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Extreme gradient boosting
using conventional parameters
accurately predicts insulin
sensitivity in young and
middle-aged Japanese persons
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Eriko Kodama1, Tatsuya Iida1, Hideyuki Imai1, Mai Hashizume1,
Rie Tadokoro1, Chiho Sugisawa1, Toru Iizaka1, Fumiko Otsuka1,
Shun Ishibashi2 and Shoichiro Nagasaka1,2

1Division of Diabetes, Metabolism and Endocrinology, Showa Medical University Fujigaoka Hospital,
Yokohama, Japan, 2Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical
University, Shimotsuke, Japan
Background: This study tested the hypothesis that insulin sensitivity (SI) can be

estimated using machine learning (ML) based only on physical indicators or with

the addition of lipid and fasting glucose levels.

Methods: In 1,268 young (age <40 years, normal glucose tolerance; NGT) and

1,723 middle-aged Japanese persons with NGT (n=1,276) and glucose

intolerance (n=447), the Matsuda index and the 1/homeostasis model

assessment of insulin resistance were calculated as SI. In each group, SI was

estimated by using eight ML methods, based only on physical indicators, as well

as by using physical indicators together with lipid and fasting glucose levels.

Moreover, 11 lipid-related estimates for SI were calculated.

Results: Estimates by extreme gradient boosting showed the best correlations

with SI indices among eight ML methods. According to feature importance and

SHapley Additive exPlanations values, the contribution of each clinical factor to SI

differed greatly by age and glucose tolerance status. Relationships of lipid-related

estimates with SI were weaker than those of ML-derived estimates.

Conclusions: It was possible to estimate SI using ML based only on physical

indicators, or those with lipid and fasting glucose levels. The results also imply

that it would be difficult to establish universal and robust estimates for SI using

conventional parameters. Further validation studies are necessary in diverse

ethnic groups with various body composition.
KEYWORDS

oral glucose tolerance test, insulin sensitivity, triglyceride glucose index, machine
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Introduction

Type 2 diabetes mellitus, which accounts for approximately 90% of

all patients with diabetes mellitus, develops mainly due to insufficient

sensitivity to insulin (1). As a risk factor for insufficient sensitivity to

insulin, the importance of metabolic disorders such as obesity, especially

abdominal obesity, hypertension, and dyslipidemia has been established.

Metabolic disorders are also reported to be associated with health

problems such as cancer and cardiovascular disease (2). The gold

standards for estimating insulin sensitivity (SI) are the glucose clamp

method and the intravenous glucose tolerance test with minimal model

analysis, but these are laborious and not suitable for epidemiological

studies (3). Both the homeostasis model assessment of insulin resistance

(HOMA-IR) and Matsuda index (ISI-Matsuda) allow SI to be easily

assessed. It has been reported that HOMA-IR strongly reflects hepatic SI

(4, 5), whereas ISI-Matsuda strongly reflects whole-body SI (6, 7). It is

important to calculate a formula that correlates strongly with these SI

indices using conventional clinical parameters.

In addition to body mass index (BMI), waist circumference (WC),

WC/hip circumference ratio, and WC/height (Ht) ratio as

conventional means of assessing health problems due to obesity

with decreased SI, the body shape index and body roundness index

(BRI) have also been proposed (8, 9), and we have also reported a

correlation between BRI and SI (10). In addition to physical indicators,

several methods of estimating SI from simple indicators have also been

reported, including those based on lipid and fasting glucose levels,

such as triglycerides/high density lipoprotein (TG/HDL) (11), lipid

accumulation product (LAP) (12), visceral adiposity index (VAI) (13),

dysfunctional adiposity index (DAI) (14), triglyceride glucose index

(TyG index) (15), the product of TyG index × BMI, etc. (16, 17),

atherogenic index of plasma (AIP) (18), metabolic score for insulin

resistance (METS-IR) (19), and waist-triglyceride index (WTI) (20).

Some of these indicators for SI estimation have been established on a

theoretical basis, but others have been set arbitrarily, and the

correlations between these indicators and SI are not always robust.

The use of machine learning (ML) has attracted attention as a

way of overcoming these weaknesses. Recently, ML has been used to

create prediction equations that achieve a strong correlation between

SI and physical indicators such as BMI and blood pressure (BP) as the

component factors of metabolic syndrome, in addition to lipid and

fasting glucose levels (21–23). Park et al. (2022) developed a model in

a Korean population-based cohort using HOMA-IR as the outcome

measure, Tsai et al. (2023) used data from the US National Health

and Nutrition Examination Survey and a Taiwan cohort of adults

without diabetes, also focusing onHOMA-IR, and Zhang et al. (2024)

developed a machine learning-augmented algorithm in Chinese

community and primary care populations. In these previous

studies, only HOMA-IR, which is thought to mainly reflect hepatic

SI, was used, whereas ISI-Matsuda, which is thought to reflect whole-

body SI, was not investigated. The ability to predict SI using only

physical indicators such as BMI and BP was also not investigated.

Furthermore, age, blood glucose, and lipid levels in these studies were

non-uniform, and there was a lack of clarity regarding subject

characteristics such as the proportion of subjects with glucose

intolerance and lipid disorders, and details of the drugs used to
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treat those disorders. VariousMLmethods were used in these studies,

but Park et al. and Tsai et al. stated that extreme gradient boosting

(XGBoost) was useful among seven and four ML methods tested in

their studies (21, 22). Zhang et al. reported that LightGBM was the

best ML method for predicting SI among eight ML methods tested,

but XGBoost also showed very similar results to LightGBM in their

study (23). XGBoost and LightGBMmay capture complex non-linear

relationships with higher accuracy than other ML methods and be

well suited for handling tabular data. XGBoost grows trees evenly to

reduce overfitting and ensure stability, whereas LightGBM grows

loss-reducing branches for faster, more accurate learning on large

datasets, although with greater overfitting risk. Apart from SI

estimation, several ML studies have reported attempts to identify

risk factors for diabetes and for diabetes combined with

cardiovascular diseases using SHapley Additive exPlanations

(SHAP) and feature importance analyses (24–26). In these reports,

SHAP and feature importance analyses could reveal each risk factor

with high predictive accuracy.

