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The adipose tissue regulates energy homeostasis, which is one of the vital
processes for organismal survival, and its dysregulation causes metabolic
diseases including obesity and type 2 diabetes. Glucose is utilized by the
adipose tissue for energy production and storage to regulate systemic glucose
homeostasis. The G-protein-coupled receptors (GPCRs) expressed in the
adipose tissues play a crucial role in adipocyte function by responding to
hormonal, neural, and metabolic signals; thereby, influencing insulin sensitivity,
glucose uptake and lipid metabolism. The specific contribution of adipocyte
GPCRs to glucose sensing and its utilization is incompletely understood.
Therefore, in this review we explore the diverse molecular and integrative
mechanisms through which GPCR signaling in the adipose tissue senses
glucose to regulate systemic glucose homeostasis. We first discuss the major
GPCR families that modulate intracellular second messenger cascades in
response to glucose and nutrient availability in the adipose tissue, and their
metabolic implications in pathophysiological conditions like obesity and
diabetes. These GPCRs regulate glucose sensing, lipid metabolism, adipokine
secretion, and thereby coordinating metabolic responses with other central and
peripheral tissues including the brain, pancreas, intestine and liver. Subsequently,
we review the molecular mechanisms through which the adipocyte GPCR
regulates systemic glucose homeostasis, from glucose sensing to its utilization.
Determining how the GPCRs in the adipose tissue sense glucose will offer new
and better therapeutic approaches for treating metabolic diseases including
diabetes and obesity.

KEYWORDS

glucose sensing, glucose homeostasis, adipose tissue, GPCR (G protein coupled
receptor), obesity, diabetes, metabolism, glucose transport

Introduction

G-protein-coupled receptors (GPCRs) are the largest known cell surface receptor
family in humans, which transmit extracellular signals (such as presence or absence of
hormones, metabolites, neurotransmitters, sensory stimuli such as taste and odors) to
inside of the cell to regulate physiological processes. Structurally, they are composed of
seven transmembrane o-helical domains in addition to an extracellular amino- and an
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intracellular carboxy-terminus, therefore they are also known as
seven-transmembrane receptors (1). This diverse group of receptors
responds to their specific ligands and thus exerts their physiological
functions. Upon ligand binding, they undergo some conformational
changes to activate intracellular G-proteins (i.e., G, Gj, Gg/11, Or
Gia/13). These changes include the dissociation of Go. from the
receptor and the GBy dimer, and the subsequent exchange of GTP
for the bound GDP, which leads to Got activation. The activated Go
then influences various downstream intracellular signaling and
ultimately affects cellular function (2). At least 800 GPCRs have
been identified in humans (1, 3), which are generally classified into
five different groups according to the GRAFS (Glutamate,
Rhodopsin, Adhesion, Frizzled/Taste2 and Secretin) classification
system (4). These receptors are involved in nearly every
physiological process, including the metabolic pathways, which
makes them attractive targets for drug development. Over one-
third of the drugs approved by the U.S. Food and Drug
Administration target GPCRs to treat a variety of disorders (5).

Glucose is a vital macronutrient for organismal survival,
providing fuel for energy production and carbon skeletons for
various cellular components. To effectively sense and respond to
changes in circulating glucose levels, the body employs a
combination of hormonal signaling, neuronal pathways, and
cellular mechanisms, which are essential for regulating glucose
and energy homeostasis. Cellular glucose utilization is facilitated
by the glucose sensors and receptors, both centrally and
peripherally. Centrally, the brain hypothalamus and brainstem
regions are well-known sites for glucose sensing and uptake,
primarily through the glucose-excited (GE) and glucose-inhibited
neurons (6-9). Peripherally, critical sites for glucose homeostasis
include the pancreas, liver, skeletal muscle, kidneys, and the adipose
tissue (10). A number of GPCRs have been identified as regulators
of glucose homeostasis. For example, glucagon-like peptide-1
receptor (GLP-1R) is a widely studied GPCR, activated by GLP-1
in response to nutrients (e.g., glucose), which increase pancreatic
insulin secretion and lowers blood glucose levels (11-13). Taste 1
receptors, particularly TASIR2 and TAS1R3, another GPCR family
members, are also involved in glucose sensing in pancreas, intestine,
and skeletal muscle, and control glucose metabolism (14-16).
Adhesion G-protein-coupled receptor L1 (ADGRLI) was recently
reported to function as a hypothalamic glucose receptor that
controls energy homeostasis in mice (17). ADGRLI-deficiency
increases food intake, impairs glucose sensing and homeostasis,
and causes obesity in mice (17, 18). These findings were also
confirmed in pathogenesis of human obesity (18). Glucose-
ADGRLI binding was also validated using different methods (19)
and the differences between available transgenic mouse models
targeting Adgrll were discussed recently (20).

