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Introduction: Diabetic retinopathy (DR) is one of the most common

microvascular complications of diabetes mellitus, and proliferative diabetic

retinopathy (PDR) represents its advanced stage. The etiology of PDR is

complex. Mitophagy, the selective degradation of dysfunctional mitochondria,

is crucial for cellular homeostasis and has been implicated in PDR pathogenesis.

However, its specific mechanisms require further investigation.

Materials and methods: Gene Expression Omnibu (GEO) datasets (GSE102485,

GSE60436) were analyzed in R software to identify differentially expressed

mitophagy-related genes (DEMRGs). A PDR diagnostic model was constructed

by gene ontology (GO) enrichment analysis, genome enrichment analysis (GSEA),

and other relevantmethods. Immune infiltration was also performed to analyze the

changes in immune cells. Finally, the retinal pigment epithelial cell line (ARPE-19)

was incubated with high glucose (HG) to simulate a DR model in vitro, hub-gene

expression and mitophagy were assessed by qRT-PCR, Western blotting, and

immunofluorescence microscopy (IF).

Results: Eight DEMRGs were identified enabling construction of a PDR diagnostic

model and prioritization of two hub genes (CASP8 and COL1A1). Finally, qRT-

PCR, Western blotting, and IF were performed to provide preliminary validation of

the PDR model and HG stimulation increased mitochondria–lysosome

colocalization as well as enhanced the expression of mitophagy-related proteins.

Conclusion: Integrated bioinformatics and experimental validation suggest that

mitophagy contributes to PDR pathogenesis. Five DEMRGs showed up-regulated

and immune cell infiltration that may affect the occurrence and PDR

development by regulating mitophagy. These findings provide candidate

biomarkers and mechanistic insight into PDR.
KEYWORDS

proliferative diabetic retinopathy, mitophagy, differentially expressed genes,
CASP8, COL1A1
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1 Introduction

Diabetic retinopathy (DR) is one of the most common and

detrimental microvascular complications of diabetes mellitus and a

common eye disease that causes blindness (1). DR is estimated to

affect 34.6% (93 million individuals) of the global population aged

40 (2). Proliferative diabetic retinopathy (PDR) is an advanced

diabetic eye disease. Due to abnormal neovascularization on the

surface of the retina or optic disc in patients with PDR, extensive

retinal ischemia and hypoxia occur, leading to loss of central and

peripheral vision, and approximately half of the untreated patients

with proliferative retinopathy will be blind within 5 years (3).

Consequently, PDR imposes substantial personal and societal

burdens on patients, their families, and the healthcare system.

Chronic low-grade retinal inflammation is recognized as a central

feature of DR pathophysiology. Converging evidence have shown that

oxidative stress, mitochondrial damage (4), mitochondrial dysfunction

(5), dysregulated apoptosis (6), and defects in autophagy disrupt

the blood–retinal barrier (7), pathological angiogenesis, and

neurodegeneration. Mitochondria orchestrate these stress responses,

and their quality control is partially mediated by mitophagy, the

selective autophagy of damaged mitochondria that is essential for

maintaining a healthy mitochondrial network (8, 9). In humans

with diabetes, mitochondrial status and mitophagy follow a

temporal, dynamic progression. During early hyperglycemic stress,

mitochondria face heightened energetic demand and oxidative burden,

accompanied by oxidative damage to mitochondrial DNA. As a quality

control response, mitophagy is engaged pre-apoptotic ally to cull

compromised organelles. With persistent hyperglycemia and redox

imbalance, however, clearance capacity lags, dysfunctional

mitochondria accumulate, and structural and functional deterioration

of the retinal neurovascular unit ensues. Accordingly, preserving

mitochondrial homeostasis and enhancing mitophagic capacity may

represent promising therapeutic avenues (10). When mitochondrial

turnover is impaired, the release of cytochrome c, apoptosis-inducing

factor (AIF), and endonuclease G promotes mitochondria dependent

cell death and contribute to retinal disease (11, 12).

Mitophagy is increasingly implicated in ocular disorders. In age

related macular degeneration (AMD), excessive reactive oxygen

species (ROS) activate mitophagy in the retinal pigment epithelium

(RPE) via the p62/Keap1/Nrf2 axis (13, 14). Recently, the role and

multiple function of mitophagy in PDR has been revealed. In DR,

RPE dysfunction activates mitophagy at low glucose levels and

inhibits it at late high glucose (HG) levels, leading to decreased

visual function (6). However, the mechanism of mitophagy in RPE

cells under diabetes stress remains unclear.

This study analyzed a previously published dataset containing

samples from PDR and non-diabetic individuals to identify the

differentially expressed genes (DEGs) associated with PDR. The

GSE102485 dataset includes samples obtained from the retina and

optic disc of patients with PDR, whereas GSE60436 comprises

fibrovascular membranes (FVMs) from patients with PDR and

normal human retinal tissue. Further analysis was performed to

determine the correlation between differentially expressed
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mitophagy-related genes (DEMRGs) in PDR. PDR pathogenesis

was investigated using Gene Ontology (GO), Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment and protein-

protein interaction (PPI) analyses. Mitophagy-related genes and

pathways were analyzed using the MSigDB database to further

explore the pathogenesis, pathophysiology, and molecular

mechanisms of PDR. Eight genes (VGF, SNX30, IFIH1, CASP8,

UTRN, ITGA5, COL1A1, and MYH9) DEMRGs and two hub genes

(CASP8 and COL1A1) were highlighted. Subsequently, we

established high-glucose (HG) models in human retinal pigment

epithelial cell line (ARPE-19) cells and in human induced retinal

pigment epithelium (iRPE) cells derived from human umbilical

cord mesenchymal stem cells (hUCMSCs) (15). HG treatment

resulted in elevated mitochondria-lysosome colocalization and

enhanced expression of mitophagy-related proteins in RPE cells.

