

OPEN ACCESS

EDITED BY Marek Bolanowski, Wrocław Medical University, Poland

REVIEWED BY
Leila Warszawski,
Instituto Estadual de Diabetes e Endocrinologia
Luiz Capriglione, Brazil
Lukasz Dzialach,
Warsaw Medical University, Poland

*CORRESPONDENCE
Aleksandra Gilis-Januszewska
myjanusz@cyfronet.pl

RECEIVED 05 July 2025
ACCEPTED 29 September 2025
PUBLISHED 24 October 2025

CITATION

Minasyan M, Suchy W, Fedak A, Gamrat-Żmuda A, Hubalewska-Dydejczyk A, Valassi E and Gilis-Januszewska A (2025) Liver impairment and medical management of Cushing syndrome and MACS. Front. Endocrinol. 16:1660316. doi: 10.3389/fendo.2025.1660316

COPYRIGHT

© 2025 Minasyan, Suchy, Fedak, Gamrat-Żmuda, Hubalewska-Dydejczyk, Valassi and Gilis-Januszewska. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Liver impairment and medical management of Cushing syndrome and MACS

Mari Minasyan¹, Wiktoria Suchy², Andrzej Fedak³, Aleksandra Gamrat-Żmuda¹, Alicja Hubalewska-Dydejczyk¹, Elena Valassi^{4,5} and Aleksandra Gilis-Januszewska^{1*}

¹Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland, ²Students' Scientific Circle of Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland, ³Department of Radiology, Jagiellonian University Medical College, Kraków, Poland, ⁴Endocrinology Department, Hospital Germans Trias i Pujol, Badalona, Spain, ⁵Universitat Internacional de Catalunya (UIC), Barcelona, Spain

Cushing syndrome (CS) and mild autonomous cortisol secretion syndrome (MACS) are states of endogenous hypercortisolemia, associated with multiple metabolic complications. The data on the impact of cortisol on the liver are inconsistent at times. From one perspective, some studies proved hepatotoxic cortisol action. Elevated liver enzymes and liver steatosis are common findings in patients with newly diagnosed CS and MACS (liver steatosis prevalence: 20%-66% and 25%-57%, respectively). Normocortisolemic subjects with liver steatosis/metabolic-associated steatohepatitis seem to have higher cortisol concentration than the healthy population. In contrast, other studies suggest that the liver impairment prevalence in hypercortisolemic patients with so many metabolic comorbidities would be expected to be much higher than it is reported. They postulate anti-inflammatory cortisol action as a preventive factor for liver disease progression in subjects with CS and MACS. The data on the hepatic safety profile of hypercortisolemia pharmacotherapy seems to be conflicting at times. Antihypercortisolemic medical therapy can potentially cause liver impairment; therefore, implementing the treatment of hypercortisolemia is often challenging in patients with liver dysfunction. We present two CS cases with baseline liver impairment, which improved on the treatment with steroidogenesis inhibitors. The case reports are followed by literature review regarding liver dysfunction in endogenous hypercortisolemia, impact of hypothalamicpituitary-adrenal axis on the liver, and liver safety profile of medical treatment used in endogenous hypercortisolemia.

KEYWORDS

Cushing, MACS, liver steatosis, liver fibrosis, steroidogenesis inhibitors, osilodrostat, metyrapone, hypercortisolemia

1 Introduction

Cushing syndrome (CS) and mild autonomous cortisol secretion syndrome (MACS) are conditions caused by cortisol excess. CS is a state of overt hypercortisolemia with marked physical symptoms. MACS is a state of milder degree of hypercortisolemia, without physical signs of cortisol excess. To different degrees, CS and MACS are associated with cardiovascular, thrombotic, metabolic, infectious, musculoskeletal, and psychiatric complications, which increase mortality rate and impair quality of life among these patients (1-5). The data on the impact of hypothalamic-pituitary-adrenal (HPA) axis on the liver function are divergent at times. Elevated liver enzymes are common baseline findings in patients with CS (4). CS and MACS are associated with an increased prevalence of liver steatosis (LS; 20%-66% and 25%-57%, respectively), classified as metabolic dysfunction-associated steatotic liver disease [MASLD, formerly known as nonalcoholic fatty liver disease (NAFLD)] (6-13). On the other hand, cortisol's anti-inflammatory action may play a protective role, and the rate of LS in CS may increase after management of active hypercortisolemia (14).

Untreated LS may evolve to hepatitis [metabolic dysfunction-associated steatohepatitis (MASH), formerly classified as nonalcoholic steatohepatitis (NASH)] and fibrotic sequelae. To the best of our knowledge, the incidence of liver fibrosis (LF) in CS has been so far evaluated in two studies that used Fibroscan (3.4%) and blood-based scores (15.4%) (15, 16). Currently, there are two ongoing prospective studies investigating liver images on magnetic resonance imaging (MRI) scans in newly diagnosed patients with CS and 1 year after successful treatment (15, 16). One of them investigates LS by using liver MRI (15); another one measures LF using MRI elastography (MRE) (16).

The reports on the liver safety profile of some of the antihypercortisolemic medications seem to be inconsistent at times. Therefore, implementing the treatment of hypercortisolemia may sometimes seem challenging in patients with CS and MACS with hepatic dysfunction.

In this paper, we present two CS cases with significant liver impairment treated with steroidogenesis inhibitors followed by literature review regarding liver dysfunction in endogenous hypercortisolemia, impact of HPA axis on the liver, and liver safety profile of medical treatment used in endogenous hypercortisolemia.

2 Case reports

2.1 Case 1

A 51-year-old overweight woman with a 3-year history of diabetes mellitus (DM), hypertension, and LS was referred to the endocrinology department due to worsening glycemic and blood pressure control. On admission, the patient reported insomnia, hot flushes, and muscle weakness for 1 year. Physical examination revealed abdominal obesity, moon face, dorsocervical fat pad, abdominal striae, and skin bruises. Laboratory evaluation showed poorly controlled DM and

hypercholesterolemia. Hepatic function evaluation indicated significantly elevated liver function tests [LFTs; up to 11× upper reference limit (URL)] without liver function decompensation (Child-Pugh A—the score is characterized in the Supplementary File 1). Insulinotherapy, escalation of hepatoprotective medications (ursodeoxycholic acid and ornithine aspartate), and antihypertensives were implemented. Hormonal evaluation confirmed adrenocorticotropic hormone (ACTH)-dependent CS. Metyrapone was started at the daily dose of 750 mg for 1 month, substituted by osilodrostat at the initial daily dose of 4 mg. After 1 month of metyrapone therapy, a significant decrease of hypercortisolemia (halving of serum midnight cortisol and late-night salivary cortisol) and an LFT drop (up to 2.7× URL) and amelioration of metabolic control were observed. The decision to replace metyrapone with osilodrostat was made for the patient's convenience (easier dosing). Two months of osilodrostat treatment resulted in further improvement of cortisolemia, metabolic control, and almost complete LFT normalization. Inferior petrosal sinus sampling suggested right side pituitary microadenoma. After 7 months of treatment with steroidogenesis inhibitors, the patient underwent a successful transsphenoidal surgery of pituitary adenoma. LFT normalized 5 months after the surgical treatment of Cushing disease (CD). The results are presented in Table 1 and Figure 1.

2.2 Case 2

We present a 35-year-old woman, whose case has already been published in the context of COVID-19 infection in CD treated with osilodrostat (17). In December 2021, she started osilodrostat with an initial daily dose of 2 mg followed by 4 mg since February 2022. Pre-treatment laboratory evaluation showed sustained LFT elevation (up to 4× URL), dyslipidemia, and uncontrolled DM. One month after osilodrostat implementation, the patient suffered from a COVID-19 infection, which worsened liver function. Adrenostatic treatment was interrupted during the infection period. At the time of osilodrostat resumption, LFTs were elevated to the maximum of 14.5× URL, but liver function was not decompensated (Child-Pugh A). Gamma glutamyl transferase (GGT) started to decrease after 1 month of therapy, normalizing after 9 months. Aspartate aminotransferase (AST) started to decline after 2 months of treatment, normalizing after 11 months. Alanine aminotransferase (ALT) started to decrease after 5 months of therapy. Fibrosis-4 Index [age (years) \times AST (U/L)/[PLT (10⁹/L) \times \sqrt{ALT} (U/L)]; result >1.3 predicts LF] normalized after 4 months of therapy (from 1.6 to 0.61) (18). Liver elastography 1 year after therapy initiation showed a liver stiffness value of 7.91 kPa (N < 8.27 kPa). Liver MRI presented LS at the level of 19.3% (Figures 2 and 3; N < 5%). The laboratory results are presented in Table 2 and Figure 4.

3 Literature review

The review is presented in the form of tables (Supplementary Files 1–4).

TABLE 1 Case 1—Test results evaluating cortisolemia level, liver enzymes, diabetes mellitus, and dyslipidemia control (baseline, during adrenostatic treatment, and after surgery).