Although the contribution of GPCRs to glucose homeostasis is
widely recognized, the precise role of adipocyte GPCR signaling in
direct glucose sensing is incompletely understood. In this review, we
provide an overview of the current understanding of GPCRs in the
adipose tissue biology with a focus on their role in glucose sensing
and homeostasis. First, we summarize the key GPCRs expressed in
various adipose tissue depots and their metabolic implications in
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the pathogenesis of obesity and diabetes. Subsequently, we discuss
the signaling mechanisms through which the adipocyte GPCRs
sense glucose, respond to different glucose levels, and interact with
other tissues to regulate overall energy balance.

Adipose tissue types and their
association with metabolic diseases

White adipose tissue (WAT), brown adipose tissue (BAT), and
beige or brite (brown-in-white) adipose tissue are the three major
adipose tissue types in mammals, with distinct morphological and
functional characteristics. WAT comprises the highest portion of
body fat and be further subdivided into subcutaneous and visceral
WAT, according to their anatomical location (21, 22).
Subcutaneous WAT is found under the skin, while visceral WAT
resides in the abdominal cavity and surroundings of different
intrabdominal organs. WAT acts as an energy storage depot, as it
stores excess energy as triglycerides (TAGs), which are released as
free fatty acids and glycerol during energy deficits. Subcutaneous
WAT preferably stores excess fats and expands in size by
hypertrophy and/or hyperplasia. But when this expansion halts
due to reaching the limit or impairment of the expandability, fats
start to deposit in visceral depots and other organs like kidneys,
liver, heart, skeletal muscle, and pancreas. This ectopic fat
deposition in non-fat tissues exacerbates lipotoxicity, resulting in
insulin resistance, localized and systemic inflammation, and
apoptotic cell death (23). Development of metabolic syndromes,
including insulin resistance due to this excess visceral fat deposition
is well known (24, 25) and leads to cardiovascular diseases and type
2 diabetes (26-28). Moreover, dysregulation in WAT’s endocrine
functions also contributes to these metabolic diseases (28, 29).

BAT, the second adipose tissue type, was historically considered
to only exist in hibernating animals, rodents, and to a lesser extent
in infants, but its presence in adult humans has now been confirmed
(30-33). Its amount is comparatively smaller (<3% of total fat mass)
than the WAT and located in cervical, supraclavicular, axillary,
mediastinal, paraspinal, and abdominal areas (32, 33). BAT is a
metabolically highly active tissue that dissipates excess energy,
mostly by thermogenesis involving its unique uncoupling protein
1 (UCP1). In addition to the well-established thermogenic property
of BAT, UCP1-independent thermogenesis has also been reported
recently (34-36). Like BAT, beige/brite adipose tissue exerts similar
roles in thermogenesis and energy metabolism, mostly found in the
subcutaneous WAT depots of rodents, and in cervical and
supraclavicular regions in adult humans (37, 38). Beyond chronic
cold exposure, other factors like adrenergic stimulation, diet, and
exercise can also activate their thermogenic programming (34, 39,
40). These adipose tissues utilize glucose and fatty acids as fuel
sources and play crucial roles in metabolic homeostasis (34, 41).
Their activation improves insulin sensitivity and glucose uptake,
increases lipolysis and fatty acid beta-oxidation, and reduces ectopic
fat deposition and systemic inflammation (31, 34, 42-44). In
contrast, dysfunction or inadequate activation of these adipose
tissues reduces energy expenditure, and therefore, exacerbating
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metabolic and obesity-related complications. For example, BAT
whitening - a condition when BAT loses its morphological and
molecular characteristics and acts like WAT- exacerbates obesity
complications in mice (45).

Major GPCRs in the adipose tissue and
their roles in glucose homeostasis

About 250 GPCRs have been identified in human
(subcutaneous) WAT, while mice express over 270 and 290
GPCRs in WAT and BAT, respectively (46). Here, we are
focusing on the major GPCRs, summarized in Table 1, involved
in adipose tissue regulation of glucose and energy homeostasis.