The PDR model was preliminarily validated at both the mRNA and

protein levels. Consistency between the expression of SNX30,

IFIH1, CASP8, UTRN, and COL1A1 in the PDR model and

bioinformatic analyses, suggesting that these genes may be

involved in PDR pathogenesis, potentially through modulation

of mitophagy.
2 Materials and methods

2.1 Datasets acquisition

The GSE102485 sequencing and GSE60436 microarray datasets

for patients with PDR and controls were obtained from the public

GEO dataset (16). The GSE102485 (Homo sapiens) dataset

encompasses 30 samples: 22 from patients with PDR, 3 from

control patients, 3 from patients with branch retinal vein occlusion,

and 2 from patients with peripapillary retinal peri phlebitis. The

GSE60436 dataset was derived from a Human Whole Gene

Expression Profiling GeneChip (Illumina HumanWG-6 v3.0). This

data has 9 samples: 6 from patients with PDR and 3 from

control patients.

The GSE102485 dataset uses raw read count data. After a counts

per million (CPM) transformation by the edgeR package, 22 PDR

samples and 3 control samples were included in a training set

(Training) for downstream analysis, among the tissue sources for

patients with PDR are the hemal arch, the nasal side, the entire

portion, the retina, the hemi-arch portion, and the optic disc, the

optic disk, and the peripheral portion of the optic disc (17). The

GSE60436 dataset was normalized using the limma package and

annotated with data from the GPL6884 microarray platform. The

full sample was included as a validation set (Validation) for

downstream analysis (18). The mitochondria were obtained by

searching the MSigDB database (https://www.gsea-msigdb.org/

gsea/msigdb/index.jsp) and the GeneCards database (https://

www.genecards.org/) with the keywords mitophagy, autophagy-

related genes, and pathways. Following de-emphasizing and

merging, 2414 mitophagy-related genes (MRGs) were found.

Supplementary Table S1 provides comprehensive details (19, 20).
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2.2 Immune infiltration analysis

xCell, an approach based on gene characteristics (21), we

conducted a cell type enrichment analysis on the Training dataset

and extracted information on 28 different immune cell types,

including various subsets of B cells, T cells, memory cells, and

other immune cell populations (Supplementary Table S2). We

compared the immune enrichment levels in the PDR and control

groups, mapped the immune infiltration distribution of various

samples, and examined the association between the various

immune cell enrichment levels.
2.3 Differentially expressed gene analysis

The DESeq2 package was applied to clarify the DEGs in patients

with PDR relative to normal patients and to further infer the

pathways and functions of the differences (22). The criteria

|logFC|>1 and adj.Pvalue < 0.05 were used to filter and select

DEGs with statistical significance. Subsequently, we visualized the

results through the creation of volcano plots and heatmaps using

the ggplot2 and pheatmap packages. PDR-associated DEMRGs

were defined as the intersection of DEGs and MRGs; the overlap

was visualized with Venn diagrams using the ggvenn package and

used in subsequent analyses.
2.4 Enrichment analysis

Gene Set Enrichment Analysis (GSEA) was employed to evaluate

disparities in biological processes between healthy individuals and

those with PDR (23). The R package clusterProfiler (24) was

employed to analyze the GO, KEGG, and DO of DEMRGs using

the enrichment criteria of p-value < 0.05 and q-value < 0.05, as well as

using Benjamini-Hochberg (BH) p-value correction. In addition, we

obtained the c2.cp.v7.5.1.symbols.gmt gene set from the MSigDB

database and analyzed the differential BP between the PDR and

control groups using the clusterProfiler package with the random

seed set to 123456, the screening criterion of p-value < 0.05, and the

BH p-value correction method. To perform GSEA, we used the Gene

Set Enrichment Analysis (GSVA) package for one-sample

enrichment of the training dataset, with the nonparametric

estimation method set to Gaussian, and analyzed the difference in

pathway enrichment scores between the two groups using the

Wilcoxon rank-sum test for different pathway enrichment scores.

The differential pathway screening criteria were |logFC|>1 and

adjusted p-value < 0.05, as demonstrated by heatmaps.
2.5 Constructing diagnostic models

Least Absolute Shrinkage and Selection Operator (LASSO)

regression is a technique employed to reduce the dimensionality

of data. The implementation of LASSO is facilitated through the

glmnet package (25) with the family parameter configured as
Frontiers in Endocrinology 03
binomial and the random seed set to 123456. Random forest is an

integrated machine learning method that is used to resolve the

defects inherent in a single model or set of parametric models by

integrating more models, thereby combining their strengths and

weaknesses to mitigate limitations. For this study, the mtry

parameter was set to 6, the ntree parameter was set to 500, and

the random seed was set to 123456. We constructed a diagnostic

model using two machine learning methods and used the area

under the curve (AUC) to verify the accuracy of the model in both

Training and Validation datasets. In addition, the feature genes

screened by machine learning were selected to take the intersection

as the model feature genes for PDR.
2.6 Weighted gene correlation network
analysis

Weighted gene correlation network analysis (WGCNA) is a

method rooted in systems biology that serves to elucidate and

characterize patterns of gene associations across diverse samples

(26). We used the expression matrix of the DEGs as the input file

and used pickSoftThreshold to calculate the optimal soft threshold.