	Baseline (Nov 2023)	1 Month of M therapy (Dec 2023)	1 Month of O therapy (Jan 2024)	2 Months of O therapy (Feb 2024)	2 Months after surgery (Aug 2024)	5 Months after surgery (Nov 2024)	7 Months after surgery (Jan 2025)
ALT [U/L]	101	40	24	24	27	9	9
AST [U/L]	39	21	16	18	27		12
GGT [U/L]	451	99	56	50	126	24	19
Bilirubine mmol/L	8.19	5.81	4.33	4.03	6.48		4.06
6AM COR [μg/dL]	22.2		18.3	13.9	0.41		
8AM COR [μg/dL]	23	18.2	15.7	14.2	0.78	3.96	3.11
24AM COR [μg/dL]	23.3	12	13.4	13.6	0.13		
LNSC [µg/dL]	1.33	0.77	0.43	0.36			
mUFC [μg/day]	186.3		170.45	58.4			
HBA1C [%]	14.4	11.1	9.3	8.4	9.5		6.2
TC mmol/L	7.1	5.9		4.8	5.4		4.8
LDL-C [mmol/L]	6.11	5.02		3.86	4.57		
Non-HDL-C [mmol/L]	4.82	4.03		3.41	2.6		3.84
TAG [mmol/ L]	5.72	2.63		1.95	4.33		2.6
Weight [kg]	84	84	84	84			

 $Laboratory\ reference\ ranges:\ ALT\ [N:\ 10-35\ U/L],\ AST\ [N:\ 10-35\ U/L],\ GGT\ [N:\ 6-42\ U/L],\ LNSC\ [<0.274\ \mu g/dL],\ HBA1C\ [N<6.4\%],\ non-HDL-C\ [N<2.2\ mmol/L],\ LDL-C\ [N<1.8\ mmol/L],\ TC\ [N<5.2\ mmol/L],\ mUFC\ [N:\ 10-100\ \mu g/day],\ TAG\ [N<2.30\ mmol/L].$

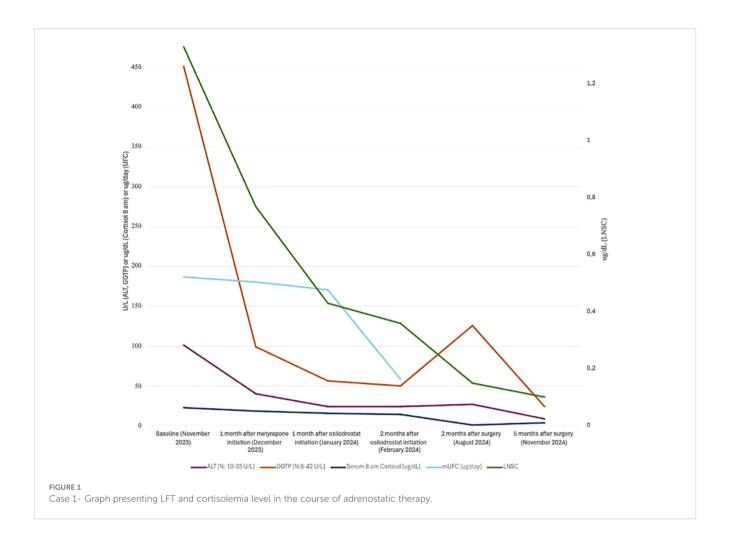
3.1 Liver impairment in endogenous hypercortisolemia

Supplementary File 2 presents studies evaluating liver impairment in endogenous CS and MACS.

3.2 HPA axis impact on liver in non-CS subjects

Supplementary File 3 shows data on the link between HPA axis and liver impairment in normocortisolemic subjects.

3.3 Reviews evaluating glucocorticoids impact on liver

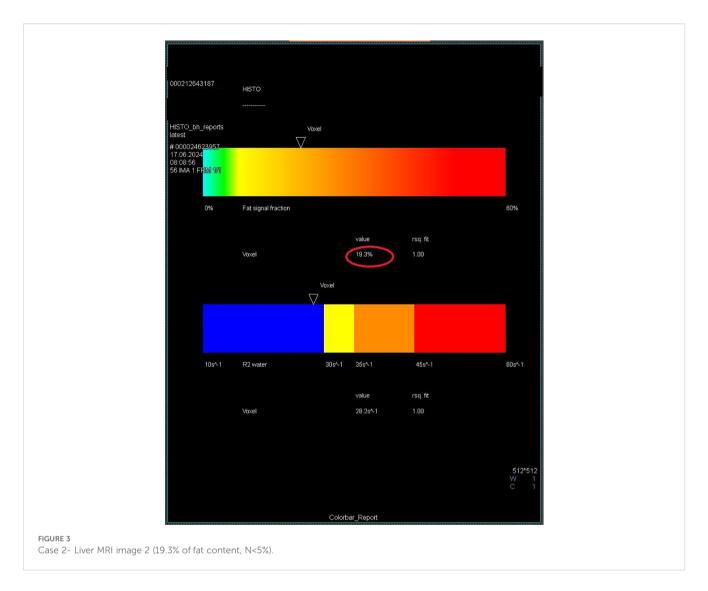

Supplementary File 4 presents reviews on the glucocorticoid impact on the liver.

3.4 Impact of CS medical treatment on liver function

Supplementary File 5 shows data on the impact of pharmacotherapy used in CS on the liver.

4 Discussion

The main subject of this case-based review is focused on the hepatic impairment in endogenous hypercortisolemia and on the impact of antihypercortisolemic pharmacotherapy on liver function. The data on that area are scarce and conflicting. For a better and more global comprehension of the studied topic, we additionally explored the understanding of HPA axis impact on liver function from different perspectives, as well as in eucortisolemic subjects. Therefore, we searched for ACTH and cortisol impact on the liver, the role of HPA axis in liver disorders, HPA axis dysregulation in liver impairment, hepatic

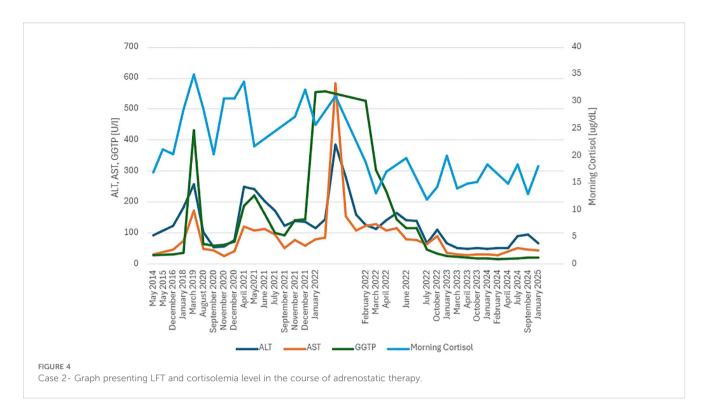


consequences of liver glucocorticosteroid receptor (GR) stimulation and inhibition, and the role of intrahepatic cortisol concentration regulation by 11 beta-hydroxysteroid dehydrogenase type 1 (11 β -HSD1) and 5 β -reductase (5 β R) in liver disorders.

Thus, does HPA activation promote or protect from liver impairment?

Preclinical studies showed that hepatic GR activation leads to an increase in liver fat content, most likely by the promotion of hepatic gluconeogenesis and lipogenesis (19, 20). Studies on a selective glucocorticoid receptor modulator "miricorilant" used in patients with LS/NASH revealed reduction of liver fat content (21–23). Nonclinical observations showed that miricorilant's hepatic lipid-lowering effect resulted from a unique GR-dependent stimulation of lipid efflux from the liver, combined with a lack of stimulation of GR-dependent hepatic fatty acid uptake (21, 22). Rapid LS reduction obtained on high daily miricorilant doses resulted in the elevation of concurrent LFTs (24). The mechanism may be connected with rapid fat "wash out" from the liver, resulting in a "mechanical mini damage like process". Subjects receiving intermittent and lower doses of miricorilant showed gradual liver fat loss without an associated rise of LFTs. Miricorilant co-

administration with olanzapine showed less metabolic and hepatic side effects compared to those observed on olanzapine monotherapy (25). Reports on another GR antagonist "mifepristone" effect on the liver also seem to be inconsistent. In some cases, it improved LFTs (26), while in other cases, it was associated with liver toxicity (27). The liver safety profile of mifepristone has also been linked to the medication dose and to the rapidness of liver fat content decrease (26, 27).


Long-term intensive steroid treatment may lead to LS (20, 28–30). Data on what dose and duration of exposure of selected types of steroids may lead to the development of LS in humans are still lacking (29). Elevated liver enzymes and LS are common findings in newly diagnosed patients with CS and MACS (LS: 20%–66% and 25%–57%, respectively; an accurate prevalence of elevated LFTs in endogenous hypercortisolemia has not been reported yet) (6–13). Some of the studies report MACS and CS correlation with LS incidence (6, 7, 31), as well as positive correlation between post-DST cortisol, midnight cortisol, and hypercortisolemia duration with LS (6, 7, 13). According to one study regarding patients with MACS, cortisol level (with cutoff >2.93 µg/dL) after a 1-mg dexamethasone suppression test was an independent factor for LS diagnosed on CT (6). Based on that study,

serum-based scores [Visceral Adiposity Index, Hepatic Steatosis Index, and Fatty Liver Index are based on waist circumference, body mass index (BMI), serum level of triglycerides, high-density lipoprotein cholesterol (HDL-C), ALT, AST, and GGT], which predict LS, are higher in CS, but they do not correlate with LS values on CT (6). Other studies suggest that cortisol action on LS is rather indirect via enhancing visceral fat content and worsening of glycemic and lipid control (7, 10). Mediation analysis showed that fasting plasma glucose, glycated hemoglobin (HbA1c), HDL-C, and triglyceride-glucose index (TyG) mediated the correlation between MACS or CS and the liver-to-spleen (L/S) ratio on CT (7). In this study, the only direct association between cortisolemia markers and LS was proved for midnight serum cortisolemia (7). Another study showed that L/S was correlated with abdominal and visceral fat content, but not with hypercortisolemia markers (10). Some studies reveal LS regression after CS remission and no new LS incidence after CS remission (9, 12). Other studies show no correlation between level and the duration of hypercortisolemia and LS incidence in CS (8, 12). According to some papers, there is no difference between CS types in terms of LS prevalence (12). Another study shows that LS occurs more frequently among ACTH-dependent CS, as compared to

TABLE 2 Case 2—Test results evaluating cortisolemia level, liver enzymes, diabetes mellitus, and dyslipidemia control (baseline, during adrenostatic treatment, and after surgery).

