enzymes (29—
31), LDH (34), and blood pressure trajectories (35), but in a broader
context that integrates multimorbidity rather than single
conditions. By situating individual predictors within the dual-risk
framework of GDM-HDP, our study highlights not only their
continued relevance but also new dimensions, such as the
overlooked predictive value of late-gestational SBP. Divergences
from prior reports likely reflect differences in study populations,
sample sizes, and timing of data collection, but they also underscore
the distinctive pathophysiology of multimorbidity. Thus, our study
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provides a more integrated and clinically relevant framework for
preterm birth prediction. Importantly, the interpretability of the
model strengthens its applicability in clinical practice. SHAP-based
visualizations at both population and individual levels allowed us to
bridge predictive accuracy with explainability (38), a recognized
barrier to adoption of Artificial Intelligence in obstetrics. SHAP
summary plots consistently ranked LDH, albumin, and SBP_32_36
among the most influential predictors, reinforcing their biological
plausibility and echoing recent applications of SHAP in preeclampsia
and postpartum hemorrhage models. Notably, SHAP plots also
suggested a tendency to underestimate risk among the lowest-risk
strata, which may reflect data imbalance and calibration limitations.
In parallel, patient-level SHAP force plots decomposed individual risk
profiles into positive and negative contributions, offering a pathway
to targeted monitoring and intervention. In addition, we leveraged
the intrinsic transparency of the Naive Bayes model itself, whose
conditional probabilities directly reflect the contribution of each
predictor to the overall risk. This NB-specific interpretability
complements the SHAP explanations, providing clinicians with a
more intuitive understanding of risk attribution. Although SHAP
may introduce approximation errors and relies on assumptions of
feature independence, these limitations are mitigated within the
simple probabilistic structure of NB.

Clinical relevance further underscores the potential utility of our
model. Because all five predictors are routinely measured in antenatal
care, the model can be seamlessly applied in real-world workflows
without additional testing burden. In particular, SBP measured at 32
- 36 weeks provides a practical window to inform delivery planning
and closer surveillance. While the model may add limited value in
cases of overtly severe GDM or HDP, it offers important guidance in
borderline or ambiguous presentations, helping clinicians to stratify
risk more objectively. Moreover, by integrating multiple predictors,
the model can reveal hidden risk profiles that may not be apparent
when considering single variables in isolation. This potential to
enhance workflow efficiency and provide early warnings highlights
its clinical value. However, the model should be viewed as a decision-
support tool that may aid in risk stratification and clinical
management, rather than one that directly improves outcomes.

To evaluate real-world robustness, we also assessed the impact
of class imbalance. The rarity of adverse outcomes often limits
model performance, and prior work has noted the instability of
ensemble methods under imbalance (39). In our analyses, the NB
model maintained stable calibration and discrimination following
SMOTE while improving recall. Sensitivity analyses further
indicated that SMOTE improved recall and balanced accuracy
without substantially altering the AUC or calibration, suggesting
that the oversampling procedure effectively mitigated class
imbalance without introducing significant bias. Comparable
trends were observed without SMOTE, albeit with slightly
reduced discrimination, supporting the robustness of the findings.
This indicates that NB, combined with oversampling, may be
particularly suitable for obstetric applications where event rates
are low and interpretability is essential.

Finally, strengths and limitations warrant consideration. This
is, to our knowledge, the first study to develop and externally
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validate a preterm birth prediction model specifically for women
with comorbid GDM and HDP. Strengths include the use of dual-
center data to enhance generalizability; the integration of five
clinically accessible, biologically coherent predictors spanning
complementary physiological domains; variable selection
through Elastic Net to address multicollinearity, followed by a
robust yet simple NB classifier; and a comprehensive multi-metric
evaluation covering discrimination, calibration, clinical utility,
reclassification, and interpretability. Limitations include
its retrospective design, the relatively small sample size
(particularly in the external validation cohort), potential
selection bias, the absence of intervention-based validation, and
the possibility that the findings may not be directly generalizable
to populations outside China. In addition, we recognize the
possibility of overfitting due to modest sample size and the post
hoc nature of model choice. Moreover, some clinically relevant
domains such as psychosocial, nutritional, or imaging biomarkers
were not included. Medication variables were also coarse, with
antihypertensive use captured only as a binary yes/no indicator
and glucose-lowering therapies not systematically recorded, which
may limit interpretability. Future research should pursue
prospective and multicenter validation, explore integration into
clinical workflows via electronic health records or mobile/desktop
applications, and evaluate whether model-guided interventions
can improve maternal and neonatal outcomes.

5 Conclusions

In this study, we developed and externally validated multiple
predictive models to assess the risk of preterm birth in pregnancies
complicated by both GDM and HDP. Among the evaluated
algorithms, the Naive Bayes classifier demonstrated the most
favorable balance across discrimination, reclassification,
interpretability, and robustness, and was ultimately selected as the
optimal model for clinical application. Through Elastic Net
regression, five physiologically meaningful predictors—ALT, AST,
albumin, LDH, and systolic blood pressure at 32 — 36 weeks—were
identified and incorporated into model development. These
variables capture distinct domains relevant to preterm labor
pathophysiology, including hepatic dysfunction, systemic
inflammation, vascular insufficiency, and hemodynamic
instability. To enhance transparency and clinical utility, SHAP-
based interpretation techniques were applied at both the global and
individual levels. Summary plots highlighted the dominant
predictors at the population level, while force plots provided case-
specific insights into individualized risk contributions. Additionally,
SMOTE-based sensitivity analysis confirmed the Naive Bayes
model’s robustness under class imbalance, further supporting its
generalizability and deployment potential.

The proposed Naive Bayes model may assist clinicians in early
identification and personalized risk management of high-risk
pregnancies affected by GDM and HDP, and represents a step
toward the implementation of transparent, evidence-based decision
support in obstetric practice. Future studies should aim to validate
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this model in larger, multicenter cohorts and explore its integration
into real-time clinical decision support systems.
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