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Extreme gradient boosting
using conventional parameters
accurately predicts insulin
sensitivity in young and
middle-aged Japanese persons
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Background: This study tested the hypothesis that insulin sensitivity (SI) can be
estimated using machine learning (ML) based only on physical indicators or with
the addition of lipid and fasting glucose levels.

Methods: In 1,268 young (age <40 years, normal glucose tolerance; NGT) and
1,723 middle-aged Japanese persons with NGT (n=1,276) and glucose
intolerance (n=447), the Matsuda index and the 1/homeostasis model
assessment of insulin resistance were calculated as Sl. In each group, SI was
estimated by using eight ML methods, based only on physical indicators, as well
as by using physical indicators together with lipid and fasting glucose levels.
Moreover, 11 lipid-related estimates for Sl were calculated.

Results: Estimates by extreme gradient boosting showed the best correlations
with Sl indices among eight ML methods. According to feature importance and
SHapley Additive exPlanations values, the contribution of each clinical factor to SI
differed greatly by age and glucose tolerance status. Relationships of lipid-related
estimates with Sl were weaker than those of ML-derived estimates.
Conclusions: It was possible to estimate SI using ML based only on physical
indicators, or those with lipid and fasting glucose levels. The results also imply
that it would be difficult to establish universal and robust estimates for Sl using
conventional parameters. Further validation studies are necessary in diverse
ethnic groups with various body composition.
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Introduction

Type 2 diabetes mellitus, which accounts for approximately 90% of
all patients with diabetes mellitus, develops mainly due to insufficient
sensitivity to insulin (1). As a risk factor for insufficient sensitivity to
insulin, the importance of metabolic disorders such as obesity, especially
abdominal obesity, hypertension, and dyslipidemia has been established.
Metabolic disorders are also reported to be associated with health
problems such as cancer and cardiovascular disease (2). The gold
standards for estimating insulin sensitivity (SI) are the glucose clamp
method and the intravenous glucose tolerance test with minimal model
analysis, but these are laborious and not suitable for epidemiological
studies (3). Both the homeostasis model assessment of insulin resistance
(HOMA-IR) and Matsuda index (ISI-Matsuda) allow SI to be easily
assessed. It has been reported that HOMA-IR strongly reflects hepatic SI
(4, 5), whereas ISI-Matsuda strongly reflects whole-body SI (6, 7). It is
important to calculate a formula that correlates strongly with these SI
indices using conventional clinical parameters.

In addition to body mass index (BMI), waist circumference (WC),
WC/hip circumference ratio, and WC/height (Ht) ratio as
conventional means of assessing health problems due to obesity
with decreased SI, the body shape index and body roundness index
(BRI) have also been proposed (8, 9), and we have also reported a
correlation between BRI and SI (10). In addition to physical indicators,
several methods of estimating SI from simple indicators have also been
reported, including those based on lipid and fasting glucose levels,
such as triglycerides/high density lipoprotein (TG/HDL) (11), lipid
accumulation product (LAP) (12), visceral adiposity index (VAI) (13),
dysfunctional adiposity index (DAI) (14), triglyceride glucose index
(TyG index) (15), the product of TyG index x BMI, etc. (16, 17),
atherogenic index of plasma (AIP) (18), metabolic score for insulin
resistance (METS-IR) (19), and waist-triglyceride index (WTI) (20).
Some of these indicators for SI estimation have been established on a
theoretical basis, but others have been set arbitrarily, and the
correlations between these indicators and SI are not always robust.

The use of machine learning (ML) has attracted attention as a
way of overcoming these weaknesses. Recently, ML has been used to
create prediction equations that achieve a strong correlation between
SI and physical indicators such as BMI and blood pressure (BP) as the
component factors of metabolic syndrome, in addition to lipid and
fasting glucose levels (21-23). Park et al. (2022) developed a model in
a Korean population-based cohort using HOMA-IR as the outcome
measure, Tsai et al. (2023) used data from the US National Health
and Nutrition Examination Survey and a Taiwan cohort of adults
without diabetes, also focusing on HOMA-IR, and Zhang et al. (2024)
developed a machine learning-augmented algorithm in Chinese
community and primary care populations. In these previous
studies, only HOMA-IR, which is thought to mainly reflect hepatic
SI, was used, whereas ISI-Matsuda, which is thought to reflect whole-
body SI, was not investigated. The ability to predict SI using only
physical indicators such as BMI and BP was also not investigated.
Furthermore, age, blood glucose, and lipid levels in these studies were
non-uniform, and there was a lack of clarity regarding subject
characteristics such as the proportion of subjects with glucose
intolerance and lipid disorders, and details of the drugs used to
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treat those disorders. Various ML methods were used in these studies,
but Park et al. and Tsai et al. stated that extreme gradient boosting
(XGBoost) was useful among seven and four ML methods tested in
their studies (21, 22). Zhang et al. reported that LightGBM was the
best ML method for predicting SI among eight ML methods tested,
but XGBoost also showed very similar results to LightGBM in their
study (23). XGBoost and LightGBM may capture complex non-linear
relationships with higher accuracy than other ML methods and be
well suited for handling tabular data. XGBoost grows trees evenly to
reduce overfitting and ensure stability, whereas LightGBM grows
loss-reducing branches for faster, more accurate learning on large
datasets, although with greater overfitting risk. Apart from SI
estimation, several ML studies have reported attempts to identify
risk factors for diabetes and for diabetes combined with
cardiovascular diseases using SHapley Additive exPlanations
(SHAP) and feature importance analyses (24-26). In these reports,
SHAP and feature importance analyses could reveal each risk factor
with high predictive accuracy.

We hypothesized that SI can be estimated using ML based on
physical indicators only and by physical indicators together with
parameters such as lipid and fasting glucose levels. This hypothesis
was tested in cohorts of young and middle-aged Japanese men and
women who underwent a 75-g oral glucose tolerance test (OGTT)
and whose glucose tolerance was precisely assessed. From the 75-g
OGTT, both HOMA-IR and ISI-Matsuda were calculated as
indicators of SI. The ability to estimate SI by ML was investigated
for HOMA-IR and ISI-Matsuda using only physical indicators or
using lipid and fasting glucose levels in addition to physical
indicators. SHAP and feature importance analyses were also
adopted to reveal factors contributing to SI in the cohorts.

