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Introduction: Diabetic retinopathy (DR) is one of the most common
microvascular complications of diabetes mellitus, and proliferative diabetic
retinopathy (PDR) represents its advanced stage. The etiology of PDR is
complex. Mitophagy, the selective degradation of dysfunctional mitochondria,
is crucial for cellular homeostasis and has been implicated in PDR pathogenesis.
However, its specific mechanisms require further investigation.

Materials and methods: Gene Expression Omnibu (GEO) datasets (GSE102485,
GSE60436) were analyzed in R software to identify differentially expressed
mitophagy-related genes (DEMRGs). A PDR diagnostic model was constructed
by gene ontology (GO) enrichment analysis, genome enrichment analysis (GSEA),
and other relevant methods. Immune infiltration was also performed to analyze the
changes in immune cells. Finally, the retinal pigment epithelial cell line (ARPE-19)
was incubated with high glucose (HG) to simulate a DR model in vitro, hub-gene
expression and mitophagy were assessed by gRT-PCR, Western blotting, and
immunofluorescence microscopy (IF).

Results: Eight DEMRGs were identified enabling construction of a PDR diagnostic
model and prioritization of two hub genes (CASP8 and COL1A1). Finally, gRT-
PCR, Western blotting, and IF were performed to provide preliminary validation of
the PDR model and HG stimulation increased mitochondria—lysosome
colocalization as well as enhanced the expression of mitophagy-related proteins.
Conclusion: Integrated bioinformatics and experimental validation suggest that
mitophagy contributes to PDR pathogenesis. Five DEMRGs showed up-regulated
and immune cell infiltration that may affect the occurrence and PDR
development by regulating mitophagy. These findings provide candidate
biomarkers and mechanistic insight into PDR.
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1 Introduction

Diabetic retinopathy (DR) is one of the most common and
detrimental microvascular complications of diabetes mellitus and a
common eye disease that causes blindness (1). DR is estimated to
affect 34.6% (93 million individuals) of the global population aged
40 (2). Proliferative diabetic retinopathy (PDR) is an advanced
diabetic eye disease. Due to abnormal neovascularization on the
surface of the retina or optic disc in patients with PDR, extensive
retinal ischemia and hypoxia occur, leading to loss of central and
peripheral vision, and approximately half of the untreated patients
with proliferative retinopathy will be blind within 5 years (3).
Consequently, PDR imposes substantial personal and societal
burdens on patients, their families, and the healthcare system.

Chronic low-grade retinal inflammation is recognized as a central
feature of DR pathophysiology. Converging evidence have shown that
oxidative stress, mitochondrial damage (4), mitochondrial dysfunction
(5), dysregulated apoptosis (6), and defects in autophagy disrupt
the blood-retinal barrier (7), pathological angiogenesis, and
neurodegeneration. Mitochondria orchestrate these stress responses,
and their quality control is partially mediated by mitophagy, the
selective autophagy of damaged mitochondria that is essential for
maintaining a healthy mitochondrial network (8, 9). In humans
with diabetes, mitochondrial status and mitophagy follow a
temporal, dynamic progression. During early hyperglycemic stress,
mitochondria face heightened energetic demand and oxidative burden,
accompanied by oxidative damage to mitochondrial DNA. As a quality
control response, mitophagy is engaged pre-apoptotic ally to cull
compromised organelles. With persistent hyperglycemia and redox
imbalance, however, clearance capacity lags, dysfunctional
mitochondria accumulate, and structural and functional deterioration
of the retinal neurovascular unit ensues. Accordingly, preserving
mitochondrial homeostasis and enhancing mitophagic capacity may
represent promising therapeutic avenues (10). When mitochondrial
turnover is impaired, the release of cytochrome ¢, apoptosis-inducing
factor (AIF), and endonuclease G promotes mitochondria dependent
cell death and contribute to retinal disease (11, 12).

Mitophagy is increasingly implicated in ocular disorders. In age
related macular degeneration (AMD), excessive reactive oxygen
species (ROS) activate mitophagy in the retinal pigment epithelium
(RPE) via the p62/Keapl/Nrf2 axis (13, 14). Recently, the role and
multiple function of mitophagy in PDR has been revealed. In DR,
RPE dysfunction activates mitophagy at low glucose levels and
inhibits it at late high glucose (HG) levels, leading to decreased
visual function (6). However, the mechanism of mitophagy in RPE
cells under diabetes stress remains unclear.

This study analyzed a previously published dataset containing
samples from PDR and non-diabetic individuals to identify the
differentially expressed genes (DEGs) associated with PDR. The
GSE102485 dataset includes samples obtained from the retina and
optic disc of patients with PDR, whereas GSE60436 comprises
fibrovascular membranes (FVMs) from patients with PDR and
normal human retinal tissue. Further analysis was performed to
determine the correlation between differentially expressed
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mitophagy-related genes (DEMRGs) in PDR. PDR pathogenesis
was investigated using Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment and protein-
protein interaction (PPI) analyses. Mitophagy-related genes and
pathways were analyzed using the MSigDB database to further
explore the pathogenesis, pathophysiology, and molecular
mechanisms of PDR. Eight genes (VGF, SNX30, IFIH1, CASPS,
UTRN, ITGA5, COL1A1, and MYH9) DEMRGs and two hub genes
(CASP8 and COL1A1) were highlighted. Subsequently, we
established high-glucose (HG) models in human retinal pigment
epithelial cell line (ARPE-19) cells and in human induced retinal
pigment epithelium (iRPE) cells derived from human umbilical
cord mesenchymal stem cells (hUCMSCs) (15). HG treatment
resulted in elevated mitochondria-lysosome colocalization and
enhanced expression of mitophagy-related proteins in RPE cells.
The PDR model was preliminarily validated at both the mRNA and
protein levels. Consistency between the expression of SNX30,
IFIH1, CASP8, UTRN, and COL1A1l in the PDR model and
bioinformatic analyses, suggesting that these genes may be
involved in PDR pathogenesis, potentially through modulation
of mitophagy.

