
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Christopher Gerner,
University of Vienna, Austria

REVIEWED BY

Davide Gnocchi,
University of Bari Medical School, Italy
Kushan Chowdhury,
University of California, Los Angeles,
United States

*CORRESPONDENCE

Shan Yang

yangshan@hospital.cqmu.edu.cn

Nanwei Tong

tongnw@scu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 12 July 2025
ACCEPTED 03 October 2025

PUBLISHED 16 October 2025

CITATION

Zhong Q, Zhu Y, Tan Y, Deng W, Wang C,
Yang S and Tong N (2025) A proteome-wide
association study reveals novel plasma
proteins as potential therapeutic targets for
metabolic dysfunction-associated steatotic
liver disease.
Front. Endocrinol. 16:1664691.
doi: 10.3389/fendo.2025.1664691

COPYRIGHT

© 2025 Zhong, Zhu, Tan, Deng, Wang, Yang
and Tong. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 16 October 2025

DOI 10.3389/fendo.2025.1664691
A proteome-wide association
study reveals novel plasma
proteins as potential
therapeutic targets for
metabolic dysfunction-
associated steatotic liver disease
Qian Zhong1†, Yue Zhu2†, Yiwen Tan3, Wenzeng Deng4,
Chunxia Wang5, Shan Yang5* and Nanwei Tong1,6*

1Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China,
2Department of Operating Room, West China Hospital, West China School of Nursing, Sichuan
University, Chengdu, China, 3Department of Pathology, The Second Affiliated Hospital, Chongqing
Medical University, Chongqing, China, 4Department of Endocrinology, Chongqing University
Qianjiang Hospital, Chongqing, China, 5Department of Nephrology, The Second Affiliated Hospital,
Chongqing Medical University, Chongqing, China, 6Laboratory of Diabetes and Metabolism Research,
West China Hospital, Sichuan University, Chengdu, China
Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD)

is a growing global health burden with limited therapeutic options. To identify

novel proteins involved in its pathogenesis and reveal potential drug targets, we

performed an integrative analysis combining plasma proteomic data with

genome-wide association study (GWAS) summary statistics for MASLD.

Methods: A proteome-wide association study (PWAS) was conducted by

integrating plasma protein quantitative trait loci (pQTL) data with GWAS

summary statistics from the FinnGen R11 MASLD cohort (used as the discovery

dataset) and a large-scale MASLD GWAS meta-analysis (used for validation).

Causal inference was assessed using Mendelian Randomization (MR), and

Bayesian colocalization was applied to identify shared genetic signals.

Additionally, liver specimens from five healthy controls and five MASLD patients

were subjected to H&E and NCAN immunohistochemistry.

Results: PWAS in the discovery cohort identified three plasma proteins—NCAN,

EPHA2, and APOE—significantly associated with MASLD risk. Among them,

NCAN showed the strongest and most consistent association, which was

replicated in the validation cohort. MR analyses supported a causal role for

NCAN in both cohorts, whereas colocalization at theNCAN locus was suggestive

rather than definitive. Immunohistochemical analysis showed that NCAN

expression was significantly reduced in MASLD liver tissues.
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Conclusions: This integrative proteomic and genetic study identified NCAN as a

key contributor to MASLD pathogenesis. Its consistent association and genetic

evidence across two independent cohorts highlight NCAN as a promising

therapeutic target that merits further functional investigation.
KEYWORDS

MASLD, proteome-wide association study, Mendelian randomization, NCAN, liver
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1 Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) is

defined as a metabolic disorder characterized primarily by the

accumulation of lipids within hepatocytes, in the absence of excessive

alcohol consumption or other known causes of liver injury (1). MASLD

has become one of the most prevalent chronic liver diseases worldwide,

with a markedly increasing incidence in recent years (2). According to

the World Health Organization, the global prevalence of MASLD has

exceeded 30%, and this figure is significantly higher among individuals

with obesity and diabetes (3). Historically, this condition was referred to

as nonalcoholic fatty liver disease (NAFLD), first described by Ludwig

et al. in 1980 as a liver disorder mimicking alcoholic hepatitis that

occurred in individuals with obesity and other metabolic comorbidities

but no significant alcohol intake (4). Over the years, the limitations of

the exclusionary definition of NAFLD, along with its close links to

metabolic risk factors, have prompted efforts to redefine this entity (5).

In 2020, the term metabolic dysfunction-associated fatty liver disease

(MAFLD) was proposed, followed by the international adoption of

MASLD in 2023 as part of a multi-society Delphi consensus,

recognizing the metabolic drivers of this condition and officially

retiring the term NAFLD (6). The pathogenesis of MASLD is closely

associated with hepatic lipid metabolism dysregulation, insulin

resistance, oxidative stress, and chronic inflammation (7). As the

disease progresses, patients may develop metabolic dysfunction

associated steatohepatitis (MASH), fibrosis, and ultimately cirrhosis or

hepatocellular carcinoma (8). Therefore, early identification and

intervention are of critical importance.