We hypothesized that SI can be estimated using ML based on

physical indicators only and by physical indicators together with

parameters such as lipid and fasting glucose levels. This hypothesis

was tested in cohorts of young and middle-aged Japanese men and

women who underwent a 75-g oral glucose tolerance test (OGTT)

and whose glucose tolerance was precisely assessed. From the 75-g

OGTT, both HOMA-IR and ISI-Matsuda were calculated as

indicators of SI. The ability to estimate SI by ML was investigated

for HOMA-IR and ISI-Matsuda using only physical indicators or

using lipid and fasting glucose levels in addition to physical

indicators. SHAP and feature importance analyses were also

adopted to reveal factors contributing to SI in the cohorts.
Materials and methods

Participants

The study participants were 1,268 medical students at Jichi

Medical University, Tochigi, Japan (age <40 years) who had normal

glucose tolerance (NGT), from among approximately 1,400

students who had undergone a 75-g OGTT between December

2002 and April 2015 (Jichi cohort). NGT was defined based on

Japan Diabetes Society criteria (fasting plasma glucose [PG] <110

mg/dL and 120-min value <140 mg/dL) (27). Subjects with

triglyceride (TG) levels >400 mg/dL were excluded because of the

use of the Friedewald formula described below. The study in the

Jichi cohort was approved by the ethics committee of Jichi Medical

University (approval no. EKI 09-45). Written, informed consent

was obtained from all participants after providing them with

complete information on the purposes of the study.

Data from health examinees, aged 30–65 years, at Hokuriku Central

Hospital, Toyama, Japan, were also analyzed (Hokuriku cohort). The

detailed characteristics of the study population have been described

elsewhere (28, 29). Briefly, 1,723 participants who visited the hospital

between April 2006 and March 2010 were enrolled in this study after

excluding those who had hemoglobin A1c values ≥6.5% and TG >400
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mg/dL, who had a known history of diabetes mellitus and/or were

taking antidiabetic agents, who were taking antihypertensive and lipid-

lowering agents, who had undergone gastrectomy, or who were taking

steroids or anticancer drugs. All participants were divided intoNGT and

glucose intolerance (GI) groups. GI included both newly diagnosed

diabetes mellitus, defined based on the above criteria (fasting PG ≥126

mg/dL and/or 120-min value ≥200 mg/dL) (27), and non-diabetic

hyperglycemia. The study in the Hokuriku cohort was approved by the

ethics committee at Hokuriku Central Hospital. Written, informed

consent was obtained from all participants after providing complete

information on the purposes of the study.
Measurements and calculation of SI

PG concentrations were measured using a glucose oxidase assay,

and insulin levels were measured using an immunoradiometric assay

for immunoreactive insulin (IRI) (Insulin RIA Beads II; Yamasa,

Tokyo, Japan), as described previously (Jichi cohort) (30). Serum IRI

concentrations were determined using a chemiluminescence

immunoassay (Siemens Healthcare Diagnostics, Tokyo, Japan) at a

commercial laboratory (BML, Inc., Tokyo, Japan) (Hokuriku cohort)

(28, 29). The antibodies used in both insulin assays did not cross-

react with proinsulin. In the 75-g OGTT, PG and IRI levels were

measured under fasting conditions (preloading) and 120 min after

glucose loading; these are abbreviated as PG0 and PG120, and IRI0

and IRI120, respectively.

Similar to our previous studies (30, 31), the following

parameters were used. Whole-body SI as determined by ISI-

Matsuda was calculated as: ISI-Matsuda = 10,000/[sqrt (PG0 ×

PG120 × IRI0 × IRI120)] (6, 32). In addition, 1/HOMA-IR was used

primarily as a measure of hepatic SI. HOMA-IR was calculated as

[PG0 × IRI0/405] (4). The units for PG and IRI were milligrams per

deciliter and microunits per milliliter, respectively, for calculating

ISI-Matsuda and HOMA-IR.

The quintile for ISI-Matsuda and 1/HOMA-IR in the NGT of

each cohort was adopted as the cutoff for decreased SI, i.e., insulin

resistance. The quintile was adopted according to the previous study

(33). In the Jichi cohort, an ISI-Matsuda ≤5.6 and a 1/HOMA-IR

≤0.517 were used. In the Hokuriku cohort, an ISI-Matsuda ≤6.1 and

a 1/HOMA-IR ≤0.728 were used.
Questionnaires and measurements of
background factors

Data on age and sex were obtained through questionnaires.

High-density lipoprotein cholesterol (HDL), TG, and total

cholesterol (T-chol) levels were measured in serum collected

under fasting conditions. The units for HDL, TG, and T-chol

were milligrams per deciliter. The low-density lipoprotein

cholesterol (LDL) concentration was calculated using the

Friedewald formula (LDL = T-chol − HDL − TG/5) (34). Systolic

and diastolic blood pressures (SBP and DBP) were measured after

the participant had been seated at rest for 5 min. Mean blood
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pressure (MBP) was calculated as DBP + (SBP − DBP)/3. BMI was

calculated as the weight in kilograms divided by Ht in meters

squared. WC was measured at the umbilical level with the subject

standing (35). The WC/Ht ratio was also calculated.
Estimates by machine learning for SI

Prediction equations using eight ML methods were created to

predict SI. Multiple regression analysis (MRA), a neural network

(ANN), decision tree (DT), random forest (RF), boosting tree (BT), K

nearest neighbor (KNN), support vector machine (SVM), and

extreme gradient boosting (XGBoost) were used as ML methods.

Seven factors that were measured in both cohorts and had an

established association with SI were used as predictors of SI. First,

the three physical indicators BMI, WC/Ht ratio, and MBP were used

as input factors in each ML method, and the prediction equations for

ISI-Matsuda and 1/HOMA-IR were calculated. TheWC/Ht ratio was

chosen as the physical indicator for input because, in our previous

report, the WC/Ht ratio had a higher correlation with SI than WC

(10). Lipid and fasting glucose levels were then added to the three

factors, and these seven factors (BMI, WC/Ht ratio, MBP, HDL, TG,

LDL, and PG0) were used as input factors in each ML method, and

prediction equations for SI were calculated. In the ML methods that

showed the best correlation with SI, sex was also entered, giving a

total of eight factors, and the feature importance and SHAP values of

these factors were calculated. Feature importance provided global

insights, whereas SHAP clarified positive or negative impact of each

factor at the individual level.
Measurements of lipid-related estimates
for SI

Similar to previous studies, the following seven estimates

were calculated.