2 Materials and methods
2.1 Datasets acquisition

The GSE102485 sequencing and GSE60436 microarray datasets
for patients with PDR and controls were obtained from the public
GEO dataset (16). The GSE102485 (Homo sapiens) dataset
encompasses 30 samples: 22 from patients with PDR, 3 from
control patients, 3 from patients with branch retinal vein occlusion,
and 2 from patients with peripapillary retinal peri phlebitis. The
GSE60436 dataset was derived from a Human Whole Gene
Expression Profiling GeneChip (Illumina HumanWG-6 v3.0). This
data has 9 samples: 6 from patients with PDR and 3 from
control patients.

The GSE102485 dataset uses raw read count data. After a counts
per million (CPM) transformation by the edgeR package, 22 PDR
samples and 3 control samples were included in a training set
(Training) for downstream analysis, among the tissue sources for
patients with PDR are the hemal arch, the nasal side, the entire
portion, the retina, the hemi-arch portion, and the optic disc, the
optic disk, and the peripheral portion of the optic disc (17). The
GSE60436 dataset was normalized using the limma package and
annotated with data from the GPL6884 microarray platform. The
full sample was included as a validation set (Validation) for
downstream analysis (18). The mitochondria were obtained by
searching the MSigDB database (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp) and the GeneCards database (https://
www.genecards.org/) with the keywords mitophagy, autophagy-
related genes, and pathways. Following de-emphasizing and
merging, 2414 mitophagy-related genes (MRGs) were found.
Supplementary Table S1 provides comprehensive details (19, 20).
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2.2 Immune infiltration analysis

xCell, an approach based on gene characteristics (21), we
conducted a cell type enrichment analysis on the Training dataset
and extracted information on 28 different immune cell types,
including various subsets of B cells, T cells, memory cells, and
other immune cell populations (Supplementary Table S2). We
compared the immune enrichment levels in the PDR and control
groups, mapped the immune infiltration distribution of various
samples, and examined the association between the various
immune cell enrichment levels.

2.3 Differentially expressed gene analysis

The DESeq2 package was applied to clarify the DEGs in patients
with PDR relative to normal patients and to further infer the
pathways and functions of the differences (22). The criteria
[logFC|>1 and adj.Pvalue < 0.05 were used to filter and select
DEGs with statistical significance. Subsequently, we visualized the
results through the creation of volcano plots and heatmaps using
the ggplot2 and pheatmap packages. PDR-associated DEMRGs
were defined as the intersection of DEGs and MRGs; the overlap
was visualized with Venn diagrams using the ggvenn package and
used in subsequent analyses.

2.4 Enrichment analysis

Gene Set Enrichment Analysis (GSEA) was employed to evaluate
disparities in biological processes between healthy individuals and
those with PDR (23). The R package clusterProfiler (24) was
employed to analyze the GO, KEGG, and DO of DEMRGs using
the enrichment criteria of p-value < 0.05 and g-value < 0.05, as well as
using Benjamini-Hochberg (BH) p-value correction. In addition, we
obtained the c2.cp.v7.5.1.symbols.gmt gene set from the MSigDB
database and analyzed the differential BP between the PDR and
control groups using the clusterProfiler package with the random
seed set to 123456, the screening criterion of p-value < 0.05, and the
BH p-value correction method. To perform GSEA, we used the Gene
Set Enrichment Analysis (GSVA) package for one-sample
enrichment of the training dataset, with the nonparametric
estimation method set to Gaussian, and analyzed the difference in
pathway enrichment scores between the two groups using the
Wilcoxon rank-sum test for different pathway enrichment scores.
The differential pathway screening criteria were |logFC|>1 and
adjusted p-value < 0.05, as demonstrated by heatmaps.

2.5 Constructing diagnostic models

Least Absolute Shrinkage and Selection Operator (LASSO)
regression is a technique employed to reduce the dimensionality
of data. The implementation of LASSO is facilitated through the
glmnet package (25) with the family parameter configured as
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binomial and the random seed set to 123456. Random forest is an
integrated machine learning method that is used to resolve the
defects inherent in a single model or set of parametric models by
integrating more models, thereby combining their strengths and
weaknesses to mitigate limitations. For this study, the mtry
parameter was set to 6, the ntree parameter was set to 500, and
the random seed was set to 123456. We constructed a diagnostic
model using two machine learning methods and used the area
under the curve (AUC) to verify the accuracy of the model in both
Training and Validation datasets. In addition, the feature genes
screened by machine learning were selected to take the intersection
as the model feature genes for PDR.

2.6 Weighted gene correlation network
analysis

Weighted gene correlation network analysis (WGCNA) is a
method rooted in systems biology that serves to elucidate and
characterize patterns of gene associations across diverse samples
(26). We used the expression matrix of the DEGs as the input file
and used pickSoftThreshold to calculate the optimal soft threshold.
We used these results to construct a scale-free network, calculate the
topology matrix, and perform hierarchical clustering. The
minimum number of module genes was set to 30 to construct
gene modules; similar modules were merged by setting the
minimum distance of the merged modules to 0.2. Correlation
analysis was used to determine the correlation between each
module and the clinical characteristics. The module with the
highest correlation with PDR was selected as the core module.

2.7 Protein-protein interaction analysis

We leveraged the DEMRGs and the STRING (Search Tool for
the Retrieval of Interacting Genes/Proteins) databases (https://
cn.string-db.org/) to craft a PPI network (27). To create the PPI
network diagram (Supplementary Figure S1), an interaction score
of medium confidence, set at 0.4, was used. The Maximal Clique
Centrality (MCC) (28) algorithm in Cytoscape (29) was used to find
the core nodes in the PPI network. The top 50 MMC values were
selected as candidate genes.