Over the past decade, genome-wide association studies (GWAS)

have significantly advanced our understanding of the genetic

architecture underlying MASLD (9). A substantial proportion of the

associated variants are located in non-coding genomic regions and are

believed to exert their effects bymodulating gene expression and protein

production (10). Despite these discoveries, the biological pathways that

connect most genetic loci to MASLD pathogenesis remain largely

undefined. To date, only a limited number of loci—such as PNPLA3,

TM6SF2, and HSD17B13—have been functionally validated in the

context of MASLD (10). Furthermore, the identification of true causal

variants is complicated by linkage disequilibrium, which oftenmasks the

individual contributions of specific polymorphisms (11). This gap

between genetic association and biological function poses a major
02
hurdle for clinical translation, particularly in developing gene-targeted

therapies (12). Since proteins represent the downstream effectors of gene

expression and are directly involved in disease processes, especially in

MASLD, where circulating proteins play central roles, the plasma

proteome offers a promising avenue for mechanistic insights and

therapeutic intervention (13, 14). MASLD frequently disrupts plasma

protein profiles, and these proteins are considered highly accessible

targets for pharmacological modulation (15). Recent advancements in

high-throughput proteomic technologies have enabled the identification

of protein quantitative trait loci (pQTLs), which establish direct links

between genetic variants and plasma protein levels (16). Integrating

pQTL data with GWAS through proteome-wide association studies

(PWAS) offers a comprehensive framework to uncover novel

associations between the plasma proteome and MASLD, potentially

revealing new molecular targets for treatment (17).

Uncovering effective therapeutic targets is essential for advancing

treatment strategies and improving clinical outcomes in patients with

MASLD. To systematically identify candidate drug targets for MASLD,

we conducted a PWAS of 1,345 circulating plasma proteins using

genetic data from the FinnGen R11 cohort (hereafter referred to as R11

MASLD) (18), and validated the findings in an independent MASLD

dataset derived from the largest GWAS meta-analysis to date (19). To

assess potential causality, we extracted cis-pQTLs for the identified

proteins and applied Mendelian Randomization (MR) analysis. To

evaluate whether the same causal variants underlie both protein

abundance and MASLD risk, we performed Bayesian colocalization

analyses for the discovery R11 MASLD cohort and the validation

MASLD cohort. Collectively, these integrative analyses aim to pinpoint

novel plasma proteins that are functionally linked to MASLD

pathogenesis and offer promising avenues for drug development.
2 Materials and methods

2.1 Human plasma proteomic and genetic
data

The human plasma proteomic data used for the PWAS were

derived from the Atherosclerosis Risk in Communities (ARIC)

cohort, specifically from plasma samples collected during the third

study visit (17). This cohort includes individuals of both European and
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African American ancestry across various regions in the United States.

To minimize confounding effects due to population stratification, the

current analysis was restricted to participants of European descent. After

excluding individuals lacking genotype information, 7,213 European-

ancestry participants were retained for downstream analysis. Plasma

protein quantification was conducted using the SOMAmer (slow off-

rate modified aptamer) platform, a high-throughput proteomics

technique that utilizes specific DNA-based aptamers to bind target

proteins (20). In total, 4,657 SOMAmer reagents targeting 4,483 distinct

proteins were measured in the original dataset (17).

Genotyping of the included individuals was performed using the

Affymetrix 6.0 microarray platform. To identify cis-pQTLs, linear

regression analyses were conducted with adjustment for key

covariates, including age, sex, study center, ten principal components

of genetic ancestry, and probabilistic estimation of expression residuals

factors. The cis-regions for each protein-coding gene were defined as

the genomic region spanning 500 kilobases upstream and downstream

of the transcription start site. A total of 6,181,856 single nucleotide

polymorphisms (SNPs) with minor allele frequency (MAF) > 1%

within these regions were evaluated. Ultimately, 2,004 SOMAmers

were found to have at least one statistically significant cis-pQTL (false

discovery rate [FDR] < 5%) located near the gene encoding the

corresponding protein.
2.2 GWAS data of MASLD

R11MASLD statistics were obtained from the FinnGen R11 dataset

(https://r11.finngen.fi/pheno/NAFLD), comprising 3,006 individuals

diagnosed with MASLD and 450,727 control subjects. In the FinnGen

dataset, MASLD was defined as hepatic steatosis not attributable to

alcohol consumption.MASLD cases were identified using ICD-10 code

K76.0, which was recorded either at hospital discharge or as the

primary cause of death. Individuals lacking this diagnostic code were

classified as controls. To minimize misclassification, individuals with

alcoholic liver disease codes (ICD-10 K70.) were excluded, and MASH

codes (ICD-10 K75.81) were not used to ascertain cases.