	2014	2016	2018	2019	2020	2021	12.2021 Osilodrostat start	01.2022 COVID	02.2022 Osilodrostat restart	07.2022	01.2023	04.2023	02.2024
ALT [U/L]	93	124	183	256	102	249	137	386	126	66	67	48	51
AST [U/L]	32	47	75	173	48	120	60	584	124	64	36	28	28
GGT [U/L]	28	30	37	432	64	189	145	558	528	46	27	20	16
Bilirubine [µmol/L]	5.15	3.77	3.88	4.88	5.17	7.2		7.07	4.8			4.2	4
Morning cortisol [µg/dL]	16.9	20.3	28.5	35	29	34	32.2	31	19	12	20	15	18
Midnight cortisol [μg/dL]	10.34	14.82	14.16	27	21								
mUFC [μg/day]					167			124		59			
HBA1C [%]				10.7	7.7	9.4	9.8		10.4	9.5	7		6.2
TC [mmol/L]	5.4	4.7	4.7	6.5	6.7								5.8
TAG [mmol/L]	1.27	1.15	1.46	2.36	3								1.3
Weight [kg]						150		141	142		140		145

Laboratory norms are the same as for Case 1.

adrenal CS (11). In contrast, it has been considered that the liver impairment prevalence in hypercortisolemic patients with many metabolic comorbidities would be expected to be much higher than it has been reported (10, 14). The relatively low LS rate in CS can be explained by anti-inflammatory cortisol action, as a preventive factor from development of liver impairment in subjects with active hypercortisolemia (14). To the best of our knowledge, LF prevalence has been estimated in two studies (12, 13). Based on serum-based scores, LF occurred in 15.4% of active CS individuals (12). According to another study, in which Fibroscan was performed, LF prevalence was 3.4% in newly diagnosed CS (13). Currently, there are two ongoing prospective studies investigating liver images from MRI scans in both newly diagnosed patients with CS and those after 1 year of successful treatment (15, 16). One of these studies investigates LS by using liver MRI (15), while another measures LF using MRE (16).

Our two CS cases had LS and significant LFT elevation without hepatic function decompensation (Child-Pugh A) at baseline evaluation. Osilodrostat and metyrapone were implemented at routinely used doses. Adrenostatic therapy resulted in cortisolemia improvement, followed by a decrease in LFTs to almost normal values. These data support the hepatic safety aspects of these medications and may suggest hepatotoxic cortisol action. According to the literature, liver impairment does not require metyrapone dose adjustment (32, 33). Based on FAERS, so far there have been 41 reports of hepatobiliary adverse events associated with metyrapone (34, 35). Among 130 CS cases on metyrapone found on PubMed, 107 patients were presented without any notice regarding liver function either before, during, or after treatment with metyrapone (36–116). Nine cases have been presented only with baseline liver enzymes' concentration, which was normal at the time of metyrapone initiation (117–125). In 11 cases,

metyrapone was started regardless of liver enzyme elevation (1.5-6.4× ULN) (126-135); there was no information regarding follow-up results among these patients. Three patients presented with liver enzyme elevation during metyrapone treatment; two cases were attributed to preeclampsia (70, 136), while in another case, it was associated with rhabdomyolysis (137). Reduced osilodrostat doses are recommended only in cases with moderate or severe liver impairment (Child-Pugh B or C). Reports on LFTs after osilodrostat implementation showed either a decrease in liver enzymes or a mild and reversible increase, mainly at the beginning of therapy. LFT elevation above 5× ULN occurred when osilodrostat was used with ketoconazole. Based on FAERS, there have been seven reports of hepatobiliary adverse events associated with osilodrostat thus far (138). Ketoconazole therapy is frequently connected with hepatotoxicity (139). However, the safety profile comes mainly from the studies evaluating ketoconazole used in fungal infections (140). Ketoconazole doses used in CS are much lower. One of the studies demonstrated that liver impairment may actually improve after cortisol normalization associated with the use of ketoconazole (141). Based on FAERS, there have been 921 reports to date (in total and 35 in CS) with hepatobiliary adverse events on ketoconazole therapy. Currently, there is an ongoing KetoPASS study investigating ketoconazole liver safety profile used in CS (142). Levoketoconazole is believed to have lower hepatotoxic potential than ketoconazole. Pasireotide, cabergoline, and mitotane should not be used in severe liver impairment (Child-Pugh C). Moderate (Child-Pugh B) liver impairment requires pasireotide dose reduction. Mild-tomoderate liver impairment (Child-Pugh A and B) does not require cabergoline and mitotane dose reduction, but high patient monitoring (143-145). Etomidate dose should be reduced in cases of severe liver impairment (Child-Pugh C) (146). Among hypercortisolemia pharmacotherapy, GR antagonists (mifepristone) or modulators

(miricorilant) seem to have the most divergent liver safety profile reports, which can mainly be explained by dose dependence and the rate of LS reduction.

It has been suggested that low cortisolemia may worsen outcome in patients with liver failure (147, 148). In preclinical studies, carbon tetrachloride (CCl_4) induced irreversible liver injury in subjects with hypoadrenalism compared to subjects with normal adrenal function (149).

There are data suggesting chronic HPA axis activation in eucortisolemic obese/overweight/diabetic (DMt2) patients with LS (150–152). In these patients, post-DST cortisol and urinary free cortisol (UFC) seem to be higher than in patients without LS. Results of these studies showed that post-DST cortisol and UFC seem to predict LS in eucortisolemic individuals. In contrast, another study showed no correlation between LS and serum cortisol in healthy overweight individuals (153).

The role of intrahepatic cortisol concentration regulation in the pathogenesis of liver impairment is another interesting aspect. 11β-HSD1 increases intrahepatic cortisol concentration by cortisone-tocortisol conversion (11b-HSD1 regenerates cortisol from circulating cortisone produced in the periphery by 11b-HSD2). 5βR deactivates cortisol and decreases its intrahepatic concentration. There are studies that show that 11B-HSD1 inhibition or 11B-HSD1 deficiency leads to hepatic glucocorticosteroid (GC) resistance and prevents LS development regardless of serum cortisol levels, and that cortisol decreases liver fat content in patients with LS (154-156), whereas 11β-HSD1 overexpression or 5βR deficiency results in intrahepatic hypercortisolemia and leads to LS (157-159). According to one study, $5\beta R$ deficiency also increases the risk of LF (157). Based on another study, 5βR deficiency protects from developing fibrotic sequelae and hepatocellular cancer in patients with LS (160). There are data that report an increased 5βR activity in patients with LS and NASH, leading to increased HPA axis activation (161), which may be in line with studies demonstrating higher cortisol levels in patients with LS/NASH (150-152). A model of LS progression to NASH based on 5BR and 11B-HSD1 activity also exists (162). According to that model, in the beginning phases of LS, there is an increased cortisol clearance (5BR overexpression) and decreased hepatic cortisol regeneration (11 β -HSD1 underexpression), which is postulated to be a protective mechanism to decrease local GC availability and to preserve hepatic metabolic phenotype (162). Failure to regulate intrahepatic cortisol concentration in this way increases local GC availability and may worsen the phenotype of liver disease, leading to LS progression and inflammation. When patients develop NASH, there is an increased cortisol regeneration (11β-HSD1 overexpression) and decreased hepatic cortisol clearance (5BR underexpression), resulting in increased local GC availability, which limits further hepatic inflammation (162).

5 Conclusions

To conclude, there are many gaps and inconsistencies in the data regarding liver impairment (type/prevalence/pathogenesis) in

endogenous hypercortisolemia and the impact of HPA axis on the liver in the general population. We can hypothesize that differences in GR sensitivity, CS and MACS heterogeneity, and many unidentified co-factors may play a role in the divergent observations. There are also some conflicting reports regarding the liver safety profile of pharmacotherapy used in hypercortisolemia. The presented CS cases showed significant baseline LFT elevation, which improved after metyrapone or osilodrostat implementation.

Author contributions

MM: Methodology, Writing – review & editing, Writing – original draft, Visualization, Conceptualization. WS: Writing – review & editing. AF: Supervision, Writing – review & editing. AG-Ż: Writing – review & editing. AH: Supervision, Writing – review & editing. EV: Supervision, Writing – review & editing. AG-J: Writing – review & editing, Supervision, Conceptualization.

Funding

The author(s) declare financial support was received for the research and/or publication of this article. This publication was supported by Recordati Rare Diseases.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2025. 1660316/full#supplementary-material

