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Introduction: Metabolic dysfunction-associated steatotic liver disease (MASLD)
is a growing global health burden with limited therapeutic options. To identify
novel proteins involved in its pathogenesis and reveal potential drug targets, we
performed an integrative analysis combining plasma proteomic data with
genome-wide association study (GWAS) summary statistics for MASLD.
Methods: A proteome-wide association study (PWAS) was conducted by
integrating plasma protein quantitative trait loci (pQTL) data with GWAS
summary statistics from the FinnGen R11 MASLD cohort (used as the discovery
dataset) and a large-scale MASLD GWAS meta-analysis (used for validation).
Causal inference was assessed using Mendelian Randomization (MR), and
Bayesian colocalization was applied to identify shared genetic signals.
Additionally, liver specimens from five healthy controls and five MASLD patients
were subjected to H&E and NCAN immunohistochemistry.

Results: PWAS in the discovery cohort identified three plasma proteins—NCAN,
EPHA2, and APOE—significantly associated with MASLD risk. Among them,
NCAN showed the strongest and most consistent association, which was
replicated in the validation cohort. MR analyses supported a causal role for
NCAN in both cohorts, whereas colocalization at the NCAN locus was suggestive
rather than definitive. Immunohistochemical analysis showed that NCAN
expression was significantly reduced in MASLD liver tissues.
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Conclusions: This integrative proteomic and genetic study identified NCAN as a
key contributor to MASLD pathogenesis. Its consistent association and genetic
evidence across two independent cohorts highlight NCAN as a promising
therapeutic target that merits further functional investigation.

MASLD, proteome-wide association study, Mendelian randomization, NCAN, liver

diseases, genetics

1 Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) is
defined as a metabolic disorder characterized primarily by the
accumulation of lipids within hepatocytes, in the absence of excessive
alcohol consumption or other known causes of liver injury (1). MASLD
has become one of the most prevalent chronic liver diseases worldwide,
with a markedly increasing incidence in recent years (2). According to
the World Health Organization, the global prevalence of MASLD has
exceeded 30%, and this figure is significantly higher among individuals
with obesity and diabetes (3). Historically, this condition was referred to
as nonalcoholic fatty liver disease (NAFLD), first described by Ludwig
et al. in 1980 as a liver disorder mimicking alcoholic hepatitis that
occurred in individuals with obesity and other metabolic comorbidities
but no significant alcohol intake (4). Over the years, the limitations of
the exclusionary definition of NAFLD, along with its close links to
metabolic risk factors, have prompted efforts to redefine this entity (5).
In 2020, the term metabolic dysfunction-associated fatty liver disease
(MAFLD) was proposed, followed by the international adoption of
MASLD in 2023 as part of a multi-society Delphi consensus,
recognizing the metabolic drivers of this condition and officially
retiring the term NAFLD (6). The pathogenesis of MASLD is closely
associated with hepatic lipid metabolism dysregulation, insulin
resistance, oxidative stress, and chronic inflammation (7). As the
disease progresses, patients may develop metabolic dysfunction
associated steatohepatitis (MASH), fibrosis, and ultimately cirrhosis or
hepatocellular carcinoma (8). Therefore, early identification and
intervention are of critical importance.

Over the past decade, genome-wide association studies (GWAS)
have significantly advanced our understanding of the genetic
architecture underlying MASLD (9). A substantial proportion of the
associated variants are located in non-coding genomic regions and are
believed to exert their effects by modulating gene expression and protein
production (10). Despite these discoveries, the biological pathways that
connect most genetic loci to MASLD pathogenesis remain largely
undefined. To date, only a limited number of loci—such as PNPLA3,
TM6SF2, and HSDI7B13—have been functionally validated in the
context of MASLD (10). Furthermore, the identification of true causal
variants is complicated by linkage disequilibrium, which often masks the
individual contributions of specific polymorphisms (11). This gap
between genetic association and biological function poses a major
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hurdle for clinical translation, particularly in developing gene-targeted
therapies (12). Since proteins represent the downstream effectors of gene
expression and are directly involved in disease processes, especially in
MASLD, where circulating proteins play central roles, the plasma
proteome offers a promising avenue for mechanistic insights and
therapeutic intervention (13, 14). MASLD frequently disrupts plasma
protein profiles, and these proteins are considered highly accessible
targets for pharmacological modulation (15). Recent advancements in
high-throughput proteomic technologies have enabled the identification
of protein quantitative trait loci (pQTLs), which establish direct links
between genetic variants and plasma protein levels (16). Integrating
pQTL data with GWAS through proteome-wide association studies
(PWAS) offers a comprehensive framework to uncover novel
associations between the plasma proteome and MASLD, potentially
revealing new molecular targets for treatment (17).