LAP12: Men: [WC (cm) − 65] × [TG (mmol/l)]; Women: [WC

(cm) − 58] × [TG (mmol/l)].

VAI13: Men: [WC/(39.68 + 1.88 × BMI)] × (TG/1.03) × (1.31/

HDL); Women: [WC/(36.58 + 1.89 × BMI)] × (TG/0.81) × (1.52/

HDL), where both TG and HDL levels are expressed in mmol/l.

DAI14: Men: [WC/(22.79 + 2.68 × BMI)] × (TG/1.37) × (1.19/

HDL); Women: [WC/(24.02 + 2.37 × BMI)] × (TG/1.32) × (1.43/

HDL), where both TG and HDL levels are expressed in mmol/l.

TYG index15: Ln [TG (mg/dl) × PG0 (mg/dl)/2].

AIP18: log [TG (mmol/l)/HDL (mmol/l)].

METS-IR19: Ln [2 × PG0 (mg/dl) + TG (mg/dl)] × BMI/Ln

[HDL (mg/dl)].

WTI20: Ln [TG (mg/dL) × WC (cm)/2].
Statistical analysis

JMP Pro (version 17, SAS Institute Inc., Cary, NC, USA) was

used for all statistical analyses except for the receiver-operating
frontiersin.org
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characteristic (ROC) curve analysis. Missing values were not

included in the analysis. In this study, the default settings of the

predictive modeling platform were utilized in all ML algorithms. It

has been reported that ML analyses conducted with default settings

generally achieve high accuracy (36–38), and the same approach

was adopted in this study. The details of the default settings are

described in the Supplementary Table 1. Since almost none of the

variables had a normal distribution, results are expressed as median

(25th percentile, 75th percentile) values.

The correlations of ML-derived and lipid-related estimates with

SI were tested using Spearman’s rank-correlation coefficients on

bivariate analysis. The correlations of ML-derived estimates with SI

were also evaluated by calculating coefficient of determination (R²),

root mean squared error (RMSE), and mean absolute error (MAE)

and were also shown as calibration plots.

ROC curves and the areas under the ROC curves (AUCs) were

used to assess the ability of the best estimates to detect insulin

resistance, using EZR ver. 1.61 (Saitama Medical Center, Jichi

Medical University, Saitama, Japan) (39). If the lower limit of the

95% confidence interval (CI) for the AUC was below 0.50, that

index was considered to not have the ability to detect insulin

resistance. Optimal cutoff values were determined by

maximization of the Youden index (sensitivity + specificity − 1).

The Brier score was also calculated. For all statistical tests, values of

P < 0.05 were considered significant.
Results

Characteristics of the entire cohort

The characteristics of the study participants stratified by sex are

shown in Table 1. The Jichi cohort (n = 1,268) included only

persons with NGT and was a young cohort with few cases of obesity,

hypertension, and dyslipidemia. The participants in the Hokuriku

cohort were sorted into an NGT-only group (n = 1,276) and a group

with GI (n = 447). Both groups in the Hokuriku cohort consisted of

middle-aged persons who had higher BMI, WC, WC/Ht ratio, BP,

lipids, glucose, and lipid-related estimates than the young persons

with NGT (the Jichi cohort). The Hokuriku cohort included 447

persons with GI (non-diabetic hyperglycemia, n = 392; newly

diagnosed diabetes mellitus, n = 55), accounting for 26% of the

total cohort. The group with GI in the Hokuriku cohort did not

appear to have any major differences in age, BMI, WC, height, WC/

Ht ratio, BP, lipids, or lipid-related estimates compared with the

NGT group of the same cohort; however, their glucose levels (PG0

and PG120) were higher, and their ISI-Matsuda was lower.
In the ML methods, XGBoost-derived
estimates had the best relationship with SI
in each cohort

The correlations between SI (1/HOMA-IR and ISI-Matsuda) and

ML-derived estimates using three factors are shown in Table 2, and
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the correlations between SI and ML-derived estimates using seven

factors are shown in Table 3. Of the ML methods with three factors,

XGBoost-derived estimates showed the best correlation with SI in all

subgroups (Spearman’s r= 0.81–1.00), followed by RF-derived

estimates (Spearman’s r= 0.68–0.85). There were no differences

between the correlation of XGBoost-derived estimates with 1/

HOMA-IR and ISI-Matsuda (Table 2). Very similar results were

seen for ML methods with seven factors, but Spearman’s r values in

all subgroups were higher than for ML methods with three factors

(Spearman’s r = 0.87–1.00, Tables 2, 3). Spearman’s r values for SI

were slightly better for NGT in the middle-aged group than in the

young group (Hokuriku cohort vs. Jichi cohort NGT) and higher in

the Hokuriku cohort GI than for NGT in both cohorts (Tables 2, 3).

R², RMSE, and MAE are shown in Supplementary Table 2 (by

using three factors) and in Supplementary Table 3 (by using seven

factors). XGBoost-derived estimates for 1/HOMA-IR and ISI-

Matsuda showed the highest R2 and the lowest RMSE and MAE

in all subgroups. R², RMSE, and MAE with seven factors were

slightly better than those with three factors.

The calibration plots are shown in Supplementary Figure 1 (by

using three factors) and in Supplementary Figure 2 (by using seven

factors). XGBoost-derived estimates with three or seven factors

showed strong linear associations with the actual values of 1/

HOMA-IR and ISI-Matsuda in all subgroups.
The ROC analyses with XGBoost-derived
estimates using seven factors showed
good AUCs for detecting insulin resistance

The results of the ROC analyses with XGBoost-derived estimates

using seven factors for the presence or absence of insulin resistance

based on 1/HOMA-IR and ISI-Matsuda are shown in Table 4. The

AUCs were significant for the ability of the XGBoost-derived estimates

in all subgroups to identify insulin resistance. The XGBoost-derived

estimates showed good AUCs, sensitivity, and specificity in all

subgroups. The AUC in men with NGT of the Hokuriku cohort

was the lowest (0.922), whereas the AUCs were high in women overall

(0.972–1.000) and in men with GI of the Hokuriku cohort (0.986–

0.996). The Brier scores were consistent with the AUC results.
The feature importance revealed that the
factors showing a high contribution to SI
differed greatly by age and glucose
tolerance status

For both sexes in both groups, there was a good correlation between

SI and XGBoost-derived estimates using seven factors, and good AUC

for detecting insulin resistance. Feature importance was therefore

calculated for the NGT and GI groups in the Jichi cohort and the

Hokuriku cohort by using eight input factors (the seven factors and sex)

with XGBoost ML (Figure 1). Sex,WC/Ht ratio, TG, and PG0 showed a

high contribution to SI in many groups, but the factors showing a high

contribution differed greatly by age and glucose tolerance status.
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TABLE 1 Characteristics of the participants in the Jichi and Hokuriku cohorts.