TABLE 1 Major adipocyte GPCRs involved in regulating glucose homeostasis

Signating
molecules

Endogenous ligand(s)

10.3389/fendo.2025.1657747

Beta-adrenergic receptors (B-ARs: B1, B2, and B3 subtypes) are
one of the highly expressed and well-investigated GPCRs in both
human and mouse adipose tissues (68). Ligand (e.g.,
norepinephrine) mediated activation of B-ARs, particularly B3-
AR, promotes lipolysis, mitochondrial respiration, and browning
of WAT (51, 54, 78, 79). B3-AR activation also stimulates glucose
uptake in WAT through insulin-dependent and -independent
mechanisms (80). Pharmacological stimulation with the B3-AR
agonist CL316,243 increases glucose uptake in rats mesenteric
WAT (53), while Trecadrine (another B3-AR agonist) promotes
insulin-dependent glucose uptake in cultured rat white adipocytes
(81). Conversely, in brown and beige adipose tissue, B3-AR
activation enhances thermogenesis by upregulating uncoupling
protein 1 (UCP1) expression, and increasing lipolysis-derived free
fatty acids and glucose utilization (72, 82, 83). These free fatty acids

Function References

White adipose tissue (WAT)

Alpha-adrenergic receptors

al-AR Epinephrine nor-epinephrine Gq PI3K/PKC Stimulates glucose uptake and lactate production (47-50)
Beta-adrenergic receptors
Gs, cAMP/PKA Gi, . ) . )

B3-AR Epinephrine nor-epinephrine c/—il\/(I:P/PKA/MAPIl( Stimulates glucose uptake, lipolysis, WAT browning (51-54)

Dopamine receptors
Enh; lepti ducti

D2-like Dopamine Gi, cAMP/PKA nhances feptin procuction (55-57)
Stimulates glucose uptake

Adenosine receptors

Al Adenosine Gi, cAMP/PKA Inhibits Alipolysis; regl'llates insAulin sensitivity and glucose (58, 59,
uptake; increases leptin secretion 60-62)

. Prevents adipose tissue inflammation and insuin

A2B Adenosine Gs, cAMP/PKA R (63)
resistance

Free fatty acid receptors

FFAR4 (GPRI20)  Medium- and long- chain fatty acids = Gq, PI3K/Akt Promotes insulin sensitization and enhances glucose (64-66)

i Y @ uptake, WAT browning
Brown adipose tissue (BAT)

Alpha-adrenergic receptors

ol-AR Epinephrine nor-epinephrine Gq, PI3K/PKC Promotes glucose uptake and thermogenesis (50)

Beta-adrenergic receptors
Adi differentiation, gl take and

B1-AR Epinephrine nor-epinephrine Gs, cCAMP/PKA/PI3K ipocytes dilferentiation, glucose uptake an (50, 67, 68)
thermogenesis

B2-AR Epinephrine nor-epinephrine Gs, cCAMP/PKA Enhances glucose uptake and BAT activity (69-71)
Enh insuli itivity, gl take and

B3-AR Epinephrine nor-epinephrine Gs, Gi, cAMP/PKA fhances 1ns'u 1 sensitivity, gucose uptake an (72-75)
thermogenesis

Adenosine receptors

A2A A2B Adenosine Gs, cAMP/PKA Enhances BAT activity and energy expenditure (76, 77)
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and glucose serve as fuels for the adaptive thermogenic process,
which is crucial for maintaining the energy balance. However, 33-
AR-mediated glucose uptake in BAT primarily takes place through
dual mechanisms: cAMP-mediated upregulation of GLUTI
expression and mTORC2-dependent translocation of GLUT1 to
the plasma membrane, independent of the classical insulin/PI3K/
Akt pathway (84-86). Interestingly, B3-AR-stimulated glucose
uptake occurs even in the absence of UCP1 (87), indicating that
acute glucose uptake is not strictly coupled to thermogenesis but
rather mediated by distinct signaling mechanisms. Clinical trials
have also confirmed that treatment with mirabegron, a 3-AR
agonist, helps to improve metabolic health by enhancing insulin
sensitivity, WAT lipolysis, and BAT thermogenesis (72-74). While
the glucoregulatory role of B2-AR in WAT remains unclear, it is
well characterized in BAT. B2-AR stimulation by its selective
agonist, salbutamol, increases both glucose uptake and BAT
activity in mice (69), which is further confirmed in human BAT
as well (70, 88). In contrast, f1-AR signaling is primarily linked to
WAT lipolysis (89) and adipocyte differentiation in both WAT and
BAT (67, 68). Although B1-AR may not be the most significant AR
in terms of maintaining glucose homeostasis, it has been shown to
facilitate glucose uptake in cultured brown adipocytes lacking 33-
AR (50). Notably, the distribution and function of B-AR subtypes
differs between species, for example, in human, $1- and $2-ARs, but
not 33-AR (90), mediate lipolysis in WAT (71). On the other hands,
all three subtypes of B-ARs are found in both WAT and BAT
of rodents.