References

- 1. Webb SM, Valassi E. Morbidity of Cushing's syndrome and impact of treatment. Endocrinol Metab Clin North Am. (2018) 47:299–311. doi: 10.1016/j.ecl.2018.01.001
- 2. Fleseriu M, Auchus R, Bancos I, Ben-Shlomo A, Bertherat J, Biermasz NR, et al. Consensus on diagnosis and management of Cushing's disease: a guideline update. Lancet Diabetes Endocrinol. (2021) 9:847–75. doi: 10.1016/S2213-8587(21)00235-7
- 3. Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BM, Colao A. Complications of Cushing's syndrome: state of the art. *Lancet Diabetes Endocrinol.* (2016) 4:611–29. doi: 10.1016/S2213-8587(16)00086-3
- Reincke M, Fleseriu M. Cushing syndrome: A review. JAMA. (2023) 330:170–81. doi: 10.1001/jama.2023.11305
- 5. Fleseriu M, Varlamov EV, Hinojosa-Amaya JM, Langlois F, Melmed S. An individualized approach to the management of Cushing disease. *Nat Rev Endocrinol.* (2023) 19:581–99. doi: 10.1038/s41574-023-00868-7
- 6. Candemir B, Kisip K, Akın Ş, Sanal HT, Taşar M, Candemir M, et al. Prevalence and predictive features of CT-derived nonalcoholic fatty liver disease in metabolically healthy MACS. Clin Endocrinol (Oxf). (2025) 102(4):380–8. doi: 10.1111/cen.15194
- 7. Yu P, Yuan H, Li X, Chen H. Impact of cortisol on liver fat and metabolic health in adrenal incidentalomas and Cushing's syndrome. *Endocrine.* (2025) 87:334-43. doi: 10.1007/s12020-024-04043-4
- 8. Chen K, Chen L, Dai J, Ye H. MAFLD in patients with Cushing's disease is negatively associated with low free thyroxine levels rather than with cortisol or TSH levels. *Int J Endocrinol*. (2023) 2023:6637396. doi: 10.1155/2023/6637396
- Hamimi A, Abdul Sater Z, McGlotten R, Matta J, Pierce A, Abd-elmoniem K, et al. The improvement in hepatic steatosis after Cushing's syndrome treatment is an early sign of metabolic recovery. *J Endocr Soc.* (2021) 5(Suppl 1):A98. doi: 10.1210/jendso/bvab048.196
- 10. Rockall AG, Sohaib SA, Evans D, Kaltsas G, Isidori AM, Monson JP, et al. Hepatic steatosis in Cushing's syndrome: a radiological assessment using computed tomography. *Eur J Endocrinol.* (2003) 149:543–8. doi: 10.1530/eje.0.1490543
- 11. Zhou J, Zhang M, Bai X, Cui S, Pang C, Lu L, et al. Demographic characteristics, etiology, and comorbidities of patients with Cushing's syndrome: A 10-year retrospective study at a large general hospital in China. *Int J Endocrinol.* (2019) 2019:7159696. doi: 10.1155/2019/7159696
- 12. Marengo M, Briet C, Munier M, Boursier J, Rodien P, Suteau V. Fatty liver disease along Cushing's syndrome evolution. *J Clin Endocrinol Metab.* (2025) 110(6): e2037–44. doi: 10.1210/clinem/dgae568
- 13. Remon P, Piñar Gutiérrez A, Venegas Moreno E, Dios-Fuentes E, Cano Gonzales D, Romero-Gomez M, et al. MAFLD prevalence in a cohort of patients with Cushing's disease. *Endocr Abstracts.* (2023). doi: 10.1530/endoabs.90.ep794
- 14. Tarantino G, Finelli C. Pathogenesis of hepatic steatosis: the link between hypercortisolism and non-alcoholic fatty liver disease. *World J Gastroenterol.* (2013) 19:6735–43. doi: 10.3748/wjg.v19.i40.6735
- 15. University Hospital, Angers. *Prévalence de la Stéato-fibrose Hépatique Dans Le Syndrome De Cushing*. ClinicalTrials.gov identifier: NCT05881005. Available online at: https://clinicaltrials.gov/study/NCT05881005?cond=Cushing%20liver&rank=1.
- 16. Central Hospital, Nancy, France. Evaluation of the Severity of Hepatic Fibrosis by Magnetic Resonance Elastography in the Diagnosis of Endogenous Hypercorticism (HEPACORT) . Clinical Trials.gov ID NCT05911620.
- 17. Bogusławska A, Minasyan M, Hubalewska-Dydejczyk A, Gilis-Januszewska A. COVID-19 infection in a patient with Cushing's disease on osilodrostat treatment. *Endokrynol Pol.* (2023) 74:342–3. doi: 10.5603/EP.a2023.0041
- 18. Anstee QM, Berentzen TL, Nitze LM, Jara M, Jensen AB, Kjær MS, et al. Prognostic utility of Fibrosis-4 Index for risk of subsequent liver and cardiovascular events, and all-cause mortality in individuals with obesity and/or type 2 diabetes: a longitudinal cohort study. *Lancet Reg Health Eur.* (2023) 36:100780. doi: 10.1016/j.lanepe.2023.100780
- 19. Marino JS, Stechschulte LA, Stec DE, Nestor-Kalinoski A, Coleman S, Hinds TD Jr. Glucocorticoid receptor β Induces hepatic steatosis by augmenting inflammation and inhibition of the peroxisome proliferator-activated receptor (PPAR) α . J Biol Chem. (2016) 291:25776–88. doi: 10.1074/jbc.M116.752311
- 20. Patel R, Williams-Dautovich J, Cummins CL. Minireview: new molecular mediators of glucocorticoid receptor activity in metabolic tissues. *Mol Endocrinol*. (2014) 28:999–1011. doi: 10.1210/me.2014-1062

- 21. Alkhouri N, Rudraraju M, Kowdley K, Leibowitz M, Benun J, Jenders R, et al. Miricorilant reduced liver Fat and Cardiometabolic Disease Markers in a Phase 1b, Open-Label Dose-Finding Study in Patients with Non-Alcoholic Steatohepatitis. (Park City, Utah, USA: NASH-TAG2024Congress), Abstract NASH-TAG 2024 Congress.
- 22. Kroon J, Gentenaar M, Moll TJA, Hunt H, Meijer OC. Glucocorticoid receptor modulator CORT125385 alleviates diet-induced hepatosteatosis in male and female mice. *Eur J Pharmacol.* (2023) 957:176012. doi: 10.1016/j.ejphar.2023.176012
- 23. Corcept Therapeutics. ClinicalTrials.gov. A Phase 2b, Study Evaluating Miricorilant in Adult Patients with Nonalcoholic Steatohepatitis/ Metabolic Dysfunction-Associated Steatohepatitis (MONARCH). Available online at: https://clinicaltrials.gov/study/NCT06108219?term=MONARCH&rank=3 (Accessed December 10, 2024).
- 24. Alkhouri N. A Phase 2a, Randomized, Double-Blind, Placebo-Controlled Study Evaluating the Safety, Efficacy, and Pharmacokinetics of Miricorilant in Patients with Presumed Nonalcoholic Steatohepatitis (NCT03823703). AASLD 2023 Congress: NASH-TAG 2023 Congress.
- 25. Hunt HJ, Donaldson K, Strem M, Tudor IC, Sweet-Smith S, Sidhu S. Effect of miricorilant, a selective glucocorticoid receptor modulator, on olanzapine-associated weight gain in healthy subjects: A proof-of-concept study. *J Clin Psychopharmacol.* (2021) 41:632–7. doi: 10.1097/JCP.0000000000001470
- 26. Hashimoto T, Igarashi J, Hasan AU, Ohmori K, Kohno M, Nagai Y, et al. Mifepristone promotes adiponectin production and improves insulin sensitivity in a mouse model of diet-induced-obesity. *PloS One.* (2013) 8:e79724. doi: 10.1371/journal.pone.0079724
- 27. Xiao Y, Zhu Y, Yu S, Yan C, Ho RJ, Liu J, et al. Thirty-day rat toxicity study reveals reversible liver toxicity of mifepristone (RU486) and metapristone. *Toxicol Meth Methods*. (2016) 26:36–45. doi: 10.3109/15376516.2015.1118715
- 28. Polyzos SA, Targher G. Role of glucocorticoids in metabolic dysfunction-associated steatotic liver disease. *Curr Obes Rep.* (2024) 13:242–55. doi: 10.1007/s13679-024-00556-1
- 29. Jarmakiewicz-Czaja S, Sokal A, Pardak P, Filip R. Glucocorticosteroids and the risk of NAFLD in inflammatory bowel disease. *Can J Gastroenterol Hepatol.* (2022) 2022:4344905. doi: 10.1155/2022/4344905
- 30. Rahimi L, Rajpal A, Ismail-Beigi F. Glucocorticoid-induced fatty liver disease. *Diabetes Metab Syndr Obes.* (2020) 13:1133–45. doi: 10.2147/DMSO.S247379
- 31. Suwała S, Junik R. Metabolic-associated fatty liver disease and the role of hormones in its aetiopathogenesis. *Endokrynol Pol.* (2024) 75:237–52. doi: 10.5603/ep.99689
- 32. HRA Pharma Rare Diseases. *Metyrapone* (2022). Available online at: https://www.hra-pharma-rare-diseases.com/files/products/MTP-EU-0014%20-%20ML% 20compl%C3%A8tes%20Europe.pdf (Accessed March 3, 2025).
- 33. Electronic Medicines Compendium. *Metyrapone* (2024). Available online at: https://www.medicines.org.uk/emc/product/13897/smpc (Accessed March 3, 2025).
- $34.\ Food\ and\ Drug\ Agency.\ FDA\ adverse\ event\ reporting\ system\ .$ Available online at: https://www.fda.gov/drugs/fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard (Accessed February 15, 2025).
- 35. Food and Drug Agency. *Drug Induced Liver Injury Rank (DILIrank) Dataset* . Available online at: https://www.fda.gov/science-research/liver-toxicity-knowledge-base-ltkb/drug-induced-liver-injury-rank-dilirank-dataset (Accessed February 15, 2025).
- 36. Blew K, Van Mater D, Page L. Successful management of Cushing syndrome from ectopic ACTH secretion in an adolescent with osilodrostat. *JCEM Case Rep.* (2023) 1:luad101. doi: 10.1210/jcemcr/luad101
- 37. Alshaikh OM, Al-Mahfouz AA, Al-Hindi H, Mahfouz AB, Alzahrani AS. Unusual cause of ectopic secretion of adrenocorticotropic hormone: Cushing syndrome attributable to small cell prostate cancer. *Endocr Pract.* (2010) 16:249–54. doi: 10.4158/EP09243.CR
- 38. Arlt A, Harbeck B, Anlauf M, Alkatout I, Klöppel G, Fölsch UR, et al. Fatal pneumocystis jirovecii pneumonia in a case of ectopic Cushing's syndrome due to neuroendocrine carcinoma of the kidney. *Exp Clin Endocrinol Diabetes*. (2008) 116:515–9. doi: 10.1055/s-2008-1062729
- 39. Barnaba Durairaj MV, Shallenburg K, Ashri N, Rajput P. A rare case of adrenocortical carcinoma manifesting as a pulmonary embolism. *Cureus*. (2024) 16: e52929. doi: 10.7759/cureus.52929