Materials and methods
Participants

The study participants were 1,268 medical students at Jichi
Medical University, Tochigi, Japan (age <40 years) who had normal
glucose tolerance (NGT), from among approximately 1,400
students who had undergone a 75-g OGTT between December
2002 and April 2015 (Jichi cohort). NGT was defined based on
Japan Diabetes Society criteria (fasting plasma glucose [PG] <110
mg/dL and 120-min value <140 mg/dL) (27). Subjects with
triglyceride (TG) levels >400 mg/dL were excluded because of the
use of the Friedewald formula described below. The study in the
Jichi cohort was approved by the ethics committee of Jichi Medical
University (approval no. EKI 09-45). Written, informed consent
was obtained from all participants after providing them with
complete information on the purposes of the study.

Data from health examinees, aged 30-65 years, at Hokuriku Central
Hospital, Toyama, Japan, were also analyzed (Hokuriku cohort). The
detailed characteristics of the study population have been described
elsewhere (28, 29). Briefly, 1,723 participants who visited the hospital
between April 2006 and March 2010 were enrolled in this study after
excluding those who had hemoglobin Alc values >6.5% and TG >400
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mg/dL, who had a known history of diabetes mellitus and/or were
taking antidiabetic agents, who were taking antihypertensive and lipid-
lowering agents, who had undergone gastrectomy, or who were taking
steroids or anticancer drugs. All participants were divided into NGT and
glucose intolerance (GI) groups. GI included both newly diagnosed
diabetes mellitus, defined based on the above criteria (fasting PG 2126
mg/dL and/or 120-min value >200 mg/dL) (27), and non-diabetic
hyperglycemia. The study in the Hokuriku cohort was approved by the
ethics committee at Hokuriku Central Hospital. Written, informed
consent was obtained from all participants after providing complete
information on the purposes of the study.

Measurements and calculation of Sl

PG concentrations were measured using a glucose oxidase assay,
and insulin levels were measured using an immunoradiometric assay
for immunoreactive insulin (IRI) (Insulin RIA Beads II; Yamasa,
Tokyo, Japan), as described previously (Jichi cohort) (30). Serum IRI
concentrations were determined using a chemiluminescence
immunoassay (Siemens Healthcare Diagnostics, Tokyo, Japan) at a
commercial laboratory (BML, Inc., Tokyo, Japan) (Hokuriku cohort)
(28, 29). The antibodies used in both insulin assays did not cross-
react with proinsulin. In the 75-g OGTT, PG and IRI levels were
measured under fasting conditions (preloading) and 120 min after
glucose loading; these are abbreviated as PGO and PG120, and IRIO
and IRI120, respectively.

Similar to our previous studies (30, 31), the following
parameters were used. Whole-body SI as determined by ISI-
Matsuda was calculated as: ISI-Matsuda = 10,000/[sqrt (PGO X
PG120 x IRI0 x IR1120)] (6, 32). In addition, 1/HOMA-IR was used
primarily as a measure of hepatic S. HOMA-IR was calculated as
[PGO x IRI0/405] (4). The units for PG and IRI were milligrams per
deciliter and microunits per milliliter, respectively, for calculating
ISI-Matsuda and HOMA-IR.

The quintile for ISI-Matsuda and 1/HOMA-IR in the NGT of
each cohort was adopted as the cutoff for decreased SI, i.e., insulin
resistance. The quintile was adopted according to the previous study
(33). In the Jichi cohort, an ISI-Matsuda <5.6 and a 1/HOMA-IR
<0.517 were used. In the Hokuriku cohort, an ISI-Matsuda <6.1 and
a 1/HOMA-IR <0.728 were used.

Questionnaires and measurements of
background factors

Data on age and sex were obtained through questionnaires.
High-density lipoprotein cholesterol (HDL), TG, and total
cholesterol (T-chol) levels were measured in serum collected
under fasting conditions. The units for HDL, TG, and T-chol
were milligrams per deciliter. The low-density lipoprotein
cholesterol (LDL) concentration was calculated using the
Friedewald formula (LDL = T-chol — HDL — TG/5) (34). Systolic
and diastolic blood pressures (SBP and DBP) were measured after
the participant had been seated at rest for 5 min. Mean blood
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pressure (MBP) was calculated as DBP + (SBP — DBP)/3. BMI was
calculated as the weight in kilograms divided by Ht in meters
squared. WC was measured at the umbilical level with the subject
standing (35). The WC/Ht ratio was also calculated.

Estimates by machine learning for SI

Prediction equations using eight ML methods were created to
predict SI. Multiple regression analysis (MRA), a neural network
(ANN), decision tree (DT, random forest (RF), boosting tree (BT), K
nearest neighbor (KNN), support vector machine (SVM), and
extreme gradient boosting (XGBoost) were used as ML methods.
Seven factors that were measured in both cohorts and had an
established association with SI were used as predictors of SI. First,
the three physical indicators BMI, WC/Ht ratio, and MBP were used
as input factors in each ML method, and the prediction equations for
ISI-Matsuda and 1/HOMA-IR were calculated. The WC/Ht ratio was
chosen as the physical indicator for input because, in our previous
report, the WC/Ht ratio had a higher correlation with SI than WC
(10). Lipid and fasting glucose levels were then added to the three
factors, and these seven factors (BMI, WC/Ht ratio, MBP, HDL, TG,
LDL, and PGO) were used as input factors in each ML method, and
prediction equations for SI were calculated. In the ML methods that
showed the best correlation with SI, sex was also entered, giving a
total of eight factors, and the feature importance and SHAP values of
these factors were calculated. Feature importance provided global
insights, whereas SHAP clarified positive or negative impact of each
factor at the individual level.

Measurements of lipid-related estimates
for SI

Similar to previous studies, the following seven estimates
were calculated.

LAP': Men: [WC (cm) - 65] x [TG (mmol/l)]; Women: [WC
(cm) — 58] x [TG (mmol/l)].