In addition to -ARs, 0-adrenergic receptors (0i1- and 02-AR) are
also expressed in both white and brown adipocytes. Stimulation of o.1-
AR increases glucose uptake and lactate production in rat white
adipocytes that were resistant to insulin, indicating an insulin
independent glucose uptake mechanism (47, 48). In support of this
finding, 01-AR stimulated increase in glucose uptake and metabolism
were also confirmed in human WAT (49, 91). This process is thought
to be mediated via the phosphoinositide 3-kinase (PI3K)/protein kinase
C (PKC) pathway, which is activated through o.1-AR signaling induced
by specific agonists and/or neurotransmitters (92). However, while 3
adrenoceptors are often considered the primary regulators of
thermogenesis in BAT, o-adrenoceptors and their downstream
signaling pathways are also crucial for this process. A study
conducted by Chernogubova et al. showed that stimulation of c.1-
adrenergic receptor, in association with B1-AR stimulation, is also
involved in glucose uptake using the PI3K/PKC signaling in cultured
3-KO brown adipocytes, and can compensates the lack of $3-AR
signaling (50). In addition, dopamine receptors (D1- and D2-subtypes)
are also expressed in both humans and rodents white and brown
adipocytes, which are involved in the regulation of glucose uptake and
lipid metabolism, and adipocyte browning as well (56, 57, 93-95).

Both human and rodent adipose tissue express adenosine
receptors (Al, A2A, A2B, and A3 subtypes), which bind to
different G-proteins in adipocytes to stimulate or inhibit adenylyl
cyclase activity and, consequently, influence glucose homeostasis.
The Al-adenosine receptors are highly expressed in WAT and have
inhibitory effects on lipolysis and may promote fat storage in
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adipocytes (96-98). Although a number of studies have
investigated the role of Al-adenosine signaling in insulin action
and glucose metabolism in white adipocytes in vitro, the findings
remain controversial. Pharmacological activation of Al adenosine
receptor in white adipocytes isolated from rats showed decreased
insulin sensitivity and glucose uptake (92, 99). Conversely, others
found that adenosine increases insulin-stimulated glucose uptake
and lipogenesis (62, 100, 101). In vivo studies in rodents have
suggested that Al-adenosine receptor activation in WAT improves
glucose tolerance and insulin sensitivity, and its deficiency leads to
glucose intolerance and impaired insulin action (60, 62, 102).
Although A2A and A2B adenosine receptors are expressed in
both WAT and BAT; A2A is predominantly expressed in BAT
and facilitates thermogenesis and promotes energy expenditure.
Deletion or inhibition of A2A receptors reduces BAT
thermogenesis, while their activation promotes WAT browning in
mice (76). A2B receptors are also abundant in BAT and regulate
adipogenesis and BAT functioning in mice and humans (77, 97).
The activation/stimulation of A2B receptors protects mice from
high-fat diet-induced obesity by increasing BAT-mediated energy
expenditure (77). Moreover, it also prevents insulin resistance by
inhibiting inflammation in the adipose tissue and regulates glucose
homeostasis in diabetic and obese conditions (63).

