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Background: The causal role of cellular senescence in preeclampsia
pathogenesis is not fully established. This study aimed to systematically
prioritize key senescence-related genes potentially driving preeclampsia using
a Mendelian randomization (MR) framework.

Results: We integrated genome-wide association studies (GWAS) of
preeclampsia with expression, methylation, and proteomic quantitative trait
loci (eQTLs/mQTLs/pQTLs) data for 866 senescence-related genes. Summary-
data-based MR (SMR) coupled with the HEIDI (Heterogeneity in Dependent
Instruments) test were used to assess causal associations and pleiotropy.
Colocalization analysis evaluated shared genetic variants between QTLs and
preeclampsia GWAS signals. Significant MR findings were explored for replication
in an independent GWAS cohort (GCST90301704). Preliminary experimental
support involved RT-PCR analysis of candidate genes in placental tissues from
10 preeclampsia patients and 5 gestational age-matched (34-38 weeks) healthy
controls. Integration of SMR/HEIDI tests and colocalization (PPH4 > 0.5)
prioritized 12 eQTLs, 62 mQTLs, and 2 pQTLs linked to preeclampsia. mQTL-
eQTL analysis implicated methylation-requlated expression of ATG16L1, PMVK,
and MAP3K14, offering valuable hypotheses for mechanistic studies.
Conclusion: Placental RT-PCR showed upregulated ATGI16L1 and
downregulated PMVK, MAP3K14, NSUN2, and CDC25A in preeclampsia. Key
genes (ATG16L1, PMVK, MAP3K14, NSUNZ2, CDC25A) link cellular senescence to
preeclampsia, offering insights for mechanistic studies and therapeutic targeting.

preeclampsia, cellular senescence, Mendelian randomization, colocalization analysis,
gene expression, DNA methylation
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Introduction

Preeclampsia, a pregnancy-specific hypertensive disorder
affecting 2-8% of pregnancies globally (1), is a major contributor
to maternal mortality, accounting for approximately 18% of direct
maternal deaths (2). Characterized by new-onset hypertension and
potential damage to vital organs like the liver and kidneys (3), the
prevalence and severity of preeclampsia underscore the urgent need
to understand its underlying causes. Despite extensive research, the
precise mechanisms driving its development remain elusive,
hindering the development of effective early diagnostic tools and
curative treatments beyond delivery (2).

Among the factors that may contribute to the pathogenesis of
preeclampsia, cellular senescence has gained increasing attention.
Characterized by permanent cell cycle arrest (4), cellular senescence
has been implicated in various pregnancy-related complications,
including preeclampsia (5). Abnormal expression of cellular
senescence biomarkers is observed in the placentas and peripheral
blood of preeclampsia patients. Moreover, elevated activity of cell
cycle inhibitors not only induces cell cycle arrest but also promotes
senescence (5), while reduced expression of senescence-suppressing
factors further exacerbates the process (6). Furthermore, elevated
circulating levels of senescence-associated secretory phenotype
(SASP) factors (7), upregulated SASP gene expression in
placentas from pregnancies complicated by preeclampsia and fetal
growth restriction (FGR) (8), and links between placental lactate
accumulation, histone lactylation, and premature trophoblast
senescence (9) suggest that these interconnected biological
processes may play a pathogenic role in the development of
preeclampsia and FGR. However, much of the current evidence
stems from observational or single-omics association studies,
limiting the ability to establish causal relationships between
specific senescence-related genes and preeclampsia development.
Establishing causality is crucial for understanding disease
mechanisms and identifying targeted interventions.

To address this challenge, our study employs a Mendelian
Randomization (MR) framework, leveraging multi-omics data
through the Summary-data-based Mendelian Randomization
(SMR) approach. SMR integrates summary statistics from large-
scale Genome-Wide Association Studies (GWAS) with molecular
quantitative trait loci (QTL) data (e.g., expression QTLs - eQTLs,
methylation QTLs - mQTLs, protein QTLs - pQTLs) to infer
potential causal associations between molecular traits and disease
risk (10). By using genetic variants robustly associated with
molecular traits as instrumental variables (IVs), MR mimics a
randomized controlled trial design, thereby minimizing biases
from confounding and reverse causation that often affect
observational studies. We incorporated the HEIDI (Heterogeneity
in Dependent Instruments) test to detect potential horizontal
pleiotropy (where a genetic variant affects the outcome via
pathways independent of the exposure) (11) and colocalization
analysis to assess whether identified associations between QTLs and
preeclampsia GWAS signals are likely driven by shared causal
variants, strengthening biological plausibility (12). This
multidimensional analytical strategy overcomes the limitations of

Frontiers in Endocrinology

10.3389/fendo.2025.1661666

traditional single-omics research, offering a more comprehensive
perspective for deciphering the molecular mechanisms of
complex diseases.

Given the evidence linking cellular senescence to preeclampsia,
we used a hypothesis-driven approach to deeply investigate this
specific biological pathway. This method complements broader
genome-wide screens by offering targeted insights into potential
causal factors within the senescence network. Therefore, this study
aims to systematically screen for and prioritize cellular senescence-
associated genes with potential causal effects on odds of
preeclampsia using the SMR methodology. By identifying
potentially causal genes, our findings aim to provide a data-
driven foundation of prioritized candidates for developing new
biomarkers and therapeutic targets.

Materials and methods
Study design

This study employed a multi-stage design to investigate the role
of cellular senescence genes in preeclampsia. Initially, a
comprehensive Mendelian Randomization (MR) analysis was
conducted using publicly available summary-level data to identify
potential causal links between genetically predicted molecular traits
(gene expression, DNA methylation, protein abundance) related to
866 senescence genes and odds of preeclampsia. Subsequently, the
expression of candidate genes prioritized from the MR findings
were characterized using RT-PCR analysis of human placental
tissues collected from preeclampsia patients and healthy controls.
The MR component of the study was designed and reported
following the Strengthening the Reporting of Observational
Studies in Epidemiology using Mendelian Randomization
(STROBE-MR) guidelines (13). The design and analytical strategy
of the study are presented in Figure 1.