Uncovering effective therapeutic targets is essential for advancing
treatment strategies and improving clinical outcomes in patients with
MASLD. To systematically identify candidate drug targets for MASLD,
we conducted a PWAS of 1,345 circulating plasma proteins using
genetic data from the FinnGen R11 cohort (hereafter referred to as R11
MASLD) (18), and validated the findings in an independent MASLD
dataset derived from the largest GWAS meta-analysis to date (19). To
assess potential causality, we extracted cis-pQTLs for the identified
proteins and applied Mendelian Randomization (MR) analysis. To
evaluate whether the same causal variants underlie both protein
abundance and MASLD risk, we performed Bayesian colocalization
analyses for the discovery R11 MASLD cohort and the validation
MASLD cohort. Collectively, these integrative analyses aim to pinpoint
novel plasma proteins that are functionally linked to MASLD
pathogenesis and offer promising avenues for drug development.

2 Materials and methods

2.1 Human plasma proteomic and genetic
data

The human plasma proteomic data used for the PWAS were
derived from the Atherosclerosis Risk in Communities (ARIC)
cohort, specifically from plasma samples collected during the third
study visit (17). This cohort includes individuals of both European and
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African American ancestry across various regions in the United States.
To minimize confounding effects due to population stratification, the
current analysis was restricted to participants of European descent. After
excluding individuals lacking genotype information, 7,213 European-
ancestry participants were retained for downstream analysis. Plasma
protein quantification was conducted using the SOMAmer (slow oft-
rate modified aptamer) platform, a high-throughput proteomics
technique that utilizes specific DNA-based aptamers to bind target
proteins (20). In total, 4,657 SOMAmer reagents targeting 4,483 distinct
proteins were measured in the original dataset (17).

Genotyping of the included individuals was performed using the
Affymetrix 6.0 microarray platform. To identify cis-pQTLs, linear
regression analyses were conducted with adjustment for key
covariates, including age, sex, study center, ten principal components
of genetic ancestry, and probabilistic estimation of expression residuals
factors. The cis-regions for each protein-coding gene were defined as
the genomic region spanning 500 kilobases upstream and downstream
of the transcription start site. A total of 6,181,856 single nucleotide
polymorphisms (SNPs) with minor allele frequency (MAF) > 1%
within these regions were evaluated. Ultimately, 2,004 SOMAmers
were found to have at least one statistically significant cis-pQTL (false
discovery rate [FDR] < 5%) located near the gene encoding the
corresponding protein.

2.2 GWAS data of MASLD

R11 MASLD statistics were obtained from the FinnGen R11 dataset
(https://r11.finngen.fi/pheno/NAFLD), comprising 3,006 individuals
diagnosed with MASLD and 450,727 control subjects. In the FinnGen
dataset, MASLD was defined as hepatic steatosis not attributable to
alcohol consumption. MASLD cases were identified using ICD-10 code
K76.0, which was recorded either at hospital discharge or as the
primary cause of death. Individuals lacking this diagnostic code were
classified as controls. To minimize misclassification, individuals with
alcoholic liver disease codes (ICD-10 K70.) were excluded, and MASH
codes (ICD-10 K75.81) were not used to ascertain cases.

We additionally accessed summary statistics from the largest
GWAS meta-analysis of MASLD (19) to date, which analyzed 8,434
individuals diagnosed with MASLD and 770,180 control participants,
all of European ancestry. This analysis incorporated data from four
large-scale cohorts: the Electronic Medical Records and Genomics
(eMERGE) network, UK Biobank, FinnGen, and the Estonian
Biobank. All contributing cohorts applied study-specific genotyping,
imputation, and quality control, and phenotype definitions were
standardized within each electronic health record environment.
Institutional approvals and informed consent procedures followed
the original publications. Because only summary statistics were
available, no additional clinical, laboratory, imaging, or histologic
criteria beyond billing codes could be uniformly applied across cohorts.

2.3 Proteome-wide association studies

Proteins, as the final products of gene transcription, play central
roles in the initiation and progression of MASLD. To systematically
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evaluate the relationship between circulating proteins and MASLD, we
applied PWAS, conducted via the FUSION framework (http://
gusevlab.org/projects/fusion), as illustrated in Figure 1. Initially, the
SNP-based heritability for 2,004 SOMAmer protein measurements was
calculated using the restricted maximum likelihood REML approach
implemented in the GCTA software package (21). Among them, 1,345
proteins demonstrated significant cis-heritability (P < 0.01), indicating a
genetic basis for plasma abundance variation. Next, FUSION was
utilized to model the influence of SNPs on protein levels, employing
both topl and elastic net (enet) modeling strategies. The optimal model
for each protein was selected based on its predictive accuracy for protein
expression. These models were then used to integrate summary-level
genetic associations from GWAS datasets of R11 MASLD and the
broader MASLD cohort, combining Z-scores of SNP associations with
protein prediction weights across loci to conduct the PWAS (22).
Multiple testing correction was performed using the Benjamini-
Hochberg procedure, and associations were considered statistically
significant if the adjusted p-value was less than 0.05.