We amalgamated the outcomes stemming from the model
feature genes, the central module identified through WGCNA, and
the PPI network. By intersecting these sets of candidate genes, we
derived a subset (the core, or hub, genes) that represents the central
elements of interest in our analysis.

2.8 ldentification of PDR molecular
subtypes

The ConsensusClusterPlus package (30) an R package of choice,
configures the clustering algorithm as partitioning around medoids
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(PAM) using the Pearson method for calculating distances and
setting the number of re-samplings to 1000, the resampling ratio to
0.8, and the random seed to 123456. We utilized hub genes and
their expression matrices in the consensus clustering of PDR
samples and compared the correlation of hub genes in different
subtypes with the enrichment of immune cells between
different subtypes.

2.9 Cell culture

DMEM/F12 medium (Gibco, USA) supplemented with 10%
heat-inactivated fetal bovine serum (FBS) (Gibco, USA), penicillin
(100 U/ml), and streptomycin (100 pg/ml) was used to culture
ARPE-19 and iRPE (15). Cells were cultured at 37°C in a humidified
atmosphere with 5% CO2. The sub-culturing was performed by
treating the cells with a 0.05% trypsin-EDTA solution (Gibco,
USA). Cells in the logarithmic growth phase exhibiting good
condition were seeded into 6-well plates at a density of 1.2 x 10°
cells per well. The cells were divided into two groups: a high glucose
(HG) treatment group and a normal control (NC) group. The HG
group was cultured in medium containing 30 mmol/L D-glucose,
while the NC group was cultured in standard glucose (SG) medium.
A volume of 2.5 mL of the respective medium was added to each
well, and the cells were incubated at 37°C for 48 hours.

2.10 Quantitative real-time polymerase
chain reaction

Total RNA was extracted and reverse transcription was
performed using PrimescriptTM RT Master Mix kit (Takara, Shiga,
Japan). qRT-PCR was performed in a Chromo4 instrument cycler
(Bio-Rad, Hercules, USA) using Super-real Premix plus kit
(Tiangen Biotech, Beijing, China). qRT-PCR amplification was
carried out with the following cycling parameters: denaturation at
95°C for 5 min, followed by 40 cycles of 95°C for 30 s, 60°C for 30s.
Primer sequences (Synthesized by Sangon Biotech Co., Ltd.,
Shanghai, China) were listed in Table 1.

TABLE 1 Primers and their sequences for qRT-PCR analysis.

Forward (5'-3')

Gene Symbol (Human)

10.3389/fendo.2025.1652898

2.11 Western blotting

The ARPE-19 cells were lysed by RIPA buffer containing protease
and phosphatase inhibitor (C0001 and C0004, TargetMol, USA). The
protein extracts (20 ug per sample) were separated by 10% SDS-
PAGE gels and transferred onto polyvinylidene difluoride
membranes (Millipore, Bedford, MA, USA). After being blocked
with 5% BSA in TBST for one hour, membranes were incubated with
primary antibodies against CASP8 (Abcam), COL1A1 (Abmart),
LC3B (CST), P62(SQSTM1), PINKI, Parkin, ATP5Aland ACTB
(Proteintech) for 12 hours at 4°C, followed by incubation with
corresponding secondary antibodies for one hour at room
temperature. The blots were visualized with a chemiluminescence
imaging system (Tanon 5200; Tanon Shanghai, China) and
quantified with Image J software (Version 1.48v). Antibodies for
Western Blot were listed in Supplementary Table S3.

2.12 Autophagy detection through
lysosome and mitochondria colocalization

The mitochondria of live ARPE-19 cells were stained with a
working solution of Mito-Tracker Red (Beyotime, China) at a
concentration of 100 nM and incubated at 37°C for 20 min as
our previous report (14). Briefly, the cells were stained with a
working solution of Lyso-Tracker Green (50nM, Beyotime, China)
for 15 min. The samples were then examined by fluorescence
microscope (Olympus IX73, Tokyo, Japan). Co-localization
analysis of lysosomes and mitochondria was performed using
Image] software.

2.13 JC-1 staining

Live ARPE-19 cells were stained with 1 mL of JC-1 working
solution (Beyotime, China) and incubated at 37°C for 20 min. After
incubation, the supernatant was aspirated and cells were washed
twice with JC-1 staining buffer. JC-1 aggregates present in normal
mitochondria show red fluorescence, while JC-1 monomers present

Reverse (5'-3')

GAPDH CAAGAGCACAAGAGGAAGAG
VGF GTGTGAAGTGTGTCTGTCTC
SNX30 CTGTCATCTCGGCCTTTATC
IFIH1 CACAGTGGTTCAGGAGTTATC
CASP8 CTTTGACCACGACCTTTGA
UTRN CCCAGATGGAAAGGACTAATG
ITGAS CACATCGCTCTCAACTTCTC
MYH9 GGACCTTCCACATCTTCTATTA
COL1A1 CCTGTCTGCTTCCTGTAAACTC
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CTACATGGCAACTGTGAGG
AACAGAGAAAGGAAAGAAGGG
GGAATCCACCAGACTTCATC
GCATACTCCTCTGGTTTCATATT
TGGTCCATGAGTTGGTAGA
GGCAATACTGCTGGATGAG
TCTGAGCCTTGTCCTCTATC
GGACAGGAAGCGGTATTT

GTTCAGTTTGGGTTGCTTGTC
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in unhealthy mitochondria produce green fluorescence. The samples
were then examined by fluorescence microscope (Olympus IX73,
Tokyo, Japan) and quantitative analysis (aggregates/monomers
fluorescence ratio) was performed using Image] software.

2.14 Statistical analysis

In this study, all data computations and statistical evaluations
were conducted using R software (version 4.1.2). When comparing
the two groups with continuous variables, we employed the
Wilcoxon rank-sum test to assess differences, particularly in cases
where the variables did not follow a normal distribution. The results
were calculated using Pearson correlation analysis of the correlation
coefficients between different molecules. A p-value < 0.05 was
considered statistically significant.