We additionally accessed summary statistics from the largest

GWAS meta-analysis of MASLD (19) to date, which analyzed 8,434

individuals diagnosed with MASLD and 770,180 control participants,

all of European ancestry. This analysis incorporated data from four

large-scale cohorts: the Electronic Medical Records and Genomics

(eMERGE) network, UK Biobank, FinnGen, and the Estonian

Biobank. All contributing cohorts applied study-specific genotyping,

imputation, and quality control, and phenotype definitions were

standardized within each electronic health record environment.

Institutional approvals and informed consent procedures followed

the original publications. Because only summary statistics were

available, no additional clinical, laboratory, imaging, or histologic

criteria beyond billing codes could be uniformly applied across cohorts.
2.3 Proteome-wide association studies

Proteins, as the final products of gene transcription, play central

roles in the initiation and progression of MASLD. To systematically
Frontiers in Endocrinology 03
evaluate the relationship between circulating proteins and MASLD, we

applied PWAS, conducted via the FUSION framework (http://

gusevlab.org/projects/fusion), as illustrated in Figure 1. Initially, the

SNP-based heritability for 2,004 SOMAmer protein measurements was

calculated using the restricted maximum likelihood REML approach

implemented in the GCTA software package (21). Among them, 1,345

proteins demonstrated significant cis-heritability (P < 0.01), indicating a

genetic basis for plasma abundance variation. Next, FUSION was

utilized to model the influence of SNPs on protein levels, employing

both top1 and elastic net (enet) modeling strategies. The optimal model

for each protein was selected based on its predictive accuracy for protein

expression. These models were then used to integrate summary-level

genetic associations from GWAS datasets of R11 MASLD and the

broader MASLD cohort, combining Z-scores of SNP associations with

protein prediction weights across loci to conduct the PWAS (22).

Multiple testing correction was performed using the Benjamini-

Hochberg procedure, and associations were considered statistically

significant if the adjusted p-value was less than 0.05.
2.4 Protein interaction network and
functional enrichment analyses

To gain deeper insight into the biological relevance of the

proteins identified in the PWAS, we conducted PPI network

analysis. Functional associations among these proteins were

retrieved using the STRING database (https://string-db.org), with

interaction pairs exhibiting a combined confidence score above 0.4

considered to be statistically meaningful. The resulting interaction

network was visualized using Cytoscape (version 3.10.3). To detect

densely interconnected protein clusters within the network, we

applied the Molecular Complex Detection (MCODE) plugin in

Cytoscape using default parameters. Key regulatory proteins, or hub

genes, were prioritized based on network centrality measures,

specifically betweenness, utilizing the cytoHubba algorithm.

Additionally, we used the DAVID online platform (https://

davidbioinformatics.nih.gov/summary.jsp) to perform Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis on proteins significantly associated with

the phenotype (p < 0.05). The GO framework, commonly utilized in

bioinformatics, was applied to classify gene products into three main

categories: biological processes (BP), molecular functions (MF), and

cellular components (CC). To explore potential biological pathways,

KEGG analysis was employed, offering curated molecular datasets that

facilitate the identification of relevant signaling andmetabolic pathways

based on gene enrichment. Visualization of enrichment results was

conducted using the “ggplot2” package in R (version 4.2.1). Statistical

significance was defined as a p-value less than 0.05.
2.5 Mendelian randomization analyses

To further validate the potential causal links between plasma

proteins and MASLD susceptibility, we conducted MR analyses

utilizing SNPs associated with significant proteins identified from
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the PWAS as IVs, applied separately to the discovery cohort and the

validation cohort, as outlined in Figure 1. To ensure sufficient

statistical power and include an adequate number of variants, the

threshold for SNP inclusion was relaxed to a p-value less than 1 × 10-

5. We also applied clumping procedures using a 1 Mb window,

retaining only independent variants by excluding those in linkage

disequilibrium (r2 ≥ 0.01) (23). To minimize weak instrument bias,

the strength of the selected SNPs was assessed by calculating F-

statistics, using the formula: F = R2 × (N − k − 1)/[(1 – R2) × k], where

R2 indicates the proportion of variance explained. An F-statistic

greater than 10 is generally considered acceptable (24), and in our

study, all selected IVs had F-statistics exceeding 20, indicating robust

instrument strength. To estimate the genetic effect of plasma proteins

(exposures) on MASLD risk (outcomes), we applied the Wald ratio

method for single-SNP IVs and inverse variance weighted (IVW)

regression for multiple IVs, conducting separate analyses for the
Frontiers in Endocrinology 04
discovery dataset and the validation dataset. Additionally, MR-Egger

regression was used as a sensitivity analysis to detect directional

pleiotropy, with the intercept serving as an indicator—deviation from

zero suggesting potential horizontal pleiotropic effects. Heterogeneity

among IVs was evaluated using the Q-statistic from the IVW model.

Leave-one-out analysis was also performed to assess whether any

individual SNP unduly influenced the MR results. All statistical

procedures were executed using established MR analysis packages

in R, including “TwoSampleMR,” and “MendelianRandomization.”