2.4 Protein interaction network and
functional enrichment analyses

To gain deeper insight into the biological relevance of the
proteins identified in the PWAS, we conducted PPI network
analysis. Functional associations among these proteins were
retrieved using the STRING database (https://string-db.org), with
interaction pairs exhibiting a combined confidence score above 0.4
considered to be statistically meaningful. The resulting interaction
network was visualized using Cytoscape (version 3.10.3). To detect
densely interconnected protein clusters within the network, we
applied the Molecular Complex Detection (MCODE) plugin in
Cytoscape using default parameters. Key regulatory proteins, or hub
genes, were prioritized based on network centrality measures,
specifically betweenness, utilizing the cytoHubba algorithm.

Additionally, we used the DAVID online platform (https://
davidbioinformatics.nih.gov/summary.jsp) to perform Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis on proteins significantly associated with
the phenotype (p < 0.05). The GO framework, commonly utilized in
bioinformatics, was applied to classify gene products into three main
categories: biological processes (BP), molecular functions (MF), and
cellular components (CC). To explore potential biological pathways,
KEGG analysis was employed, offering curated molecular datasets that
facilitate the identification of relevant signaling and metabolic pathways
based on gene enrichment. Visualization of enrichment results was
conducted using the “ggplot2” package in R (version 4.2.1). Statistical
significance was defined as a p-value less than 0.05.

2.5 Mendelian randomization analyses

To further validate the potential causal links between plasma
proteins and MASLD susceptibility, we conducted MR analyses
utilizing SNPs associated with significant proteins identified from
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FIGURE 1

Summary of research framework and analytical approach. The study commenced with PWAS, utilizing the FUSION platform to explore the genetic
links between cis-regulated circulating protein levels and the risk of MASLD, using both the FinnGen R11 dataset and the meta-analyzed MASLD
GWAS dataset for discovery and validation, respectively. Subsequently, genes identified through PWAS were subjected to protein-protein interaction
(PPI) network construction and functional enrichment analysis to uncover potential biological pathways. To move from association to causation, we
applied MR to the significant proteins discovered in the PWAS phase. SNPs that fulfilled instrumental variable (IV) assumptions—such as relevance,
independence, and exclusivity—were selected and evaluated for robustness through sensitivity testing, heterogeneity assessment, and pleiotropy
diagnostics. Both the inverse variance weighted (IVW) method and MR-Egger regression were employed for causal inference. Furthermore, to
investigate whether shared causal variants underlie changes in both protein abundance and MASLD susceptibility, Bayesian colocalization analysis
was conducted on cis-pQTLs in both the discovery cohort (R11 MASLD) and the validation cohort (replicated MASLD GWAS dataset). Finally, tissue-
level validation was conducted by H&E staining and NCAN immunohistochemistry using liver specimens from healthy controls (n=5) and MASLD

patients (n=5). PWAS: proteome-wide association study; MASLD: metabolic dysfunction-associated steatotic liver disease; MR: Mendelian
Randomization; IV: instrumental variable; MAF: minor allele frequency; H&E: hematoxylin and eosin staining; IHC: immunohistochemistry.

the PWAS as IVs, applied separately to the discovery cohort and the
validation cohort, as outlined in Figure 1. To ensure sufficient
statistical power and include an adequate number of variants, the
threshold for SNP inclusion was relaxed to a p-value less than 1 x 10°
®. We also applied clumping procedures using a 1 Mb window,
retaining only independent variants by excluding those in linkage
disequilibrium (r* > 0.01) (23). To minimize weak instrument bias,
the strength of the selected SNPs was assessed by calculating F-
statistics, using the formula: F = R*x (N -k —1)/[(1 - R?) x k], where
R? indicates the proportion of variance explained. An F-statistic
greater than 10 is generally considered acceptable (24), and in our
study, all selected IVs had F-statistics exceeding 20, indicating robust
instrument strength. To estimate the genetic effect of plasma proteins
(exposures) on MASLD risk (outcomes), we applied the Wald ratio
method for single-SNP IVs and inverse variance weighted (IVW)
regression for multiple IVs, conducting separate analyses for the
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discovery dataset and the validation dataset. Additionally, MR-Egger
regression was used as a sensitivity analysis to detect directional
pleiotropy, with the intercept serving as an indicator—deviation from
zero suggesting potential horizontal pleiotropic effects. Heterogeneity
among IVs was evaluated using the Q-statistic from the IVW model.
Leave-one-out analysis was also performed to assess whether any
individual SNP unduly influenced the MR results. All statistical
procedures were executed using established MR analysis packages
in R, including “TwoSampleMR,” and “MendelianRandomization.”
Correction for multiple comparisons was applied using the
Benjamini-Hochberg procedure, and an adjusted p-value less than
0.05 was considered statistically significant. Only cis-pQTL
instruments (+ 1 Mb) were used; no trans IVs were included. The
ARIC pQTL cohort and MASLD GWAS sources were assembled
independently, with no intentional sample overlap; any inadvertent
overlap is expected to be minimal.
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2.6 Bayesian colocalization analyses