Data sources

A total of 866 genes associated with cell senescence were sourced
from the CellAge database (https://genomics.senescence.info/cells/)
(14). For the identification of genetic variants associated with
preeclampsia, we utilized summary GWAS data from two distinct
cohorts. The discovery set was sourced from the FinnGen RI10
cohort (finngen_R10_O15_PREECLAMPS), which included 7,377
cases and 211,957 controls of European ancestry (15). In the
discovery cohort, preeclampsia was defined using the ICD-10
(International Statistical Classification of Diseases and Related
Health Problems, 10th Revision) code O14. Validation was
performed using dataset from the GWAS Catalog database
(GCST90301704), comprising 1,728 cases and 192,399 controls of
European ancestry, in which preeclampsia was defined as
participants who self-reported having PE (code 1073 in Data-
Field 20002) or had ICD-10 diagnostic codes O11, 012.0-012.2,
013-014.1, 014.9, and 015.0-015.9 (16).
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A total of 866 cell senescence-related genes from CellAge database
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FIGURE 1

Study design flow chart. This diagram outlines the key stages of the study, including the selection of senescence-related genes, acquisition of GWAS
summary statistics for preeclampsia and multi-omics QTL data (eQTLs, mQTLs, pQTLs), the Mendelian Randomization analysis pipeline (SMR, HEIDI,
Colocalization), and subsequent experiments (replication in an independent GWAS cohort and differential expression analysis in placental tissues)

Blood eQTL summary data were obtained from the eQTLGen
consortium, encompassing genetic and gene expression data from
31,684 individuals of European ancestry (17). Blood mQTL
summary data were obtained from a meta-analysis of two
European cohorts: the Brisbane Systems Genetics Study with 614
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participants and the Lothian Birth Cohorts with 1,366 participants
(11). Blood pQTL summary data were obtained from the study by
Pietzner et al. (18), including data from 10,708 European
individuals. The detailed information for all the datasets used in
this study were listed in Supplementary Table S1.
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We utilized tissue-specific expression eQTL data from the
GTEx database (v8 release), covering 838 donors and 17,382
samples across 52 tissues and two cell lines (19). Given that
placental tissue is unavailable in GTEXx, the uterus was selected as
the most relevant maternal tissue for this analysis. Uterine eQTL
data can potentially reflect the influence of maternal genetic factors
on preeclampsia via the uterine environment. Therefore, we focused
on uterus tissue for tissue-specific analyses.

SMR analysis

We employed the Summary-data-based Mendelian
Randomization (SMR) method, implemented in the SMR software
(v1.3.1), to test for causal associations between the blood QTLs (eQTLs,
mQTLs, pQTLs) and preeclampsia (10). SMR uses the top cis-QTL
associated with a molecular trait (gene expression, methylation probe,
protein level) as an instrumental variable (IV). We selected the
strongest cis-QTL (lowest two-sided P-value, P < 5 x 10°®) within a
1 Mb window ( + 1,000 kb) of the target gene/probe as the primary IV
for each trait. Statistical power was carried out using an online web tool
(http://glimmer.rstudio.com/kn3in/mRnd).

The HEIDI (Heterogeneity in Dependent Instruments) test was
applied to distinguish causality from linkage disequilibrium (LD)-
induced correlation (linkage) or horizontal pleiotropy (11). The
HEIDI test utilizes multiple SNPs in LD (0.05 < r* < 0.9) with the
top cis-QTL, with LD estimated from the 1000 Genomes Project
Phase 3 European population reference panel. Significant
heterogeneity (P-HEIDI < 0.01) suggests the association observed
in SMR might be due to pleiotropy or linkage rather than a direct
causal effect of the molecular trait on preeclampsia (20).

We also performed a multi-SNP SMR analysis, which
aggregates association signals from multiple, largely independent
cis-QTLs (P < 5 x 108, LD r? < 0.9 with the top SNP, if available) for
a given molecular trait to potentially enhance statistical power (21).
The SMR analysis leveraged high-quality summary statistics from
source studies that had already undergone rigorous quality control,
including filtering for imputation quality (INFO) and Hardy-
Weinberg equilibrium (HWE). Within the SMR pipeline, we
applied further standard filters: Associations were considered
potentially causal if they met the following criteria: P-SMR < 0.05
(for the top IV), P-SMR_multi < 0.05 (if multi-SNP analysis
applicable), and P-HEIDI > 0.01 (indicating no significant
heterogeneity). Standard quality control filters were applied: SNPs
with minor allele frequency (MAF) < 0.01 or ambiguous alleles were
excluded. SNPs with allele frequency discrepancies > 0.2 between
the GWAS and QTL datasets were removed, with a tolerance for up
to 5% of SNPs having such discrepancies (22).

To explore potential regulatory mechanisms, we performed
SMR analyses treating methylation levels (mQTLs) as the
exposure and gene expression levels (eQTLs) as the outcome. We
also investigated potential links between gene expression (eQTLs as
exposure) and protein abundance (pQTLs as outcome) (23).

To account for the large number of tests, we also applied the
Benjamini-Hochberg False Discovery Rate (FDR) correction within
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each omics layer. Given the exploratory nature of this study and the
expected modest effect sizes, we used the nominal two-sided P-value
for initial candidate screening but highlight the FDR results for
context and interpret all findings with caution.

Colocalization analysis

The colocalization analysis was conducted using the R package
‘coloc’ to evaluate the probability that cell senescence-related cis-
QTLs (eQTLs, mQTLs, pQTLs) and preeclampsia GWAS signals
share a common causal variant within a defined genomic region.
Colocalization suggests that the genetic association with the disease
phenotype might be mediated through the identified molecular trait
(e.g., gene expression). The ‘coloc’ method calculates posterior
probabilities (PP) for five hypotheses: HO (no association with
either trait), H1 (association only with trait 1 - QTL, H2
(association only with trait 2 - preeclampsia), H3 (association
with both traits, distinct causal variants), and H4 (association
with both traits, shared causal variant). Analysis was performed
on SNPs within 1 Mb windows centered on the top cis-QTL. The
prior probability P12 (prior probability of association with both
traits) was set to 5 x 107 (24). Following common practice, a
posterior probability PPH4 > 0.5 was considered suggestive
evidence of colocalization, while PPH4 > 0.8 was considered as
strong evidence of colocalization (25-28).