Correction for multiple comparisons was applied using the

Benjamini-Hochberg procedure, and an adjusted p-value less than

0.05 was considered statistically significant. Only cis-pQTL

instruments (± 1 Mb) were used; no trans IVs were included. The

ARIC pQTL cohort and MASLD GWAS sources were assembled

independently, with no intentional sample overlap; any inadvertent

overlap is expected to be minimal.
FIGURE 1

Summary of research framework and analytical approach. The study commenced with PWAS, utilizing the FUSION platform to explore the genetic
links between cis-regulated circulating protein levels and the risk of MASLD, using both the FinnGen R11 dataset and the meta-analyzed MASLD
GWAS dataset for discovery and validation, respectively. Subsequently, genes identified through PWAS were subjected to protein-protein interaction
(PPI) network construction and functional enrichment analysis to uncover potential biological pathways. To move from association to causation, we
applied MR to the significant proteins discovered in the PWAS phase. SNPs that fulfilled instrumental variable (IV) assumptions—such as relevance,
independence, and exclusivity—were selected and evaluated for robustness through sensitivity testing, heterogeneity assessment, and pleiotropy
diagnostics. Both the inverse variance weighted (IVW) method and MR-Egger regression were employed for causal inference. Furthermore, to
investigate whether shared causal variants underlie changes in both protein abundance and MASLD susceptibility, Bayesian colocalization analysis
was conducted on cis-pQTLs in both the discovery cohort (R11 MASLD) and the validation cohort (replicated MASLD GWAS dataset). Finally, tissue-
level validation was conducted by H&E staining and NCAN immunohistochemistry using liver specimens from healthy controls (n=5) and MASLD
patients (n=5). PWAS: proteome-wide association study; MASLD: metabolic dysfunction-associated steatotic liver disease; MR: Mendelian
Randomization; IV: instrumental variable; MAF: minor allele frequency; H&E: hematoxylin and eosin staining; IHC: immunohistochemistry.
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2.6 Bayesian colocalization analyses

To evaluate whether a single genetic variant could

simultaneously influence protein levels and MASLD risk, we

implemented Bayesian colocalization analysis separately for two

GWAS datasets: the discovery cohort and the validation cohort.

Analyses were performed using the R package “coloc” (version

4.2.1) under default prior settings (p1 = 1 × 10-4; p2 = 1 × 10-4;

p12 = 1 × 10-5) (25). In this context, p1 denotes the prior probability

that a given variant is linked to MASLD; p2 refers to the prior for

protein-related associations; and p12 reflects the prior probability

that the same variant is involved in both phenotypes. Using GWAS

summary statistics, the Approximate Bayes Factor was computed to

generate posterior probabilities (PP) for five distinct hypotheses:

H0: the variant has no effect on either trait (PP0); H1: the variant is

associated only with MASLD (PP1); H2: the variant is only linked to

protein expression (PP2); H3: two different variants independently

affect the protein and disease traits (PP3); H4: a single variant exerts

shared influence on both protein levels and disease-related

phenotypes (PP4). In this study, we defined colocalization solely

by PP4: signals with PP4 ≥ 0.8 were designated primary

(colocalized) protein targets. Signals with 0.5 ≤ PP4 < 0.8 were

labeled secondary (suggestive), prioritized for follow-up and not

used to support causal or therapeutic claims. All others were

considered tertiary (not colocalized/low priority) (26). To

safeguard against low power, we used PP3+PP4 ≥ 0.8 only as a

screening indicator to flag regions where both traits show

association (27), but classification was based on PP4 alone.
2.7 H&E staining and
immunohistochemistry

To further assess NCAN expression in liver tissues, five liver

specimens from healthy controls and five pathologically confirmed

MASLD patients were collected from Qianjiang Central Hospital of

Chongqing. All procedures were approved by the hospital’s

Institutional Ethics Committee (Approval No. QJZXYY-2025-

008), and written informed consent was obtained from all

participants. Tissue samples were fixed in 4% paraformaldehyde,

routinely embedded in paraffin, sectioned at 4-µm thickness, and

subjected to hematoxylin and eosin (H&E) staining and

immunohistochemistry (IHC).

For IHC, the sections were deparaffinized in xylene, rehydrated

through a graded ethanol series, and subjected to heat-induced

antigen retrieval in citrate buffer (pH 6.0). Endogenous peroxidase

activity was blocked with 3% hydrogen peroxide, followed by

overnight incubation at 4°C with a primary anti-NCAN antibody

(1:200; Affinity biosciences). The next day, sections were incubated

with secondary antibody for 1 hour, developed using DAB,

counterstained with hematoxylin, dehydrated, and mounted.

Images were captured under a light microscope.