Free fatty acid receptors (FFARs) are another group of GPCRs
highly expressed in the adipose tissue and are crucial for regulating
glucose homeostasis by influencing insulin sensitivity. These
receptors include FFAR1 (GPR40), FFAR2 (GPR43), FFAR3
(GPR41), and FFAR4 (GPR120). Each receptor is activated by
different types of fatty acids, with FFAR] and FFAR4 responding
to medium- and long-chain fatty acids, while FFAR2 and FFAR3
are primarily activated by short-chain fatty acids (SCFAs), and
leading to several metabolic outcomes (103, 104). For instance,
GPR120 (FFAR4) activation enhances insulin sensitivity and
promotes anti-inflammatory responses in adipocytes, which is
particularly important in the context of obesity and insulin
resistance (65, 66). Dysfunction of GPR120 has been linked to
obesity and metabolic disorders, as evidenced by studies
demonstrating that its ablation leads to increased adiposity and
insulin resistance in both mice and humans (64, 65, 105). Moreover,
both increased BAT activity and WAT browning were also reported
in mice due to GPRI120 activation, which supports its role in
thermogenesis (106). FFAR2 and FFAR3 activation have also
been shown to influence lipolysis and energy expenditure in the
adipose tissue. For example, acetate (a short-chain fatty acid)
mediated activation of FFAR2 inhibits lipolysis in human white
adipocytes by reducing phosphorylation of hormone-sensitive
lipase (107). Furthermore, FFARs can regulate the secretion of
adipokines, which are critical for maintaining metabolic balance
and responding to changes in nutrient availability (65, 66).

Expression of adhesion GPCRs (aGPCRs) is also evident (about
37% of all aGPCRs) in human and mouse adipose tissues, where a
substantial proportion of these receptors is differentially regulated
under conditions of obesity and high-fat diets (108). In addition to
their expression patterns, the functional relevance of aGPCRs in the
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adipose tissue is becoming increasingly clear. These receptors are
implicated in various signaling pathways that regulate adipocyte
function, including adipogenesis, lipolysis, and inflammation (109,
110). For instance, GPR116 has been identified as a key player in
mediating insulin-sensitizing effects in white adipose tissue (111).
While RNA sequence data revealed the presence of several aGPCRs
in the adipose tissue, including ADGRL1-3/LPHN1-3, CD97,
GPR125, GPR56, GPR64, and GPR97, their functional relevance
in adipose biology is yet to be investigated. Although the role of
ADGRLI in regulating glucose and energy homeostasis was
reported recently (17, 18) the contribution of adipocytic ADGRLI
to glucose sensing and responding to changes in blood glucose
levels remains to be determined. It is likely that the local adipocyte
ADGRLI is involved in glucose signaling pathways and
pathogenesis of type 2 diabetes and obesity.

In summary, the extensive diversity of GPCRs expressed in the
adipose tissue and their ability to mediate complex signaling
pathways to regulate glucose homeostasis underscore their
potential as therapeutic targets for type 2 diabetes, obesity and
related metabolic disorders. Future research is expected to elucidate
the specific roles of individual GPCRs in the adipose tissue function

Glucose sensing

10.3389/fendo.2025.1657747

and their interactions with other metabolic pathways in regulating

energy and glucose homeostasis.

Glucose sensing by adipocyte GPCRs

Although glucose sensing and uptake may seem to be the same
phenomenon, they occur at different spatial and temporal levels
(Figure 1) to complement each other or to accomplish their
individual functions. For example, adipocyte glucose sensing
involves monitoring systemic or local glucose levels by plasma
membrane receptors including GPCRs to influence downstream
signaling pathways and thereby, maintain glucose homeostasis. In
contrast, glucose uptake and utilization facilitate intracellular
metabolism and energy production to support cell growth
and proliferation.

The adipose tissue utilizes a significant amount of glucose for
either storage or energy production. The processes of glucose
sensing and cellular glucose uptake are key steps involved in
glucose homeostasis by the adipose tissue. In postprandial state,
upon sensing blood glucose levels, pancreatic beta-cells secrete

Glucose uptake

I |
Circulating dLoerfg?n ® B3-AR, &
glucose - other _ 4 v o
g GPCRs b g Insulin
® < S f (3‘ /\V‘ /
ADGRL1 ," : ./ \9 B
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Second messenger , Translocation
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' transporter
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Gene expression and
other cellular functions