We used these results to construct a scale-free network, calculate the

topology matrix, and perform hierarchical clustering. The

minimum number of module genes was set to 30 to construct

gene modules; similar modules were merged by setting the

minimum distance of the merged modules to 0.2. Correlation

analysis was used to determine the correlation between each

module and the clinical characteristics. The module with the

highest correlation with PDR was selected as the core module.
2.7 Protein-protein interaction analysis

We leveraged the DEMRGs and the STRING (Search Tool for

the Retrieval of Interacting Genes/Proteins) databases (https://

cn.string-db.org/) to craft a PPI network (27). To create the PPI

network diagram (Supplementary Figure S1), an interaction score

of medium confidence, set at 0.4, was used. The Maximal Clique

Centrality (MCC) (28) algorithm in Cytoscape (29) was used to find

the core nodes in the PPI network. The top 50 MMC values were

selected as candidate genes.

We amalgamated the outcomes stemming from the model

feature genes, the central module identified through WGCNA, and

the PPI network. By intersecting these sets of candidate genes, we

derived a subset (the core, or hub, genes) that represents the central

elements of interest in our analysis.
2.8 Identification of PDR molecular
subtypes

The ConsensusClusterPlus package (30) an R package of choice,

configures the clustering algorithm as partitioning around medoids
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(PAM) using the Pearson method for calculating distances and

setting the number of re-samplings to 1000, the resampling ratio to

0.8, and the random seed to 123456. We utilized hub genes and

their expression matrices in the consensus clustering of PDR

samples and compared the correlation of hub genes in different

subtypes with the enrichment of immune cells between

different subtypes.
2.9 Cell culture

DMEM/F12 medium (Gibco, USA) supplemented with 10%

heat-inactivated fetal bovine serum (FBS) (Gibco, USA), penicillin

(100 U/ml), and streptomycin (100 µg/ml) was used to culture

ARPE-19 and iRPE (15). Cells were cultured at 37°C in a humidified

atmosphere with 5% CO2. The sub-culturing was performed by

treating the cells with a 0.05% trypsin–EDTA solution (Gibco,

USA). Cells in the logarithmic growth phase exhibiting good

condition were seeded into 6-well plates at a density of 1.2 × 106

cells per well. The cells were divided into two groups: a high glucose

(HG) treatment group and a normal control (NC) group. The HG

group was cultured in medium containing 30 mmol/L D-glucose,

while the NC group was cultured in standard glucose (SG) medium.

A volume of 2.5 mL of the respective medium was added to each

well, and the cells were incubated at 37°C for 48 hours.
2.10 Quantitative real-time polymerase
chain reaction

Total RNA was extracted and reverse transcription was

performed using Primescript™ RT Master Mix kit (Takara, Shiga,

Japan). qRT-PCR was performed in a Chromo4 instrument cycler

(Bio-Rad, Hercules, USA) using Super-real Premix plus kit

(Tiangen Biotech, Beijing, China). qRT-PCR amplification was

carried out with the following cycling parameters: denaturation at

95°C for 5 min, followed by 40 cycles of 95°C for 30 s, 60°C for 30s.

Primer sequences (Synthesized by Sangon Biotech Co., Ltd.,

Shanghai, China) were listed in Table 1.
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2.11 Western blotting

The ARPE-19 cells were lysed by RIPA buffer containing protease

and phosphatase inhibitor (C0001 and C0004, TargetMol, USA). The

protein extracts (20 µg per sample) were separated by 10% SDS-

PAGE gels and transferred onto polyvinylidene difluoride

membranes (Millipore, Bedford, MA, USA). After being blocked

with 5% BSA in TBST for one hour, membranes were incubated with

primary antibodies against CASP8 (Abcam), COL1A1 (Abmart),

LC3B (CST), P62(SQSTM1), PINK1, Parkin, ATP5A1and ACTB

(Proteintech) for 12 hours at 4°C, followed by incubation with

corresponding secondary antibodies for one hour at room

temperature. The blots were visualized with a chemiluminescence

imaging system (Tanon 5200; Tanon Shanghai, China) and

quantified with Image J software (Version 1.48v). Antibodies for

Western Blot were listed in Supplementary Table S3.
2.12 Autophagy detection through
lysosome and mitochondria colocalization

The mitochondria of live ARPE-19 cells were stained with a

working solution of Mito-Tracker Red (Beyotime, China) at a

concentration of 100 nM and incubated at 37°C for 20 min as

our previous report (14). Briefly, the cells were stained with a

working solution of Lyso-Tracker Green (50nM, Beyotime, China)

for 15 min. The samples were then examined by fluorescence

microscope (Olympus IX73, Tokyo, Japan). Co-localization

analysis of lysosomes and mitochondria was performed using

ImageJ software.
2.13 JC-1 staining

Live ARPE-19 cells were stained with 1 mL of JC-1 working

solution (Beyotime, China) and incubated at 37°C for 20 min. After

incubation, the supernatant was aspirated and cells were washed

twice with JC-1 staining buffer. JC-1 aggregates present in normal

mitochondria show red fluorescence, while JC-1 monomers present
TABLE 1 Primers and their sequences for qRT-PCR analysis.