Two-sample MR analysis

SNPs significantly associated with the levels of candidate eQTL and
pQTL signals at a genome-wide level were screened with a threshold of
P < 1 x 10°. Then SNPs with a minor allele frequency (MAF) > 0.01
were selected. To reduce redundancy, linkage disequilibrium (LD)
among SNPs was excluded according to R2 < 0.3 within a 500 kb
window. Furthermore, F-statistics for these IVs were calculated using
the formula F = R2*(N-2)/(1-R2), of which R2 represents the
proportion of phenotypic variance explained by a single SNP and
N refers to sample sizes (29). SNPs exhibiting an F-statistic less than
10 were considered to be poor IVs and were therefore excluded (29).

A two-sample MR analysis (using multiple independent SNPs)
was executed between these curated IVs and odds of preeclampsia,
which complements SMR analysis (typically using the top cis-SNP).
We applied inverse variance weighting (IVW) (30), weighted
median (31), weighted mode (32) and MR-Egger (33) to calculate
the odds ratio and confidence interval, with IVW as the main
approach. The findings were presented through scatter plots
showcasing IV impacts on exposures and outcomes and forest
plots which illustrate SNP effect estimates. All results were
corrected for multiple testing using the Benjamini-Hochberg False
Discovery Rate (FDR) method.

To exclude pleiotropy, MR-Egger was utilized, where pleiotropy
was indicated if the intercept term is significant (34). Cochran’s Q
was utilized for heterogeneity identification among IVs (35).
Furthermore, MR-PRESSO and Radial MR were applied for
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outlier elimination and correcting for horizontal pleiotropy (34). In
addition, Steiger tests were incorporated to examine causal
directions (36). A leave-one-out approach was applied in the MR
analysis, where each SNP was sequentially omitted to evaluate its
individual impact on the overall causal inference. Funnel plots were
also generated to showcase the publication biases. All analyses were
executed in R version 4.3.1, utilizing the “T'wo-sample MR” and
“RadialMR” package.

Statistical software and visualization

All statistical analyses were conducted using R (v4.3.0).
Manhattan plots were generated using “ggplot2”, and forest plots
using “forestplot”. Locus and effect plots for SMR results were
generated using scripts adapted from Zhu et al. (20)
(SMRLocusPlot, SMREftectPlot).

Expression profiles of key genes

Differential expression analysis was performed on publicly
available GEO dataset GSE75010. Differential expression analysis
was conducted using the “limma” package, with significance set at a
Wilcoxon p-value < 0.05. Results were visualized using “ggplot2”.
Expression patterns of key genes were then investigated and
visualized in box plots. In addition, the clinical information was
extracted from this dataset: age (maternal age), BMI, and delivery
mode (including C-section and vaginal) to adjust the expressions of
key genes against these variables. For this purpose, the R package
glmnet was used. The results were presented in a forest plot.

Human placental tissue collection

To assess the differential expressions of candidate genes
prioritized by the MR analysis, placental tissue samples were
collected immediately after delivery. The cohort included 10
patients diagnosed with preeclampsia (PE) and 5 normotensive
control participants, matched for gestational age at delivery (34-38
weeks) and maternal age. Preeclampsia diagnosis adhered to the
2013 American College of Obstetricians and Gynecologists (ACOG)
criteria. Control participants had uneventful, normotensive
pregnancies. Exclusion criteria for both groups were: multiple
gestations, known major fetal congenital or chromosomal
abnormalities, pre-existing diabetes mellitus, significant chronic
maternal diseases potentially impacting pregnancy (e.g.,
autoimmune disorders, chronic renal disease), and clinical
evidence of chorioamnionitis. Ethical approval for sample
collection and analysis was granted by the Ethics Committee of
the Obstetrics and Gynecology Hospital of Fudan University (Ethics
No.: 2022-115). Written informed consent was obtained from all
participants prior to sample collection.
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Real-time PCR

Total RNA was extracted from placental tissues using Biozol
Reagent (Bioer Technology), followed by DNase treatment
(according to manufacturer’s protocol) to eliminate potential
genomic DNA contamination. RNA quality and concentration were
assessed using a Qubit 4.0 Fluorometer (Invitrogen) and visualized via
agarose gel electrophoresis. Reverse transcription was performed using
Hifair® IIT Reverse Transcriptase (Yeasen Biotechnology) with 800 ng
of total RNA input per reaction. qPCR reactions were conducted in
triplicate using SYBR Green Master Mix (Yeasen) on a LightCycler 480
IT system (Roche). Thermal cycling conditions were: initial
denaturation at 95 °C for 2min, followed by 40 cycles of 95 °C for
10 s and 60 °C for 30 s. Primer sequences were designed for target genes
(ATG16L1, PMVK, MAP3K14, NSUN2, CDC25A) and the reference
gene Beta actin Amplification efficiency and specificity were confirmed
using standard curves and melt curve analysis. Relative gene expression
was calculated using the 2—AACt method. The primer sequences
used were:

ATGI6L1 (Forward: AAGGAACCTCTACCAGTCGAACAG,
Reverse: TTAGTGGCTGCTCTGCTGATGG);

PMVK (Forward: CTGTTCAGCGGCAAGAGGAAATC,
Reverse: CGGAGGACAGCACAGACATCAG);

MAP3KI14 (Forward: CACAGGATGGAGGACAAGCAGAC,
Reverse: ACAAAGGGACAATTCTGGGTGAGG);

CDC25A (Forward: TGAGGATGATGGCTTCGTG,
Reverse: CGTTCTGGTCTCTTCAACACTG);

NSUN2 (Forward: TCGTCCATCAAGCCAAGAG,
Reverse: TTCTCATAGTGCCGTCTCCA);

Beta actin (Forward: GGCCAACCGCGAGAAGATGAC,
Reverse: GGATAGCACAGCCTGGATAGCAAC).

Statistical analysis for expression analysis

Statistical analyses for the RT-PCR data were performed using
GraphPad Prism (Version 8.0.0). Differences in gene expression
between the PE and control groups were assessed using the Mann -
Whitney U test. A two-sided P-value < 0.05 was considered
statistically significant.

Ethical statement

The study protocol, including human participation and
placental tissue collection, was approved by the Ethics Committee
of the Obstetrics and Gynecology Hospital of Fudan University
(Approval No.: 2022-115). Written informed consent was obtained
from all participants before sample collection. The Mendelian
Randomization analysis used publicly available, anonymized
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summary-level data from large-scale consortia and databases, thus
not requiring separate ethical approval.