- 40. Azzola A, Eastabrook G, Matsui D, Berberich A, Tirona RG, Gray D, et al. Adrenal Cushing syndrome diagnosed during pregnancy: successful medical management with metyrapone. *J Endocr Soc.* (2020) 5:bvaa167. doi: 10.1210/jendso/bvaa167
- 41. Basina M, Liu H, Hoffman AR, Feldman D. Successful long-term treatment of Cushing disease with mifepristone (RU486). *Endocr Pract.* (2012) 18:e114–20. doi: 10.4158/EP11391.CR
- 42. Bass IR, Leiter A, Pozharny Y, Shrivastava R, Shah NA. Cushing disease treated successfully with metyrapone during pregnancy. *AACE Clin Case Rep.* (2021) 8:78–81. doi: 10.1016/j.aace.2021.10.004
- 43. Beardwell CG, Adamson AR, Shalet SM. Prolonged remission in florid Cushing's syndrome following metyrapone treatment. *Clin Endocrinol (Oxf)*. (1981) 14:485–92. doi: 10.1111/j.1365-2265.1981.tb00638.x
- 44. Blanco C, Maqueda E, Rubio JA, Rodriguez A. Cushing's syndrome during pregnancy secondary to adrenal adenoma: metyrapone treatment and laparoscopic adrenalectomy. *J Endocrinol Invest.* (2006) 29:164–7. doi: 10.1007/BF03344091
- 45. Blunt SB, Pirmohamed M, Chatterjee VK, Burrin JM, Allison DJ, Joplin GF. Use of adrenal arterial embolization in severe ACTH-dependent Cushing's syndrome. *Postgrad Med J.* (1989) 65:575–9. doi: 10.1136/pgmj.65.766.575
- 46. Boronat M, Marrero D, López-Plasencia Y, Barber M, Schamann Y, Nóvoa FJ. Successful outcome of pregnancy in a patient with Cushing's disease under treatment with ketoconazole during the first trimester of gestation. *Gynecol Endocrinol.* (2011) 27:675–7. doi: 10.3109/09513590.2010.521268
- 47. Britton S, Thorén M, Sjoberg HE. The immunological hazard of Cushing's syndrome. Br Med J. (1975) 4:678–80. doi: 10.1136/bmj.4.5998.678
- 48. Burns K, Christie-David D, Gunton JE. Fluconazole in the treatment of Cushing's disease. *Endocrinol Diabetes Metab Case Rep.* (2016) 2016:150115. doi: 10.1530/EDM-15-0115
- 49. Castro Oliveira S, Neves JS, Souteiro P, Belo S, Oliveira AI, Moreira H, et al. Ectopic Cushing's syndrome unveiling a metastatic parotid carcinoma. *Case Rep Endocrinol.* (2019) 2019:3196283. doi: 10.1155/2019/3196283
- 50. Cheung NW, Boyages SC. Failure of somatostatin analogue to control Cushing's syndrome in two cases of ACTH-producing carcinoid tumours. *Clin Endocrinol (Oxf)*. (1992) 36:361–7. doi: 10.1111/j.1365-2265.1992.tb01461.x
- 51. Close CF, Mann MC, Watts JF, Taylor KG. ACTH-independent Cushing's syndrome in pregnancy with spontaneous resolution after delivery: control of the hypercortisolism with metyrapone. *Clin Endocrinol (Oxf)*. (1993) 39:375–9. doi: 10.1111/j.1365-2265.1993.tb02380.x
- 52. Cohade C, Broussaud S, Louiset E, Bennet A, Huyghe E, Caron P. Ectopic Cushing's syndrome due to a pheochromocytoma: a new case in the post-partum and review of literature. *Gynecol Endocrinol.* (2009) 25:624–7. doi: 10.1080/09513590903015411
- 53. Connell JM, Cordiner J, Davies DL, Fraser R, Frier BM, McPherson SG. Pregnancy complicated by Cushing's syndrome: potential hazard of metyrapone therapy. Case Rep Br J Obstet Gynaecol. (1985) 92:1192–5. doi: 10.1111/j.1471-0528.1985.tb03037.x
- 54. Cristante J, Lepelley M, Mallaret M, Carreau A, Chabre O. Pneumocystis pneumonia can complicate medical treatment of hypercortisolism even in outpatients with Cushing's disease. *Ann Endocrinol (Paris)*. (2020) 81:551–60. doi: 10.1016/j.ando.2020.11.002
- 55. Damanti S, Abbate C, Chiodini I, Cesari M, Nestola T, Belloni G, et al. Behaviour disorder caused by Cushing's syndrome in an older person. $Age\ Ageing.\ (2018)\ 47:905-6.\ doi: 10.1093/ageing/afy102$
- 56. Diri H, Bayram F, Simsek Y, Ozkan Y, Akcan A, Karahan I, et al. A pregnant woman who underwent laparoscopic adrenalectomy due to Cushing's syndrome. *Case Rep Endocrinol.* (2014) 2014:283458. doi: 10.1155/2014/283458
- 57. Doi M, Sugiyama T, Izumiyama H, Yoshimoto T, Hirata Y. Clinical features and management of ectopic ACTH syndrome at a single institute in Japan. *Endocr J.* (2010) 57:1061–9. doi: 10.1507/endocrj.k10e-265
- 58. Donckier J, Burrin JM, Ramsay ID, Joplin GF. Successful control of Cushing's disease in the elderly with long term metyrapone. Postgrad Med J. (1986) 62:727-30. doi: $10.1136/\mathrm{pgmj}.62.730.727$
- 59. Elston MS, Crawford VB, Swarbrick M, Dray MS, Head M, Conaglen JV. Severe Cushing's syndrome due to small cell prostate carcinoma: a case and review of literature. *Endocr Connect.* (2017) 6:R80–6. doi: 10.1530/EC-17-0081
- 60. Fachnie JD, Zafar MS, Mellinger RC, Chason JL, Kahkonen DM. Pituitary carcinoma mimics the ectopic adrenocorticotropin syndrome. *J Clin Endocrinol Metab*. (1980) 50:1062–5. doi: 10.1210/jcem-50-6-1062
- 61. Faisal Z, Debono M. Rapid control of ectopic Cushing's syndrome during the COVID-19 pandemic in a patient with chronic hypokalaemia. *Endocrinol Diabetes Metab Case Rep.* (2021) 2021:21–0038. doi: 10.1530/EDM-21-0038
- 62. Fasshauer M, Lincke T, Witzigmann H, Kluge R, Tannapfel A, Moche M, et al. Ectopic Cushing syndrome caused by a neuroendocrine carcinoma of the mesentery. BMC Cancer. (2006) 6:108. doi: 10.1186/1471-2407-6-108
- 63. Fernandes R, Dos Santos J, Reis F, Monteiro S. Cushing syndrome as a manifestation of neuroendocrine prostate cancer: A rare presentation within a rare tumor. *Cureus.* (2021) 13:e18160. doi: 10.7759/cureus.18160
- 64. Gani LU, Gianatti EJ, Cheung AS, Jerums G, Macisaac RJ. Failure of functional imaging with gallium-68-DOTA-D-Phe1-Tyr3-octreotide positron emission

tomography to localize the site of ectopic adrenocorticotropic hormone secretion: a case report. *J Med Case Rep.* (2011) 5:405. doi: 10.1186/1752-1947-5-405