Quantitative assessment of NCAN immunostaining was

performed using ImageJ software. Three to five randomly selected

fields per section were analyzed to calculate the positive staining
Frontiers in Endocrinology 05
area (% Positive Staining Area) and integrated optical density

(IOD), allowing for the comparison of NCAN expression between

the two groups.
3 Results

3.1 Associations of plasma proteins with
MASLD

In the discovery cohort (R11 MASLD), we identified three genes

(NCAN, EPHA2, and APOE) whose cis-regulated plasma protein

levels were significantly associated with MASLD risk, as determined

by PWAS (FDR < 0.05; Figure 2A; Supplementary Table S1). To

further validate these associations, we performed a replication

analysis using an independent MASLD GWAS dataset. In this

validation analysis, only NCAN remained significantly associated

with MASLD (FDR < 0.05; Figure 2B; Supplementary Table S2).

Specifically, higher genetically predicted plasma levels of NCAN

were consistently associated with a lower risk of MASLD in both

cohorts (Z-score = -8.424, p = 3.64 × 10–17 in the discovery cohort;

Z-score = -6.742, p = 1.56 × 10–11 in the validation cohort), as

summarized in Table 1. By contrast, EPHA2 showed a significant

inverse association with MASLD only in the discovery cohort (Z-

score = -4.525, p = 6.04 × 10-6), but this association did not replicate

in the validation analysis due to lack of statistical significance

(Table 1). Similarly, APOE abundance predicted by the enet

model was significantly associated with reduced MASLD risk in

the discovery dataset (Z-score = -3.963, p = 7.41 × 10-5), yet failed to

achieve significance in the validation cohort (Table 1). All

associations in the discovery phase passed multiple testing

correction (FDR < 0.05).

To elucidate the functional implications of genes identified

through PWAS (p < 0.05), we performed GO and KEGG

enrichment analyses. In the GO-BP category, the genes were

predominantly enriched in pathways related to signal

transduction, cell adhesion, inflammatory responses, and

regulation of cell proliferation (Supplementary Figure S1A). These

findings suggest that the associated proteins may influence MASLD

development by modulating immune activation, intercellular

communication, and tissue remodeling. In the GO-CC analysis,

the genes were mainly localized to the plasma membrane,

extracellular region, exosomes, and cell surface (Supplementary

Figure S1B). The GO-MF terms were enriched for identical

protein binding, calcium ion binding, and heparin binding

(Supplementary Figure S1C). KEGG pathway analysis revealed

that the identified genes were significantly involved in cytokine-

cytokine receptor interactions and the JAK-STAT signaling cascade

(Supplementary Figure S1D). These pathways are well-known

regulators of immune function and inflammation. To further

investigate the interplay among these proteins, we constructed a

PPI network using the STRING database, which comprised 45

nodes and 57 edges (Supplementary Figure S2A). This network

illustrates a coordinated regulatory architecture potentially

underlying the observed genetic associations. Using the MCODE
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plugin in Cytoscape, three distinct modules with high intra-

connectivity were identified within the network, with MCODE

scores ≥3 and the top module scoring ≥4 (Supplementary Figures

S2B–D). Additionally, key hub genes were identified using the

Betweenness algorithm implemented in the cytoHubba tool. The

top ten hubs—APOE, EFNB2, KNG1, NRP1, PF4, F10, EPHA2,

GPT, PLXND1, and NLGN2—likely represent central regulators

within the MASLD-related protein network (Supplementary

Figure S2E).
3.2 Causal associations of identified
proteins by PWAS with MASLD

To investigate potential causal links between plasma proteins and

susceptibility to MASLD, we extracted pQTLs and conducted MR

analyses. In the case of the discovery cohort, the IVWmethod identified

two (NCAN, EPHA2) out of three PWAS-prioritized genes as having

statistically significant causal relationships with disease risk after

multiple testing correction (FDR < 0.05; Figure 3; Supplementary
Frontiers in Endocrinology 06
Tables S3–4). In addition, in the validation cohort, MR analysis using

the IVW method confirmed a significant causal association between

NCAN and MASLD risk (FDR <0.05, Figure 3; Supplementary Tables

S3, S5). EPHA2, however, lacked sufficient valid instrumental variables

in this dataset and was therefore excluded from MR analysis.

As shown in Figure 3 and Table 1, the NCAN gene demonstrated a

consistent and statistically significant causal association with MASLD

risk in both the discovery cohort (OR = 0.441, FDR = 5.35 × 10-6) and

the validation cohort (OR = 0.631, FDR = 1.20 × 10-9). While EPHA2

was significantly associated with MASLD risk in the discovery cohort

(OR = 0.769, FDR = 2.28 × 10-2), no valid instrumental variables were

available for this gene in the validation cohort and it was therefore

excluded from the corresponding MR analysis.
3.3 Shared causal variants of proteins and
MASLD