Result

Mendelian randomization analyses linking
blood molecular QTLs to odds of
preeclampsia

Putative causal effects of blood gene expression
(eQTLs) on preeclampsia

Using SMR analysis with HEIDI filtering (P-SMR < 0.05, P-
SMR_multi < 0.05, P-HEIDI > 0.01), we identified 29 senescence-
related genes whose genetically predicted expression levels in blood
were putatively associated with odds of preeclampsia (Figure 2A;
Supplementary Table S2). Higher predicted expression of 12 genes
(including ATG16L1, BECNI1, EP300, SGKI) was associated with
increased odds of preeclampsia, while higher predicted expression
of 17 genes was associated with decreased risk (Figure 2B).
Specifically, the expression of ATGI6LI was positively associated
with odds of preeclampsia (OR: 1.214, 95%CI=1.007-1.463, P-
SMR=0.042, FDR-SMR=0.644) Subsequent colocalization analysis
provided suggestive evidence (PPH4 > 0.5) that the association
signals for 6 of these 29 genes likely share a common causal variant
with the preeclampsia GWAS signal (Figure 2A). Under a stringent
threshold (PPH4 > 0.8), only 2 genes (NEDD4 and ERBB2) showed
strong colocalization evidence (Figure 2A). It’s worth noting that
after applying a Benjamin Hochberg correction for multiple testing,
no associations met the strict FDR threshold (FDR-SMR < 0.05)
(Supplementary Table S2). Given the hypothesis generating nature
of our study, we proceeded to prioritize candidates based on the
convergence of nominal significance signals and other
supporting evidence.

Putative causal effects of blood DNA methylation
(mQTLs) on preeclampsia

Applying the same SMR/HEIDI criteria, we identified 219
methylation CpG sites (mapping to 84 unique senescence-related
genes) significantly associated with odds of preeclampsia
(Figure 2B; Supplementary Table S3). Colocalization analysis
indicated suggestive evidence (PPH4 > 0.5) for shared causal
variants at 62 of these CpG sites (corresponding to 27 unique
genes) and strong evidence (PPH4 > 0.8) for 25 of these CpG sites
(corresponding to 12 unique genes) (Figure 2B). No associations
met the strict FDR threshold (FDR-SMR < 0.05) (Supplementary
Table S3).

Putative causal effects of blood protein
abundance (pQTLs) on preeclampsia

SMR/HEIDI analysis identified 5 senescence-related genes
whose genetically predicted protein abundance levels in blood
were associated with odds of preeclampsia (Figure 2C;
Supplementary Table S4). Colocalization analysis provided
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suggestive colocalization evidence (PPH4 > 0.5) for 2 of these
proteins (ALDH2 and LAYN) and strong evidence (PPH4 > 0.8)
for ALDH2 (Figures 2C, F). No associations met the strict FDR
threshold (FDR SMR < 0.05) (Supplementary Table S4).

Investigating regulatory effects: mQTL-
eQTL integration analysis

We investigated whether genes identified in both the mQTL and
eQTL analyses showed evidence of methylation influencing
expression in the context of preeclampsia. Comparing the
significant gene lists, 8 genes were found to be associated with
odds of preeclampsia at both the methylation (via specific CpG
sites) and expression levels (Table 1).

Further SMR analysis treating methylation as the exposure and
expression as the outcome (P-SMR < 0.05, P-SMR_multi < 0.05, P-
HEIDI > 0.01) identified 3 genes (ATGI6LI, MAP3KI4, PMVK)
where specific CpG methylation levels appeared to causally influence
gene expression levels (Table 1; Supplementary Table S5), and
importantly, both the CpG site and the gene’s expression were
associated with odds of preeclampsia in the primary analyses.

Among the potential mechanisms involving notable genes, the
following are identified (Figure 3): Methylation at cgl19193136
positively associated with ATGI6LI expression and odds of
preeclampsia (Supplementary Figure S1); methylation at
cgl6318349 positively associated with PMVK expression but
negatively with odds of preeclampsia (Supplementary Figure S2);
methylation at ¢g08823240 positively associated with odds of
preeclampsia but negatively with MAP3KI14 expression
(Supplementary Figure S3). The location and annotation of these
specific CpG loci were provided in Supplementary Table Sé.

Replication analyses

Tissue context: SMR analysis using uterine eQTLs

To assess relevance in a more proximate maternal tissue, we
performed SMR analysis using GTEx uterine eQTL data. This
analysis supported associations (P-SMR < 0.05, P-SMR_multi <
0.05, P-HEIDI > 0.01) for CDC25A (OR = 0.938, 95% CI: 0.892-
0.987; Supplementary Figures S4A, B) and NSUN2 (OR = 0.929,
95% CI: 0.877-0.985; Supplementary Figures S4C, D) expression
with decreased odds of preeclampsia (Supplementary Table S7).
Notably, the associations for both genes were also significant in the
blood eQTL analysis, and the CDC25A signal showed suggestive
colocalization evidence (PPH4 > 0.5) in blood.

Replication analysis in an independent
preeclampsia GWAS (GCST90301704)