Adipocyte

FIGURE 1

G-protein coupled receptors (GPCRs)-mediated sensing and uptake of glucose in adipocyte. Various GPCRs such as homo- or heterodimers of taste
receptors (T1IR2/T1R2 and/or T1R2/T1R3) and adhesion G-protein coupled receptor L1 (ADGRL1) sense and bind to the circulating blood glucose and
activate Gs, Gi and/or Gqg signaling pathways. The resulting second messenger cascades may then regulate insulin sensitivity, translocation of
glucose transporters (GLUT1 and GLUT4), activities of other GPCRs including B3-adrenergic receptor, and other cellular and molecular functions in

the adipocytes to control glucose uptake, either by insulin-dependent or
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insulin that binds and activates insulin receptors on the adipocyte’s
membrane. Activated insulin receptors then initiate a signaling
cascade involving phosphoinositide 3-kinase (PI3K) and protein
kinase B (Akt), which are critical for the translocation of GLUT4 on
the cell surface and thus, allows glucose entry into the adipocytes
from the blood (112, 113). While GLUT4 is the predominant
glucose transporter in adipocytes, another transporter -GLUT1 -
also contributes to an insulin-independent glucose uptake (114).
However, beyond insulin signaling, GPCRs act as integral mediators
of glucose sensing and metabolism within the adipose tissue,
influencing glucose sensing, insulin sensitivity and glucose uptake
through diverse signaling pathways. Several GPCR families in
adipocytes participate in glucose sensing through Gq, Gi, and/or
Gs signaling. Chemogenetic stimulation of Gs signaling in
adipocytes resulted in a significant reduction in blood glucose
levels, indicating its role in improving glucose tolerance (115).
Likewise, Kimura et al. have also reported the involvement of Gq
signaling on glucose uptake in the adipose tissue to improve glucose
homeostasis in mice (116). In addition to Gs and Gq signaling, Gi
signaling is also crucial for maintaining glucose homeostasis in
adipocytes. Wang et al. have shown that Gi signaling is essential for
preserving insulin sensitivity and regulating glucose metabolism in
the adipose tissue (117). Therefore, the balance between these
GPCR signaling pathways is crucial for the proper metabolic
function of adipocytes.

How adipocytes detect changes in blood glucose levels, and how
adipocytic GPCRs and their signaling pathways respond to these
changes to regulate glucose homeostasis remain unclear. The sweet
taste receptors (particularly T1R2 and T1R3) expressed in the
adipose tissue are potential candidates for direct glucose sensing
by adipocytes. Several studies have shown their roles in regulating
glucose homeostasis, adipogenesis and lipolysis (118-121).
Although the precise mechanism by which these taste receptors
sense glucose in adipocytes is yet to be elucidated, their capacity to
sense sugars including glucose by forming hetero (T1R2/T1R3)-
and homo (T1R3/T1R3)-dimers in other tissues like intestine and
skeletal muscle are well known (16, 122). Masubuchi et al. reported
that activation of T1R3 homomeric receptors reduces insulin-
induced GLUT4 translocation and glucose transport in a Gs-
dependent, cAMP-independent manner (123).

T1R3 knockout mouse models exhibit impaired glucose
clearance, reduced insulin sensitivity, and increased adiposity,
highlighting the importance of T1R3 in maintaining glucose
homeostasis (124, 125). Moreover, activation of T1R2/T1R3 can
also indirectly impact glucose uptake by stimulating the release of
incretin hormones like GLP-1, which enhances insulin secretion and
glucose uptake in peripheral tissues, including the adipose tissue
(126-128). Future studies targeting adipocyte-specific knockout of
TIR2 and T1R3 may provide better mechanistic insights regarding
how these GPCRs are involved in glucose homeostasis. In addition,
ADGRLI may also contribute to glucose sensing in adipocytes as the
receptor was recently shown to bind and sense glucose in the
hypothalamus (17, 20), which also warrants further investigation.

The involvement of B-ARs in regulating glucose uptake in
adipocytes, either by insulin dependent or independent
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mechanisms, is well known as we discussed in the earlier section.
For example, B3-AR, coupled to Gs protein, stimulates GLUT1
translocation to the membrane in brown adipocytes, increasing
glucose uptake independently of insulin, through cAMP-dependent
mechanisms and mTORC2 activation (84-86, 129). Similarly,
ligand (salbutamol)-mediated activation of 2-AR, has also been
shown to increase glucose uptake in human BAT, but not in WAT
(70). In tissues such as the brain, liver, and intestine, the B-ARs are
involved in glucose sensing (130-132), which may be tied to the role
of the receptors in affecting glucose uptake by their interactions
with glucose transporters through downstream signaling pathways.
Based on these reports, we speculate that the effects of -ARs on
glucose uptake in the adipose tissue may be associated with glucose
sensing via communications between the receptors and glucose
transporters (Figure 1). This may explain the adaptability of the
adipose tissue under different glucose levels.