To evaluate the likelihood that the same causal variant

influences both protein expression and susceptibility to MASLD,
FIGURE 2

Visualization of PWAS Results for the discovery cohort and the validation cohort. The Manhattan plots summarizing the PWAS findings for the
discovery cohort (A) and the validation cohort (B) are presented in panels A and B, respectively. Genes represented by red dots above the dashed
line correspond to those surpassing the FDR threshold of 0.05. PWAS, proteome-wide association study; Chr, chromosome.
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Bayesian colocalization analyses were conducted for proteins

identified as significant in the PWAS. Using PP4 ≥ 0.8 as the

prespecified threshold, EPHA2 meets the colocalization criterion in

the discovery cohort (PP4 = 0.971) (Table 1; Figure 4), supporting a

shared causal variant at this locus. By contrast, NCAN (PP4 = 0.110

in discovery; 0.0002 in validation) and APOE (PP4 = 0.144 in

discovery; 0.160 in validation) fall below the colocalization

threshold; however, both loci showed high joint association

probabilities (PP3+PP4 ≥ 0.8)—NCAN had PP3+PP4 = 1.000 in

both datasets and APOE had PP3+PP4 = 0.992 in validation

(Supplementary Table S6; Supplementary Figure S3)—indicating
Frontiers in Endocrinology 07
that each region harbors association signals for both traits even

though a shared causal variant (PP4) is not supported at current

power. We therefore interpret NCAN and APOE as suggestive,

hypothesis-generating signals.
3.4 H&E staining and NCAN IHC results

H&E staining revealed that hepatocytes in normal liver tissues

were arranged in a regular pattern with intact architecture, whereas

MASLD tissues exhibited marked steatosis, ballooning
FIGURE 3

Forest plot for the MR results in the discovery cohort and the validation cohort. Estimates were derived using the IVW method. Statistical significance
was defined as FDR < 0.05. p for Egger refers to the intercept p-value from MR-Egger regression, used to evaluate the presence of directional
pleiotropy. NSNP, number of single nucleotide polymorphism; MR, Mendelian Randomization; OR, odds ratio; CI, confidence interval; PVE,
proportion of variance explained; LOO, leave one out; NA, not available.
TABLE 1 Summary of PWAS-identified genes significantly associated with MASLD in the discovery and validation cohorts.

Genes
Z-score/OR/

PP4

Discovery cohort Validation cohort

Statistical
estimates

P-value FDR
Statistical
estimates

P-value FDR

NCAN

Z-score in PWAS -8.424 3.64×10-17 4.82×10-14 -6.742 1.56×10-11 2.00×10-8

OR (95% CI) in
MR

0.441(0.328-0.593) 5.88×10-8 5.35×10-6 0.631(0.551-0.721) 1.56×10-11 1.20×10-9

PP4 in
colocalization

0.110 – – 0.0002 – –

EPHA2

Z-score in PWAS -4.525 6.04×10-6 4.00×10-3 -1.779 7.52×10-2 7.51×10-1

OR (95% CI) in
MR

0.769(0.649-0.910) 2.25×10-3 2.28×10-2 – – –

PP4 in
colocalization

0.971 – – – – –

APOE

Z-score in PWAS -3.963 7.41×10-5 3.27×10-2 -3.132 1.74×10-3 3.95×10-1

OR (95% CI) in
MR

0.730(0.253-2.105) 5.60×10-1 5.93×10-1 0.878(0.383-2.009) 7.58×10-1 5.83×10-1

PP4 in
colocalization

0.144 – – 0.016 – –
PWAS, proteome-wide association study; MASLD, metabolic dysfunction-associated steatotic liver disease; MR, Mendelian Randomization; OR, odds ratio; CI, confidence interval; FDR, false
discovery rate; PP, posterior probability.
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degeneration, and inflammatory cell infiltration (Figures 5A, B).

Immunohistochemical analysis showed moderate brown

cytoplasmic staining of NCAN in normal liver tissues, while the

NCAN-positive signal was markedly attenuated in MASLD tissues

(Figures 5C, D), consistent with the proteomic findings. Semi-

quantitative analysis further demonstrated that both the

percentage of NCAN-positive staining area and the integrated

optical density were significantly lower in MASLD tissues than in

normal tissues (p < 0.01; Figures 5E, F; Supplementary Table S7),

indicating a substantial downregulation of NCAN expression in

MASLD. Sample information is provided in Supplementary

Table S8.
4 Discussion

In this research, we integrated plasma protein pQTL data with

GWAS results for MASLD to investigate potential functional

relationships. Our findings from the R11 MASLD discovery

cohort identified three significant proteins—NCAN, EPHA2, and

APOE—whose genetically predicted plasma levels were associated

with MASLD risk. Among these, NCAN demonstrated the

strongest and most consistent signal, which was successfully
Frontiers in Endocrinology 08
replicated in the validation cohort. In contrast, the associations

for EPHA2 and APOE did not reach significance in the validation

analysis. Moreover, MR analyses provided additional causal support

for the involvement of NCAN in both conditions. Bayesian

colocalization analysis provided suggestive evidence of regional

overlap at the NCAN locus for plasma protein levels and MASLD

risk in both datasets. Taken together, these results strongly suggest

that NCAN plays a causal and protective role in MASLD.