- 65. Glaser B, Kahana L, Elias V, Sheinfeld M. Sodium valproate and metyrapone for pituitary-dependent Cushing's disease. *Lancet*. (1984) 2:640. doi: 10.1016/s0140-6736 (84)90631-7
- 66. Gormley MJ, Hadden DR, Kennedy TL, Montgomery DA, Murnaghan GA, Sheridan B. Cushing's syndrome in pregnancy-treatment with metyrapone. *Clin Endocrinol (Oxf)*. (1982) 16:283–93. doi: 10.1111/j.1365-2265.1982.tb00718.x
- 67. Hána V, Dokoupilová M, Marek J, Plavka R. Recurrent ACTH-independent Cushing's syndrome in multiple pregnancies and its treatment with metyrapone. *Clin Endocrinol (Oxf)*. (2001) 54:277–81. doi: 10.1046/j.1365-2265.2001.01055.x
- 68. Harries-Jones R, Overstall P. Metyrapone-induced alopecia. *Postgrad Med J.* (1990) 66:584. doi: 10.1136/pgmj.66.777.584
- 69. Huang YT, Aziz SI, Ravi Kumar AS. Gallium-68 DOTA-TATE positron emission tomography/computed tomography: scintigraphic changes of adrenal glands following management of ectopic Cushing's syndrome by steroidogenesis inhibitors. *World J Nucl Med.* (2014) 13:201–4. doi: 10.4103/1450-1147.144823
- 70. Iioka M, Hayakawa T, Otsuki M, Shimomura I. A rare case of placental abruption and postpartum compression fractures in pregnancy with Cushing syndrome. *JCEM Case Rep.* (2023) 1:luad128. doi: 10.1210/jcemcr/luad128
- 71. Inagaki M, Akizuki N, Kugaya A, Fujii H, Akechi T, Uchitomi Y. Metyrapone for Cushing's syndrome. *Am J Psychiatry*. (2002) 159:1246. doi: 10.1176/appi.ajp.159.7.1246
- 72. Ismail AA, Burr WA, Taylor NF, Walker PL. Elevated plasma adrenocorticotropin (ACTH) with adrenal hyperplasia: a new factor in ACTH regulation? *J Clin Endocrinol Metab.* (1991) 73:752–7. doi: 10.1210/jcem-73-4-752
- 73. Iwayama H, Hirase S, Nomura Y, Ito T, Morita H, Otake K, et al. Spontaneous adrenocorticotropic hormone (ACTH) normalisation due to tumour regression induced by metyrapone in a patient with ectopic ACTH syndrome: case report and literature review. *BMC Endocr Disord.* (2018) 18:19. doi: 10.1186/s12902-018-0246-2
- 74. Jain SH, Sadow PM, Nosé V, Dluhy RG. A patient with ectopic cortisol production derived from Malignant testicular masses. *Nat Clin Pract Endocrinol Metab.* (2008) 4:695–700. doi: 10.1038/ncpendmet0985
- 75. Josse RG, Bear R, Kovacs K, Higgins HP. Cushing's syndrome due to unilateral nodular adrenal hyperplasia: a new pathophysiological entity? *Acta Endocrinol (Copenh)*. (1980) 93:495–504. doi: 10.1530/acta.0.0930495
- 76. Kanno K, Morokuma Y, Tateno T, Hirono Y, Taki K, Osamura RY, et al. Olfactory neuroblastoma causing ectopic ACTH syndrome. *Endocr J.* (2005) 52:675–81. doi: 10.1507/endocrj.52.675
- 77. Kasperlik-Zaluska AA, Szczupacka I, Leszczynska-Bystrzanowska J, Drus-Przybyszewska G. Pregnancy-dependent Cushing's syndrome in three pregnancies. BJOG.~(2000)~107:810-2.~doi:~10.1111/j.1471-0528.2000.tb13348.x
- 78. Kataoka K, Akasaka Y, Nakajima K, Nagao K, Hara H, Miura K, et al. Cushing syndrome associated with prostatic tumor adrenocorticotropic hormone (ACTH) expression after maximal androgen blockade therapy. *Int J Urol.* (2007) 14:436–9. doi: 10.1111/j.1442-2042.2006.01710.x
- 79. Kelly WF, Barnes AJ, Cassar J, White M, Mashiter K, Loizou S, et al. Cushing's syndrome due to adrenocortical carcinoma a comphrensive clinical and biochemical study of patients treated by surgery and chemotherapy. *Acta Endocrinol (Copenh)*. (1979) 91:303–18. doi: 10.1530/acta.0.0910303
- 80. Kennedy AL, Sheridan B, Montgomery DA. ACTH and cortisol response to bromocriptine, and results of long-term therapy, in Cushing's disease. *Acta Endocrinol (Copenh)*. (1978) 89:461–8. doi: 10.1530/acta.0.0890461
- 81. Kidawara Y, Kakutani-Hatayama M, Fukuoka H, Koyama H. Prolonged hypokalemia following metyrapone treatment for primary bilateral macronodular adrenal cortical disease. *ICEM Case Rep.* (2024) 2:luae015. doi: 10.1210/jcemcr/luae015
- 82. Kramlinger KG, Peterson GC, Watson PK, Leonard LL. Metyrapone for depression and delirium secondary to Cushing's syndrome. *Psychosomatics*. (1985) 26:67, 71. doi: 10.1016/S0033-3182(85)72906-4
- 83. Lim WH, Torpy DJ, Jeffries WS. The medical management of Cushing's syndrome during pregnancy. *Eur J Obstet Gynecol Reprod Biol.* (2013) 168:1–6. doi: 10.1016/j.ejogrb.2012.12.015
- 84. Malchoff CD, Orth DN, Abboud C, Carney JA, Pairolero PC, Carey RM. Ectopic ACTH syndrome caused by a bronchial carcinoid tumor responsive to dexamethasone, metyrapone, and corticotropin-releasing factor. *Am J Med.* (1988) 84:760–4. doi: 10.1016/0002-9343/88)90116-7
- 85. Mangan JK, Russell JE. Profound neutropenia resulting from metyrapone-induced adrenal crisis. Am J Hematol. (2009) 84:773. doi: 10.1002/ajh.21519
- 86. Marchand L, Segrestin B, Lapoirie M, Favrel V, Dementhon J, Jouanneau E, et al. Dilated cardiomyopathy revealing Cushing disease: A case report and literature review. Med (Baltimore). (2015) 94:e2011. doi: 10.1097/MD.00000000000002011
- 87. Marcus FS, Friedman MA, Callen PW, Churg A, Harbour J. Successful therapy of an ACTH-producing gastric carcinoid APUD tumor: report of a case and review of the literature. *Cancer*. (1980) 46:1263–9. doi: 10.1002/1097-0142(19800901)46:5<1263:: aid-cncr2820460530>3.0.co;2-z
- 88. McElduff A, Clifton-Bligh P, Posen S. Metastatic medullary carcinoma of the thyroid complicated by Cushing's syndrome. *Med J Aust.* (1979) 1:186–8. doi: 10.5694/j.1326-5377.1979.tb128985.x

- 89. Minami S, Sugihara H, Sato J, Tatsukuchi A, Sugisaki Y, Sasano H, et al. ACTH independent Cushing's syndrome occurring in siblings. *Clin Endocrinol (Oxf)*. (1996) 44:483–8. doi: 10.1046/j.1365-2265.1996.682504.x
- 90. Myhill PC, Sillars BA, Starkstein S, Annus T, Yeap BB. Reduction in salivary cortisol concentration correlates with resolution of psychosis in Cushing's syndrome. *J Neuropsychiatry Clin Neurosci.* (2008) 20:113–5. doi: 10.1176/jnp.2008.20.1.113
- 91. Newman C, Costello M, Casey M, Davern R, Dinneen K, Lowery A,M, et al. A case of adrenal Cushing's syndrome and primary hyperparathyroidism due to an atypical parathyroid adenoma. *Ther Adv Endocrinol Metab.* (2021) 12:20420188211030160. doi: 10.1177/20420188211030160
- 92. Nussey SS, Price P, Jenkins JS, Altaher AR, Gillham B, Jones MT. The combined use of sodium valproate and metyrapone in the treatment of Cushing's syndrome. *Clin Endocrinol (Oxf)*. (1988) 28:373–80. doi: 10.1111/j.1365-2265.1988.tb03668.x
- 93. Obinata D, Yamaguchi K, Hirano D, Yoshida T, Soma M, Takahashi S. Preoperative management of Cushing's syndrome with metyrapone for severe psychiatric disturbances. *Int J Urol.* (2008) 15:361–2. doi: 10.1111/j.1442-2042.2008.01995.x
- 94. Ohmori N, Nomura K, Ohmori K, Takano K. Preclinical Cushing's disease characterized by massive adrenal hyperplasia and hormonal changes after three years of metyrapone therapy. *Endocr J.* (2007) 54:391–7. doi: 10.1507/endocrj.k05-154
- 95. Ozawa W, Sato K, Miyakoshi T, Nishio S, Yamazaki M, Suzuki S, et al. Case report: Beneficial effect of 11β -hydroxylase inhibitor in the management of an elderly patient with an androgen-producing inoperable adrenal tumor. *Geriatr Gerontol Int.* (2013) 13:509–11. doi: 10.1111/ggi.12027
- 96. Rahbar M, Rahbar M, Bahoush G. Peripheral primitive neuroectodermal tumor associated with paraneoplastic Cushing's syndrome: The rare case. *Ann Med Surg (Lond)*. (2018) 37:21–4. doi: 10.1016/j.amsu.2018.11.018
- 97. Rajeev SP, McDougall S, Terlizzo M, Palmer D, Daousi C, Cuthbertson DJ. Evolution in functionality of a metastatic pancreatic neuroendocrine tumour (pNET) causing Cushing's syndrome: treatment response with chemotherapy. *BMC Endocr Disord.* (2014) 14:70. doi: 10.1186/1472-6823-14-70
- 98. Ralser DJ, Strizek B, Kupczyk P, Stoffel-Wagner B, Altengarten J, Müller A, et al. Obstetric and neonatal outcome of pregnancy in carney complex: A case report. *Front Endocrinol (Lausanne)*. (2020) 11:296. doi: 10.3389/fendo.2020.00296
- 99. Sakuma I, Saito J, Matsuzawa Y, Omura M, Matsui S, Maehara T, et al. Pulmonary arterial sampling was useful for localizing ectopic ACTH production in a patient with bronchial carcinoid causing Cushing syndrome. *Hormones (Athens)*. (2013) 12:449–53. doi: 10.1007/BF03401310
- 100. Sawabe F, Hayafusa R, Kosugi R, Ariyasu H. A case of an ectopic ACTH-producing tumor with adrenal shrinkage during osilodrostat administration. *JCEM Case Rep.* (2024) 2:luae008. doi: 10.1210/jcemcr/luae008
- 101. Schalin-Jäntti C, Asa SL, Arola J, Sane T. Recurrent acute-onset Cushing's syndrome 6 years after removal of a thymic neuroendocrine carcinoma: from ectopic ACTH to CRH. *Endocr Pathol.* (2013) 24:25–9. doi: 10.1007/s12022-012-9228-5
- 102. Schiemer R, Latibeaudiere M, Close C, Fox R. Type 2 diabetes identified in pregnancy secondary to Cushing's syndrome. *J Obstet Gynaecol.* (2011) 31:541. doi: 10.3109/01443615.2011.584645
- 103. Schnall AM, Brodkey JS, Kaufman B, Pearson OH. Pituitary function after removal of pituitary microadenomas in Cushing's disease. *J Clin Endocrinol Metab.* (1978) 47:410–7. doi: 10.1210/jcem-47-2-410
- 104. Seki Y, Morimoto S, Saito F, Takano N, Kimura S, Yamashita K, et al. ACTH-dependent cyclic Cushing syndrome triggered by glucocorticoid excess through a positive-feedback mechanism. *J Clin Endocrinol Metab.* (2019) 104:1788–91. doi: 10.1210/jc.2018-02268
- 105. Silverman E, Addasi N, Azzawi M, Duarte EM, Huang D, Swanson B, et al. Recurrent Cushing syndrome from metastatic adrenocortical carcinoma with fumarate hydratase allelic variant. *AACE Clin Case Rep.* (2022) 8:259–63. doi: 10.1016/j.aace.2022.09.003
- 106. Steel K, Baerg RD, Adams DO. Cushing's syndrome in association with a carcinoid tumor of the lung. *J Clin Endocrinol Metab*. (1967) 27:1285–9. doi: 10.1210/jcem-27-9-1285
- 107. Traina AN, Farr A, Malik R, Bingham RJ. Metyrapone for long-term medical management of Cushing's syndrome. *Case Rep Endocrinol.* (2013) 2013:782068. doi: 10.1155/2013/782068
- 108. Tsujimoto Y, Shichi H, Fukuoka H, Yamamoto M, Sato I, Imanishi T, et al. Tumor shrinkage by metyrapone in Cushing disease exhibiting glucocorticoid-induced positive feedback. *J Endocr Soc.* (2021) 5:bvab 055. doi: 10.1210/jendso/bvab055
- 109. Vögelin M, Cathomas R, Kamber N, Fehr T. Hypokalaemic metabolic alkalosis, hypertension and diabetes: what is the link. *BMJ Case Rep.* (2019) 12:bcr–2018-227068. doi: 10.1136/bcr-2018-227068
- 110. White A, Ray DW, Talbot A, Abraham P, Thody AJ, Bevan JS. Cushing's syndrome due to phaeochromocytoma secreting the precursors of adrenocorticotropin. *J Clin Endocrinol Metab.* (2000) 85:4771–5. doi: 10.1210/jcem.85.12.7047
- 111. Wong TW. Long-term treatment with metyrapone in a man with ectopic Cushing syndrome. JCEM Case Rep. (2022) 2022:luac008. doi: 10.1210/jcemcr/luac008
- 112. Wydra A, Cylke-Falkowska K, Czajka-Oraniec I, Kolasińska-Ćwikła A, Ćwikła J, Zgliczyński W, et al. Severe ectopic Cushing syndrome in a transgender man with a