Jichi cohort NGT (young)
Hokuriku cohort NGT

(middle-aged)
Hokuriku cohort GI

(middle-aged)

Male
(n=977)

Female
(n=291)

Male
(n=837)

Female
(n=439)

Male
(n=322)

Female
(n=125)

Age (y) 23 (22, 23) 23 (22, 24) 51 (45, 57) 55 (50, 59) 54 (48, 59) 57 (50, 59)

BMI (kg/m2) 21.7 (20.5, 23.3) 20.0 (18.8, 21.1) 23.7 (22.1, 25.4) 22.2 (20.5, 24.0) 24.3 (22.4, 26.3) 23.0 (20.9, 25.2)

WC (cm) 77 (73, 81) 68 (64, 72) 83 (79, 88) 80 (74, 85) 86 (81, 91) 83 (75, 90)

Height (cm) 172 (169, 176) 160 (156, 163) 170 (166, 174) 157 (153, 160) 170 (166, 174) 157 (154, 160)

WC/Ht ratio 0.44 (0.42, 0.47) 0.43 (0.41, 0.45) 0.49 (0.46, 0.52) 0.51 (0.47, 0.54) 0.50 (0.48, 0.53) 0.53 (0.47, 0.58)

SBP (mmHg) 120 (115, 128) 108 (103, 115) 127 (116, 139) 119 (109, 132) 134 (122, 146) 126 (113, 141)

DBP (mmHg) 67 (63, 73) 63 (60, 67) 79 (73, 87) 73 (67, 81) 84 (76, 92) 78 (71, 86)

MBP (mmHg) 85 (80, 91) 84 (79, 88) 95 (88, 104) 88 (81, 98) 101 (92, 110) 94 (85, 105)

HDL (mg/dL) 59 (52, 67) 68 (59, 77) 55 (47, 64) 64 (56, 75) 55 (47, 66) 65 (55, 74)

TG (mg/dL) 63 (49, 86) 52 (40, 67) 111 (80, 153) 81 (62, 113) 125 (89, 174) 85 (64, 121)

LDL (mg/dL) 90 (76, 105) 96 (81, 114) 127 (108, 146) 131 (110, 154) 131 (112, 153) 137 (113, 159)

TC (mg/dL) 165 (149, 182) 176 (154, 197) 209 (186, 230) 218 (193, 241) 217 (195, 241) 224 (203, 246)

PG0 (mg/dL) 88 (82, 94) 85 (80, 91) 96 (91, 101) 93 (88, 97) 110 (100, 115) 102 (95, 109)

PG120 (mg/dL) 91 (78, 103) 94 (80, 107) 106 (93, 120) 105 (92, 116) 152 (140, 171) 156 (143, 173)

IRI0 (mU/mL) 5.8 (4.3, 8.2) 6.1 (4.6. 8.5) 3.7 (2.7, 5.0) 3.5 (2.8, 4.8) 4.0 (2.9, 5.7) 4.0 (2.9, 5.8)

IRI120 (mU/mL) 23.2 (14.0, 37.6) 39.0 (25.5, 58.2) 20.4 (13.0, 32.0) 21.4 (15.0, 31.8) 33.2 (20.2, 57.5) 38.5 (26.2, 54.4)

HOMA-IR 1.26 (0.90, 1.77) 1.30 (0.94, 1.80) 0.86 (0.64, 1.19) 0.83 (0.64, 1.11) 1.08 (0.77, 1.53) 0.99 (0.73, 1.51)

1/HOMA-IR 0.79 (0.56, 1.11) 0.77 (0.55, 1.06) 1.16 (0.84, 1.57) 1.20 (0.90, 1.57) 0.92 (0.65, 0.92) 1.01 (0.66, 1.37)

ISI-Matsuda 10.1 (6.4, 14.6) 7.4 (5.3, 10.0) 11.7 (8.0, 17.5) 11.6 (8.3, 16.5) 7.1 (4.5, 10.6) 6.2 (4.5, 9.0)

TG/HDL 1.08 (0.77, 1.55) 0.76 (0.58, 1.06) 2.02 (1.31, 3.06) 1.24 (0.85, 1.93) 2.21 (1.50, 3.56) 1.43 (0.92, 2.53)

LAP 8.0 (4.6, 13.8) 5.7 (3.4, 9.0) 22.0 (13.3, 35.6) 19.6 (11.5, 30.5) 28.3 (17.0, 48.0) 26.3 (12.9, 48.5)

VAI 0.56 (0.40, 0.83) 0.57 (0.43, 0.81) 1.10 (0.72, 1.73) 1.04 (0.69, 1.58) 1.21 (0.79, 2.05) 1.19 (0.74, 2.07)

DAI 0.38 (0.27, 0.56) 0.34 (0.26, 0.49) 0.74 (0.48, 1.14) 0.62 (0.41, 0.93) 0.81 (0.54, 1.35) 0.71 (0.45, 1.19)

TYG 7.92 (7.64, 8.25) 7.66 (7.44, 7.96) 8.57 (8.25, 8.90) 8.24 (7.96, 8.58) 8.83 (8.49, 9.13) 8.49 (8.12, 8.92)

TYG×BMI 172 (160, 189) 154 (143, 165) 201 (185, 222) 182 (165, 202) 215 (192, 239) 196 (174, 225)

TYG×WC 608 (564, 657) 523 (489, 562) 716 (657, 771) 654 (588, 718) 757 (693, 818) 703 (611, 784)

TYG×WC/Ht 3.53 (3.28, 3.82) 3.29 (3.07, 3.54) 4.20 (3.88, 4.54) 4.18 (3.75, 4.60) 4.46 (4.11, 4.81) 4.54 (3.87, 5.01)