Replication attempts in the independent GCST90301704 GWAS
cohort yielded limited support for the discovery findings, possibly
due to far fewer sample sizes (n=1728) of this replication cohort than
the discovery cohort (n=7377). Specifically, it showed that the power
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probelD Gene OR (95%CI) p_SMR p_SMR_multi PPH4
cgl9193136 ATGI16L1 - 1.182(1.013 - 1.381) 0.03397 0.03397 0.301
cg05142115 GGCT —a— 1.246(1.012 - 1.533) 0.03795 0.03795 0.224
cg10196802 GGCT —-— 1.225(1.013 - 1.482) 0.03626 0.03626 0.273
¢g12773030 GGCT -y 0.788(0.658 - 0.945) 0.01008 0.01891 0.432
cg14427694 GGCT —— 1.229(1.013 - 1.491) 0.03679 0.03679 0.252
cg14505161 GGCT —— 1.237(1.013 - 1.512) 0.03725 0.03725 0.148
cg08823240 MAP3K14 —-— 1.189(1.009 - 1.401) 0.03874 0.03874 0.24
cg16318349 PMVK HH 0.906(0.83 - 0.989) 0.02697 0.02697 0.267
¢g20065217 PMVK - 1.114(1.009 - 1.231) 0.03251 0.03251 0.256
¢g23803022 PMVK - 1.147(1.01 - 1.303) 0.03423 0.03423 0.247
B 0 1 2
probelD Gene OR (95%CI) p_SMR p_SMR_multi PPH4
ENSGO00000006062 MAP3K 14 0.594(0.367 - 0.961) 0.03368 0.03368 0.254
ENSG00000006625 GGCT 1.135(1.02 - 1.262) 0.0202 0.04285 0.337
ENSG00000037474 NSUN2 0.932(0.888 - 0.979) 0.00464 0.02871 0.325
ENSG00000050748 MAPK9 0.869(0.761 - 0.992) 0.03755 0.03452 0.187
ENSG00000066336 SPI1 1.128(1.012 - 1.258) 0.02969 0.02089 0.434
ENSG00000069869 NEDD4 0.825(0.738 - 0.922) 0.00066 0.02527 0.946 *
ENSG00000085978 ATGI16L1 1.214(1.007 - 1.463) 0.04216 0.0408 0.209
ENSG00000092036 HAUS4 0.943(0.892 - 0.996) 0.03512 0.00021 0.315
ENSG00000100393 EP300 1.202(1.039 - 1.39) 0.01354 0.01084 0.418
ENSG00000112658 SRF 0.491(0.245 - 0.986) 0.0456 0.0456 0.201
ENSG00000116017 ARID3A 1.733(1.109 - 2.707) 0.01579 0.01579 0.501 *
ENSGO00000118515 SGK1 1.114(1.017 - 1.22) 0.01995 0.04294 0.417
ENSG00000125656 CLPP 1.28(1.081 - 1.516) 0.00422 0.01651 0.788 *
ENSG00000126581 BECNI1 1.13(1 - 1.277) 0.04912 0.01308 0.258
ENSG00000128191 DGCR8 1.091(1.017 - 1.171) 0.01496 0.04052 0.408
ENSG00000132819 RBM38 0.497(0.284 - 0.869) 0.0142 0.0142 0.362
ENSG00000141736 ERBB2 0.4(0.228 - 0.701) 0.00137 0.00141 0.873 *
ENSG00000142453 CARMI 0.839(0.704 - 0.999) 0.0489 0.01142 0.002
ENSG00000145113 MUC4 1.301(1.059 - 1.599) 0.01231 0.02776 0.512 *
ENSG00000163344 PMVK 0.773(0.613 - 0.974) 0.02909 0.0142 0.247
ENSGO00000164045 CDC25A 0.543(0.341 - 0.866) 0.01038 0.02225 0.512 *
ENSG00000166949 SMAD3 0.754(0.581 - 0.978) 0.03339 0.02374 0.283
ENSG00000184661 CDCA2 0.597(0.366 - 0.976) 0.03979 0.03979 0.192
ENSG00000187778 MCRS1 0.564(0.334 - 0.953) 0.03236 0.03236 0.235
ENSG00000196235 SUPT5H 1.381(1.062 - 1.797) 0.01605 0.00775 0.43
ENSGO00000196588 MRTFA 0.65(0.46 - 0.916) 0.01395 0.03522 0.45
ENSG00000197451 HNRNPAB 1.186(1.028 - 1.369) 0.01975 0.01289 0.365
ENSG00000198018 ENTPD7 0.562(0.316 - 1) 0.04994 0.04994 0.231
ENSG00000259207 ITGB3 0.769(0.604 - 0.979) 0.033 0.03501 0.274
Gene Protein OR (95%CI) p_SMR p_SMR_multi PPH4
ALDH2 ALDH-E2 1.63(1.317 - 2.018) le-05 2e-05 0.857 *
ARG2 Arginase 0.747(0.583 - 0.956) 0.02075 0.04547 0.42
FGFR3 FGFR-3 0.684(0.487 - 0.96) 0.02824 0.01273 0.304
LAYN Layilin —— 0.549(0.342 - 0.879) 0.01262 0.01262 0.548 *
ULK3 ULK3 1.275(1.035 - 1.57) 0.02234 0.04283 0.449
I
0

FIGURE 2

SMR analyses linking blood molecular QTLs to odds of preeclampsia in the FinnGen R10 cohort. (A-C) Forest plots display the Odds Ratio (OR)

and 95% Confidence Interval (Cl) for each significant association passing SMR (P<0.05) and HEIDI (P>0.01) tests. The x-axis represents the OR for
preeclampsia per standard deviation increase in the molecular trait level. An OR > 1 indicates increased risk, while OR < 1 indicates decreased risk.
(A) Associations for significant blood methylation QTLs (mQTLs). (B) Associations for significant blood expression QTLs (eQTLs). (C) Associations for
significant blood protein QTLs (pQTLs).

values of the top SNPs for these five candidates in the replication set replicated (Supplementary Table S9), although this locus

were all relatively low, thereby explaining the poor validation lacked colocalization evidence in the FinnGen

efficiency in the replication set (Supplementary Table S8). discovery analysis.

mQTLs: Nine CpG sites (mapping to genes AXL, CDKNIA,
KNDCI1, SOX5) showed significant associations in the
replication cohort (Supplementary Table S10); however,

eQTLs: Only the association for higher HAUS4 expression (OR
= 1.152, 95% CI: 1.046-1.269) with increased risk was
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TABLE 1 SMR analysis results for methylation levels (exposure) influencing gene expression (outcome).

ExPo-ID  Outco-Gene Symbol P-SMR-multi OR-SMR 95% CI-SMR OR (95% CI) per 1 SD increase
gl9193136 | ENSG00000085978 = ATGIGLI  423E-11 | 423E-11 2.159 1.718 - 2.715 2.159 (1.718 - 2.715)
cg08823240 | ENSG00000006062 =~ MAP3KI4 = 2.55E-07 | 2.55E-07 0717 0.632 - 0.814 0.717 (0.632 - 0.814)
cgl6318349 | ENSG00000163344 ~PMVK 1.92E-23 | 633E-22 1.446 1.345 - 1,555 1.446 (1.345 - 1.555)
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FIGURE 3

Manhattan plots of SMR analyses linking blood molecular QTLs to preeclampsia. (A-C) Manhattan plots display the chromosomal distribution and
statistical significance (-log10 P-value) of SMR associations. The x-axis represents chromosomal position, and the y-axis represents the -log10(P-value)
from the SMR test. The horizontal dashed line indicates the nominal significance threshold (P=0.05). Each point represents a tested molecular trait.