3 Results
3.1 Data pre-processing

The study design and procedures are shown in Figure 1A.
Detailed data regarding the datasets are presented in Table 2.
Principal component analysis was used to effectively visualize the
data distribution. Biological differences were found between PDR
and control samples and good clustering was observed between
samples of the same type (Figures 1B, C).

3.2 Immune cell infiltration patterns and
correlations

To explore the immune-related mechanisms in the PDR process,
the enrichment scores of 28 immune cells in the Training dataset
were analyzed to obtain a panorama of immune cell infiltration in
each sample. This provided a comprehensive overview of immune
cell infiltration in each sample (Figure 2A). The enrichment scores
differed greatly in terms of immune cell infiltration between PDR and
control samples. When comparing PDR samples to control samples,
an increase was observed in the percentages of CD8-positive T
lymphocytes (CD8+) and CD4-positive T lymphocytes (CD4+),
dendritic cells (DCs), and macrophages, whereas a decrease was
observed in the percentages of B cells, NK cells, and regulatory T cells.

Further exploration involved the comparison of immune cell
differences among various sample types (Figure 2B). Notably, this
study found significantly higher enrichment scores for CD4+
memory T cells, CD4+ macrophages, and their isoforms in the
PDR group than in the control group. Conversely, the enrichment
scores for Thl cells were notably higher in control samples than in
PDR samples. These are consistent with broader immune cell
infiltration pattern.

Additionally, the correlations among the 28 immune cell types
were studied, as presented in Figure 2C. Different immune cells
exhibit varying degrees of correlation. Specifically, the highest
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positive correlation was discovered between macrophages and
CD4+ memory T cells (with a correlation coefficient of 0.89),
while the most significant negative correlation was observed
between macrophages and pro-B cells (with a correlation
coefficient of -0.56).

3.3 Identification of 540 differentially
expressed mitophagy-related genes

Of the 3957 DEGs screened, 2460 genes were up-regulated and
1497 genes were down-regulated (Supplementary Figure S2A). The
expression levels of DEGs were significantly different between the
PDR samples and control samples (Supplementary Figure S2B).

To our knowledge, mitochondrial malfunction and morphological
alterations are linked to DR but remain understudied in PDR. For this
reason, genes and pathways relevant to mitophagy in MSigDB and
GeneCards were searched for, and 2414 relevant genes were found.
After considering the intersection with DEGs, this study identified 540
differentially expressed PDR-associated DEMRGs, and they were
targeted for further analysis (Figure 3A, Supplementary Table S4).
This study analyzed 540 DEMRGs using GO, KEGG, and DO
enrichment (Figures 3B-D, Supplementary Table S5). GO analysis
showed that DEMRGs were associated with biological processes (e.g.,
response to oxidative stress, cellular response to chemical stress, and
negative regulation of organelle organization), cellular components
(e.g., focal adhesion, cell-substrate junctions, and membrane rafts), and
other cellular mechanisms (e.g., actin binding, ubiquitin protein ligase
binding, and ubiquitin-like protein ligase binding). KEGG analysis
showed that the DEMRGs were associated with fluid shear stress,
atherosclerosis, lipids, and apoptosis pathways. DO analysis revealed
that DEMRGs were linked to various medical conditions and diseases.

GSEA analysis of the DEMRGs revealed that extracellular matrix
organization, IL18 signaling pathway, innate immune system, KEGG
regulation of the actin cytoskeleton, adipogenesis, PI3K/AKT
signaling pathway, adaptive immune system, and other gene sets
were significantly enriched in the PDR samples of the Training
dataset (Figure 3E, Supplementary Figure S3, Supplementary Table
S6). Further analysis of all samples and genes revealed that gene sets
such as visual phototransduction were significantly under-enriched in
PDR samples. Conversely, interleukin receptor SHC signaling, type I
interferon induction and signaling during SARS—CoV-2 infection,
caspase activation via extrinsic apoptotic pathways, binding of TCF/
LEF ctnnbl to target gene promoters, and runx3’s regulation of WNT
signaling gene sets were significantly and highly enriched in PDR
samples (Figure 3F, Supplementary Table S7).

3.4 Constructing a diagnostic model for
PDR

To better understand the diagnostic potential of the 540
DEMRGs, a predictive model was constructed to diagnose PDR
using the LASSO shrinkage and selection operator, a regression
approach to distinguish between patients with PDR and healthy
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FIGURE 1

Flowchart and dataset. (A) Workflow for Identifying Mitophagy-Related Signatures in Proliferative diabetic retinopathy (PDR). (B, C) Principal Component
Analysis (PCA) downscaling of GSE102485 and GSE604361 datasets (PDR in class denotes proliferative diabetic retinopathy samples and Normal
represents normal control samples).

TABLE 2 Overview of the dataset.

GEO number Date of publication  Type of organization Volume of data Chip platform
GSE60436 2014 FVMs from PDR (type II)vs normal human retinas 9 ‘ GPL6884
GSE102485 2020 NVM from PDR, BRVO and normal 30 ‘ GPL18573
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FIGURE 2

Panoramic view of disease immunocyte infiltration in the training dataset and correlation analysis. (A) Panoramic view of the infiltration of 28
immune cells between in the PDR and Control groups. (B) Difference of each immune cell between the PDR and Control groups (*p<0.05; **p<0.01;
***H<0.001). (C) Heatmap of the correlation between immune cells.

controls. To ensure the reproducibility of the modeling outcomes, a ~ CASP8, and VGF) to model the feature genes for LASSO regression.
consistent random seed value of 123456 was established. With a  To assess the robustness of this model, separate calculations were
gradual increase in lambda, the feature parameters gradually decreased ~ performed for the area under the curve (AUC) in both the Training
(Figures 4A, B). This study used the best model and nine genes were ~ and Validation datasets. In the Validation dataset, the AUC was
selected (UTRN, COL1A1, MYH9, DOCKS, SNX30, ITGA5, IFIH1,  recorded at 0.833 (Figure 4C), further confirming the model’s efficacy
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FIGURE 3