AIP −0.33 (−0.48, −0.17) −0.48 (−0.60, −0.34) −0.054 (−0.24, 0.13) −0.27 (−0.43, −0.074) −0.015 (−0.18, 0.19) −0.20 (−0.40, 0.043)

METS-IR 29.3 (27.2, 32.2) 25.5 (23.6, 27.5) 33.8 (30.5, 37.5) 29.8 (26.9, 33.4) 35.9 (31.7, 40.2) 31.6 (28.2, 37.0)

WTI 7.79 (7.50, 8.11) 7.48 (7.21, 7.73) 8.42 (8.10, 8.78) 8.07 (7.77, 8.44) 8.59 (8.21, 8.95) 8.24 (7.87, 8.72)
F
rontiers in Endocrinol
ogy
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Date are shown as median (25th percentile, 75th percentile) values.
NGT, normal glucose tolerance; GI, glucose intolerance; BMI, body mass index; WC, waist circumference; Ht, height; SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean
blood pressure; HDL, high-density lipoprotein cholesterol; TG, triglycerides; LDL, low-density lipoprotein cholesterol; PG, plasma glucose; IRI, immunoreactive insulin; HOMA-IR, homeostasis
model assessment of insulin resistance; ISI-Matsuda, Matsuda index; LAP, lipid accumulation product; VAI, visceral adiposity index; DAI, dysfunctional adiposity index; TYG, triglycerides and
glucose index; AIP, atherogenic index of plasma; METS-IR, metabolic score for insulin resistance; WTI, waist-triglyceride index.
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The SHAP values also revealed that the
factors showing a high contribution to SI
differed greatly by age and glucose
tolerance status

SHAP values were similarly calculated for the NGT and GI

groups in the Jichi cohort and the Hokuriku cohort by using eight

input factors (the seven factors and sex) with XGBoost ML. In the

Jichi cohort, a positive or negative impact and a significant

contribution to the SI prediction equation were seen with WC/Ht

ratio, PG0, and sex for 1/HOMA-IR, and with WC/Ht ratio, BMI,
Frontiers in Endocrinology 06
TG, PG0, and sex for ISI-Matsuda (Figure 2). In the Hokuriku

cohort NGT, a positive or negative impact and a significant

contribution were seen with BMI, PG0, and sex for 1/HOMA-IR,

and with WC/Ht ratio, BMI, TG, PG0, and sex for ISI-Matsuda

(Figure 3). In the Hokuriku cohort GI, a positive or negative impact

and a significant contribution were seen with WC/Ht ratio, BMI,

PG0, and sex for 1/HOMA-IR, and with WC/Ht ratio, BMI, and sex

for ISI-Matsuda (Figure 4). Male sex displayed positive impact,

whereas WC/Ht ratio, BMI, and PG0 negative impact in many of

the groups. As with feature importance, the factors with a high

contribution differed greatly by age and glucose tolerance status.
TABLE 2 Non-parametric Spearman rank correlation coefficients of machine learning indices by three factors for 1/HOMA-IR and ISI-Matsuda by sex.

For 1/HOMA-IR For ISI-Matsuda

Male Female Male Female

r P r P r P r P

Jichi cohort NGT (young)

MRA 0.32 <0.0001 0.27 <0.0001 0.33 <0.0001 0.27 <0.0001

ANN 0.32 <0.0001 0.28 <0.0001 0.33 <0.0001 0.26 <0.0001

DT 0.69 <0.0001 0.60 <0.0001 0.71 <0.0001 0.63 <0.0001

RF 0.77 <0.0001 0.77 <0.0001 0.79 <0.0001 0.77 <0.0001

BT 0.72 <0.0001 0.56 <0.0001 0.77 <0.0001 0.60 <0.0001

KNN 0.37 <0.0001 0.33 <0.0001 0.43 <0.0001 0.34 <0.0001

SVM 0.36 <0.0001 0.38 <0.0001 0.38 <0.0001 0.39 <0.0001

XGBoost 0.87 <0.0001 0.97 <0.0001 0.84 <0.0001 0.98 <0.0001

Hokuriku cohort NGT (middle-aged)

MRA 0.49 <0.0001 0.44 <0.0001 0.47 <0.0001 0.46 <0.0001

ANN 0.46 <0.0001 0.42 <0.0001 0.47 <0.0001 0.43 <0.0001

DT 0.74 <0.0001 0.71 <0.0001 0.73 <0.0001 0.76 <0.0001

RF 0.74 <0.0001 0.72 <0.0001 0.78 <0.0001 0.82 <0.0001

BT 0.60 <0.0001 0.50 <0.0001 0.67 <0.0001 0.68 <0.0001

KNN 0.51 <0.0001 0.43 <0.0001 0.51 <0.0001 0.50 <0.0001

SVM 0.56 <0.0001 0.52 <0.0001 0.52 <0.0001 0.51 <0.0001

XGBoost 0.81 <0.0001 0.93 <0.0001 0.82 <0.0001 0.95 <0.0001

Hokuriku cohort GI (middle-aged)

MRA 0.45 <0.0001 0.63 <0.0001 0.50 <0.0001 0.51 <0.0001

ANN 0.45 <0.0001 0.63 <0.0001 0.49 <0.0001 0.51 <0.0001

DT 0.66 <0.0001 0.81 <0.0001 0.72 <0.0001 0.72 <0.0001

RF 0.68 <0.0001 0.85 <0.0001 0.81 <0.0001 0.76 <0.0001

BT 0.49 <0.0001 0.84 <0.0001 0.66 <0.0001 0.77 <0.0001

KNN 0.42 <0.0001 0.67 <0.0001 0.53 <0.0001 0.53 <0.0001

SVM 0.52 <0.0001 0.69 <0.0001 0.53 <0.0001 0.59 <0.0001

XGBoost 0.95 <0.0001 1.00 <0.0001 0.96 <0.0001 1.00 <0.0001
HOMA-IR, homeostasis model assessment of insulin resistance; ISI-Matsuda, Matsuda index; NGT, normal glucose tolerance; GI, glucose intolerance; MRA, multiple regression analysis; ANN, a
neural network; DT, decision tree; RF, random forest; BT, boosting tree; KNN, K nearest neighbor; SVM, support vector machine; XGBoost, extreme gradient boosting.
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Relationships of lipid-related estimates
with SI were weaker than for ML-derived
estimates