(A) SMR results for blood cis-mQTLs. (B) SMR results for blood cis-eQTLs. (C) SMR results for blood cis-pQTLs.
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none of these replicated CpG sites corresponded to the
genes identified in the integrated mQTL-eQTL analysis
(ATG16L1, MAP3K14, PMVK, CARMI) or those
highlighted in the uterine analysis (CDC25A, NSUN2).

PQTLs: No significant pQTL associations were replicated
(Supplementary Table S11).

Causal associations between the expression
levels of candidate genes and odds of
preeclampsia

To ensure robustness, we performed Radial MR analyses using
IVW and Egger models, identifying outliers by their heterogeneity
contributions. After outliers removal, the expressions of ATGI6L1,
PMVK and NSUN2 were found to be associated with odds of
preeclampsia via the IVW method (Figure 4A; Supplementary
Table S12). However, none of these signals were confirmed in the
replication dataset, with the only significant signal NSUN2
exhibiting an inverse association with preeclampsia (Figure 4B,
Supplementary Table S12). After the removal of these outlier SNPs,
sensitivity analysis revealed no heterogeneity among these
associations (Supplementary Table S12). Pleiotropy was observed
in the association between NSUN2, ATGI16LI and preeclampsia in

A

10.3389/fendo.2025.1661666

the replication dataset as suggested by MR-Egger analysis
(Supplementary Table S12). In addition, MR-PRESSO suggested
potential pleiotropy for these association (Supplementary Table
S12). Therefore, the causal associations between these factors
should be interpreted with caution. The Steiger test confirmed the
consistency in causal directions of these five signals on preeclampsia
(Supplementary Table S13).

Prioritization of candidate genes

To select the most promising candidates from the numerous
significant associations, we implemented a prioritization strategy
based on the convergence of evidence. We prioritized genes that
met one or more of the following criteria: (1) strong evidence of a
regulatory mechanism from our mQTL-eQTL integration analysis,
where methylation levels appeared to causally influence gene
expression, and both were linked to preeclampsia; (2) evidence of
a potential causal role in a more disease-relevant maternal tissue
(uterus); and (3) supporting evidence (PPH4>0.5) from
colocalization analysis. This led to the selection of five key genes:
ATGI6L1, PMVK, and MAP3K14 were prioritized from the mQTL-
eQTL analysis, while CDC25A and NSUN2 were prioritized based
on the significant findings in the uterine eQTL analysis, with
CDC25A also showing colocalization support in blood.

Drug Target MR for SMR Result Genes and PREECLAMPS (eQTLs)

Method: -B-Inverse variance weighted4-MR Egger-&-Weighted median-®-Weighted mode
Exposure Outcome Method nsnp OR (95%Cl) Pvalue
Inverse variance weighted 21 g —a— 1.205 (1.106 - 1.312) 2.11E-05 **
. MR Egger 21 — 1.192 (1.019 - 1.396) 0.041 *
ATG16L1  finngen PREECLAMPS Weighted median 21 L 1.245 (1.117 - 1.387) 7.51E-05 **
. Udbiteduese ¢ a A== ! LZEB (050 002
Inverse variance weighted 13 —a— | 0.744 (0.645 - 0.857) 4.54E-05 **
) MR Egger 13 —_— 0.89 (0.629 - 1.26) 0.526
PMVK finngen_PREECLAMPS Weighted median 13 —— ! 0.766 (0.632 - 0.928) 0.007 *
Weighted mode 13 ——! 0.777 (0.633 - 0.954) 0033%
Inverse variance weighted 96 L 0.948 (0.928 - 0.969) 1.97E-06 **
. MR Egger 96 SN 0.926 (0.888 - 0.967) 6.83E-04 **
NSUN2 finngen_PREECLAMPS Weighted median 9% rey; 0.943 (0.912 - 0.975) 5.80E-04 *+
Weighted mode 96 aH 0.935 (0.901 - 0.97) 4.72E-04 **
r T T T 1
0.5 0.75 1 1.25 1.5
Method: --Inverse variance weighted—-MR Egger-#&-Weighted median-®-Weighted mode
Exposure Outcome Method nsnp OR (95%Cl) Pvalue
Inverse variance weighted 18 P—:—I—I 1.098 (0.915 - 1.318) 0.316
MR Egger 18 : 0.942 (0.647 - 1.372) 0.761
ATG16L1 GWAS_PREECLAMPS Weighted median 18 —_—— 1.069 (0.833 - 1.373) 0.6
Weighted mode 18 e e —— 1.053 (0.784 - 1.413) 0.737
Inverse variance weighted 14 —_— 0.935 (0.708 - 1.235) 0.636
MR Egger 14 4 0.995 (0.5 - 1.981) 0.989
PMVK GWAS_PREECLAMPS Weighted median 14 —_— 0.893 (0.613 - 1.3) 0.554
.. Weightedmode S . s s AR 0872(0604-126) ¢ 0479 .
Inverse variance weighted 76 | - 1.097 (1.041 - 1.157) 5.82E-04 **
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FIGURE 4

Forest plot of the SMR analysis results. The forest plots for the significant e/pQTLs and odds of preeclampsia in the (A) discovery dataset and
(B) replication dataset. Different color denote distinct MR analysis methods, with * indicating P < 0.05 and ** indicating P < 0.001.
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Differential expression profile in placental tissues
To further investigate the clinical relevance of key genes,
differential expression analysis was conducted on RNA-seq data
from the GEO dataset (GSE75010). The results revealed that the
expressions of ATGI6LI, NSUN2 and PMVK were significantly
downregulated in placental tissues from preeclampsia patients,
whereas other key genes such as CDC25A and MAP3KI14 did not
vary significantly between groups (Figure 5A). It’s worth noting that
even after adjustment for variables including maternal age, BMI and

10.3389/fendo.2025.1661666

delivery mode, the expression of ATG16LI remained significantly
positively associated with preeclampsia (Figure 5B).