To evaluate whether a single genetic variant could
simultaneously influence protein levels and MASLD risk, we
implemented Bayesian colocalization analysis separately for two
GWAS datasets: the discovery cohort and the validation cohort.
Analyses were performed using the R package “coloc” (version
4.2.1) under default prior settings (p1 = 1 x 107 p2 = 1 x 107%
p12 =1x 107°) (25). In this context, p1 denotes the prior probability
that a given variant is linked to MASLD; p2 refers to the prior for
protein-related associations; and p12 reflects the prior probability
that the same variant is involved in both phenotypes. Using GWAS
summary statistics, the Approximate Bayes Factor was computed to
generate posterior probabilities (PP) for five distinct hypotheses:
HO: the variant has no effect on either trait (PP0); H1: the variant is
associated only with MASLD (PP1); H2: the variant is only linked to
protein expression (PP2); H3: two different variants independently
affect the protein and disease traits (PP3); H4: a single variant exerts
shared influence on both protein levels and disease-related
phenotypes (PP4). In this study, we defined colocalization solely
by PP4: signals with PP4 > 0.8 were designated primary
(colocalized) protein targets. Signals with 0.5 < PP4 < 0.8 were
labeled secondary (suggestive), prioritized for follow-up and not
used to support causal or therapeutic claims. All others were
considered tertiary (not colocalized/low priority) (26). To
safeguard against low power, we used PP3+PP4 > 0.8 only as a
screening indicator to flag regions where both traits show
association (27), but classification was based on PP4 alone.

2.7 H&E staining and
immunohistochemistry

To further assess NCAN expression in liver tissues, five liver
specimens from healthy controls and five pathologically confirmed
MASLD patients were collected from Qianjiang Central Hospital of
Chonggqing. All procedures were approved by the hospital’s
Institutional Ethics Committee (Approval No. QJZXYY-2025-
008), and written informed consent was obtained from all
participants. Tissue samples were fixed in 4% paraformaldehyde,
routinely embedded in paraffin, sectioned at 4-um thickness, and
subjected to hematoxylin and eosin (H&E) staining and
immunohistochemistry (IHC).

For THC, the sections were deparaffinized in xylene, rehydrated
through a graded ethanol series, and subjected to heat-induced
antigen retrieval in citrate buffer (pH 6.0). Endogenous peroxidase
activity was blocked with 3% hydrogen peroxide, followed by
overnight incubation at 4°C with a primary anti-NCAN antibody
(1:200; Affinity biosciences). The next day, sections were incubated
with secondary antibody for 1 hour, developed using DAB,
counterstained with hematoxylin, dehydrated, and mounted.
Images were captured under a light microscope.

Quantitative assessment of NCAN immunostaining was
performed using Image]J software. Three to five randomly selected
fields per section were analyzed to calculate the positive staining
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area (% Positive Staining Area) and integrated optical density
(IOD), allowing for the comparison of NCAN expression between
the two groups.

3 Results

3.1 Associations of plasma proteins with
MASLD

In the discovery cohort (R11 MASLD), we identified three genes
(NCAN, EPHA2, and APOE) whose cis-regulated plasma protein
levels were significantly associated with MASLD risk, as determined
by PWAS (FDR < 0.05; Figure 2A; Supplementary Table S1). To
further validate these associations, we performed a replication
analysis using an independent MASLD GWAS dataset. In this
validation analysis, only NCAN remained significantly associated
with MASLD (FDR < 0.05; Figure 2B; Supplementary Table S2).
Specifically, higher genetically predicted plasma levels of NCAN
were consistently associated with a lower risk of MASLD in both
cohorts (Z-score = -8.424, p = 3.64 x 10-' in the discovery cohort;
Z-score = -6.742, p = 1.56 x 10-'! in the validation cohort), as
summarized in Table 1. By contrast, EPHA2 showed a significant
inverse association with MASLD only in the discovery cohort (Z-
score = -4.525, p = 6.04 x 10°%), but this association did not replicate
in the validation analysis due to lack of statistical significance
(Table 1). Similarly, APOE abundance predicted by the enet
model was significantly associated with reduced MASLD risk in
the discovery dataset (Z-score = -3.963, p = 7.41 x 10°), yet failed to
achieve significance in the validation cohort (Table 1). All
associations in the discovery phase passed multiple testing
correction (FDR < 0.05).