Gene Symbol (Human) Forward (5’-3’) Reverse (5’-3’)

GAPDH CAAGAGCACAAGAGGAAGAG CTACATGGCAACTGTGAGG

VGF GTGTGAAGTGTGTCTGTCTC AACAGAGAAAGGAAAGAAGGG

SNX30 CTGTCATCTCGGCCTTTATC GGAATCCACCAGACTTCATC

IFIH1 CACAGTGGTTCAGGAGTTATC GCATACTCCTCTGGTTTCATATT

CASP8 CTTTGACCACGACCTTTGA TGGTCCATGAGTTGGTAGA

UTRN CCCAGATGGAAAGGACTAATG GGCAATACTGCTGGATGAG

ITGA5 CACATCGCTCTCAACTTCTC TCTGAGCCTTGTCCTCTATC

MYH9 GGACCTTCCACATCTTCTATTA GGACAGGAAGCGGTATTT

COL1A1 CCTGTCTGCTTCCTGTAAACTC GTTCAGTTTGGGTTGCTTGTC
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in unhealthy mitochondria produce green fluorescence. The samples

were then examined by fluorescence microscope (Olympus IX73,

Tokyo, Japan) and quantitative analysis (aggregates/monomers

fluorescence ratio) was performed using ImageJ software.
2.14 Statistical analysis

In this study, all data computations and statistical evaluations

were conducted using R software (version 4.1.2). When comparing

the two groups with continuous variables, we employed the

Wilcoxon rank-sum test to assess differences, particularly in cases

where the variables did not follow a normal distribution. The results

were calculated using Pearson correlation analysis of the correlation

coefficients between different molecules. A p-value < 0.05 was

considered statistically significant.
3 Results

3.1 Data pre-processing

The study design and procedures are shown in Figure 1A.

Detailed data regarding the datasets are presented in Table 2.

Principal component analysis was used to effectively visualize the

data distribution. Biological differences were found between PDR

and control samples and good clustering was observed between

samples of the same type (Figures 1B, C).
3.2 Immune cell infiltration patterns and
correlations

To explore the immune-related mechanisms in the PDR process,

the enrichment scores of 28 immune cells in the Training dataset

were analyzed to obtain a panorama of immune cell infiltration in

each sample. This provided a comprehensive overview of immune

cell infiltration in each sample (Figure 2A). The enrichment scores

differed greatly in terms of immune cell infiltration between PDR and

control samples. When comparing PDR samples to control samples,

an increase was observed in the percentages of CD8-positive T

lymphocytes (CD8+) and CD4-positive T lymphocytes (CD4+),

dendritic cells (DCs), and macrophages, whereas a decrease was

observed in the percentages of B cells, NK cells, and regulatory T cells.

Further exploration involved the comparison of immune cell

differences among various sample types (Figure 2B). Notably, this

study found significantly higher enrichment scores for CD4+

memory T cells, CD4+ macrophages, and their isoforms in the

PDR group than in the control group. Conversely, the enrichment

scores for Th1 cells were notably higher in control samples than in

PDR samples. These are consistent with broader immune cell

infiltration pattern.

Additionally, the correlations among the 28 immune cell types

were studied, as presented in Figure 2C. Different immune cells

exhibit varying degrees of correlation. Specifically, the highest
Frontiers in Endocrinology 05
positive correlation was discovered between macrophages and

CD4+ memory T cells (with a correlation coefficient of 0.89),

while the most significant negative correlation was observed

between macrophages and pro-B cells (with a correlation

coefficient of -0.56).
3.3 Identification of 540 differentially
expressed mitophagy-related genes

Of the 3957 DEGs screened, 2460 genes were up-regulated and

1497 genes were down-regulated (Supplementary Figure S2A). The

expression levels of DEGs were significantly different between the

PDR samples and control samples (Supplementary Figure S2B).

To our knowledge, mitochondrial malfunction and morphological

alterations are linked to DR but remain understudied in PDR. For this

reason, genes and pathways relevant to mitophagy in MSigDB and

GeneCards were searched for, and 2414 relevant genes were found.

After considering the intersection with DEGs, this study identified 540

differentially expressed PDR-associated DEMRGs, and they were

targeted for further analysis (Figure 3A, Supplementary Table S4).

This study analyzed 540 DEMRGs using GO, KEGG, and DO

enrichment (Figures 3B–D, Supplementary Table S5). GO analysis

showed that DEMRGs were associated with biological processes (e.g.,

response to oxidative stress, cellular response to chemical stress, and

negative regulation of organelle organization), cellular components

(e.g., focal adhesion, cell-substrate junctions, and membrane rafts), and

other cellular mechanisms (e.g., actin binding, ubiquitin protein ligase

binding, and ubiquitin-like protein ligase binding). KEGG analysis

showed that the DEMRGs were associated with fluid shear stress,

atherosclerosis, lipids, and apoptosis pathways. DO analysis revealed

that DEMRGs were linked to various medical conditions and diseases.

GSEA analysis of the DEMRGs revealed that extracellular matrix

organization, IL18 signaling pathway, innate immune system, KEGG

regulation of the actin cytoskeleton, adipogenesis, PI3K/AKT

signaling pathway, adaptive immune system, and other gene sets

were significantly enriched in the PDR samples of the Training

dataset (Figure 3E, Supplementary Figure S3, Supplementary Table

S6). Further analysis of all samples and genes revealed that gene sets

such as visual phototransduction were significantly under-enriched in

PDR samples. Conversely, interleukin receptor SHC signaling, type I

interferon induction and signaling during SARS−CoV−2 infection,

caspase activation via extrinsic apoptotic pathways, binding of TCF/

LEF ctnnb1 to target gene promoters, and runx3’s regulation ofWNT

signaling gene sets were significantly and highly enriched in PDR

samples (Figure 3F, Supplementary Table S7).
3.4 Constructing a diagnostic model for
PDR

To better understand the diagnostic potential of the 540

DEMRGs, a predictive model was constructed to diagnose PDR

using the LASSO shrinkage and selection operator, a regression

approach to distinguish between patients with PDR and healthy
frontiersin.org
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TABLE 2 Overview of the dataset.