Expression profiles of candidate genes in
placenta

Preliminary RT-PCR analysis was performed on placental
tissues from 10 PE patients and 5 gestational-age matched
controls (Figure 6). The results suggested differential expression
patterns for the prioritized candidate genes, largely aligning with
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PMVK 21.07 (0.8-554.03) | p=0.0677
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CDC25A  2.82(0.46-17.44) |—iik { p=0.265

FIGURE 5

0Odds Ratio

The significance of key genes in preeclampsia. (A) The bar plot demonstrated the significant differential expression for ATG16L1, NSUN2 and PMVK in
placental tissues between healthy control and patients with preeclampsia. (B) The association between the expression for ATG16L1, NSUN2, PMVK
and preeclampsia after adjusting for variables including maternal age, BMI and delivery mode. * indicates significant associations; ** indicates a p-

value < 0.01.
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Relative mRNA expression levels of candidate senescence-related genes in human placental tissues. Gene expression was measured by RT-PCR in
samples from patients with preeclampsia (PE, n=10) and gestational age-matched normotensive controls (Control, n=5). Expression levels were
normalized to the reference gene ACTB (Beta-actin) and calculated using the 27" method, presented as fold change relative to the control group
mean. Bars represent the mean + Standard Error of the Mean (SEM). Statistical significance between groups was assessed using the Mann-Whitney U
test. **P < 0.01; ***P < 0.001; ****P < 0.0001. (A) ATG16L1. (B) PMVK. (C) MAP3K14. (D) CDC25A. (E) NSUN2.

SMR predictions, although constrained by the small control group
size. ATGI6LI expression appeared upregulated in PE placentas (P
< 0.001), consistent with the SMR prediction linking higher
expression to increased risk. PMVK (P < 0.001), MAP3K14 (P <
0.0001), NSUN2 (P < 0.01), and CDC25A (P < 0.001) expression
levels appeared downregulated in PE placentas. These trends are
consistent with the protective roles inferred from the mQTL-eQTL
SMR analysis (for PMVK, MAP3K14) or the uterine eQTL analysis
(for NSUN2, CDC25A). These preliminary experimental findings
lend support to the potential relevance of ATGI6LI, PMVK,
MAP3K14, NSUN2, and CDC25A dysregulation in
preeclampsia pathophysiology.

Discussion

This study employed a multi-omics Mendelian Randomization
approach to investigate the potential causal roles of cellular
senescence-related genes in preeclampsia pathogenesis. Our
findings implicate several genes operating through diverse
pathways—including ATG16L1, MAP3K14, PMVK, CDC25A, and

Frontiers in Endocrinology 11

NSUN2—as potential mediators linking senescence processes to
odds of preeclampsia. These genetic associations were further
explored through tissue-specific MR analysis and RT-PCR in
placental tissue.

Our MR analyses highlighted genes central to cellular stress and
response pathways. Higher genetically predicted ATGI6LI expression,
a key autophagy gene (37), was linked to increased odds of
preeclampsia. While autophagy is often protective, its dysregulation
(either insufficient or excessive) is implicated in placental pathology
(38), potentially impairing trophoblast function or modulating
senescence-associated inflammation (39, 40). This aligns with our
preliminary RT-PCR results, which suggested ATGI6LI upregulation
in preeclamptic placentas compared to controls. For MAP3KI14,
involved in NF-xB signaling and inflammation (41), lower
genetically predicted expression was associated with increased risk.
This finding, potentially supported by the observed trend of MAP3K14
downregulation in our placental samples, hints that impaired NF-xB
signaling or altered inflammatory resolution might contribute to
preeclampsia, possibly intersecting with SASP regulation (7, 8). The
mevalonate pathway gene PMVK also emerged, with higher genetically
predicted expression (linked to higher methylation at cg16318349)
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associated with lower odds of preeclampsia. Our RT-PCR analysis
showed a trend towards PMVK downregulation in PE placentas,
consistent with the MR prediction that lower expression confers
higher risk. While some studies link PMVK downregulation to p53
activation and cell cycle arrest (42), its precise role in the placenta,
potentially involving p53-independent metabolic or signaling functions
or specific effects of cgl6318349 methylation, warrants further
investigation to resolve this apparent complexity. While the
differential expression analysis does not confirm causality, it
demonstrates that the gene dysregulation predicted by our genetic
analysis is present at the tissue level in the disease state, thus providing
important downstream support for its potential involvement.

It’s worth noting that the expressions of 2 genes (NEDD4 and
ERBB?2) showed strong colocalization evidence under a stringent
threshold (PPH4 > 0.8). The NEDD4 gene encodes an E3 ubiquitin
protein ligase. It plays a crucial role in various cellular processes,
including protein degradation, cell signaling, cell differentiation,
and cell cycle regulation (15021885). In the context of preeclampsia,
NEDD#4 is involved in the regulation of trophoblast necrosis by
mediating the ubiquitination of TAKI, thereby affecting placental
development and function (43). Additionally, the NEDD4L gene is
associated with hypertension and epithelial sodium transport (44).
Given that preeclampsia is a pregnancy-specific hypertensive
disorder, the involvement of NEDDA4L in hypertension suggests a
potential link between NEDD4 and preeclampsia. On the other
hand, the ERBB2 gene encodes a receptor tyrosine kinase and is a
member of the epidermal growth factor receptor family. However,
there is limited direct research on the relationship between the
ERBB2 gene and preeclampsia. Given its role in cell growth and
differentiation, ERBB2 may indirectly influence placental
development and function, which are critical factors in the
pathogenesis of preeclampsia.

Using uterine eQTL data as a proxy for maternal contributions,
we found that higher genetically predicted expression of CDC25A
and NSUN2 was associated with decreased odds of preeclampsia.
CDC25A regulates cell cycle transitions, and its dysregulation is
linked to senescence (45); a previous MR study also hinted at its
involvement in preeclampsia (46). NSUN2, an RNA
methyltransferase, adds to growing evidence implicating RNA
modifications in placental development and function, such as
decidualization (47, 48). The observed trends of CDC25A and
NSUN2 downregulation in our preliminary RT-PCR analysis of
preeclamptic placentas align with these protective MR associations.
Collectively, these findings suggest that disruptions in placental cell
cycle control (CDC25A) and RNA modification pathways (NSUN2)
may contribute significantly to preeclampsia pathology.