VAI": Men: [WC/(39.68 + 1.88 x BMI)] x (TG/1.03) x (1.31/
HDL); Women: [WC/(36.58 + 1.89 x BMI)] x (TG/0.81) x (1.52/
HDL), where both TG and HDL levels are expressed in mmol/l.

DAT*: Men: [WC/(22.79 + 2.68 x BMI)] x (TG/1.37) x (1.19/
HDL); Women: [WC/(24.02 + 2.37 x BMI)] x (TG/1.32) x (1.43/
HDL), where both TG and HDL levels are expressed in mmol/l.

TYG index'®: Ln [TG (mg/dl) x PGO (mg/dl)/2].

AIP'®: log [TG (mmol/l)/HDL (mmol/l)].

METS-IR": Ln [2 x PGO (mg/dl) + TG (mg/dl)] x BMI/Ln
[HDL (mg/dl)].

WTT?: Ln [TG (mg/dL) x WC (cm)/2].

Statistical analysis

JMP Pro (version 17, SAS Institute Inc., Cary, NC, USA) was
used for all statistical analyses except for the receiver-operating
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characteristic (ROC) curve analysis. Missing values were not
included in the analysis. In this study, the default settings of the
predictive modeling platform were utilized in all ML algorithms. It
has been reported that ML analyses conducted with default settings
generally achieve high accuracy (36-38), and the same approach
was adopted in this study. The details of the default settings are
described in the Supplementary Table 1. Since almost none of the
variables had a normal distribution, results are expressed as median
(25th percentile, 75th percentile) values.

The correlations of ML-derived and lipid-related estimates with
SI were tested using Spearman’s rank-correlation coefficients on
bivariate analysis. The correlations of ML-derived estimates with SI
were also evaluated by calculating coefficient of determination (R?),
root mean squared error (RMSE), and mean absolute error (MAE)
and were also shown as calibration plots.

ROC curves and the areas under the ROC curves (AUCs) were
used to assess the ability of the best estimates to detect insulin
resistance, using EZR ver. 1.61 (Saitama Medical Center, Jichi
Medical University, Saitama, Japan) (39). If the lower limit of the
95% confidence interval (CI) for the AUC was below 0.50, that
index was considered to not have the ability to detect insulin
resistance. Optimal cutoff values were determined by
maximization of the Youden index (sensitivity + specificity — 1).
The Brier score was also calculated. For all statistical tests, values of
P < 0.05 were considered significant.

Results
Characteristics of the entire cohort

The characteristics of the study participants stratified by sex are
shown in Table 1. The Jichi cohort (n = 1,268) included only
persons with NGT and was a young cohort with few cases of obesity,
hypertension, and dyslipidemia. The participants in the Hokuriku
cohort were sorted into an NGT-only group (n = 1,276) and a group
with GI (n = 447). Both groups in the Hokuriku cohort consisted of
middle-aged persons who had higher BMI, WC, WC/Ht ratio, BP,
lipids, glucose, and lipid-related estimates than the young persons
with NGT (the Jichi cohort). The Hokuriku cohort included 447
persons with GI (non-diabetic hyperglycemia, n = 392; newly
diagnosed diabetes mellitus, n = 55), accounting for 26% of the
total cohort. The group with GI in the Hokuriku cohort did not
appear to have any major differences in age, BMI, WC, height, WC/
Ht ratio, BP, lipids, or lipid-related estimates compared with the
NGT group of the same cohort; however, their glucose levels (PGO
and PG120) were higher, and their ISI-Matsuda was lower.

In the ML methods, XGBoost-derived
estimates had the best relationship with SI
in each cohort

The correlations between SI (1/HOMA-IR and ISI-Matsuda) and
ML-derived estimates using three factors are shown in Table 2, and
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the correlations between SI and ML-derived estimates using seven
factors are shown in Table 3. Of the ML methods with three factors,
XGBoost-derived estimates showed the best correlation with SI in all
subgroups (Spearman’s p= 0.81-1.00), followed by RF-derived
estimates (Spearman’s p= 0.68-0.85). There were no differences
between the correlation of XGBoost-derived estimates with 1/
HOMA-IR and ISI-Matsuda (Table 2). Very similar results were
seen for ML methods with seven factors, but Spearman’s p values in
all subgroups were higher than for ML methods with three factors
(Spearman’s p = 0.87-1.00, Tables 2, 3). Spearman’s p values for SI
were slightly better for NGT in the middle-aged group than in the
young group (Hokuriku cohort vs. Jichi cohort NGT) and higher in
the Hokuriku cohort GI than for NGT in both cohorts (Tables 2, 3).

R? RMSE, and MAE are shown in Supplementary Table 2 (by
using three factors) and in Supplementary Table 3 (by using seven
factors). XGBoost-derived estimates for 1/HOMA-IR and ISI-
Matsuda showed the highest R* and the lowest RMSE and MAE
in all subgroups. R% RMSE, and MAE with seven factors were
slightly better than those with three factors.

The calibration plots are shown in Supplementary Figure 1 (by
using three factors) and in Supplementary Figure 2 (by using seven
factors). XGBoost-derived estimates with three or seven factors
showed strong linear associations with the actual values of 1/
HOMA-IR and ISI-Matsuda in all subgroups.

The ROC analyses with XGBoost-derived
estimates using seven factors showed
good AUC:s for detecting insulin resistance

The results of the ROC analyses with XGBoost-derived estimates
using seven factors for the presence or absence of insulin resistance
based on 1/HOMA-IR and ISI-Matsuda are shown in Table 4. The
AUCs were significant for the ability of the XGBoost-derived estimates
in all subgroups to identify insulin resistance. The XGBoost-derived
estimates showed good AUCs, sensitivity, and specificity in all
subgroups. The AUC in men with NGT of the Hokuriku cohort
was the lowest (0.922), whereas the AUCs were high in women overall
(0.972-1.000) and in men with GI of the Hokuriku cohort (0.986-
0.996). The Brier scores were consistent with the AUC results.