GO, KEGG, DO Enrichment Analysis and GSEA and GSVA analysis of DEMRGs. (A) Differentially expressed genes (DEGs) and mitophagy-related genes
(MRGs) were taken to intersect to get 540 differentially expressed mitophagy-related genes (DEMRGs). (B) DEMRGs enriched in biological process
(BP), cellular component (CC), and molecular function (MF) in Gene Ontology (GO) enrichment analysis. (C) Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis of the DEMRGs. (D) Disease ontology (DO) enrichment analysis of DEMRGs. (E) Enrichment of gene
sets with differences in Gene Set Enrichment Analysis (GSEA) analysis. (F) Heatmap of specific expression of gene sets with differences in Gene Set
Variation Analysis (GSVA) analysis in PDR samples and Control samples.

Frontiers in Endocrinology

Q
o
organelle outer membrane [ ] p.adjust
outer membrane| [ ] Sl
1.5e-05
mitochondrial outer membrane [ ] G
=
i 2 o 5.0e-06
@ & actin bindingj
2
0 o= n— no—
S Q8 ubiquitin protein ligase Y
2 binding
ubiquitin like protein ®
ligase binding =
5
cadherin binding; [ ]
actin filament binding @
o integrin binding; ®
i ssstoes" o logFC ¢ i
- 004 006 008
decreasing increasing ® downregulated ® upregulated GeneRatio
D
lung disease ® | count
urinary system disease ® @ %
musculoskeletal system PY [ X3
cancer g
peripheral nervous system PY
X oplasm ‘ 55
autonomic nervous system °
neoplasm )
neuroblastoma Y padjust
1e-06
connective tissue cancer o 8e_07
myeloma ) 6e-07
colorectal cancer{ e 4e-07
large intestine cancer{ o
010 ALl 012 013 014 0.
E GeneRatio

DEGs Mitophagy B

response to oxidative stress

cellular response to|
chemical stress|
negative regulation of
organelle organization
regulation of apoptotic
signaling pathway|
cellular response to
oxidative stress|

o9
dg9

Count
@® 2
@
@ ~

. 50
{

regulation of autophag;w

focal adhesion

cell substrate junction

membrane raft

REACTOME EXTRACELLULAR
MATRIX ORGANIZATION

WP IL18 SIGNALING PATHWAY

p.adjust
REACTOME INNATE IMMUNE SYSTEM:
KEGG REGULATION OF ACTIN 0.01
CYTOSKELETON g.gg
WP ADIPOGENESIS { 004

WP PIBKAKT SIGNALING PATHWAY
REACTOME ADAPTIVE IMMUNE
SYSTEM

0 4 8 12
Rank n Ordered Dataset

F [ Normal . PDR | group

] REACTOME_VISUAL_PHOTOTRANSDUCTION
REACTOME_INTERLEUKIN_RECEPTOR_SHC_SIGNALING
WP_TYPE_|_INTERFERON_INDUCTION_AND_SIGNALING_DURING_SARSCOV2_INFECTION
REACTOME_CASPASE_ACTIVATION_VIA_EXTRINSIC_APOPTOTIC_SIGNALLING_PATHWAY
REACTOME_BINDING_OF_TCF_LEF_CTNNB1_TO_TARGET_GENE_PROMOTERS
REACTOME RUNX3_REGULATES_WNT_SIGNALING
WP_OVERVIEW_OF_NANOPARTICLE_EFFECTS

-_OF_LIGANDS_BY_SCAVENGER_RECEPTORS

E.

BIOCARTA_MRP_PATHWAY I2

REACTOME_DISEASES_ASSOCIATED_WITH_GLYCOSAMINOGLYCAN_METABOLISM

WP_HAIR_FOLLICLE_DEVELOPMENT_ORGANOGENESIS_PART 2 OF 3

'WP_MIRNA_TARGETS_IN_ECM_AND_MEMBRANE_RECEPTORS 0

REACTOME_INTEGRIN_CELL_SURFACE_INTERACTIONS

PID_SYNDECAN_1_PATHWAY

WP_GENES_CONTROLLING_NEPHROGENESIS

REACTO! ROSSLINKING_OF_COLLAGEN_FIBRILS

REACTO! EXTRACELLULAI \TRIX_ORGANIZATION

REACTOME_ASSEMBLY_OF_COLLAGEN_FIBRILS_AND_OTHER_MULTIMERIC_STRUCTURES
REACTOME_ECM_PROTEOGLYCANS

08 frontiersin.org


https://doi.org/10.3389/fendo.2025.1652898
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Liu et al.

10.3389/fendo.2025.1652898

FIGURE 4

Identification of genes characterized by the PDR model. (A) Relationship between Lambada, feature coefficients, and number of features in Least
Absolute Shrinkage and Selection Operator (LASSO) regression. (B) The best model and the simplest LASSO regression model acquisition.

(C) Diagnostic efficacy of LASSO regression models in the Training and Validation datasets. (D) Changes in error rate with increasing decision trees in
random forests. (E) Top 20 significant genes in random forest. (F) Diagnostic efficacy of random forest models in Training and Validation datasets.
(G) Expression of model feature genes in the training set. (H) Expression of model signature genes in validation set.
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in generalizing its predictive capabilities beyond the training data. To

further determine the stability of the model feature genes, a random

forest algorithm was used to screen the model feature genes again. The
model was stabilized after building 500 decision trees (Figure 4D).
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Simultaneously, the top 200 genes were selected based on their
importance as model feature genes of the random forest
(Figure 4E). To verify the model’s stability, this study calculated the
AUC for the Training and Validation datasets. In both datasets, the
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AUC of the model was 1 (Figure 4F). Finally, we took the intersection
of the model feature genes obtained from the LASSO and random
forest algorithms and identified eight genes (VGF, SNX30, IFIHI,
CASP8, UTRN, ITGA5, COL1A1, and MYH9) as model feature
mitophagy-related genes in PDR. The expression levels of the eight
feature genes in the Training and Validation datasets are shown in
Figures 4G, H.