Synthesizing these results, dysregulation across interconnected
pathways—autophagy (ATGI6LI), inflammation (MAP3K14),
metabolism (PMVK), cell cycle (CDC25A), and RNA methylation
(NSUN2)—appears to converge on promoting placental cellular
senescence, contributing to preeclampsia pathophysiology.
Senescence, particularly in trophoblasts, can impair placentation via
multiple routes, including SASP-mediated inflammation disrupting
spiral artery remodeling and causing endothelial dysfunction (49), and
intrinsic impairment of trophoblast proliferation, migration, and
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differentiation. Connecting these senescence-associated genes and
pathways to the broader pathophysiology of preeclampsia highlights
potential cross-talk with these core mechanisms. For instance, the
SASP can exacerbate systemic inflammation and endothelial
dysfunction, key features of preeclampsia. Additionally, metabolic
alterations (PMVK) may contribute to oxidative stress, further
impairing placental function. Investigating functional links between
these senescence-related genes and established preeclampsia
susceptibility loci (e.g., near FLT1 (17)) represents an important
future direction.

The identification of these candidate genes and pathways offers
potential avenues for clinical translation, such as novel biomarkers
(e.g., methylation patterns, circulating RNAs, SASP components) or
therapeutic targets. However, considerable hurdles remain.
Biomarker validation requires large, diverse prospective cohorts
to establish sensitivity, specificity, and clinical utility. Therapeutic
modulation of these pathways (e.g., using autophagy modulators,
anti-inflammatories, senolytics) faces significant challenges
regarding efficacy and, critically, safety during pregnancy,
necessitating rigorous preclinical evaluation.

A key strength of our approach was the integration across multiple
omics levels. The analysis identified CpG methylation sites apparently
influencing gene expression, where both methylation and expression
were associated with odds of preeclampsia, provides compelling
candidates for epigenetic regulation in the disease. For ATGI6LI,
higher methylation at cg19193136 was unexpectedly associated with
both higher gene expression and increased odds of preeclampsia.
Conversely, for MAP3K14, higher methylation at cg08823240 was
linked to lower expression but higher disease risk, aligning more
closely with canonical gene silencing. The PMVK association (higher
methylation linked to higher expression and lower risk) also deviated
from simple promoter-silencing models. These complex methylation-
expression relationships, particularly the positive correlations,
underscore the need for further investigation (50). Potential
mechanisms include methylation within gene bodies or enhancer
regions affecting regulatory element binding, the influence of 5-
hydroxymethylcytosine (5hmC) (51). Methylation in enhancer
regions can either promote or stabilize the binding of transcriptional
activators, thereby positively influencing gene expression (52).
Additionally, 5hmC, which is often associated with active gene
expression, may contribute to the regulation of ATGI6LI expression
through distinct mechanisms compared to traditional 5-
methylcytosine. Elucidating these precise epigenetic mechanisms
requires targeted studies mapping CpG locations relative to
functional elements.

Several limitations must be acknowledged. Firstly, our SMR
findings showed limited replication in the independent
GCST90301704 cohort. While this could be due to insufficient power
in the replication sample or false positives in our discovery analysis, it
may also reflect the significant clinical and etiological heterogeneity of
preeclampsia. Our discovery cohort (FinnGen) used a broad, EHR-
based definition of preeclampsia, whereas the replication cohort
employed more stringent clinical criteria. This difference could lead
to discordance if the identified genes are associated only with specific
subtypes of the disease. This highlights the challenge of replicating
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genetic associations for complex, heterogeneous syndromes. Secondly,
the RT-PCR experiments had a small sample size, particularly in the
control group (n=5), which limits the statistical power and reliability of
the findings. This increases the risk of both Type I (false positives) and
Type II (false negatives) errors. Although the observed expression
trends for our candidate genes are consistent with our MR predictions,
these results are preliminary and must be interpreted cautiously.
Thirdly, a major limitation is the use of blood and uterine QTL data
as proxies for the placenta. This tissue-context mismatch could
significantly impact causal inference, as we may have missed true
causal genes regulated by placenta-specific QTLs that are inactive in
blood and uterus. Conversely, an observed association could be
misleading if a genetic variant affects gene expression differently in
the placenta compared to the proxy tissues. Future research must
prioritize placenta-specific multi-omics QTL datasets to validate and
build upon our findings. Fourthly, our study found a discrepancy
between significant SMR results and non-significant colocalization
results for top candidate genes like ATGI6LI and CDC25A. This
highlights the complementary nature of these methods. SMR tests for
causal associations, while colocalization assesses shared causal variants.
The lack of colocalization does not invalidate SMR findings but
suggests a complex genetic architecture, such as causality driven by
different variants in high LD. Thus, we consider SMR results as primary
evidence for a causal link, acknowledging that further fine-mapping
and functional studies using placenta-specific data are needed to
elucidate the precise mechanisms. Fifthly, a major limitation is the
lack of statistical significance after correction for multiple testing. This
is common in under-powered MR omics studies. As a result, the aims
of this study should be generating hypothesis, requiring substantial
validation. Sixthly, sample overlap between exposure and outcome
populations can potentially bias MR estimates. However, since our
primary instruments were strong (F > 10), this bias is expected to be
minimal. Finally, standard MR limitations apply, including the
possibility of residual confounding or pleiotropy despite statistical
tests (SMR/HEIDI, colocalization) and the reduced generalizability
due to the primary reliance on European ancestry datasets.

Future research should prioritize validating these findings in larger,
multi-ethnic and subtypically graded meta analyses and utilizing
placenta-specific multi-omics QTL data when available. Prospective
studies correlating biomarkers derived from these pathways with
pregnancy outcomes are needed. Combining data from cohorts with
detailed clinical information will be essential to explore the specific
genetic architecture of different preconceptions. Ultimately, functional
studies in relevant cell and animal models are essential to confirm the
causal impact of ATGI6L1, PMVK, MAP3K14, NSUN2, and CDC25A
on senescence phenotypes and preeclampsia pathogenesis.

In conclusion, this multi-omics MR study, combined with
preliminary experimental insights, pinpoints ATG16L1, PMVK,
MAP3KI4, NSUN2, and CDC25A as key candidate genes
potentially mediating the link between cellular senescence
pathways and odds of preeclampsia. While requiring further
validation, these findings provide a valuable foundation for future
research into the molecular mechanisms of preeclampsia and the
development of targeted interventions.
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