Altogether, adipocyte GPCRs may contribute to direct glucose
sensing in addition to their role in glucose uptake and metabolism
in the adipose tissue (Figure 1). Determining the molecular
mechanisms involved in interactions between adipocyte GPCRs,
glucose sensing, glucose transporters, and glucose metabolites will
help develop more effective strategies to manage metabolic
disorders associated with impaired energy and glucose balance.

GPCR-mediated crosstalk of the
adipose tissue with other central and
peripheral organs to regulate glucose
homeostasis

The brain-adipose tissue axis

Depending on the glycemic status, the hypothalamus regulates
the secretion of the pancreatic hormones (e.g., insulin and
glucagon) through the autonomic [parasympathetic (PNS) and
sympathetic (SNS)] nervous systems to maintain euglycemia. The
mechanisms governing PNS- and SNS-mediated insulin secretion
have been comprehensively reviewed by Valentine S. Moullé (133).
Neurotransmitters released due to the activation of these autonomic
pathways, such as acetylcholine and adrenaline, activate specific
GPCRs (e.g., muscarinic and adrenergic receptors) in pancreatic f3-
cells, triggering downstream signaling cascades through G-proteins
(Gq, Gi, and Gs) to regulate insulin release. For instance, activation
of ol-adrenergic receptor (0l-AR) and muscarinic receptor 3
(M3R) leads to Gq and Gi signaling, which enhances insulin
secretion by increasing intracellular Ca®" levels. Conversely, 0.2-
adrenergic receptor (02-AR)-mediated Gs signaling inhibits insulin
secretion by elevating intracellular K™ levels (133). These pancreas-
secreted hormones are then transported throughout the body via
circulation and regulate systemic glucose homeostasis through
different tissues including the adipose tissue.

Given that glucose uptake in the adipose tissue is largely insulin-
dependent (134) and the insulin sensitivity decreases with an
increased adiposity (135, 136), an enhanced insulin secretion
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from the B-cells and/or an increase in insulin sensitivity are
necessary for maintaining glucose homeostasis (137). This is
accomplished through the combined contribution of the
hypothalamus, B-cells, and the adipose tissue. For example,
decreased insulin-dependent glucose uptake in WAT of
hypothalamic ADGRL1-deficient mice was reported recently (17).
The mice also had impaired insulin secretion probably associated
with enhanced vagus nerve activity, since pancreatic vagotomy

10.3389/fendo.2025.1657747

reversed insulin hypersecretion in the ADGRLI-deficient mice.
Further studies are required to investigate whether hypothalamic
ADGRLI regulates SNS activity to influence insulin-induced
glucose transport in adipocytes (Figure 2).

Norepinephrine secreted from the activated SNS functions
through the adipocytic 33-AR to enhance glucose uptake and
thermogenesis (87). In addition, dopamine, a neurotransmitter,
secreted from SNS activation binds to the D2-like dopamine
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GPCR-mediated crosstalk between the adipose tissue and other organs to regulate glucose homeostasis. (A) The overview of the interconnecting
pathways between adipose tissue and other central and peripheral organs, including the intestine and pancreas, regulating the systemic glucose
homeostasis. (B) GPCR-mediated signaling mechanisms in adipocyte involving glucose uptake and utilization. PNS, Parasympathetic nervous system;
SNS, Sympathetic nervous system; GIP, Glucose-dependent insulinotropic polypeptide; GIPR, Glucose-dependent insulinotropic polypeptide
receptor; GLP-1, Glucagon-like peptide-1; NE, Norepinephrine; DA, Dopamine; D2R, Dopamine receptor D2; B-ARs, B-adrenergic receptors; PI3K,
Phosphoinositide 3-Kinase; Akt, Protein kinase B; cAMP, Cyclic adenosine monophosphate; IR, Insulin receptor; GLUT4 and GLUT1, Glucose
Transporter 4 and 1; respectively. ADGRL1, Adhesion G-protein coupled receptor L1. This figure was created with BioRender.com.
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receptors (mainly D2R and D3R, members of the GPCR family) in
the pancreatic beta-cells and negatively regulates glucose-stimulated
insulin secretion (138-140). Dopamine also directly regulates
glucose uptake in insulin-sensitive tissues, including WAT, liver,
and skeletal muscle, acting through the dopamine receptors.
Dopamine administration has been reported to directly enhance
glucose uptake in WAT and the liver via D2R (57). D2R activation
also modulates the secretion of adipokines, including leptin and
adiponectin, the critical regulators of systemic energy balance
(56) (Figure 2).