3.5 Predictive performance and validation
of a diagnostic model for PDR

Disrupted mitophagy in RPE cells has been linked to
compromised outer blood-retinal barrier in DR. Under high-
glucose conditions, RPE cells exhibit dynamic changes in
mitophagy-related markers, consistent with perturbations in
mitochondrial quality control (37). Owing to RPE cell damage,
mitophagy is activated at low glucose levels and inhibited at high
glucose levels (21). This study incubated ARPE-19 cells with HG
(30mM) at previously reported concentrations to simulate an in
vitro DR model (38). Interestingly, VGF expression was up-
regulated in HG treated ARPE-19 cells compared to that in
normal control cells, which was predicted to be down-regulated
based on the bioinformatics analysis described above. The
expression of ITGA5 was reduced and MYH9 levels remained
unchanged in HG treated ARPE-19 cells; these genes were
predicted to be upregulated. SNX30, IFIH1, CASP8, UTRN, and
COL1A1 expression levels were elevated in ARPE-19 cells under
HG conditions, suggesting that these five genes and their
downstream signaling pathways may be involved in the
progression of PDR by regulating mitophagy in RPE cells
(Figures 5A-H, Supplementary Table S8). Additionally, expression
of the two hub genes under HG was examined by western blotting.
As shown in Figures 5I-K, the exposure of ARPE-19 cells to HG for
24h led to increased COL1A1 protein levels, which was consistent
with the trends observed by qRT-PCR, while CASP8 protein levels
showed no significant change. To validate these findings, QRT-PCR
analysis was performed in iRPE cells previously established in our
previous work (15). The results showed that six genes exhibited
expression patterns generally consistent with the bioinformatic
predictions, with ITGA5 being upregulated compared to ARPE-
19 cells (Supplementary Figure S4, Supplementary Table S9).

To investigate the relationship between high glucose and
mitophagy, the changes in LC3B and P62 (31) levels were
examined under HG conditions using western blotting, along
with the stabilization of PINK1/Parkin (32) and ATP5A1 (33). As
shown in Figures 5L-Q, HG treatment initially increased the
expression of LC3B. P62 expression was slightly reduced, but the
change was not statistically significant. ATP5A1 protein levels
decreased, indicating reduced inner-mitochondrial membrane
content, consistent with ongoing mitochondrial clearance via
mitophagy. The mitophagy pathway comprises multiple
mechanisms, among which the PINKI/Parkin axis is the most
classical and well characterized (34). Western blotting showed
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that HG stimulation increased PINK1 and Parkin expression in
ARPE-19 cells. Furthermore, fluorescence microscopy indicated an
increase in mitochondria-lysosome colocalization in ARPE-19 cells
after HG stimulation. Following HG exposure, the overlap between
Mito-tracker and Lyso-Tracker signals was modestly enhanced,
suggesting that mitophagy may be altered under hyperglycemic
conditions (Figures 5R-T). Additionally, mitochondrial membrane
potential (MMP) in ARPE-19 cells under HG stimulation was
evaluated using JC-1 staining (Supplementary Figure S5) (35).
HG increased JC-1 monomer formation and reduced JC-1
aggregate levels. These findings suggest that high glucose may
modulate mitophagy and alter the expression of key genes,
providing preliminary support for mitophagy dysregulation in
PDR and partially addressing the limitations of bioinformatics-
based analyses. However, how mitophagy activity changes during
the later phases of HG requires further examination.

3.6 Prioritization of CASP8 and COL1A1 as
hub genes

In the Training dataset, WGCNA was used to pinpoint gene
modules among the DEGs that exhibited the most substantial
correlation with PDR. Notably, cluster analysis did not detect any
outlier samples, as demonstrated in Figure 6A.A soft threshold of 9
was used as the optimal threshold for constructing a scale-free
network. The minimum number of genes in the modules was set at
30, resulting in 19 modules formed (Figure 6B). Similar modules were
merged by setting the minimum distance between the merged
modules to 0.2, resulting in 10 modules (Figure 6C). After
assessing the correlations between various gene modules and
clinical characteristics, a correlation heatmap was generated, as
represented in Figure 6D. This analysis identified the blue module
that exhibited the most substantial correlation with PDR. This
module encompassed 1914 genes and was subsequently designated
as the core module. A PPI network was constructed for DEMRGs
using the STRING web tool (Supplementary Figure S1). To narrow
the focus to the most promising candidates, the maximum clique
centrality (MCC) scores were calculated using the CytoHubba plug-
in in Cytoscape software. The top 50 genes were selected as potential
candidate genes based on pre-scoring, as shown in Figure 6E. Finally,
eight model feature genes, 1914 blue core module genes, and 50 PPI
candidate genes were used as intersections to obtain two hub genes,
COLI1AL1 and CASP8 (Figure 6F).