The correlations between lipid-related estimates and SI are

shown for each subgroup (Supplementary Table 4). Overall,

Spearman’s r values for SI were lower for lipid-related estimates

than for ML-derived estimates (Tables 2, 3). Spearman’s r values for
SI were higher in the middle-aged group than in the young group,

and higher in GI than in NGT. In NGT, Spearman’s r values for SI

were higher in men than women, and in GI, they were higher in
Frontiers in Endocrinology 07
women than men. The product of TyG index and physical

indicators, as well as METS-IR, showed relatively strong

correlations in all subgroups.
Discussion

In this study, correlations between SI and ML-derived estimates

were calculated using a total of seven factors: the three physical

indicators BMI, WC/Ht ratio, and MBP, plus lipid and fasting

glucose levels (HDL, TG, LDL, and PG0). In ML-derived estimates
TABLE 3 Non-parametric Spearman rank correlation coefficients of machine learning indices by seven factors for 1/HOMA-IR and ISI-Matsuda by sex.

For 1/HOMA-IR For ISI-Matsuda

Male Female Male Female

r P r P r P r P

Jichi cohort NGT (young)

MRA 0.48 <0.0001 0.44 <0.0001 0.45 <0.0001 0.34 <0.0001

ANN 0.49 <0.0001 0.46 <0.0001 0.46 <0.0001 0.28 <0.0001

DT 0.74 <0.0001 0.75 <0.0001 0.78 <0.0001 0.73 <0.0001

RF 0.87 <0.0001 0.88 <0.0001 0.88 <0.0001 0.89 <0.0001

BT 0.81 <0.0001 0.68 <0.0001 0.86 <0.0001 0.63 <0.0001

KNN 0.54 <0.0001 0.43 <0.0001 0.49 <0.0001 0.41 <0.0001

SVM 0.62 <0.0001 0.70 <0.0001 0.60 <0.0001 0.66 <0.0001

XGBoost 0.90 <0.0001 0.99 <0.0001 0.92 <0.0001 0.99 <0.0001

Hokuriku cohort NGT (middle-aged)

MRA 0.56 <0.0001 0.52 <0.0001 0.51 <0.0001 0.54 <0.0001

ANN 0.56 <0.0001 0.52 <0.0001 0.54 <0.0001 0.52 <0.0001

DT 0.80 <0.0001 0.75 <0.0001 0.79 <0.0001 0.79 <0.0001

RF 0.81 <0.0001 0.76 <0.0001 0.86 <0.0001 0.89 <0.0001

BT 0.71 <0.0001 0.62 <0.0001 0.77 <0.0001 0.82 <0.0001

KNN 0.59 <0.0001 0.48 <0.0001 0.59 <0.0001 0.61 <0.0001

SVM 0.74 <0.0001 0.74 <0.0001 0.69 <0.0001 0.71 <0.0001

XGBoost 0.87 <0.0001 0.94 <0.0001 0.89 <0.0001 0.98 <0.0001

Hokuriku cohort GI (middle-aged)

MRA 0.52 <0.0001 0.69 <0.0001 0.52 <0.0001 0.57 <0.0001

ANN 0.46 <0.0001 0.69 <0.0001 0.39 <0.0001 0.56 <0.0001

DT 0.79 <0.0001 0.85 <0.0001 0.77 <0.0001 0.82 <0.0001

RF 0.77 <0.0001 0.90 <0.0001 0.86 <0.0001 0.87 <0.0001

BT 0.58 <0.0001 0.90 <0.0001 0.75 <0.0001 0.83 <0.0001

KNN 0.47 <0.0001 0.72 <0.0001 0.52 <0.0001 0.42 <0.0001

SVM 0.79 <0.0001 0.82 <0.0001 0.69 <0.0001 0.82 <0.0001

XGBoost 0.98 <0.0001 1.00 <0.0001 0.99 <0.0001 1.00 <0.0001
HOMA-IR, homeostasis model assessment of insulin resistance; ISI-Matsuda, Matsuda index; NGT, normal glucose tolerance; GI, glucose intolerance; MRA, multiple regression analysis; ANN, a
neural network; DT, decision tree; RF, random forest; BT, boosting tree; KNN, K nearest neighbor; SVM, support vector machine; XGBoost, extreme gradient boosting.
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TABLE 4 Area under the curve, cutoff values, sensitivity, specificity, and Brier scores of XGBoost predictors by seven factors for the presence of insulin resistance in both sexes.

Male Female

nsitivity
(%)

Specificity
(%)

Brier
score

AUC
(95%CI)

Cutoff
value

Sensitivity
(%)

Specificity
(%)

Brier
score

82 89 0.0199 0.993 (0.987-0.999) 0.584 98 94 0.000736

90 84 0.0113 0.997 (0.993-1.000) 5.724 95 100 0.00217

87 81 0.0123 0.972 (0.957-0.987) 0.992 97 85 0.000796

93 79 0.00651 0.985 (0.973-0.997) 7.651 97 92 0.000289

97 93 0.00277 1.000 (1.000-1.000) 0.713 100 100 0.00000693

96 97 0.00358 1.000 (1.000-1.000) 6.040 100 100 0.0000645

I-Matsuda, Matsuda index; NGT, normal glucose tolerance; GI, glucose intolerance; AUC, area under the receiver operating characteristic curve; CI, confidence
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AUC (95%CI)
Cutoff
value

Se

Jichi cohort NGT (young)

For the presence of insulin resistance by
1/HOMA-IR

0.935 (0.917-0.953) 0.696

For the presence of insulin resistance by
ISI-Matsuda

0.946 (0.930-0.961) 8.360

Hokuriku cohort NGT (middle-aged)

For the presence of insulin resistance by
1/HOMA-IR

0.922 (0.898-0.946) 0.996

For the presence of insulin resistance by
ISI-Matsuda

0.935 (0.917-0.954) 10.123

Hokuriku cohort GI (middle-aged)

For the presence of insulin resistance by
1/HOMA-IR

0.986 (0.976-0.995) 0.815

For the presence of insulin resistance by
ISI-Matsuda

0.996 (0.992-0.999) 6.149

XGBoost, extreme gradient boosting; HOMA-IR, homeostasis model assessment of insulin resistance; I
interval.
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using three and seven factors, the prediction equations for

XGBoost-derived estimates showed the strongest correlation with

SI in all subgroups. XGBoost-derived estimates using seven factors

had a stronger association with SI than did those with three factors,

but the improvement in correlation with seven factors was

moderate. XGBoost-derived estimates using seven factors showed

high sensitivity and specificity for detecting insulin resistance. In

terms of feature importance in the XGBoost prediction equations,

sex, WC/Ht ratio, TG, and PG0 showed a high contribution to SI in

many groups. Analysis by SHAP values showed that male sex

displayed positive impact, whereas WC/Ht ratio, BMI, and PG0

negative impact on SI. On analyses by feature importance and

SHAP values, the contribution of each clinical factor to SI differed

greatly by age and glucose tolerance status.