The feature importance revealed that the
factors showing a high contribution to SI
differed greatly by age and glucose
tolerance status

For both sexes in both groups, there was a good correlation between
SI and XGBoost-derived estimates using seven factors, and good AUC
for detecting insulin resistance. Feature importance was therefore
calculated for the NGT and GI groups in the Jichi cohort and the
Hokuriku cohort by using eight input factors (the seven factors and sex)
with XGBoost ML (Figure 1). Sex, WC/Ht ratio, TG, and PGO showed a
high contribution to SI in many groups, but the factors showing a high
contribution differed greatly by age and glucose tolerance status.
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TABLE 1 Characteristics of the participants in the Jichi and Hokuriku cohorts.

Jichi cohort NGT (young)

Hokuriku cohort NGT
(middle-aged)

10.3389/fendo.2025.1661376

Hokuriku cohort GlI
(middle-aged)

Male Female Male Female Male Female

(n=977) (n=291) (n=837) (n=439) (n=322) (n=125)

Age (y) 23 (22,23) 23 (22, 24) 51 (45, 57) 55 (50, 59) 54 (48, 59) 57 (50, 59)
BMI (kg/m?) 21.7 (205, 23.3) 200 (1838, 21.1) 23.7 (22.1, 25.4) 222 (20,5, 24.0) 243 (224, 26.3) 23.0 (209, 25.2)

WC (cm) 77 (73, 81) 68 (64, 72) 83 (79, 88) 80 (74, 85) 86 (81, 91) 83 (75, 90)
Height (cm) 172 (169, 176) 160 (156, 163) 170 (166, 174) 157 (153, 160) 170 (166, 174) 157 (154, 160)

WC/Ht ratio

0.44 (0.42, 0.47)

0.43 (0.41, 0.45)

0.49 (0.46, 0.52)

0.51 (0.47, 0.54)

0.50 (0.48, 0.53)

0.53 (0.47, 0.58)

SBP (mmHg) 120 (115, 128) 108 (103, 115) 127 (116, 139) 119 (109, 132) 134 (122, 146) 126 (113, 141)
DBP (mmHg) 67 (63, 73) 63 (60, 67) 79 (73, 87) 73 (67, 81) 84 (76, 92) 78 (71, 86)
MBP (mmHg) 85 (80, 91) 84 (79, 88) 95 (88, 104) 88 (81, 98) 101 (92, 110) 94 (85, 105)
HDL (mg/dL) 59 (52, 67) 68 (59, 77) 55 (47, 64) 64 (56, 75) 55 (47, 66) 65 (55, 74)
TG (mg/dL) 63 (49, 86) 52 (40, 67) 111 (80, 153) 81 (62, 113) 125 (89, 174) 85 (64, 121)
LDL (mg/dL) 90 (76, 105) 96 (81, 114) 127 (108, 146) 131 (110, 154) 131 (112, 153) 137 (113, 159)

TC (mg/dL) 165 (149, 182) 176 (154, 197) 209 (186, 230) 218 (193, 241) 217 (195, 241) 224 (203, 246)
PGO (mg/dL) 88 (82, 94) 85 (80, 91) 96 (91, 101) 93 (88, 97) 110 (100, 115) 102 (95, 109)
PG120 (mg/dL) 91 (78, 103) 94 (80, 107) 106 (93, 120) 105 (92, 116) 152 (140, 171) 156 (143, 173)
IRIO (uU/mL) 5.8 (4.3,82) 6.1 (4.6.8.5) 3.7 (2.7,50) 35(2.8,4.8) 40 (2.9,5.7) 40 (2.9, 5.8)

IRI120 (WU/mL)

232 (14.0, 37.6)

39.0 (25.5, 58.2)

204 (13.0, 32.0)

214 (15.0, 31.8)

332 (20.2, 57.5)

38.5 (26.2, 54.4)

HOMA-IR

1/HOMA-IR

ISI-Matsuda

1.26 (0.90, 1.77)
0.79 (0.56, 1.11)

10.1 (6.4, 14.6)

1.30 (0.94, 1.80)
0.77 (0.55, 1.06)

7.4 (5.3, 10.0)

0.86 (0.64, 1.19)
1.16 (0.84, 1.57)

11.7 (8.0, 17.5)

0.83 (0.64, 1.11)
1.20 (0.90, 1.57)

11.6 (8.3, 16.5)

1.08 (0.77, 1.53)
0.92 (0.65, 0.92)

7.1 (4.5, 10.6)

0.99 (0.73, 1.51)
1.01 (0.66, 1.37)

6.2 (4.5, 9.0)

TG/HDL

1.08 (0.77, 1.55)

0.76 (0.58, 1.06)

2.02 (1.31, 3.06)

1.24 (0.85, 1.93)

2.21 (1.50, 3.56)

1.43 (0.92, 2.53)

LAP

8.0 (4.6, 13.8)

5.7 (3.4, 9.0)

22.0 (13.3, 35.6)

19.6 (11.5, 30.5)

28.3 (17.0, 48.0)

263 (12.9, 48.5)

VAI

0.56 (0.40, 0.83)

0.57 (0.43, 0.81)

1.10 (0.72, 1.73)

1.04 (0.69, 1.58)

1.21 (0.79, 2.05)

1.19 (0.74, 2.07)

DAI

TYG

TYGxBMI

0.38 (0.27, 0.56)
7.92 (7.64, 8.25)

172 (160, 189)

0.34 (0.26, 0.49)
7.66 (7.44, 7.96)

154 (143, 165)

0.74 (0.48, 1.14)
8.57 (8.25, 8.90)

201 (185, 222)

0.62 (0.41, 0.93)
8.24 (7.96, 8.58)

182 (165, 202)

0.81 (0.54, 1.35)
8.83 (8.49, 9.13)

215 (192, 239)

0.71 (0.45, 1.19)
8.49 (8.12, 8.92)

196 (174, 225)

TYGXxWC

608 (564, 657)

523 (489, 562)

716 (657, 771)

654 (588, 718)

757 (693, 818)

703 (611, 784)

TYGxWC/Ht

3.53 (3.28, 3.82)

3.29 (3.07, 3.54)

420 (3.88, 4.54)

4.18 (3.75, 4.60)

4.46 (4.11, 4.81)

4.54 (3.87, 5.01)

AIP

METS-IR

WTI

~0.33 (~0.48, —0.17)
293 (27.2, 32.2)

7.79 (7.50, 8.11)

~0.48 (~0.60, —0.34)
255 (23.6, 27.5)

748 (7.21,7.73)

~0.054 (~0.24, 0.13)
33.8 (30.5, 37.5)

8.42 (8.10, 8.78)

~0.27 (~0.43, —0.074)
29.8 (26.9, 33.4)

8.07 (7.77, 8.44)

~0.015 (~0.18, 0.19)
359 (31.7, 40.2)

8.59 (8.21, 8.95)

~0.20 (~0.40, 0.043)
31.6 (28.2, 37.0)

8.24 (7.87,8.72)

Date are shown as median (25th percentile, 75th percentile) values.