3.7 Immunological differences across PDR
molecular subtypes

To determine whether the expression levels of mitophagy-related
genes were related to immunity, an analysis was conducted to
examine the correlation between the expression levels of these hub
genes and scores representing immune cell infiltration. As shown in
Figure 7A, there was some correlation between the two hub genes and
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Hub-gene expression and mitophagy markers were measured in ARPE-19 cells. (A—H) The mRNA level of VGF, SNX30, IFIH1, CASP8, UTRN, ITGA5,
COL1A1L, and MYH9 were measured in cell samples by qRT-PCR. P-values were calculated using a two-sided unpaired Student’ s t-test. (*P < 0.05;
**P < 0.01; ns, non-significant). (I-K) Western blotting analysis of CASP8 and COL1A1 protein expression in ARPE-19 cell samples. P-values were
calculated using a two-sided unpaired Student's t-test. Representative western blotting images and the corresponding statistical analyses are shown
(n = 3; *P < 0.05; **P < 0.01; ns, non-significant). (L—Q) Western blotting analysis of LC3B, P62, PINK, Parkin and ATP5A1 protein expression in
ARPE-19 cell samples. P-values were calculated using a two-sided unpaired Student’s t-test. Representative Western blotting images and the
corresponding statistical analyses are shown (n = 3; *P < 0.05; **P < 0.01; ns, non-significant). (R=T) The mitochondria and autolysosomes were
labeled by Mito- Tracker Green and Lyso-Tracker Red, respectively. Scale bar: 20 um. Data are presented as the mean + SD. P-values were
calculated using a two-sided unpaired Student's t-test. (n = 3; *P < 0.05; **P < 0.01; ns, non-significant).
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most immune cells, with the highest positive correlation between
COL1A1 and macrophages (r = 0.63) and the highest negative
correlation between COL1Al and memory B cells (r = -0.59).
CASP8 showed the strongest positive correlation with DC (r =
0.60) and the strongest negative correlation with memory B cells (r
= ~0.65).

To construct PDR molecular subtypes, this study used the
expression matrices of the PDR samples in the Training dataset
corresponding to the hub genes for consistent clustering. By
analyzing the cumulative distribution curves, AUC, and clustered
heatmap results (Figures 7B-D), k = 2 was chosen as the number of
subgroups to classify the PDR samples into two subtypes, classically
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activated M1 macrophages (MC1) and alternatively activated M2
macrophages (MC2). To explore the distribution of the hub genes in
the two isoforms, their expression of hub genes was mapped in
different isoform samples (Figure 7E). COL1A1 was found to
decrease the expression of MC1 isoforms and increase the
expression of MC2 isoforms. In the ongoing exploration of the
relationship between these two hub genes, their correlations within
distinct isoforms were calculated, as illustrated in Figures 7F, G.
No discernible correlation was observed between these two
molecules. This observation strongly implies that these two genes
could potentially serve distinct functions, as their isoform-specific
correlations were not notably related.
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FIGURE 7

Correlation between hub genes and both the degree of immune cell infiltration and the immune infiltration characteristics of PDR molecular
subtypes. (A) Correlation between hub genes and degree of immune cell infiltration. (B) Clustering heat map at k=2. (C) Cumulative distribution
curve. (D) Area under the cumulative distribution curve. (E) Expression of hub genes in different subtypes. (F, G) Correlation between CASP8 and
COL1AL1 in different subtypes. (H) Immune cell infiltration of different molecular subtypes of PDR. (*P < 0.05; **P < 0.01; ns, non-significant).

The investigation of the variance in immune cell infiltration between
the two subtypes involved a detailed analysis of the disparities in immune
cell levels, as illustrated in Figure 7H. The results of this analysis showed
that the MCI1 subtype displayed elevated levels of eosinophils and
concurrently lower levels of plasma cells than the other subtype.
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PDR is an end-stage and severe type of DR and is an important
cause of blindness in patients with diabetes (36). PDR pathogenesis is
complex and current research suggests that multiple metabolic
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pathways are involved in its development, including impaired
glutathione metabolism, decreased pantothenic acid and CoA
biosynthesis (37), oxidative stress and endoplasmic reticulum stress
(38). Abnormalities in these pathways can lead to microvascular
complications such as disruption of the blood-retinal barrier,
uncontrolled vascular proliferation and neurodegeneration (39).
However, the exact pathogenic mechanism of PDR remains
understudied. It has been suggested that mitophagy, as the
programmed self-degradation of dysfunctional mitochondria, is
essential for maintaining cellular homeostasis and cell survival
under stress and may be involved in PDR pathogenesis (6). Low
glucose (15 mM) induced enhanced mitophagy in RPE cells;
however, elevated ROS mediated the inactivation of the key
mitophagy proteins, PINK1 and Parkin, and thus inhibited
mitophagy in response to HG (50 mM) or hydrogen peroxide
stimulation. This suggests that the glucose concentration regulates
mitophagy in RPE cells in a dose-dependent manner (6). Kanwar
et al. found significantly reduced levels of glutathione, superoxide
dismutase (SOD), and other antioxidant molecules in the retinal
mitochondria of diabetic mice, which resulted in impaired
antioxidant defenses and retinal oxidative stress damage in the RPE
(40). These above results suggest that mitophagy is involved in the
genesis and development of PDR; however, the specific underlying
mechanism remains unclear. Further studies are needed to broaden
our understanding of mitophagy in PDR pathogenesis.

This study, we catalogued 540 potential DEMRGs in PDR using
bioinformatics analysis, and functional enrichment analysis suggested
associations with biological processes such as mitophagy regulation,
oxidative stress response, and cellular stress response. Furthermore, this
analysis indicated shifts in immune cell composition in PDR, with
increased infiltration of CD8+ and CD4+ T cells, DCs, and
macrophages, along with a decrease in B cells, NK cells, and
regulatory T cells. Next, this study further highlighted eight hub genes
associated with PDR using the PPI network and WGCNA analyses,
including VGF, SNX30, IFIH1, CASP8, UTRN, ITGA5, COL1A1, and
MYHO9. The roles of some of these genes in diabetes development and
ocular disorders have been extensively studied. For example, ITGA5
promotes angiogenesis in DR through TAK-1/NF-kB activation (41)
and COL1A1 may be associated with prefibroblastic cells that cause pre-
retinal fibrovascular membranes in patients with PDR (42). However,
their role in the regulation of mitophagy in PDR remains unclear.