Given its consistent and robust associations across both the

discovery cohort and the validation cohort, NCAN likely plays a

pivotal role in the pathogenesis of hepatic injury. The NCAN locus

spans approximately 500 kb on chromosome 19p13 and

encompasses at least 20 genes (28). It encodes neurocan, a

chondroitin sulfate proteoglycan primarily implicated in cell

adhesion and migration within the nervous system (29, 30).

Traditionally, NCAN was thought to influence metabolic

regulation predominantly through its effects in the central

nervous system (CNS), which plays a critical role in peripheral

glucose and lipid homeostasis (31). However, subsequent studies by

Nischalke et al. (32) revealed that NCAN is also expressed in hepatic

tissue, suggesting a broader physiological relevance. Further

research identified the SNP rs2228603 within NCAN, which

results in a proline-to-serine substitution at position 92. This
FIGURE 4

Illustration of the colocalization results in the discovery cohort. The significant colocalization results for the discovery cohort are presented, where
regional association plots depict the alignment between genetic signals for MASLD risk and cis-pQTL associations at the EPHA2 loci. Chr,
chromosome.
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variant has been strongly associated with alterations in plasma low-

density lipoprotein and triglyceride levels (33). Gorden et al. (29)

also demonstrated that the rs2228603[T] allele constitutes a risk

factor for hepatic inflammation and fibrosis, indicating its potential

role in the progression from simple steatosis to steatohepatitis.

However, MR analyses have not consistently confirmed a causal

relationship. In our current study, we observed that higher plasma

NCAN levels were causally associated with a reduced risk of

MASLD, with the effect being driven by a cis-acting variant near

NCAN. These findings highlight NCAN as a potentially important

factor in the pathogenesis of MASLD. Nevertheless, contrasting

evidence exists: for instance, Wu et al. (31) reported that NCAN

rs2228603 was not a risk factor for MASLD incidence in the

Chinese population. Moreover, they found that the T allele

exhibits a dual role — providing hepatic protection by elevating

high-density lipoprotein levels while simultaneously increasing the

risk of liver damage via elevated alkaline phosphatase levels.

Similarly, Lin et al. (34) demonstrated that NCAN was not a risk

gene for MASLD in obese Taiwanese children. These discrepancies

suggest a potential population-specific effect and underscore the

need for further investigation into the context-dependent role of

NCAN in MASLD development.

Moreover, our MR indicates that genetically proxied higher

plasma NCAN associates with lower MASLD risk, whereas IHC
Frontiers in Endocrinology 09
shows reduced hepatic NCAN in MASLD. These findings are not

mutually exclusive once compartment biology is considered. NCAN

is a lectican-type chondroitin-sulfate proteoglycan embedded in the

extracellular matrix (ECM) that undergoes proteolytic processing

by ADAMTS family proteases, generating soluble fragments

detectable in circulation (35, 36); by contrast, IHC predominantly

reflects ECM-bound pools and is epitope-dependent. Accordingly,

plasma and tissue readouts may track related but distinct

proteoforms/compartments that move in the same direction yet

differ in magnitude across disease stages. In addition, the

SOMAmer-based platform quantifies epitope-specific proteoforms

(37), whereas IHCmay recognize a different epitope, reinforcing the

need for proteoform-resolved validation. For these reasons, we

avoid inferring that hepatic downregulation per se is causal in the

same direction as the plasma association. Further experimental

validation is warranted.

Our study found that EPHA2 in plasma is associated with a lower

risk of MASLD. EPHA2, a member of the Eph receptor tyrosine

kinase family, plays a crucial role in mediating cell–cell

communication, and is involved in various biological processes

including cell migration, proliferation, and angiogenesis (38). It is

widely expressed in hepatic tissue and other organs (39). Consistent

with our findings, Li et al. (40) recently identified EPHA2 as a

candidate gene for MASLD susceptibility through an enhancer-
FIGURE 5

Histological and immunohistochemical analysis of liver tissues from normal and MASLD patients. (A) Representative H&E-stained section of normal
liver showing intact hepatic architecture. (B) H&E staining of MASLD liver tissue demonstrating marked steatosis with numerous lipid droplets.
(C) IHC for NCAN in normal liver tissue showing strong cytoplasmic staining. (D) IHC for NCAN in MASLD liver tissue indicating markedly reduced
expression. (E) Quantification of the positive staining area (%) for NCAN in normal and MASLD tissues. (F) Quantification of IOD for NCAN in normal
and MASLD tissues. ****P < 0.0001 versus the normal group.
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gene regulatory map of the liver, highlighting non-coding SNPs

located in active regulatory regions that are linked to EPHA2

expression. However, in contrast to our observations, Pearson-

Gallion et al. (41) reported that EphA2 knockout mice fed a high-

fat diet developed significantly less hepatic steatosis and

inflammation than wild-type controls, suggesting that excessive or

dysregulated EPHA2 signaling may exacerbate MASLD progression.