To elucidate the functional implications of genes identified
through PWAS (p < 0.05), we performed GO and KEGG
enrichment analyses. In the GO-BP category, the genes were
predominantly enriched in pathways related to signal
transduction, cell adhesion, inflammatory responses, and
regulation of cell proliferation (Supplementary Figure S1A). These
findings suggest that the associated proteins may influence MASLD
development by modulating immune activation, intercellular
communication, and tissue remodeling. In the GO-CC analysis,
the genes were mainly localized to the plasma membrane,
extracellular region, exosomes, and cell surface (Supplementary
Figure S1B). The GO-MF terms were enriched for identical
protein binding, calcium ion binding, and heparin binding
(Supplementary Figure S1C). KEGG pathway analysis revealed
that the identified genes were significantly involved in cytokine-
cytokine receptor interactions and the JAK-STAT signaling cascade
(Supplementary Figure S1D). These pathways are well-known
regulators of immune function and inflammation. To further
investigate the interplay among these proteins, we constructed a
PPI network using the STRING database, which comprised 45
nodes and 57 edges (Supplementary Figure S2A). This network
illustrates a coordinated regulatory architecture potentially
underlying the observed genetic associations. Using the MCODE
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FIGURE 2

Visualization of PWAS Results for the discovery cohort and the validation cohort. The Manhattan plots summarizing the PWAS findings for the
discovery cohort (A) and the validation cohort (B) are presented in panels A and B, respectively. Genes represented by red dots above the dashed
line correspond to those surpassing the FDR threshold of 0.05. PWAS, proteome-wide association study; Chr, chromosome.

plugin in Cytoscape, three distinct modules with high intra-
connectivity were identified within the network, with MCODE
scores 23 and the top module scoring >4 (Supplementary Figures
S2B-D). Additionally, key hub genes were identified using the
Betweenness algorithm implemented in the cytoHubba tool. The
top ten hubs—APOE, EFNB2, KNGI1, NRP1, PF4, F10, EPHA2,
GPT, PLXNDI, and NLGN2—likely represent central regulators
within the MASLD-related protein network (Supplementary
Figure S2E).

3.2 Causal associations of identified
proteins by PWAS with MASLD

To investigate potential causal links between plasma proteins and
susceptibility to MASLD, we extracted pQTLs and conducted MR
analyses. In the case of the discovery cohort, the IVW method identified
two (NCAN, EPHA2) out of three PWAS-prioritized genes as having
statistically significant causal relationships with disease risk after
multiple testing correction (FDR < 0.05; Figure 3; Supplementary
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Tables S3-4). In addition, in the validation cohort, MR analysis using
the IVW method confirmed a significant causal association between
NCAN and MASLD risk (FDR <0.05, Figure 3; Supplementary Tables
S3, S5). EPHA2, however, lacked sufficient valid instrumental variables
in this dataset and was therefore excluded from MR analysis.

As shown in Figure 3 and Table 1, the NCAN gene demonstrated a
consistent and statistically significant causal association with MASLD
risk in both the discovery cohort (OR = 0.441, FDR = 5.35 x 10°) and
the validation cohort (OR = 0.631, FDR = 1.20 x 10). While EPHA2
was significantly associated with MASLD risk in the discovery cohort
(OR = 0.769, FDR = 2.28 x 10, no valid instrumental variables were
available for this gene in the validation cohort and it was therefore
excluded from the corresponding MR analysis.

3.3 Shared causal variants of proteins and
MASLD

To evaluate the likelihood that the same causal variant
influences both protein expression and susceptibility to MASLD,
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TABLE 1 Summary of PWAS-identified genes significantly associated with MASLD in the discovery and validation cohorts.

Z-score/OR/

Discovery cohort

Validation cohort

PP4 Statistical P-value Statistical P-value
estimates estimates
Z-score in PWAS -8.424 3.64x107 4.82x10™* -6.742 1.56x107" 2.00x107®
OR (95% CI) i
NCAN ( M(l;\ ) in 0.441(0.328-0.593) 5.88x10° 5.35x107° 0.631(0.551-0.721) 1.56x1071! 1.20x10”
PP4 in
. 0.110 - - 0.0002 - -
colocalization
Z-score in PWAS -4.525 6.04x10° 4.00x107° -1.779 7.52x107 7.51x10"!
OR (95% CI) in 0.769(0.649-0.910) 2.25x107 2.28x1072
EPHA2 MR : : ’ ’ :
PP4 in
o 0.971 - - - _ _
colocalization
Z-score in PWAS -3.963 7.41x10°° 3.27x1072 -3.132 1.74x107° 3.95x10™
OR (95% CI) i
APOE ( M; ) in 0.730(0.253-2.105) 5.60x10™" 5.93x10™" 0.878(0.383-2.009) 7.58x10™ 5.83x10°"
PP4 in
. 0.144 - - 0.016 - -
colocalization