In the present study, HG-treated ARPE-19 cells were used as a
DR model to demonstrate the function of potential mitophagy-
related genes. This was because of the following reasons. First, RPE
cell dysfunction and loss were identified in a diabetic model. It is
associated with macular edema caused by diabetes-induced
disruption of the outer blood-retinal barrier. Therefore, RPE cells
have been widely used as in vitro models for DR studies (43, 44).
Second, the RPE contains a high density of mitochondria necessary
to fulfill the energy demand; therefore, severe stimulation leads to
mitochondrial dysfunction and excessive intracellular ROS
production, which further triggers oxidative stress-related
mitophagy. This in vitro DR model is suitable for studying
mitophagy (13). The qRT-PCR results found that five of the eight
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hub genes prioritized in silico for PDR (SNX30, IFIH1, CASPS,
UTRN, COL1A1) showed expression changes consistent with the
bioinformatic analysis. The qRT-PCR analysis of iRPE shows that
six genes exhibited expression patterns broadly concordant with the
bioinformatic predictions, and ITGA5 was upregulated compared
with ARPE-19 cells, this may be due to the reinforcement of certain
functions during induced differentiation. At the protein level,
COLI1A1 changes were concordant with the in-silico predictions,
supporting its prioritization as a putative target for modulating
PDR progression.

Western blotting suggested that mitophagy may be altered under
high-glucose stimulation for 24 hours: mitophagy-associated proteins
(including LC3 and PINK1/Parkin) tended to increase, whereas the
putative inhibitory protein p62/SQSTMI and the inner
mitochondrial membrane complex subunit ATP5A1 showed
modest decreases, the findings consistent with an enhancement of
mitophagy. In addition, immunofluorescence revealed Mit-Tracker
and Lyso-Tracker colocalization, suggesting augmented trafficking of
depolarized mitochondria to acidic vesicles, which should be further
evaluated using autophagic-flux and lysosomal-function assays.
Moreover, high glucose exposure decreased the JC-1 red/green
ratio, indicating mitochondrial depolarization and consistent with
partial mitochondrial clearance. Taken together, these data are
broadly consistent with the a priori expectations and provide
preliminary experimental support that HG may modulate
mitophagy in RPE cells, thereby partially mitigating the limitations
of bioinformatics-based inference. However, since the bioinformatics
results were derived from the optic disc and the surrounding parts of
the retinal tissues of patients with PDR.

Previous studies have reported that IFIH1 is involved in
mitophagy through the RIG-I/MDA5-MAVS pathway (45) and
UTRN deficiency impairs cellular mitochondrial quality control
(46), suggesting that CASP8 is a dysregulated gene involved in
mitophagy in human periodontal ligament stem cells (47). The
decreased in COL1A1 protein levels is associated with the loss of
mitophagy and insufficient collagen secretion (48). CASP8 and
COLI1ALl are closely related to mitophagy, and CASP8 and
COL1A1 were also designated as hub genes by CytoHubba
analysis. The relationship between these genes and mitophagy has
only been partially reported, and further investigation is required to
elucidate the mechanisms by which mitophagy is regulated in PDR
models and cells.

However, because this analysis is based on bulk retinal
transcriptomic data that aggregate heterogeneous tissue compartments
and cell types, the interpretation of differentially expressed genes and
pathway signals may be affected to some extent. In addition, pathway and
gene-set inferences depend on continually updated databases, in which
redundancy and overlapping annotations can blur specificity.
Accordingly, this study is framed as a systems level exploration of
molecular features, aiming to identify common signals shared across
compartments rather than those confined to a single tissue. Future work
will incorporate rigorously compartment stratified samples and apply
single cell RNA sequencing and spatial transcriptomics to validate
expression and functional differences that are specific to compartments
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and cell types. Moreover, among the eight prioritized candidates, only
five showed concordant changes, which may reflect biological differences
between complex patient tissues and a single retinal pigment epithelium
cell line. Validation in additional human retina-derived cell lines will be
required to substantiate the predictive and regulatory roles of these
mitophagy-related genes in PDR.

5 Conclusions

To sum up, we prioritized eight candidate mitophagy-related
genes associated with PDR, among which CASP8 and COL1Al
emerged as putative hub genes. The findings suggest that SNX30,
IFIH1, CASP8, UTRN, and COL1A1 may influence the onset and
progression of PDR by modulating mitophagy. Nevertheless, these
conclusions are hypothesis-generating, as they are derived primarily
from public datasets and algorithmic inference, their relevance to
disease biology requires further confirmation in animal models and
patient-derived tissues. Future work should integrate functional
genetics and protein-level assays to delineate the regulatory
mechanisms of these key genes comprehensively and to establish
the reliability and translational value of these candidates as clinical
biomarkers or therapeutic targets.
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Glossary
DR

PDR

AIF
AMD
ROS

RPE
DEGs
MRGs
FVMs
GO
DEMRGs
CPM

BP

MEF

CC

DO

Diabetic retinopathy
Proliferative diabetic retinopathy
apoptosis-inducing factor
age-related macular degeneration
excessive reactive oxygen species
retinal pigment epithelium
differentially expressed genes
mitophagy-related genes
fibrovascular membranes

Gene Ontology

Differentially expressed mitophagy-related genes
counts per million

biological processes

molecular functions

cellular components

Disease ontology
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GSEA
GSVA
LASSO
STRING
McCC
PAM
hUCMSCs
iRPE
HG

NC

SG

DCs
MC1
MC2

PCA

10.3389/fendo.2025.1652898

Gene Set Enrichment Analysis

Gene Set Variation Analysis

Least Absolute Shrinkage and Selection Operator

Search Tool for the Retrieval of Interacting Genes/Proteins

Maximal Clique Centrality

partitioning around medoids

human umbilical cord mesenchymal stem cells

induced retinal pigment epithelium
high glucose

normal control

standard glucose

Dendritic cells

classically activated M1 macrophage
alternatively activated M2 macrophage

Principal Component Analysis.
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