NGT, normal glucose tolerance; GI, glucose intolerance; BMI, body mass index; WC, waist circumference; Ht, height; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean
blood pressure; HDL, high-density lipoprotein cholesterol; TG, triglycerides; LDL, low-density lipoprotein cholesterol; PG, plasma glucose; IRI, immunoreactive insulin; HOMA-IR, homeostasis
model assessment of insulin resistance; ISI-Matsuda, Matsuda index; LAP, lipid accumulation product; VAL, visceral adiposity index; DAI, dysfunctional adiposity index; TYG, triglycerides and
glucose index; AIP, atherogenic index of plasma; METS-IR, metabolic score for insulin resistance; WTI, waist-triglyceride index.
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TABLE 2 Non-parametric Spearman rank correlation coefficients of machine learning indices by three factors for 1/HOMA-IR and ISI-Matsuda by sex.

For 1/HOMA-IR

Female

For ISI-Matsuda

Female

Jichi cohort NGT (young)

MRA 0.32 <0.0001 0.27 <0.0001 0.33 <0.0001 0.27 <0.0001
ANN 0.32 <0.0001 0.28 <0.0001 033 <0.0001 0.26 <0.0001
DT 0.69 <0.0001 0.60 <0.0001 0.71 <0.0001 0.63 <0.0001
RF 0.77 <0.0001 0.77 <0.0001 0.79 <0.0001 0.77 <0.0001
BT 0.72 <0.0001 0.56 <0.0001 0.77 <0.0001 0.60 <0.0001
KNN 0.37 <0.0001 0.33 <0.0001 043 <0.0001 0.34 <0.0001
SVM 0.36 <0.0001 0.38 <0.0001 0.38 <0.0001 0.39 <0.0001
XGBoost 0.87 <0.0001 0.97 <0.0001 0.84 <0.0001 0.98 <0.0001
Hokuriku cohort NGT (middle-aged)

MRA 0.49 <0.0001 0.44 <0.0001 047 <0.0001 0.46 <0.0001
ANN 0.46 <0.0001 0.42 <0.0001 047 <0.0001 0.43 <0.0001
DT 0.74 <0.0001 0.71 <0.0001 073 <0.0001 0.76 <0.0001
RF 0.74 <0.0001 0.72 <0.0001 078 <0.0001 0.82 <0.0001
BT 0.60 <0.0001 0.50 <0.0001 0.67 <0.0001 0.68 <0.0001
KNN 0.51 <0.0001 0.43 <0.0001 0.51 <0.0001 0.50 <0.0001
SVM 0.56 <0.0001 0.52 <0.0001 0.52 <0.0001 0.51 <0.0001
XGBoost 0.81 <0.0001 0.93 <0.0001 0.82 <0.0001 0.95 <0.0001
Hokuriku cohort Gl (middle-aged)

MRA 045 <0.0001 0.63 <0.0001 0.50 <0.0001 0.51 <0.0001
ANN 045 <0.0001 0.63 <0.0001 0.49 <0.0001 0.51 <0.0001
DT 0.66 <0.0001 0.81 <0.0001 0.72 <0.0001 0.72 <0.0001
RF 0.68 <0.0001 0.85 <0.0001 0.81 <0.0001 0.76 <0.0001
BT 0.49 <0.0001 0.84 <0.0001 0.66 <0.0001 0.77 <0.0001
KNN 0.42 <0.0001 0.67 <0.0001 0.53 <0.0001 0.53 <0.0001
SVM 0.52 <0.0001 0.69 <0.0001 0.53 <0.0001 0.59 <0.0001
XGBoost 0.95 <0.0001 1.00 <0.0001 0.96 <0.0001 1.00 <0.0001

HOMA-IR, homeostasis model assessment of insulin resistance; ISI-Matsuda, Matsuda index; NGT, normal glucose tolerance; GI, glucose intolerance; MRA, multiple regression analysis; ANN, a
neural network; DT, decision tree; RF, random forest; BT, boosting tree; KNN, K nearest neighbor; SVM, support vector machine; XGBoost, extreme gradient boosting.

The SHAP values also revealed that the
factors showing a high contribution to SI
differed greatly by age and glucose
tolerance status

SHAP values were similarly calculated for the NGT and GI
groups in the Jichi cohort and the Hokuriku cohort by using eight
input factors (the seven factors and sex) with XGBoost ML. In the
Jichi cohort, a positive or negative impact and a significant
contribution to the SI prediction equation were seen with WC/Ht
ratio, PGO, and sex for 1/HOMA-IR, and with WC/Ht ratio, BMI,

Frontiers in Endocrinology

TG, PGO, and sex for ISI-Matsuda (Figure 2). In the Hokuriku
cohort NGT, a positive or negative impact and a significant
contribution were seen with BMI, PGO, and sex for 1/HOMA-IR,
and with WC/Ht ratio, BMI, TG, PGO, and sex for ISI-Matsuda
(Figure 3). In the Hokuriku cohort GI, a positive or negative impact
and a significant contribution were seen with WC/Ht ratio, BMI,
PGO, and sex for I/HOMA-IR, and with WC/Ht ratio, BMI, and sex
for ISI-Matsuda (Figure 4). Male sex displayed positive impact,
whereas WC/Ht ratio, BMI, and PGO negative impact in many of
the groups. As with feature importance, the factors with a high
contribution differed greatly by age and glucose tolerance status.
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TABLE 3 Non-parametric Spearman rank correlation coefficients of machine learning indices by seven factors for 1/HOMA-IR and ISI-Matsuda by sex.