GEO number Date of publication Type of organization Volume of data Chip platform

GSE60436 2014 FVMs from PDR (type II)vs normal human retinas 9 GPL6884

GSE102485 2020 NVM from PDR, BRVO and normal 30 GPL18573
F
rontiers in Endocrinology
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FIGURE 1

Flowchart and dataset. (A) Workflow for Identifying Mitophagy-Related Signatures in Proliferative diabetic retinopathy (PDR). (B, C) Principal Component
Analysis (PCA) downscaling of GSE102485 and GSE604361 datasets (PDR in class denotes proliferative diabetic retinopathy samples and Normal
represents normal control samples).
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controls. To ensure the reproducibility of the modeling outcomes, a

consistent random seed value of 123456 was established. With a

gradual increase in lambda, the feature parameters gradually decreased

(Figures 4A, B). This study used the best model and nine genes were

selected (UTRN, COL1A1, MYH9, DOCK8, SNX30, ITGA5, IFIH1,
Frontiers in Endocrinology 07
CASP8, and VGF) to model the feature genes for LASSO regression.

To assess the robustness of this model, separate calculations were

performed for the area under the curve (AUC) in both the Training

and Validation datasets. In the Validation dataset, the AUC was

recorded at 0.833 (Figure 4C), further confirming the model’s efficacy
FIGURE 2

Panoramic view of disease immunocyte infiltration in the training dataset and correlation analysis. (A) Panoramic view of the infiltration of 28
immune cells between in the PDR and Control groups. (B) Difference of each immune cell between the PDR and Control groups (*p<0.05; **p<0.01;
***p<0.001). (C) Heatmap of the correlation between immune cells.
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FIGURE 3

GO, KEGG, DO Enrichment Analysis and GSEA and GSVA analysis of DEMRGs. (A) Differentially expressed genes (DEGs) and mitophagy-related genes
(MRGs) were taken to intersect to get 540 differentially expressed mitophagy-related genes (DEMRGs). (B) DEMRGs enriched in biological process
(BP), cellular component (CC), and molecular function (MF) in Gene Ontology (GO) enrichment analysis. (C) Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis of the DEMRGs. (D) Disease ontology (DO) enrichment analysis of DEMRGs. (E) Enrichment of gene
sets with differences in Gene Set Enrichment Analysis (GSEA) analysis. (F) Heatmap of specific expression of gene sets with differences in Gene Set
Variation Analysis (GSVA) analysis in PDR samples and Control samples.
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in generalizing its predictive capabilities beyond the training data. To

further determine the stability of the model feature genes, a random

forest algorithm was used to screen the model feature genes again. The

model was stabilized after building 500 decision trees (Figure 4D).
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Simultaneously, the top 200 genes were selected based on their

importance as model feature genes of the random forest

(Figure 4E). To verify the model’s stability, this study calculated the

AUC for the Training and Validation datasets. In both datasets, the
FIGURE 4

Identification of genes characterized by the PDR model. (A) Relationship between Lambada, feature coefficients, and number of features in Least
Absolute Shrinkage and Selection Operator (LASSO) regression. (B) The best model and the simplest LASSO regression model acquisition.
(C) Diagnostic efficacy of LASSO regression models in the Training and Validation datasets. (D) Changes in error rate with increasing decision trees in
random forests. (E) Top 20 significant genes in random forest. (F) Diagnostic efficacy of random forest models in Training and Validation datasets.
(G) Expression of model feature genes in the training set. (H) Expression of model signature genes in validation set.
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AUC of the model was 1 (Figure 4F). Finally, we took the intersection

of the model feature genes obtained from the LASSO and random

forest algorithms and identified eight genes (VGF, SNX30, IFIH1,

CASP8, UTRN, ITGA5, COL1A1, and MYH9) as model feature

mitophagy-related genes in PDR. The expression levels of the eight

feature genes in the Training and Validation datasets are shown in

Figures 4G, H.
3.5 Predictive performance and validation
of a diagnostic model for PDR

Disrupted mitophagy in RPE cells has been linked to

compromised outer blood–retinal barrier in DR. Under high-

glucose conditions, RPE cells exhibit dynamic changes in

mitophagy-related markers, consistent with perturbations in

mitochondrial quality control (37). Owing to RPE cell damage,

mitophagy is activated at low glucose levels and inhibited at high

glucose levels (21). This study incubated ARPE-19 cells with HG

(30mM) at previously reported concentrations to simulate an in

vitro DR model (38). Interestingly, VGF expression was up-

regulated in HG treated ARPE-19 cells compared to that in

normal control cells, which was predicted to be down-regulated

based on the bioinformatics analysis described above. The

expression of ITGA5 was reduced and MYH9 levels remained

unchanged in HG treated ARPE-19 cells; these genes were

predicted to be upregulated. SNX30, IFIH1, CASP8, UTRN, and

COL1A1 expression levels were elevated in ARPE-19 cells under

HG conditions, suggesting that these five genes and their

downstream signaling pathways may be involved in the

progression of PDR by regulating mitophagy in RPE cells

(Figures 5A-H, Supplementary Table S8). Additionally, expression

of the two hub genes under HG was examined by western blotting.