metastatic gastrinoma and an adrenal tumor-A case report and review of the literature. Front Endocrinol (Lausanne), (2023) 14:1135016, doi: 10.3389/fendo.2023.1135016

- 113. Yamakita N, Murai T, Ito Y, Miura K, Ikeda T, Miyamoto K, et al. Adrenocorticotropin-independent macronodular adrenocortical hyperplasia associated with multiple colon adenomas/carcinomas which showed a point mutation in the APC gene. *Intern Med.* (1997) 36:536–42. doi: 10.2169/internalmedicine.36.536
- 114. Yoshida K, Fukuoka H, Odake Y, Nakajima S, Tachibana M, Ito J, et al. Multiple salivary cortisol measurements are a useful tool to optimize metyrapone treatment in patients with Cushing's syndromes treatment: case presentations. *Front Endocrinol (Lausanne)*. (2018) 8:375. doi: 10.3389/fendo.2017.00375
- 115. Zaman S, Patel B, Glynne P, Vanderpump M, Alsafi A, Khan S, et al. A rare cause of severe Cushing's syndrome. *Endocrinol Diabetes Metab Case Rep.* (2020) 2020:20–0011. doi: 10.1530/EDM-20-0011
- 116. Zieleniewski W, Michalak R. A successful case of pregnancy in a woman with ACTH-independent Cushing's syndrome treated with ketoconazole and metyrapone. *Gynecol Endocrinol.* (2017) 33:349–52. doi: 10.1080/09513590.2017.1290070
- 117. Beretta F, Dassie F, Parolin M, Boscari F, Barbot M, Busetto L, et al. Practical considerations for the management of Cushing's disease and COVID-19: A case report. *Front Endocrinol (Lausanne)*. (2020) :554. doi: 10.3389/fendo.2020.00554
- 118. Familiar C, Azcutia A. Adrenocorticotropic hormone-dependent Cushing syndrome caused by an olfactory neuroblastoma. *Clin Med Insights Endocrinol Diabetes.* (2019) 12:1179551419825832. doi: 10.1177/1179551419825832
- 119. Forde HE, Mehigan-Farrelly N, Ryan K, Moran T, Greally M, Duffy AG, et al. Metastatic medullary thyroid carcinoma presenting as ectopic Cushing's syndrome. *Endocrinol Diabetes Metab Case Rep.* (2021) 2021:20–0207. doi: 10.1530/EDM-20-0207
- 120. Kadoya M, Kurajoh M, Miyoshi A, Shoji T, Terada T, Nakamoto Y, et al. Ectopic adrenocorticotropic hormone syndrome associated with olfactory neuroblastoma: acquirement of adrenocorticotropic hormone expression during disease course as shown by serial immunohistochemistry examinations. *J Int Med Res.* (2018) 46:4760–8. doi: 10.1177/0300060517754026
- 121. Kikuchi H, Yoshimoto T, Tanaka H, Tsujimoto K, Yamamura C, Arai Y, et al. Periodic hypokalemia associated with cyclic Cushing's syndrome. *CEN Case Rep.* (2014) 3:80–5. doi: 10.1007/s13730-013-0090-1
- 122. Saishouji F, Maeda S, Hamada H, Kimura N, Tamanoi A, Nishida S, et al. Ectopic ACTH-producing neuroendocrine tumor occurring with large recurrent metastatic pheochromocytoma: a case report. *BMC Endocr Disord.* (2022) 22:184. doi: 10.1186/s12902-022-01090-8
- 123. Sato H, Kajiya H, Kanai G, Hirukawa T, Tanaka H, Kakuta T, et al. Atypical thymic carcinoid associated with Cushing's syndrome. *Tokai J Exp Clin Med.* (2010) 35:78–84.
- 124. Yuno A, Kenmotsu Y, Takahashi Y, Nomoto H, Kameda H, Cho KY, et al. Successful management of a patient with active Cushing's disease complicated with coronavirus disease 2019 (COVID-19) pneumonia. *Endocr J.* (2021) 68:477–84. doi: 10.1507/endocrj.EJ20-0613
- 125. Yu J, Koch CA, Patsalides A, Chang R, Altemus RM, Nieman LK, et al. Ectopic Cushing's syndrome caused by an esthesioneuroblastoma. *Endocr Pract.* (2004) 10:119–24. doi: 10.4158/EP.10.2.119
- 126. Bucciarelli M, Lee YY, Magaji V. Cushing's storm secondary to a rare case of ectopic ACTH secreting metastatic breast cancer. *Endocrinol Diabetes Metab Case Rep.* (2015) 2015:150051. doi: 10.1530/EDM-15-0051
- 127. Kersten M, Hancke K, Janni W, Kraft K. Pregnancy induced Cushing's syndrome and primary aldosteronism: a case report. *BMC Pregnancy Childbirth*. (2020) 20:421. doi: 10.1186/s12884-020-03117-1
- 128. Liu M, Hamele-Bena D, Ausiello J, Page-Wilson G. Ectopic ACTH syndrome emerging 5 years after the diagnosis of neuroendocrine tumor. *Case Rep Endocrinol.* (2019) 2019:6583467. doi: 10.1155/2019/6583467
- 129. Lobo Ferreira T, Nunes da Silva T, Canário D, Francisca Delerue M. Hypertension and severe hypokalaemia associated with ectopic ACTH production. *BMJ Case Rep.* (2018) 2018:bcr2017223406. doi: 10.1136/bcr-2017-223406
- 130. Moctezuma S, Perez JL, Baraban E, Caturegli P, Morris-Wiseman L, Salvatori R. Cushing syndrome due to a corticotropin-releasing hormone- and adrenocorticotropic hormone-secreting silent pheochromocytoma. *AACE Clin Case Rep.* (2024) 10:84–8. doi: 10.1016/j.aace.2024.01.007
- 131. Sharma ST, Nieman LK. Prolonged remission after long-term treatment with steroidogenesis inhibitors in Cushing's syndrome caused by ectopic ACTH secretion. *Eur J Endocrinol.* (2012) 166:531–6. doi: 10.1530/EJE-11-0949
- 132. Omori N, Nomura K, Omori K, Takano K, Obara T. Rational, effective metyrapone treatment of ACTH-independent bilateral macronodular adrenocortical hyperplasia (AIMAH). *Endocr J.* (2001) 48:665–9. doi: 10.1507/endocrj.48.665
- 133. Soundarrajan M, Zelada H, Fischer JV, Kopp P. ECTOPIC adrenocorticotropic hormone syndrome due to metastatic prostate cancer with neuroendocrine differentiation. *AACE Clin Case Rep.* (2019) 5:e192–6. doi: 10.4158/ACCR-2018-0429
- 134. Takeuchi N, Imamura Y, Ishiwata K, Kanesaka M, Goto Y, Sazuka T, et al. Cushing's syndrome in pregnancy in which laparoscopic adrenalectomy was safely performed by a retroperitoneal approach. *IJU Case Rep.* (2023) 6:415–8. doi: 10.1002/iju5.12637
- 135. von Stempel C, Perks C, Corcoran J, Grayez J. Cardio-respiratory failure secondary to ectopic Cushing's syndrome as the index presentation of small-cell lung cancer. *BMJ Case Rep.* (2013) 2013:bcr2013009974. doi: 10.1136/bcr-2013-009974

136. Achong N, D'Emden M, Fagermo N, Mortimer R. Pregnancy-induced Cushing's syndrome in recurrent pregnancies: case report and literature review. *Aust N Z J Obstet Gynaecol.* (2012) 52:96–100. doi: 10.1111/j.1479-828X.2011.01388.x