Notably, our findings revealed an inverse association between

circulating EPHA2 protein levels and MASLD risk, which appears

contradictory to the pro-steatotic role observed in preclinical models.

This discrepancy may be attributed to the context-dependent and

compartment-specific function of EPHA2: while tissue-localized,

ligand-independent activation of EPHA2 may promote hepatic

inflammation and fibrosis, higher levels of EPHA2 in circulation

could reflect a compensatory or protective systemic signaling state, or

alternatively, reduced hepatic EPHA2 activation. Moreover, plasma

EPHA2 may serve as a biomarker for favorable metabolic or immune

status rather than a direct mediator of disease risk. These

observations underscore the complexity of EPHA2’s role in liver

pathophysiology and highlight the need for further studies to dissect

its tissue-specific functions and regulatory mechanisms in MASLD.

Our study found that plasma APOE levels are associated with a

lower risk of MASLD, suggesting a potentially protective role of

APOE in regulating hepatic lipid accumulation. APOE is a liver-

derived apolipoprotein involved in both the assembly and clearance

of very low-density lipoproteins, playing a key role in maintaining

plasma triglyceride levels and lipid homeostasis (42). Beyond its role

in lipid metabolism, APOE also exhibits anti-inflammatory and

antioxidant properties, which may contribute to liver health

through non-lipid-related mechanisms (43). Consistent with our

findings, multiple studies in ApoE−/−mice have demonstrated that

the absence of APOE exacerbates MASLD progression, particularly

under high-fat diet conditions (43–46). The inverse association

observed in our study between circulating APOE levels and MASLD

risk may therefore reflect APOE’s protective functions in

maintaining hepatic lipid balance and mitigating liver injury.

Notably, MASLD is a heterogeneous, multi-factorial disorder, so a

single protein is unlikely to constitute a stand-alone therapy. Our

genetics-anchored signals (e.g., NCAN, EPHA2, APOE) should be

viewed as hypothesis-generating candidates rather than established

targets. Concurrently, work by Moliterni et al. (47) also supports a

pathway- and network-level interpretation of dyslipidaemia.

Finally, because hepatic lipid handling and inflammatory tone are

under circadian control, time-of-day effects may also modulate

circulating proteins and MASLD biology (48, 49).

This study possesses several notable strengths alongside certain

limitations. One major advantage lies in the application of PWAS

methods to identify novel protein targets related to MASLD,

utilizing the most extensive and detailed plasma pQTL dataset

available, alongside GWAS data encompassing approximately

500,000 individuals. Furthermore, MR analysis was conducted to

strengthen the inference of causality between the identified proteins

and MASLD. To further evaluate whether shared causal variants
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underlie both protein expression and disease phenotypes, Bayesian

colocalization analysis was employed, ultimately confirming NCAN

as a likely pathogenic factor for MASLD. Collectively, these rigorous

approaches enhance the robustness and reliability of our findings.

Nevertheless, several limitations should be acknowledged. First,

although the pQTL study profiled 4,483 plasma proteins, the

SOMAmer-based detection platform does not capture the entirety of

the plasma proteome. As a result, proteins not covered by this assay

may also contribute to MASLD susceptibility and progression, but

remain unexamined in this study. Second, our analyses were restricted

to individuals of European ancestry. While this design minimizes

potential confounding due to population stratification, it also restricts

the applicability of the results to other ethnic groups. Future research

involving diverse populations and larger sample sizes will be essential to

validate and extend these findings. Third, case ascertainment relied on

administrative ICD codes rather than uniform imaging, biopsy, or

laboratory criteria across cohorts. This approach enables large-scale

analyses but can introduce residual phenotype misclassification and

cross-cohort heterogeneity, potentially attenuating true associations or

inflating uncertainty. Lastly, Changes in plasma protein levels may

reflect compensatory responses, shedding/clearance dynamics, tissue

redistribution, or disease activity and therefore do not, by themselves,

establish druggability or causality. Accordingly, our protein findings are

hypothesis-generating and require follow-up validation, such as

pathway-level mechanistic studies in liver-relevant cell and

animal models.
5 Conclusion

In summary, this study identified three plasma proteins—

NCAN, EPHA2, and APOE—that were significantly associated

with MASLD risk in the discovery cohort. Among them, NCAN

demonstrated the strongest and most consistent evidence, with

replication in an independent validation dataset. MR analyses

supported a causal relationship between NCAN and MASLD risk,

and Bayesian colocalization further provided suggestive regional

overlap linking plasma NCAN protein levels to disease

susceptibility. These findings highlight NCAN as a promising

therapeutic target for MASLD.
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