We have previously reported that the physical indicator WC/Ht

ratio is strongly correlated with SI, especially in the middle-aged

Hokuriku cohort (10), and in the present study, we initially

analyzed the relationship between SI and ML-derived estimates

using only the physical indicators BMI, WC/Ht ratio, and MBP.

Previous studies have shown that physical indicators are an

important factor in ML for predicting SI (21–23), but none of

those studies reported a relationship between SI and ML-derived

estimates when inputs were restricted to physical indicators. Those

analyses were also limited to 1/HOMA-IR as the SI index. The

present study found that XGBoost-derived estimates using only

physical indicators were strongly correlated with both the 1/

HOMA-IR and ISI-Matsuda indices of SI (Spearman’s r= 0.81–

1.00). The results of R², RMSE, and MAE, and calibration plots

supported this finding. It is a new finding of this study that the SI of

an individual can be estimated with high accuracy by ML using only

physical indicators. Previous research has also shown that the AUC

of insulin resistance estimated by ML deteriorates very little when

the ML input factors are reduced (23). XGBoost-derived estimates
Frontiers in Endocrinology 09
using lipid and fasting glucose levels in addition to physical

indicators showed a slightly stronger correlation with SI than

when using physical indicators alone (Spearman’s r= 0.87–1.00).

The addition of conventional biochemical indices improved the

accuracy of SI estimates, but the effect of this addition was

moderate. Previous research has shown that the addition of

biochemical indices considerably improves the accuracy of SI

estimates (23), but this could be due to differences in the

subject populations.

Of the ML methods, XGBoost-derived estimates showed the

strongest correlation with SI, consistent with previous reports (21–

23). ML performs regression, classification, and clustering from the

dataset through iterative training, and it can therefore generate

more accurate predictions than traditional statistical methods such

as multiple regression analysis (21). Of the ML methods, XGBoost

and RF have the highest accuracy because they generate appropriate

models by creating numerous decision trees (21). The SI prediction

equations produced by XGBoost and RF in the present study were

also good (Tables 2, 3). RF performs bagging to reduce overfitting

and variance, and it uses independent classifiers. The flaw of RF is

that its accuracy does not increase when there is only a small

amount of learning data (40). XGBoost performs gradient boosting

to reduce bias and variance, uses sequential classifiers, and

aggregates predictions of many individually trained classifiers

(41). Although XGBoost overfits the data into the model, it can

reduce the flaw of RF. Of the ML methods, the XGBoost-derived

estimates showed the best correlation with SI. However, in the

present study, the ML models were used with default settings, and

measures such as overfitting prevention, hyperparameter tuning,

and validation had already been implemented by the software

vendors. The performance of ML methods other than XGBoost

could also improve by fine tuning; therefore, the superiority of

XGBoost cannot be insisted.
FIGURE 1

Feature importance for 1/HOMA-IR and ISI-Matsuda by XGBoost in the Jichi cohort and in normal glucose tolerance (NGT) and glucose intolerance
(GI) in the Hokuriku cohort. HOMA-IR, homeostasis model assessment of insulin resistance; ISI-Matsuda, Matsuda index; BMI, body mass index; WC,
waist circumference; Ht, height; MBP, mean blood pressure; HDL, high-density lipoprotein cholesterol; TG, triglycerides; LDL, low-density
lipoprotein cholesterol; PG0, fasting plasma glucose.
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FIGURE 3

Relative importance of the eight features for insulin sensitivity (SI)
prediction, as determined by the extreme gradient boosting
(XGBoost) algorithms. Explanation of each feature impact on the SI
prediction model by SHAP (Shapley Additive exPlanations) values
using XGBoost in the Hokuriku cohort NGT (normal glucose
tolerance). HOMA-IR, homeostasis model assessment of insulin
resistance; ISI-Matsuda, Matsuda index; WC, waist circumference;
Ht, height; BMI, body mass index; MBP, mean blood pressure; HDL,
high-density lipoprotein cholesterol; TG, triglycerides; LDL, low-
density lipoprotein cholesterol; PG0, fasting plasma glucose.
FIGURE 2

Relative importance of the eight features for insulin sensitivity (SI)
prediction, as determined by the extreme gradient boosting
(XGBoost) algorithms. Explanation of each feature impact on the SI
prediction model by SHAP (Shapley Additive exPlanations) values
using XGBoost in the Jichi cohort. HOMA-IR, homeostasis model
assessment of insulin resistance; ISI-Matsuda, Matsuda index; WC,
waist circumference; Ht, height; BMI, body mass index; MBP, mean
blood pressure; HDL, high-density lipoprotein cholesterol; TG,
triglycerides; LDL, low-density lipoprotein cholesterol; PG0, fasting
plasma glucose.
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In the analysis of AUC for detection of insulin resistance, the

AUC in XGBoost-derived estimates was high in all groups (0.922–

1.000), with good sensitivity (82%–100%) and specificity (79%–

100%). The AUC analysis and Brier scores in this study showed that

the XGBoost prediction equation can detect insulin resistance with

high accuracy. Previous studies have also shown good AUCs in the

detection of insulin resistance by ML-derived estimates (21–23).

The AUCs from the ROC analysis in the present study were better

than those previously reported. This is presumably because AUCs

in the present study were calculated within each subgroup stratified

by age, sex, and glucose tolerance. In addition, subjects taking

antidiabetic, antihypertensive, and lipid-lowering agents were

excluded, resulting in analysis of a more homogeneous population

than in the previous studies.

In ML, feature importance reveals the factors that are important

to the model (42), whereas SHAP analysis clarifies the positive or

negative contribution of the factors to the prediction equation (43).