- 137. Rouland A, Nguyen A, Fourmont C, Lapray M, Vergès B, Petit JM, et al. Unexpected adverse effect of metyrapone: A case report. Clin Endocrinol (Oxf). (2018) 89:112–3. doi: 10.1111/cen.13718
- 138. European Medicine Agencies. *Isturisa* (2024). Available online at: https://www.ema.europa.eu/en/documents/product-information/isturisa-epar-product-information_en.pdf (Accessed March 2, 2025).
- 139. EuropeanMedicine Agency. *Ketoconazole 200 mg* (2014). Available online at: https://www.ema.europa.eu/en/documents/product-information/ketoconazole-esteve-epar-product-information_en.pdf (Accessed March 8, 2025).
- 140. Fleseriu M, Pivonello R, Elenkova A, Salvatori R, Auchus RJ, Feelders RA, et al. Efficacy and safety of levoketoconazole in the treatment of endogenous Cushing's syndrome (SONICS): a phase 3, multicentre, open-label, single-arm trial. *Lancet Diabetes Endocrinol.* (2019) 7:855–65. doi: 10.1016/S2213-8587(19)30313-4
- 141. Ollivier M, Haissaguerre M, Ferriere A, Tabarin A. Should we avoid using ketoconazole in patients with severe Cushing's syndrome and increased levels of liver enzymes? *Eur J Endocrinol.* (2018) 179:L1–2. doi: 10.1530/EJE-18-0694
- 142. HRA Pharma. Observational Registry on Patients With Endogenous CS to Document Safety and Effectiveness of Ketoconazole . Available online at: https://clinicaltrials.gov/study/NCT04872920 (Accessed March 8, 2025). (KetoPASS).
- 143. HRA Pharma. *Mitotane* (2015). Available online at: https://ec.europa.eu/health/documents/community-register/2015/20150226130899/anx_130899_en.pdf (Accessed March 15, 2025).
- 144. European Medicines Agency. *Pasireotide* (2017). Available online at: https://www.ema.europa.eu/en/medicines/human/EPAR/signifor (Accessed March 18, 2025).
- 145. Pfizer. Cabergoline 0.5mg (2023). Available online at: https://labeling.pfizer.com/ShowLabeling.aspx?id=12128 (Accessed March 18, 2025).
- 146. EMC. Etomidate (2014). Available online at: https://www.medicines.org.uk/emc/product/15214/smpcabout-medicine (Accessed March 18, 2025).
- 147. Zhang J, Li J, Ding M, Chen Y, Duan Z. Cortisol in peripheral blood predicts the severity and prognosis in patients with liver failure at 90 days. *Risk Manag Healthc Policy*. (2021) 14:4311–9. doi: 10.2147/RMHP.S327440
- 148. Wentworth BJ, Siragy HM. Adrenal insufficiency in cirrhosis. *J Endocr Soc.* (2022) 6:bvac115. doi: 10.1210/jendso/bvac115
- 149. Myren J. The effect of ACTH on dehydrogenase activity following liver injury in mice. I. The effect of ACTH on the liver of controls. *Acta Pathol Microbiol Scand.* (1960) 48:205-10. doi: 10.1111/j.1699-0463.1960.tb04760.x
- 150. Targher G, Bertolini L, Rodella S, Zoppini G, Zenari L, Falezza G. Associations between liver histology and cortisol secretion in subjects with nonalcoholic fatty liver disease. *Clin Endocrinol (Oxf)*. (2006) 64:337–41. doi: 10.1111/j.1365-2265.2006.02466.x

- 151. Targher G, Bertolini L, Zoppini G, Zenari L, Falezza G. Relationship of non-alcoholic hepatic steatosis to cortisol secretion in diet-controlled Type 2 diabetic patients. *Diabetes Med.* (2005) 22:1146–50. doi: 10.1111/j.1464-5491.2005.01583.x
- 152. Zoppini G, Targher G, Venturi C, Zamboni C, Muggeo M. Relationship of nonalcoholic hepatic steatosis to overnight low-dose dexamethasone suppression test in obese individuals. *Clin Endocrinol (Oxf)*. (2004) 61:711–5. doi: 10.1111/j.1365-2265.2004.02154.x
- 153. Hubel JM, Schmidt SA, Mason RA, Haenle MM, Oeztuerk S, Koenig W, et al. Influence of plasma cortisol and other laboratory parameters on nonalcoholic Fatty liver disease. *Horm Metab Res.* (2015) 47:479–84. doi: 10.1055/s-0034-1389982
- 154. Yadav Y, Dunagan K, Khot R, Venkatesh SK, Port J, Galderisi A, et al. Inhibition of 11 β -Hydroxysteroid dehydrogenase-1 with AZD4017 in patients with nonalcoholic steatohepatitis or nonalcoholic fatty liver disease: A randomized, doubleblind, placebo-controlled, phase II study. Diabetes Obes Metab. (2022) 24:881–90. doi: 10.1111/dom.14646
- 155. Stefan N, Ramsauer M, Jordan P, Nowotny B, Kantartzis K, Machann J, et al. Inhibition of 11β -HSD1 with RO5093151 for non-alcoholic fatty liver disease: a multicentre, randomised, double-blind, placebo-controlled trial. *Lancet Diabetes Endocrinol.* (2014) 2:406–16. doi: 10.1016/S2213-8587(13)70170-0
- 156. Kotelevtsev Y, Holmes MC, Burchell A, Houston PM, Schmoll D, Jamieson P, et al. 11beta-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. *Proc Natl Acad Sci U S A.* (1997) 94:14924–9. doi: 10.1073/pnas.94.26.14924
- 157. Livingstone DE, Barat P, Di Rollo EM, Rees GA, Weldin BA, Rog-Zielinska EA, et al. 5α -Reductase type 1 deficiency or inhibition predisposes to insulin resistance, hepatic steatosis, and liver fibrosis in rodents. *Diabetes.* (2015) 64:447–58. doi: 10.2337/db14-0249
- 158. Candia R, Riquelme A, Baudrand R, Carvajal CA, Morales M, Solís N, et al. Overexpression of 11β -hydroxysteroid dehydrogenase type 1 in visceral adipose tissue and portal hypercortisolism in non-alcoholic fatty liver disease. *Liver Int.* (2012) 32:392–9. doi: 10.1111/j.1478-3231.2011.02685.x
- 159. Paterson JM, Morton NM, Fievet C, Kenyon CJ, Holmes MC, Staels B, et al. Metabolic syndrome without obesity: Hepatic overexpression of 11beta-hydroxysteroid dehydrogenase type 1 in transgenic mice. *Proc Natl Acad Sci U S A.* (2004) 101:7088–93. doi: 10.1073/pnas.0305524101
- 160. Dowman JK, Hopkins LJ, Reynolds GM, Armstrong MJ, Nasiri M, Nikolaou N, et al. Loss of 50-reductase type 1 accelerates the development of hepatic steatosis but protects against hepatocellular carcinoma in male mice. *Endocrinology*. (2013) 154:4536–47. doi: 10.1210/en.2013-1592
- 161. Konopelska S, Kienitz T, Hughes B, Pirlich M, Bauditz J, Lochs H, et al. Hepatic 11beta-HSD1 mRNA expression in fatty liver and nonalcoholic steatohepatitis. *Clin Endocrinol (Oxf)*. (2009) 70:554–60. doi: 10.1111/j.1365-2265.2008.03358.x
- 162. Ahmed A, Rabbitt E, Brady T, Brown C, Guest P, Bujalska IJ, et al. A switch in hepatic cortisol metabolism across the spectrum of nonalcoholic fatty liver disease. *PloS One.* (2012) 7:e29531. doi: 10.1371/journal.pone.0029531

Glossary

5αR	5 alpha reductase	LE	liver enzymes		
5βR	5 beta reductase	LF	liver fibrosis		
6AM COR	6 AM serum cortisol	LFTs	liver function tests		
8AM COR	8 AM serum cortisol	LNSC	late night salivary cortisol		
11β-HSD1	11β-hydroxysteroid dehydrogenase type 1	LS	liver steatosis		
24AM COR	midnight cortisol	mUFC	mean urinary free cortisol		
ACTH	adrenocorticotropic hormone	M	metyrapone		
ALP	alkaline phosphatase	MACS	mild autonomous cortisol secretion syndrome		
ALT	alanine aminotransferase	MAFLD	metabolically associated fatty liver disease (MAFLD, MASLD,		
AST	aspartate aminotransferase		and NASLD are used interchangeably, dependent on the nomenclature changes)		
Aug	August	MASLD	metabolically associated steatotic liver disease		
CD	Cushing disease	MASH	metabolically associated steatohepatitis (MASH and NASH		
CS	Cushing syndrome		are used interchangeably, dependent on t nomenclature changes)		
CT	computed tomography				
Dec	December	Мо	months		
DILT	drug-induced liver toxicity	MRI	magnetic resonance imaging		
DILIrank	drug-induced liver injury rank; FAERS, Food and Drug	MRS	magnetic resonance spectroscopy		
	Agency-approved Adverse Events Reporting System	NAFLD	non-alcoholic fatty liver disease		
FIB4	fibrosis-4 index	NASH	non-alcoholic steatohepatitis		
GC	glucocorticoids	non-HDL	non-high-density lipoprotein		
GR	glucocorticoid receptor	Nov	November		
GGT	gamma glutamyl transferase	0	osilodrostat		
	gamma gratamyr transferase	O	Oshodrostat		
HBA1C	glycated hemoglobin	post-DST cortisol	morning serum cortisol concentration after 1 mg		
HBA1C HPA			morning serum cortisol concentration after 1 mg dexamethasone suppression test		
	glycated hemoglobin	post-DST cortisol	morning serum cortisol concentration after 1 mg		
НРА	glycated hemoglobin hypothalamic-pituitary-adrenal	post-DST cortisol	morning serum cortisol concentration after 1 mg dexamethasone suppression test		
HPA HSI	glycated hemoglobin hypothalamic–pituitary–adrenal hepatic steatosis index	post-DST cortisol	morning serum cortisol concentration after 1 mg dexamethasone suppression test triglycerides		
HPA HSI HU	glycated hemoglobin hypothalamic–pituitary–adrenal hepatic steatosis index Hounsfield units	post-DST cortisol TAG TC	morning serum cortisol concentration after 1 mg dexamethasone suppression test triglycerides serum total cholesterol		