PWAS, proteome-wide association study; MASLD, metabolic dysfunction-associated steatotic liver disease; MR, Mendelian Randomization; OR, odds ratio; CI, confidence interval; FDR, false
discovery rate; PP, posterior probability.

Bayesian colocalization analyses were conducted for proteins
identified as significant in the PWAS. Using PP4 > 0.8 as the
prespecified threshold, EPHA2 meets the colocalization criterion in

that each region harbors association signals for both traits even
though a shared causal variant (PP4) is not supported at current
power. We therefore interpret NCAN and APOE as suggestive,
the discovery cohort (PP4 = 0.971) (Table 1; Figure 4), supporting a
shared causal variant at this locus. By contrast, NCAN (PP4 = 0.110
in discovery; 0.0002 in validation) and APOE (PP4 = 0.144 in
discovery; 0.160 in validation) fall below the colocalization

hypothesis-generating signals.

3.4 H&E staining and NCAN IHC results
threshold; however, both loci showed high joint association
probabilities (PP3+PP4 > 0.8)—NCAN had PP3+PP4 = 1.000 in
both datasets and APOE had PP3+PP4 = 0.992 in validation
(Supplementary Table S6; Supplementary Figure S3)—indicating

H&E staining revealed that hepatocytes in normal liver tissues
were arranged in a regular pattern with intact architecture, whereas
MASLD tissues exhibited marked steatosis, ballooning

Gene NSNP PVE (%) OR (95% CI) Forest plot p value FDR LOO test p for Egger
Discovery cohort i
NCAN 2 0.033 0.441 (0.328-0.593) e E 5.88x10%  5.35x10° Yes NA
1
EPHA2 7 0.118 0.769 (0.649-0.910) e E 2.25x10°  2.28x107? Yes 3.83x10!
APOE 2 0.010 0.730 (0.253-2.105) i i 5.60x10"  5.93x10! Yes NA
Validation cohort i
1
NCAN 1 0.030 0.631 (0.551-0.721) gl E 1.56x10"" 1.20x10° Yes NA
APOE 2 0.010 0.878 (0.383-2.009) l—OE—i 7.58x10"  5.83x107! Yes NA
1
0.5 1.0 15 2.0
FIGURE 3

Forest plot for the MR results in the discovery cohort and the validation cohort. Estimates were derived using the IVW method. Statistical significance
was defined as FDR < 0.05. p for Egger refers to the intercept p-value from MR-Egger regression, used to evaluate the presence of directional
pleiotropy. NSNP, number of single nucleotide polymorphism; MR, Mendelian Randomization; OR, odds ratio; Cl, confidence interval; PVE,
proportion of variance explained; LOO, leave one out; NA, not available.
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[llustration of the colocalization results in the discovery cohort. The significant colocalization results for the discovery cohort are presented, where
regional association plots depict the alignment between genetic signals for MASLD risk and cis-pQTL associations at the EPHA2 loci. Chr,

chromosome.

degeneration, and inflammatory cell infiltration (Figures 5A, B).
Immunohistochemical analysis showed moderate brown
cytoplasmic staining of NCAN in normal liver tissues, while the
NCAN-positive signal was markedly attenuated in MASLD tissues
(Figures 5C, D), consistent with the proteomic findings. Semi-
quantitative analysis further demonstrated that both the
percentage of NCAN-positive staining area and the integrated
optical density were significantly lower in MASLD tissues than in
normal tissues (p < 0.01; Figures 5E, F; Supplementary Table S7),
indicating a substantial downregulation of NCAN expression in
MASLD. Sample information is provided in Supplementary
Table S8.

4 Discussion

In this research, we integrated plasma protein pQTL data with
GWAS results for MASLD to investigate potential functional
relationships. Our findings from the R11 MASLD discovery
cohort identified three significant proteins—NCAN, EPHA2, and
APOE—whose genetically predicted plasma levels were associated
with MASLD risk. Among these, NCAN demonstrated the
strongest and most consistent signal, which was successfully

Frontiers in Endocrinology

replicated in the validation cohort. In contrast, the associations
for EPHA2 and APOE did not reach significance in the validation
analysis. Moreover, MR analyses provided additional causal support
for the involvement of NCAN in both conditions. Bayesian
colocalization analysis provided suggestive evidence of regional
overlap at the NCAN locus for plasma protein levels and MASLD
risk in both datasets. Taken together, these results strongly suggest
that NCAN plays a causal and protective role in MASLD.