As shown in Figures 5I–K, the exposure of ARPE-19 cells to HG for

24h led to increased COL1A1 protein levels, which was consistent

with the trends observed by qRT-PCR, while CASP8 protein levels

showed no significant change. To validate these findings, qRT-PCR

analysis was performed in iRPE cells previously established in our

previous work (15). The results showed that six genes exhibited

expression patterns generally consistent with the bioinformatic

predictions, with ITGA5 being upregulated compared to ARPE-

19 cells (Supplementary Figure S4, Supplementary Table S9).

To investigate the relationship between high glucose and

mitophagy, the changes in LC3B and P62 (31) levels were

examined under HG conditions using western blotting, along

with the stabilization of PINK1/Parkin (32) and ATP5A1 (33). As

shown in Figures 5L–Q, HG treatment initially increased the

expression of LC3B. P62 expression was slightly reduced, but the

change was not statistically significant. ATP5A1 protein levels

decreased, indicating reduced inner-mitochondrial membrane

content, consistent with ongoing mitochondrial clearance via

mitophagy. The mitophagy pathway comprises multiple

mechanisms, among which the PINK1/Parkin axis is the most

classical and well characterized (34). Western blotting showed
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that HG stimulation increased PINK1 and Parkin expression in

ARPE-19 cells. Furthermore, fluorescence microscopy indicated an

increase in mitochondria–lysosome colocalization in ARPE-19 cells

after HG stimulation. Following HG exposure, the overlap between

Mito-tracker and Lyso-Tracker signals was modestly enhanced,

suggesting that mitophagy may be altered under hyperglycemic

conditions (Figures 5R–T). Additionally, mitochondrial membrane

potential (MMP) in ARPE-19 cells under HG stimulation was

evaluated using JC-1 staining (Supplementary Figure S5) (35).

HG increased JC-1 monomer formation and reduced JC-1

aggregate levels. These findings suggest that high glucose may

modulate mitophagy and alter the expression of key genes,

providing preliminary support for mitophagy dysregulation in

PDR and partially addressing the limitations of bioinformatics-

based analyses. However, how mitophagy activity changes during

the later phases of HG requires further examination.
3.6 Prioritization of CASP8 and COL1A1 as
hub genes

In the Training dataset, WGCNA was used to pinpoint gene

modules among the DEGs that exhibited the most substantial

correlation with PDR. Notably, cluster analysis did not detect any

outlier samples, as demonstrated in Figure 6A.A soft threshold of 9

was used as the optimal threshold for constructing a scale-free

network. The minimum number of genes in the modules was set at

30, resulting in 19 modules formed (Figure 6B). Similar modules were

merged by setting the minimum distance between the merged

modules to 0.2, resulting in 10 modules (Figure 6C). After

assessing the correlations between various gene modules and

clinical characteristics, a correlation heatmap was generated, as

represented in Figure 6D. This analysis identified the blue module

that exhibited the most substantial correlation with PDR. This

module encompassed 1914 genes and was subsequently designated

as the core module. A PPI network was constructed for DEMRGs

using the STRING web tool (Supplementary Figure S1). To narrow

the focus to the most promising candidates, the maximum clique

centrality (MCC) scores were calculated using the CytoHubba plug-

in in Cytoscape software. The top 50 genes were selected as potential

candidate genes based on pre-scoring, as shown in Figure 6E. Finally,

eight model feature genes, 1914 blue core module genes, and 50 PPI

candidate genes were used as intersections to obtain two hub genes,

COL1A1 and CASP8 (Figure 6F).
3.7 Immunological differences across PDR
molecular subtypes

To determine whether the expression levels of mitophagy-related

genes were related to immunity, an analysis was conducted to

examine the correlation between the expression levels of these hub

genes and scores representing immune cell infiltration. As shown in

Figure 7A, there was some correlation between the two hub genes and
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FIGURE 5

Hub-gene expression and mitophagy markers were measured in ARPE-19 cells. (A–H) The mRNA level of VGF, SNX30, IFIH1, CASP8, UTRN, ITGA5,
COL1A1, and MYH9 were measured in cell samples by qRT-PCR. P-values were calculated using a two-sided unpaired Student’ s t-test. (*P < 0.05;
**P < 0.01; ns, non-significant). (I–K) Western blotting analysis of CASP8 and COL1A1 protein expression in ARPE-19 cell samples. P-values were
calculated using a two-sided unpaired Student’s t-test. Representative western blotting images and the corresponding statistical analyses are shown
(n = 3; *P < 0.05; **P < 0.01; ns, non-significant). (L–Q) Western blotting analysis of LC3B, P62, PINK, Parkin and ATP5A1 protein expression in
ARPE-19 cell samples. P-values were calculated using a two-sided unpaired Student’s t-test. Representative Western blotting images and the
corresponding statistical analyses are shown (n = 3; *P < 0.05; **P < 0.01; ns, non-significant). (R–T) The mitochondria and autolysosomes were
labeled by Mito- Tracker Green and Lyso-Tracker Red, respectively. Scale bar: 20 mm. Data are presented as the mean ± SD. P-values were
calculated using a two-sided unpaired Student’s t-test. (n = 3; *P < 0.05; **P < 0.01; ns, non-significant).
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most immune cells, with the highest positive correlation between

COL1A1 and macrophages (r = 0.63) and the highest negative

correlation between COL1A1 and memory B cells (r = –0.59).