For 1/HOMA-IR

Female

For ISI-Matsuda

Female

Jichi cohort NGT (young)

MRA 0.48 <0.0001 0.44 <0.0001 0.45 <0.0001 0.34 <0.0001
ANN 0.49 <0.0001 0.46 <0.0001 0.46 <0.0001 0.28 <0.0001
DT 0.74 <0.0001 0.75 <0.0001 0.78 <0.0001 073 <0.0001
RF 0.87 <0.0001 0.88 <0.0001 0.88 <0.0001 0.89 <0.0001
BT 0.81 <0.0001 0.68 <0.0001 0.86 <0.0001 0.63 <0.0001
KNN 0.54 <0.0001 0.43 <0.0001 0.49 <0.0001 0.41 <0.0001
SVM 0.62 <0.0001 0.70 <0.0001 0.60 <0.0001 0.66 <0.0001
XGBoost 0.90 <0.0001 0.99 <0.0001 0.92 <0.0001 0.99 <0.0001
Hokuriku cohort NGT (middle-aged)

MRA 0.56 <0.0001 0.52 <0.0001 0.51 <0.0001 0.54 <0.0001
ANN 0.56 <0.0001 0.52 <0.0001 0.54 <0.0001 0.52 <0.0001
DT 0.80 <0.0001 0.75 <0.0001 0.79 <0.0001 0.79 <0.0001
RF 0.81 <0.0001 0.76 <0.0001 0.86 <0.0001 0.89 <0.0001
BT 0.71 <0.0001 0.62 <0.0001 0.77 <0.0001 0.82 <0.0001
KNN 0.59 <0.0001 0.48 <0.0001 0.59 <0.0001 0.61 <0.0001
SVM 0.74 <0.0001 0.74 <0.0001 0.69 <0.0001 0.71 <0.0001
XGBoost 0.87 <0.0001 0.94 <0.0001 0.89 <0.0001 0.98 <0.0001
Hokuriku cohort Gl (middle-aged)

MRA 0.52 <0.0001 0.69 <0.0001 0.52 <0.0001 0.57 <0.0001
ANN 0.46 <0.0001 0.69 <0.0001 0.39 <0.0001 0.56 <0.0001
DT 0.79 <0.0001 0.85 <0.0001 0.77 <0.0001 0.82 <0.0001
RF 0.77 <0.0001 0.90 <0.0001 0.86 <0.0001 0.87 <0.0001
BT 0.58 <0.0001 0.90 <0.0001 0.75 <0.0001 0.83 <0.0001
KNN 0.47 <0.0001 0.72 <0.0001 0.52 <0.0001 0.42 <0.0001
SVM 0.79 <0.0001 0.82 <0.0001 0.69 <0.0001 0.82 <0.0001
XGBoost 0.98 <0.0001 1.00 <0.0001 0.99 <0.0001 1.00 <0.0001

HOMA-IR, homeostasis model assessment of insulin resistance; ISI-Matsuda, Matsuda index; NGT, normal glucose tolerance; GI, glucose intolerance; MRA, multiple regression analysis; ANN, a
neural network; DT, decision tree; RF, random forest; BT, boosting tree; KNN, K nearest neighbor; SVM, support vector machine; XGBoost, extreme gradient boosting.

Relationships of lipid-related estimates
with S| were weaker than for ML-derived
estimates

The correlations between lipid-related estimates and SI are
shown for each subgroup (Supplementary Table 4). Overall,
Spearman’s p values for SI were lower for lipid-related estimates
than for ML-derived estimates (Tables 2, 3). Spearman’s p values for
SI were higher in the middle-aged group than in the young group,
and higher in GI than in NGT. In NGT, Spearman’s p values for SI
were higher in men than women, and in GI, they were higher in

Frontiers in Endocrinology

women than men. The product of TyG index and physical
indicators, as well as METS-IR, showed relatively strong
correlations in all subgroups.

Discussion

In this study, correlations between SI and ML-derived estimates
were calculated using a total of seven factors: the three physical
indicators BMI, WC/Ht ratio, and MBP, plus lipid and fasting
glucose levels (HDL, TG, LDL, and PGO0). In ML-derived estimates
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TABLE 4 Area under the curve, cutoff values, sensitivity, specificity, and Brier scores of XGBoost predictors by seven factors for the presence of insulin resistance in both sexes.

Male

Cutoff Sensitivity = Specificity Brier
value (%) (%) score

AUC (95%Cl)

Jichi cohort NGT (young)

AUC
(95%Cl)

Cutoff
value

Female

Sensitivity =~ Specificity Brier
(%) (%) score

For the presence of insulin resistance by

0.935 (0.917-0.953 0.696 82 89 0.0199
1/HOMA-IR ( )

0.993 (0.987-0.999)

0.584

98 94 0.000736

For the presence of insulin resistance by

0.946 (0.930-0.961 8.360 90 84 0.0113
ISI-Matsuda ¢ )

0.997 (0.993-1.000)

5.724

95 100 0.00217

Hokuriku cohort NGT (middle-aged)

For the presence of insulin resistance by

1/HOMA-IR 0.922 (0.898-0.946) 0.996 87 81 0.0123

0.972 (0.957-0.987)

0.992

97 85 0.000796

For the presence of insulin resistance by

. .917-0.954 10.12 . 1
ISI-Matsuda 0.935 (0.917-0.954) 0.123 93 79 0.0065

Hokuriku cohort Gl (middle-aged)

0.985 (0.973-0.997)

7.651

97 92 0.000289

For the presence of insulin resistance by 0.986 (0.976-0.995) 0815 97 93 0.00277
1/HOMA-IR ' e ’ '
For the presence of insulin resistance by

0.996 (0.992-0. 6.14 6 7 0.00358
ISI-Matsuda 996 (0.992-0.999) 9 9 9

1.000 (1.000-1.000)

1.000 (1.000-1.000)