Given its consistent and robust associations across both the
discovery cohort and the validation cohort, NCAN likely plays a
pivotal role in the pathogenesis of hepatic injury. The NCAN locus
spans approximately 500 kb on chromosome 19p13 and
encompasses at least 20 genes (28). It encodes neurocan, a
chondroitin sulfate proteoglycan primarily implicated in cell
adhesion and migration within the nervous system (29, 30).
Traditionally, NCAN was thought to influence metabolic
regulation predominantly through its effects in the central
nervous system (CNS), which plays a critical role in peripheral
glucose and lipid homeostasis (31). However, subsequent studies by
Nischalke et al. (32) revealed that NCAN is also expressed in hepatic
tissue, suggesting a broader physiological relevance. Further
research identified the SNP rs2228603 within NCAN, which
results in a proline-to-serine substitution at position 92. This
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FIGURE 5

Histological and immunohistochemical analysis of liver tissues from normal and MASLD patients. (A) Representative HGE-stained section of normal
liver showing intact hepatic architecture. (B) H&E staining of MASLD liver tissue demonstrating marked steatosis with numerous lipid droplets.

(C) IHC for NCAN in normal liver tissue showing strong cytoplasmic staining. (D) IHC for NCAN in MASLD liver tissue indicating markedly reduced
expression. (E) Quantification of the positive staining area (%) for NCAN in normal and MASLD tissues. (F) Quantification of IOD for NCAN in normal

and MASLD tissues. ****P < 0.0001 versus the normal group.

variant has been strongly associated with alterations in plasma low-
density lipoprotein and triglyceride levels (33). Gorden et al. (29)
also demonstrated that the rs2228603[T] allele constitutes a risk
factor for hepatic inflammation and fibrosis, indicating its potential
role in the progression from simple steatosis to steatohepatitis.
However, MR analyses have not consistently confirmed a causal
relationship. In our current study, we observed that higher plasma
NCAN levels were causally associated with a reduced risk of
MASLD, with the effect being driven by a cis-acting variant near
NCAN. These findings highlight NCAN as a potentially important
factor in the pathogenesis of MASLD. Nevertheless, contrasting
evidence exists: for instance, Wu et al. (31) reported that NCAN
rs2228603 was not a risk factor for MASLD incidence in the
Chinese population. Moreover, they found that the T allele
exhibits a dual role — providing hepatic protection by elevating
high-density lipoprotein levels while simultaneously increasing the
risk of liver damage via elevated alkaline phosphatase levels.
Similarly, Lin et al. (34) demonstrated that NCAN was not a risk
gene for MASLD in obese Taiwanese children. These discrepancies
suggest a potential population-specific effect and underscore the
need for further investigation into the context-dependent role of
NCAN in MASLD development.

Moreover, our MR indicates that genetically proxied higher
plasma NCAN associates with lower MASLD risk, whereas THC
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shows reduced hepatic NCAN in MASLD. These findings are not
mutually exclusive once compartment biology is considered. NCAN
is a lectican-type chondroitin-sulfate proteoglycan embedded in the
extracellular matrix (ECM) that undergoes proteolytic processing
by ADAMTS family proteases, generating soluble fragments
detectable in circulation (35, 36); by contrast, IHC predominantly
reflects ECM-bound pools and is epitope-dependent. Accordingly,
plasma and tissue readouts may track related but distinct
proteoforms/compartments that move in the same direction yet
differ in magnitude across disease stages. In addition, the
SOMAmer-based platform quantifies epitope-specific proteoforms
(37), whereas IHC may recognize a different epitope, reinforcing the
need for proteoform-resolved validation. For these reasons, we
avoid inferring that hepatic downregulation per se is causal in the
same direction as the plasma association. Further experimental
validation is warranted.