CASP8 showed the strongest positive correlation with DC (r =

0.60) and the strongest negative correlation with memory B cells (r

= –0.65).

To construct PDR molecular subtypes, this study used the

expression matrices of the PDR samples in the Training dataset

corresponding to the hub genes for consistent clustering. By

analyzing the cumulative distribution curves, AUC, and clustered

heatmap results (Figures 7B–D), k = 2 was chosen as the number of

subgroups to classify the PDR samples into two subtypes, classically
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activated M1 macrophages (MC1) and alternatively activated M2

macrophages (MC2). To explore the distribution of the hub genes in

the two isoforms, their expression of hub genes was mapped in

different isoform samples (Figure 7E). COL1A1 was found to

decrease the expression of MC1 isoforms and increase the

expression of MC2 isoforms. In the ongoing exploration of the

relationship between these two hub genes, their correlations within

distinct isoforms were calculated, as illustrated in Figures 7F, G.

No discernible correlation was observed between these two

molecules. This observation strongly implies that these two genes

could potentially serve distinct functions, as their isoform-specific

correlations were not notably related.
FIGURE 6

WGCNA analysis and PPI analysis. (A) Elimination of outlier samples by cut height. (B) Determination of optimal SOFT POWER soft threshold.
(C) Formation and merging of modules. (D) Correlation of module genes with PDR. (E) Network graph of the top 50 genes obtained by computing
MCC based on cytoHubba. (F) Intersection of model feature genes, core module genes, and PPI candidate genes is taken.
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The investigation of the variance in immune cell infiltration between

the two subtypes involved a detailed analysis of the disparities in immune

cell levels, as illustrated in Figure 7H. The results of this analysis showed

that the MC1 subtype displayed elevated levels of eosinophils and

concurrently lower levels of plasma cells than the other subtype.
Frontiers in Endocrinology 13
4 Discussion

PDR is an end-stage and severe type of DR and is an important

cause of blindness in patients with diabetes (36). PDR pathogenesis is

complex and current research suggests that multiple metabolic
FIGURE 7

Correlation between hub genes and both the degree of immune cell infiltration and the immune infiltration characteristics of PDR molecular
subtypes. (A) Correlation between hub genes and degree of immune cell infiltration. (B) Clustering heat map at k=2. (C) Cumulative distribution
curve. (D) Area under the cumulative distribution curve. (E) Expression of hub genes in different subtypes. (F, G) Correlation between CASP8 and
COL1A1 in different subtypes. (H) Immune cell infiltration of different molecular subtypes of PDR. (*P < 0.05; **P < 0.01; ns, non-significant).
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pathways are involved in its development, including impaired

glutathione metabolism, decreased pantothenic acid and CoA

biosynthesis (37), oxidative stress and endoplasmic reticulum stress

(38). Abnormalities in these pathways can lead to microvascular

complications such as disruption of the blood-retinal barrier,

uncontrolled vascular proliferation and neurodegeneration (39).

However, the exact pathogenic mechanism of PDR remains

understudied. It has been suggested that mitophagy, as the

programmed self-degradation of dysfunctional mitochondria, is

essential for maintaining cellular homeostasis and cell survival

under stress and may be involved in PDR pathogenesis (6). Low

glucose (15 mM) induced enhanced mitophagy in RPE cells;

however, elevated ROS mediated the inactivation of the key

mitophagy proteins, PINK1 and Parkin, and thus inhibited

mitophagy in response to HG (50 mM) or hydrogen peroxide

stimulation. This suggests that the glucose concentration regulates

mitophagy in RPE cells in a dose-dependent manner (6). Kanwar

et al. found significantly reduced levels of glutathione, superoxide

dismutase (SOD), and other antioxidant molecules in the retinal

mitochondria of diabetic mice, which resulted in impaired

antioxidant defenses and retinal oxidative stress damage in the RPE

(40). These above results suggest that mitophagy is involved in the

genesis and development of PDR; however, the specific underlying

mechanism remains unclear. Further studies are needed to broaden

our understanding of mitophagy in PDR pathogenesis.

This study, we catalogued 540 potential DEMRGs in PDR using

bioinformatics analysis, and functional enrichment analysis suggested

associations with biological processes such as mitophagy regulation,

oxidative stress response, and cellular stress response. Furthermore, this

analysis indicated shifts in immune cell composition in PDR, with

increased infiltration of CD8+ and CD4+ T cells, DCs, and

macrophages, along with a decrease in B cells, NK cells, and

regulatory T cells. Next, this study further highlighted eight hub genes

associated with PDR using the PPI network and WGCNA analyses,

including VGF, SNX30, IFIH1, CASP8, UTRN, ITGA5, COL1A1, and

MYH9. The roles of some of these genes in diabetes development and

ocular disorders have been extensively studied. For example, ITGA5

promotes angiogenesis in DR through TAK-1/NF-kB activation (41)

and COL1A1may be associated with prefibroblastic cells that cause pre-

retinal fibrovascular membranes in patients with PDR (42). However,

their role in the regulation of mitophagy in PDR remains unclear.

In the present study, HG-treated ARPE-19 cells were used as a

DR model to demonstrate the function of potential mitophagy-

related genes. This was because of the following reasons. First, RPE

cell dysfunction and loss were identified in a diabetic model. It is

associated with macular edema caused by diabetes-induced

disruption of the outer blood-retinal barrier. Therefore, RPE cells

have been widely used as in vitro models for DR studies (43, 44).