0.713

6.040

100 100 0.00000693

100 100 0.0000645

XGBoost, extreme gradient boosting; HOMA-IR, homeostasis model assessment of insulin resistance; ISI-Matsuda, Matsuda index; NGT, normal glucose tolerance; GI, glucose intolerance; AUC, area under the receiver operating characteristic curve; CI, confidence

interval.
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FIGURE 1

Feature importance

Feature importance

Feature importance for 1/HOMA-IR and ISI-Matsuda by XGBoost in the Jichi cohort and in normal glucose tolerance (NGT) and glucose intolerance
(Gl) in the Hokuriku cohort. HOMA-IR, homeostasis model assessment of insulin resistance; ISI-Matsuda, Matsuda index; BMI, body mass index; WC,
waist circumference; Ht, height; MBP, mean blood pressure; HDL, high-density lipoprotein cholesterol; TG, triglycerides; LDL, low-density

lipoprotein cholesterol; PGO, fasting plasma glucose.

using three and seven factors, the prediction equations for
XGBoost-derived estimates showed the strongest correlation with
SI in all subgroups. XGBoost-derived estimates using seven factors
had a stronger association with SI than did those with three factors,
but the improvement in correlation with seven factors was
moderate. XGBoost-derived estimates using seven factors showed
high sensitivity and specificity for detecting insulin resistance. In
terms of feature importance in the XGBoost prediction equations,
sex, WC/Ht ratio, TG, and PGO showed a high contribution to SI in
many groups. Analysis by SHAP values showed that male sex
displayed positive impact, whereas WC/Ht ratio, BMI, and PGO
negative impact on SI. On analyses by feature importance and
SHAP values, the contribution of each clinical factor to SI differed
greatly by age and glucose tolerance status.

We have previously reported that the physical indicator WC/Ht
ratio is strongly correlated with SI, especially in the middle-aged
Hokuriku cohort (10), and in the present study, we initially
analyzed the relationship between SI and ML-derived estimates
using only the physical indicators BMI, WC/Ht ratio, and MBP.
Previous studies have shown that physical indicators are an
important factor in ML for predicting SI (21-23), but none of
those studies reported a relationship between SI and ML-derived
estimates when inputs were restricted to physical indicators. Those
analyses were also limited to 1/HOMA-IR as the SI index. The
present study found that XGBoost-derived estimates using only
physical indicators were strongly correlated with both the 1/
HOMA-IR and ISI-Matsuda indices of SI (Spearman’s p= 0.81-
1.00). The results of R?>, RMSE, and MAE, and calibration plots
supported this finding. It is a new finding of this study that the SI of
an individual can be estimated with high accuracy by ML using only
physical indicators. Previous research has also shown that the AUC
of insulin resistance estimated by ML deteriorates very little when
the ML input factors are reduced (23). XGBoost-derived estimates
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using lipid and fasting glucose levels in addition to physical
indicators showed a slightly stronger correlation with SI than
when using physical indicators alone (Spearman’s p= 0.87-1.00).
The addition of conventional biochemical indices improved the
accuracy of SI estimates, but the effect of this addition was
moderate. Previous research has shown that the addition of
biochemical indices considerably improves the accuracy of SI
estimates (23), but this could be due to differences in the
subject populations.

Of the ML methods, XGBoost-derived estimates showed the
strongest correlation with SI, consistent with previous reports (21-
23). ML performs regression, classification, and clustering from the
dataset through iterative training, and it can therefore generate
more accurate predictions than traditional statistical methods such
as multiple regression analysis (21). Of the ML methods, XGBoost
and RF have the highest accuracy because they generate appropriate
models by creating numerous decision trees (21). The SI prediction
equations produced by XGBoost and RF in the present study were
also good (Tables 2, 3). RF performs bagging to reduce overfitting
and variance, and it uses independent classifiers. The flaw of RF is
that its accuracy does not increase when there is only a small
amount of learning data (40). XGBoost performs gradient boosting
to reduce bias and variance, uses sequential classifiers, and
aggregates predictions of many individually trained classifiers
(41). Although XGBoost overfits the data into the model, it can
reduce the flaw of RF. Of the ML methods, the XGBoost-derived
estimates showed the best correlation with SI. However, in the
present study, the ML models were used with default settings, and
measures such as overfitting prevention, hyperparameter tuning,
and validation had already been implemented by the software
vendors. The performance of ML methods other than XGBoost
could also improve by fine tuning; therefore, the superiority of
XGBoost cannot be insisted.
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FIGURE 2

Relative importance of the eight features for insulin sensitivity (SI)
prediction, as determined by the extreme gradient boosting
(XGBoost) algorithms. Explanation of each feature impact on the SI
prediction model by SHAP (Shapley Additive exPlanations) values
using XGBoost in the Jichi cohort. HOMA-IR, homeostasis model
assessment of insulin resistance; ISI-Matsuda, Matsuda index; WC,
waist circumference; Ht, height; BMI, body mass index; MBP, mean
blood pressure; HDL, high-density lipoprotein cholesterol; TG,
triglycerides; LDL, low-density lipoprotein cholesterol; PGO, fasting
plasma glucose.
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FIGURE 3

Relative importance of the eight features for insulin sensitivity (SI)
prediction, as determined by the extreme gradient boosting
(XGBoost) algorithms. Explanation of each feature impact on the Sl
prediction model by SHAP (Shapley Additive exPlanations) values
using XGBoost in the Hokuriku cohort NGT (normal glucose
tolerance). HOMA-IR, homeostasis model assessment of insulin
resistance; ISI-Matsuda, Matsuda index; WC, waist circumference;
Ht, height; BMI, body mass index; MBP, mean blood pressure; HDL,
high-density lipoprotein cholesterol; TG, triglycerides; LDL, low-
density lipoprotein cholesterol; PGO, fasting plasma glucose.

frontiersin.org



https://doi.org/10.3389/fendo.2025.1661376
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Murai et al.