Our study found that EPHA?2 in plasma is associated with a lower
risk of MASLD. EPHA2, a member of the Eph receptor tyrosine
kinase family, plays a crucial role in mediating cell-cell
communication, and is involved in various biological processes
including cell migration, proliferation, and angiogenesis (38). It is
widely expressed in hepatic tissue and other organs (39). Consistent
with our findings, Li et al. (40) recently identified EPHA2 as a
candidate gene for MASLD susceptibility through an enhancer-
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gene regulatory map of the liver, highlighting non-coding SNPs
located in active regulatory regions that are linked to EPHA2
expression. However, in contrast to our observations, Pearson-
Gallion et al. (41) reported that EphA2 knockout mice fed a high-
fat diet developed significantly less hepatic steatosis and
inflammation than wild-type controls, suggesting that excessive or
dysregulated EPHA?2 signaling may exacerbate MASLD progression.
Notably, our findings revealed an inverse association between
circulating EPHA?2 protein levels and MASLD risk, which appears
contradictory to the pro-steatotic role observed in preclinical models.
This discrepancy may be attributed to the context-dependent and
compartment-specific function of EPHA2: while tissue-localized,
ligand-independent activation of EPHA2 may promote hepatic
inflammation and fibrosis, higher levels of EPHA2 in circulation
could reflect a compensatory or protective systemic signaling state, or
alternatively, reduced hepatic EPHA2 activation. Moreover, plasma
EPHA2 may serve as a biomarker for favorable metabolic or immune
status rather than a direct mediator of disease risk. These
observations underscore the complexity of EPHA2’s role in liver
pathophysiology and highlight the need for further studies to dissect
its tissue-specific functions and regulatory mechanisms in MASLD.

Our study found that plasma APOE levels are associated with a
lower risk of MASLD, suggesting a potentially protective role of
APOE in regulating hepatic lipid accumulation. APOE is a liver-
derived apolipoprotein involved in both the assembly and clearance
of very low-density lipoproteins, playing a key role in maintaining
plasma triglyceride levels and lipid homeostasis (42). Beyond its role
in lipid metabolism, APOE also exhibits anti-inflammatory and
antioxidant properties, which may contribute to liver health
through non-lipid-related mechanisms (43). Consistent with our
findings, multiple studies in ApoE™ mice have demonstrated that
the absence of APOE exacerbates MASLD progression, particularly
under high-fat diet conditions (43-46). The inverse association
observed in our study between circulating APOE levels and MASLD
risk may therefore reflect APOE’s protective functions in
maintaining hepatic lipid balance and mitigating liver injury.
Notably, MASLD is a heterogeneous, multi-factorial disorder, so a
single protein is unlikely to constitute a stand-alone therapy. Our
genetics-anchored signals (e.g., NCAN, EPHA2, APOE) should be
viewed as hypothesis-generating candidates rather than established
targets. Concurrently, work by Moliterni et al. (47) also supports a
pathway- and network-level interpretation of dyslipidaemia.
Finally, because hepatic lipid handling and inflammatory tone are
under circadian control, time-of-day effects may also modulate
circulating proteins and MASLD biology (48, 49).

This study possesses several notable strengths alongside certain
limitations. One major advantage lies in the application of PWAS
methods to identify novel protein targets related to MASLD,
utilizing the most extensive and detailed plasma pQTL dataset
available, alongside GWAS data encompassing approximately
500,000 individuals. Furthermore, MR analysis was conducted to
strengthen the inference of causality between the identified proteins
and MASLD. To further evaluate whether shared causal variants
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underlie both protein expression and disease phenotypes, Bayesian
colocalization analysis was employed, ultimately confirming NCAN
as a likely pathogenic factor for MASLD. Collectively, these rigorous
approaches enhance the robustness and reliability of our findings.

Nevertheless, several limitations should be acknowledged. First,
although the pQTL study profiled 4,483 plasma proteins, the
SOMAmer-based detection platform does not capture the entirety of
the plasma proteome. As a result, proteins not covered by this assay
may also contribute to MASLD susceptibility and progression, but
remain unexamined in this study. Second, our analyses were restricted
to individuals of European ancestry. While this design minimizes
potential confounding due to population stratification, it also restricts
the applicability of the results to other ethnic groups. Future research
involving diverse populations and larger sample sizes will be essential to
validate and extend these findings. Third, case ascertainment relied on
administrative ICD codes rather than uniform imaging, biopsy, or
laboratory criteria across cohorts. This approach enables large-scale
analyses but can introduce residual phenotype misclassification and
cross-cohort heterogeneity, potentially attenuating true associations or
inflating uncertainty. Lastly, Changes in plasma protein levels may
reflect compensatory responses, shedding/clearance dynamics, tissue
redistribution, or disease activity and therefore do not, by themselves,
establish druggability or causality. Accordingly, our protein findings are
hypothesis-generating and require follow-up validation, such as
pathway-level mechanistic studies in liver-relevant cell and
animal models.

5 Conclusion

In summary, this study identified three plasma proteins—
NCAN, EPHA2, and APOE—that were significantly associated
with MASLD risk in the discovery cohort. Among them, NCAN
demonstrated the strongest and most consistent evidence, with
replication in an independent validation dataset. MR analyses
supported a causal relationship between NCAN and MASLD risk,
and Bayesian colocalization further provided suggestive regional
overlap linking plasma NCAN protein levels to disease
susceptibility. These findings highlight NCAN as a promising
therapeutic target for MASLD.
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