The results of feature importance analysis showed that sex, WC/Ht

ratio, TG, and PG0 were important as predictive factors for SI, and

the analysis of SHAP values showed that male sex displayed a

positive impact, whereas WC/Ht ratio, BMI, and PG0 showed a

negative impact on predicting SI in XGBoost. Previous studies have

stated that fasting glucose and BMI have a strong influence as

factors for SI estimation by ML (21–23), which is compatible with

the results of the present study. A positive SHAP value indicates a

contribution to increased insulin sensitivity, whereas a negative

SHAP value indicates a contribution to decreased insulin sensitivity.

Young men in the Jichi cohort displayed remarkably positive SHAP

values (Figure 2), consistent with higher insulin sensitivity

(Table 1). Higher BMI, WC/Ht ratio, and fasting glucose levels

contributed to lower insulin sensitivity in the Hokuriku cohort

(Figures 3, 4), consistent with known pathophysiology.

Moderate correlations were observed between lipid-related

estimates and SI, but these were not as strong as the correlations

between ML-derived estimates and SI. Of the lipid-related

estimates, the product of TyG index and physical indicators, as

well as METS-IR, showed a relatively strong correlation with SI,

consistent with earlier reports (16, 17, 19). Similarly, the correlation

between lipid-related estimates and SI in the present study was not

particularly robust. The results of the feature importance and SHAP

analyses in the present study showed that the factors contributing to

SI differed considerably depending on the background factors of age

and glucose tolerance in the subject population. This suggests that it

is difficult to create a universal and robust SI prediction equation

simply by assigning fixed coefficients to conventional clinical

parameters. Lipid-related estimates are calculated with fixed

coefficients assigned to conventional clinical parameters. The

main reason why lipid-related estimates do not universally

correlate well with SI is that the contribution of various factors to

SI differs according to subject background characteristics such as

age and glucose tolerance.

A future follow-up study is needed to determine whether the SI

estimates by ML in this study are useful in relation to future onset of

metabolic syndrome and glucose intolerance in the young Jichi
FIGURE 4

Relative importance of the eight features for insulin sensitivity (SI)
prediction, as determined by the extreme gradient boosting
(XGBoost) algorithms. Explanation of each feature impact on the SI
prediction model by SHAP (Shapley Additive exPlanations) values
using XGBoost in the Hokuriku cohort GI (glucose intolerance).
HOMA-IR, homeostasis model assessment of insulin resistance; ISI-
Matsuda, Matsuda index; WC, waist circumference; Ht, height; BMI,
body mass index; MBP, mean blood pressure; HDL, high-density
lipoprotein cholesterol; TG, triglycerides; LDL, low-density
lipoprotein cholesterol; PG0, fasting plasma glucose.
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cohort, and future onset of cardiovascular events and cancer in the

Hokuriku cohort.
Limitations of the study

The limitations of this study are, first, that the SI prediction

equations in ML are very complex. Although they showed good

performance within each subgroup, they are hard to adapt to other

subgroups as transfer learning. For example, when calculating the

ISI-Matsuda for men in the Hokuriku cohort NGT using the

XGBoost prediction equation (equations not shown) generated

with seven factors for ISI-Matsuda in the Jichi cohort NGT men,

the correlation coefficient (Spearman’s r value) with the actual ISI-

Matsuda fell to 0.37. In practice, the clinical application of ML to SI

prediction is complex because it requires analysis of each

background factor. Second, this study did not obtain information

on lifestyle habits such as exercise and diet that could contribute to

SI. However, it has been reported that these factors are not

significantly involved in prediction of SI by ML (21). Third, the

presence of fatty liver is an important factor contributing to lower SI

(29, 44, 45), but this could not be analyzed, because liver function

test values were not available in the Jichi cohort. Fourth, this was a

cross-sectional study and limited to Japanese participants. In this

study, no external validation data beyond the Jichi cohort (young)

and Hokuriku cohort (middle-aged) were included. In ML-derived

SI estimates using conventional clinical parameters, it is necessary

to take into account differences in race, age, sex, and glucose

tolerance. Further external validation studies in diverse ethnic

groups and also in subjects taking antidiabetic medications are

needed. Fifth, in XGBoost in JMP Pro 17, the standard settings do

not allow modification of resampling or random seeds. Therefore, it

would be necessary to either change the statistical software or

modify the JMP Pro 17 scripts to perform a reanalysis. Finally,

feature importance and SHAP were adopted to interpret the

XGBoost models in this study. Although XGBoost-derived

estimates were robust within subgroups, their performance

deteriorated when applied to another subgroup. There also

remain possible biases on the results of feature importance and

SHAP due to lack of lifestyle data, liver function test, and other

unknown factors, such as menstrual status, contributing to SI.
Conclusions

In Japanese young or middle-aged persons with NGT and

middle-aged persons with GI, it was possible to estimate SI using

ML based only on physical indicators, and by physical indicators

together with lipid and fasting glucose levels. The contribution of

each clinical factor to SI differed greatly by age and glucose

tolerance status, implying that establishing robust estimates for SI

by using conventional parameters would be difficult. Further
Frontiers in Endocrinology 12
validation studies are necessary in diverse ethnic groups with

various body compositions.
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SUPPLEMENTARY FIGURE 1

Calibration plots of ML indices by 3 factors for 1/HOMA-IR and ISI-Matsuda by

sex in Jichi and Hokuriku cohorts. HOMA-IR, homeostasis model assessment
of insulin resistance; ISI-Matsuda, Matsuda index; NGT, normal glucose

tolerance; GI, glucose intolerance; MRA, multiple regression analysis; ANN,
a neural network; DT, decision tree; RF, random forest; BT, boosting tree;

KNN, K nearest neighbor; SVM, support vector machine; XGBoost, extreme

gradient boosting.

SUPPLEMENTARY FIGURE 2

Calibration plots of ML indices by 7 factors for 1/HOMA-IR and ISI-Matsuda by

sex in Jichi and Hokuriku cohorts. HOMA-IR, homeostasis model assessment
of insulin resistance; ISI-Matsuda, Matsuda index; NGT, normal glucose

tolerance; GI, glucose intolerance; MRA, multiple regression analysis; ANN,

a neural network; DT, decision tree; RF, random forest; BT, boosting tree;
KNN, K nearest neighbor; SVM, support vector machine; XGBoost, extreme

gradient boosting.
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