For 1/HOMA-IR For ISI-Matsuda

0.70

g

WC/Ht 053
[ 0.44
1 035
40
] I 5
| 30
BMI N =
I -
15
| 1700
l 1517
1333
MBP . | ' 1150
I %7
78.3
'I 60.0
120
l 102
1 @
HDL ‘)
l ®
30
400
l 300
200
TG l =
0
25
I 180
135
LDL %
| l 45
| )
|
150
190
130
120
PGO 10
100
%
%
Y
i
« Female
Sex ..,.|||| - « Male
|
20 0 20 40 80 10 5 0 5 10 15
SHAP value (impact on model output) SHAP value (impact on model output)
FIGURE 4

Relative importance of the eight features for insulin sensitivity (SI)
prediction, as determined by the extreme gradient boosting
(XGBoost) algorithms. Explanation of each feature impact on the S|
prediction model by SHAP (Shapley Additive exPlanations) values
using XGBoost in the Hokuriku cohort Gl (glucose intolerance).
HOMA-IR, homeostasis model assessment of insulin resistance; ISI-
Matsuda, Matsuda index; WC, waist circumference; Ht, height; BMI,
body mass index; MBP, mean blood pressure; HDL, high-density
lipoprotein cholesterol; TG, triglycerides; LDL, low-density
lipoprotein cholesterol; PGO, fasting plasma glucose.
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In the analysis of AUC for detection of insulin resistance, the
AUC in XGBoost-derived estimates was high in all groups (0.922-
1.000), with good sensitivity (82%-100%) and specificity (79%-
100%). The AUC analysis and Brier scores in this study showed that
the XGBoost prediction equation can detect insulin resistance with
high accuracy. Previous studies have also shown good AUCs in the
detection of insulin resistance by ML-derived estimates (21-23).
The AUCs from the ROC analysis in the present study were better
than those previously reported. This is presumably because AUCs
in the present study were calculated within each subgroup stratified
by age, sex, and glucose tolerance. In addition, subjects taking
antidiabetic, antihypertensive, and lipid-lowering agents were
excluded, resulting in analysis of a more homogeneous population
than in the previous studies.

In ML, feature importance reveals the factors that are important
to the model (42), whereas SHAP analysis clarifies the positive or
negative contribution of the factors to the prediction equation (43).
The results of feature importance analysis showed that sex, WC/Ht
ratio, TG, and PGO were important as predictive factors for SI, and
the analysis of SHAP values showed that male sex displayed a
positive impact, whereas WC/Ht ratio, BMI, and PGO showed a
negative impact on predicting SI in XGBoost. Previous studies have
stated that fasting glucose and BMI have a strong influence as
factors for SI estimation by ML (21-23), which is compatible with
the results of the present study. A positive SHAP value indicates a
contribution to increased insulin sensitivity, whereas a negative
SHAP value indicates a contribution to decreased insulin sensitivity.
Young men in the Jichi cohort displayed remarkably positive SHAP
values (Figure 2), consistent with higher insulin sensitivity
(Table 1). Higher BMI, WC/Ht ratio, and fasting glucose levels
contributed to lower insulin sensitivity in the Hokuriku cohort
(Figures 3, 4), consistent with known pathophysiology.

Moderate correlations were observed between lipid-related
estimates and SI, but these were not as strong as the correlations
between ML-derived estimates and SI. Of the lipid-related
estimates, the product of TyG index and physical indicators, as
well as METS-IR, showed a relatively strong correlation with SI,
consistent with earlier reports (16, 17, 19). Similarly, the correlation
between lipid-related estimates and SI in the present study was not
particularly robust. The results of the feature importance and SHAP
analyses in the present study showed that the factors contributing to
SI differed considerably depending on the background factors of age
and glucose tolerance in the subject population. This suggests that it
is difficult to create a universal and robust SI prediction equation
simply by assigning fixed coefficients to conventional clinical
parameters. Lipid-related estimates are calculated with fixed
coefficients assigned to conventional clinical parameters. The
main reason why lipid-related estimates do not universally
correlate well with SI is that the contribution of various factors to
SI differs according to subject background characteristics such as
age and glucose tolerance.

A future follow-up study is needed to determine whether the SI
estimates by ML in this study are useful in relation to future onset of
metabolic syndrome and glucose intolerance in the young Jichi
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cohort, and future onset of cardiovascular events and cancer in the
Hokuriku cohort.

Limitations of the study

The limitations of this study are, first, that the SI prediction
equations in ML are very complex. Although they showed good
performance within each subgroup, they are hard to adapt to other
subgroups as transfer learning. For example, when calculating the
ISI-Matsuda for men in the Hokuriku cohort NGT using the
XGBoost prediction equation (equations not shown) generated
with seven factors for ISI-Matsuda in the Jichi cohort NGT men,
the correlation coefficient (Spearman’s p value) with the actual ISI-
Matsuda fell to 0.37. In practice, the clinical application of ML to SI
prediction is complex because it requires analysis of each
background factor. Second, this study did not obtain information
on lifestyle habits such as exercise and diet that could contribute to
SI. However, it has been reported that these factors are not
significantly involved in prediction of SI by ML (21). Third, the
presence of fatty liver is an important factor contributing to lower SI
(29, 44, 45), but this could not be analyzed, because liver function
test values were not available in the Jichi cohort. Fourth, this was a
cross-sectional study and limited to Japanese participants. In this
study, no external validation data beyond the Jichi cohort (young)
and Hokuriku cohort (middle-aged) were included. In ML-derived
SI estimates using conventional clinical parameters, it is necessary
to take into account differences in race, age, sex, and glucose
tolerance. Further external validation studies in diverse ethnic
groups and also in subjects taking antidiabetic medications are
needed. Fifth, in XGBoost in JMP Pro 17, the standard settings do
not allow modification of resampling or random seeds. Therefore, it
would be necessary to either change the statistical software or
modify the JMP Pro 17 scripts to perform a reanalysis. Finally,
feature importance and SHAP were adopted to interpret the
XGBoost models in this study. Although XGBoost-derived
estimates were robust within subgroups, their performance
deteriorated when applied to another subgroup. There also
remain possible biases on the results of feature importance and
SHAP due to lack of lifestyle data, liver function test, and other
unknown factors, such as menstrual status, contributing to SL.

Conclusions

In Japanese young or middle-aged persons with NGT and
middle-aged persons with GI, it was possible to estimate SI using
ML based only on physical indicators, and by physical indicators
together with lipid and fasting glucose levels. The contribution of
each clinical factor to SI differed greatly by age and glucose
tolerance status, implying that establishing robust estimates for SI
by using conventional parameters would be difficult. Further
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validation studies are necessary in diverse ethnic groups with
various body compositions.
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