In addition to its roles in regulating insulin action and glucose
uptake in adipose tissue, SNS also triggers others metabolic pathways
including- lipolysis, browning of WAT and thermogenesis in adipose
tissues, which are crucial for the maintenance of systemic glucose
homeostasis. In WAT, SNS-mediated stimulation of adrenergic
signaling promotes lipolysis and provides free fatty acids and
glycerol for systemic energy supply and gluconeogenesis, respectively
(78, 141, 142). Furthermore, adrenergic signaling also stimulates
thermogenic UCP1 expression in brown and beige adipocytes,
which facilitates thermogenesis (83). A significant amount of glucose
and free fatty acids are utilized in this thermogenic process, and
thereby improving systemic glucose clearance. Collectively, these SNS-
driven processes integrate brain-adipose tissue communication to
regulate lipid and glucose metabolism, ultimately contributing to
whole-body energy homeostasis.

The intestine-adipose tissue axis

Incretin hormones (GIP and GLP-1) are secreted from the
intestinal cells upon glucose sensing by the gastrointestinal tract
postprandially (143). The glucose homeostatic regulatory function
of these incretins is largely mediated by their insulinotropic and
glucagonotropic functions on the pancreas, such as by augmenting
the insulin secretion from the pancreatic beta-cells (144, 145). At
the pancreatic endocrine cells, GIP and GLP-1 bind to their
respective G-protein coupled receptors (GIPR and GLP-1R), and
transduce signal to increase cAMP production and protein kinase B
(AKT) activation, which finally enhances insulin secretion from the
beta-cells (146-148). Interestingly, the incretins - specifically GIP -
also directly regulate glucose uptake in the adipose tissue by binding
to GIPR in adipocytes. For instance, GIP-stimulated glucose uptake
in 3T3-L1 adipocytes (in the presence of insulin) was reported over
20 years ago by Miyawaki et al (149). Later, Song et al. demonstrated
that GIP has insulin-mimetic effects on glucose uptake in 3T3-L1
adipocytes, which is mediated through the activation of Akt via
wortmannin (a potent inhibitor of PI3K)-sensitive pathway, at least
partly, which promotes GLUT4 translocation to the adipocyte
membrane to enhance glucose uptake (150). Although an earlier
study reported that GIPR is predominantly expressed in non-
adipocytes in the adipose tissue (151), recently Regmi et al. have
reconfirmed the expression of functional GIPR in both human and
mouse adipocytes (152). The authors demonstrated that activation
of GIPR-signaling upon binding through GIP and/or tirzepatide (a
dual agonist of GIPR/GLP-1R) enhances both insulin-dependent
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and -independent glucose uptake differentiated in human
adipocytes (152). Moreover, abolishment of the gluco- and lipo-
regulatory effects of GIP in lean human adipose tissue was
demonstrated with the infusion of GIP(3-30)NH,, an antagonist
of human GIPR, during hyperglycemic-hyperinsulinemic clamps
(153). In contrast, BAT-specific deletion of GIPR in mice showed
no significant alteration in glucose homeostasis (154). These
findings indicate that GIPR signaling in BAT may be dispensable
for glucose regulation, while GIPR signaling in WAT contributes to
adipose tissue glucose uptake predominantly. Collectively, the
adipose tissue receives glucose-sensing signals from the intestine
through incretins to modulate the local adipocyte regulation of
glucose homeostasis via GPCRs (Figure 2).

Future perspective and concluding
remarks

Most studies have focused on glucose uptake, utilization, and its
metabolism to establish the role of the adipose tissue in regulating
glucose homeostasis. Although great progress has been made in this
area of research, glucose sensing aspects of the adipose tissue
remain unclear. For example, the following questions are largely
unaddressed: how does the adipose tissue sense blood or local
glucose levels? What are the molecular mechanisms through which
the adipose tissue responds to the changes in glucose levels to
restore homeostasis? Investigating adipocytic GPCRs and
associated transduction pathways including the transcription
factors may provide novel insights into the molecular machinery
involved in glucose sensing and responding to changes in systemic
or local glucose levels. This topic will open new research avenues for
investigating glucose signaling pathways in the adipose tissue
independently of glucose metabolism or its transport.
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