Second, the RPE contains a high density of mitochondria necessary

to fulfill the energy demand; therefore, severe stimulation leads to

mitochondrial dysfunction and excessive intracellular ROS

production, which further triggers oxidative stress-related

mitophagy. This in vitro DR model is suitable for studying

mitophagy (13). The qRT-PCR results found that five of the eight
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hub genes prioritized in silico for PDR (SNX30, IFIH1, CASP8,

UTRN, COL1A1) showed expression changes consistent with the

bioinformatic analysis. The qRT-PCR analysis of iRPE shows that

six genes exhibited expression patterns broadly concordant with the

bioinformatic predictions, and ITGA5 was upregulated compared

with ARPE-19 cells, this may be due to the reinforcement of certain

functions during induced differentiation. At the protein level,

COL1A1 changes were concordant with the in-silico predictions,

supporting its prioritization as a putative target for modulating

PDR progression.

Western blotting suggested that mitophagy may be altered under

high-glucose stimulation for 24 hours: mitophagy-associated proteins

(including LC3 and PINK1/Parkin) tended to increase, whereas the

putative inhibitory protein p62/SQSTM1 and the inner

mitochondrial membrane complex subunit ATP5A1 showed

modest decreases, the findings consistent with an enhancement of

mitophagy. In addition, immunofluorescence revealed Mit-Tracker

and Lyso-Tracker colocalization, suggesting augmented trafficking of

depolarized mitochondria to acidic vesicles, which should be further

evaluated using autophagic-flux and lysosomal-function assays.

Moreover, high glucose exposure decreased the JC-1 red/green

ratio, indicating mitochondrial depolarization and consistent with

partial mitochondrial clearance. Taken together, these data are

broadly consistent with the a priori expectations and provide

preliminary experimental support that HG may modulate

mitophagy in RPE cells, thereby partially mitigating the limitations

of bioinformatics-based inference. However, since the bioinformatics

results were derived from the optic disc and the surrounding parts of

the retinal tissues of patients with PDR.

Previous studies have reported that IFIH1 is involved in

mitophagy through the RIG-I/MDA5-MAVS pathway (45) and

UTRN deficiency impairs cellular mitochondrial quality control

(46), suggesting that CASP8 is a dysregulated gene involved in

mitophagy in human periodontal ligament stem cells (47). The

decreased in COL1A1 protein levels is associated with the loss of

mitophagy and insufficient collagen secretion (48). CASP8 and

COL1A1 are closely related to mitophagy, and CASP8 and

COL1A1 were also designated as hub genes by CytoHubba

analysis. The relationship between these genes and mitophagy has

only been partially reported, and further investigation is required to

elucidate the mechanisms by which mitophagy is regulated in PDR

models and cells.

However, because this analysis is based on bulk retinal

transcriptomic data that aggregate heterogeneous tissue compartments

and cell types, the interpretation of differentially expressed genes and

pathway signalsmay be affected to some extent. In addition, pathway and

gene-set inferences depend on continually updated databases, in which

redundancy and overlapping annotations can blur specificity.

Accordingly, this study is framed as a systems level exploration of

molecular features, aiming to identify common signals shared across

compartments rather than those confined to a single tissue. Future work

will incorporate rigorously compartment stratified samples and apply

single cell RNA sequencing and spatial transcriptomics to validate

expression and functional differences that are specific to compartments
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and cell types. Moreover, among the eight prioritized candidates, only

five showed concordant changes, which may reflect biological differences

between complex patient tissues and a single retinal pigment epithelium

cell line. Validation in additional human retina-derived cell lines will be

required to substantiate the predictive and regulatory roles of these

mitophagy-related genes in PDR.
5 Conclusions

To sum up, we prioritized eight candidate mitophagy-related

genes associated with PDR, among which CASP8 and COL1A1

emerged as putative hub genes. The findings suggest that SNX30,

IFIH1, CASP8, UTRN, and COL1A1 may influence the onset and

progression of PDR by modulating mitophagy. Nevertheless, these

conclusions are hypothesis-generating, as they are derived primarily

from public datasets and algorithmic inference, their relevance to

disease biology requires further confirmation in animal models and

patient-derived tissues. Future work should integrate functional

genetics and protein-level assays to delineate the regulatory

mechanisms of these key genes comprehensively and to establish

the reliability and translational value of these candidates as clinical

biomarkers or therapeutic targets.
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DR Diabetic retinopathy
Frontiers in Endocrino
PDR Proliferative diabetic retinopathy
AIF apoptosis-inducing factor
AMD age-related macular degeneration
ROS excessive reactive oxygen species
RPE retinal pigment epithelium
DEGs differentially expressed genes
MRGs mitophagy-related genes
FVMs fibrovascular membranes
GO Gene Ontology
DEMRGs Differentially expressed mitophagy-related genes
CPM counts per million
BP biological processes
MF molecular functions
CC cellular components
DO Disease ontology
logy 17
GSEA Gene Set Enrichment Analysis
GSVA Gene Set Variation Analysis
LASSO Least Absolute Shrinkage and Selection Operator
STRING Search Tool for the Retrieval of Interacting Genes/Proteins
MCC Maximal Clique Centrality
PAM partitioning around medoids
hUCMSCs human umbilical cord mesenchymal stem cells
iRPE induced retinal pigment epithelium
HG high glucose
NC normal control
SG standard glucose
DCs Dendritic cells
MC1 classically activated M1 macrophage
MC2 alternatively activated M2 macrophage
PCA Principal Component Analysis.
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