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Development and validation of a
risk prediction model for painful
diabetic peripheral neuropathy in
type 2 diabetes mellitus: a
multicenter retrospective study
Yanpi Li1,2, Xiyun Wang1, Huimin Hu3, Xinyi Zhou1,
Naichong Hu1, Wenhui Liu1, Yi Zhang2, Peng Mao2, Liyuan Xu2,
Qian Zhu2, Bifa Fan2* and Yifan Li2*

1Beijing University of Chinese Medicine, Beijing, China, 2Department of Pain Management, China-
Japan Friendship Hospital, Beijing, China, 3Department of Pain Management, The Fourth Affiliated
Hospital of Soochow University, Jiangsu, China
Objective: To construct and validate a clinical model to predict painful diabetic

peripheral neuropathy (PDPN) risk in type 2 diabetes mellitus (T2DM) patients for

early identification and intervention in primary care.

Methods: A total of 1,984 patients with T2DM were included in the analysis. After

data preprocessing and application of the Synthetic Minority Oversampling

Technique (SMOTE) with a 200% oversampling ratio, feature selection was

performed using Least Absolute Shrinkage and Selection Operator (LASSO)

regression with 10-fold cross-validation. Six predictive models: multivariable

logistic regression (LR), random forest (RF), extreme gradient boosting (XGBoost),

Light Gradient Boosting Machine (LightGBM), artificial neural network (ANN), and

support vector machine (SVM)—were developed and tuned using repeated 5-fold

cross-validation. Model performance was evaluated on the independent test cohort

using comprehensive discrimination and calibration metrics. To enhance clinical

interpretability, a nomogram and SHapley Additive exPlanations (SHAP) analysis were

implemented to visualize predictor contributions.

Results: Ten variables were selected as predictors. Among 1,984 patients, 81

(4.08%) had PDPN. LR model demonstrated the most favorable trade-off for

screening purposes, with an area under the receiver operating characteristic

curve (AUC-ROC) of 0.894 (95% CI: 0.814–0.964), area under the precision–

recall curve (PR-AUC) of 0.470 (95% CI: 0.258–0.665), and balanced accuracy of

0.826 (95% CI: 0.667–0.932). SHAP analysis identified musculoskeletal disorders

and HbA1c as the most influential predictors. A user-friendly dynamic web-based

nomogram was constructed to support clinical implementation.

Conclusion:We established and validated a clinically interpretable model for PDPN

risk prediction in patients with T2DM. The dynamic nomogram enables

individualized risk estimation and may assist timely intervention in routine practice.
KEYWORDS

machine learning, SHAP analysis, web-based nomogram, multivariable logistic
regression, multicenter retrospective study
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Introduction

Diabetic peripheral neuropathy (DPN) is one of the most

prevalent chronic complication of type 2 diabetes mellitus

(T2DM), affecting an estimated 30% to 90% of patients globally

(1, 2). Its prevalence increases markedly with age and disease

duration, posing a significant public health concern as

populations age and diabetes incidence rises. Approximately

21.0% to 53.7% of DPN cases progress to painful DPN (PDPN)

(3, 4), characterized by distal symmetric polyneuropathy and

neuropathic pain (e.g. hyperalgesia, burning sensations, and

electric-shock sensations) (3, 4). The prevalence of PDPN has

been reported to range from 3.3% to 65.3%, influenced by

variations in study methodology, diagnostic criteria, and patient

population selection (5–7). Recent systematic reviews provide more

precise estimates, with Tao et al. (8) reporting a pooled global

prevalence of 46.7% (95% CI, 41.8–51.7) and Zhou et al. (9)

estimating 33.9% (95% CI, 19.4–48.5).

The economic and quality-of-life burden of PDPN is

considerable. Annual direct medical costs per patient have been

estimated at USD 9,349 to 20,887, driven by hospitalization, long-

term analgesic use, and management of related complications (10,

11). Additionally, PDPN is frequently associated with sleep

disturbances (up to 70%) and depressive symptoms (30%~45%),

resulting in a 40%~60% reduction in quality of life (12–14).

Current PDPN management remains suboptimal: fewer than one-

third of patients achieve adequate pain relief with pharmacotherapy,

largely due to the lack of pathophysiology-targeted agents (15).

Moreover, PDPN is critically underdiagnosed (detection rate: ~50%),

attributable to insidious symptom onset and the absence of

standardized screening protocols in primary care (11, 16). Delayed

diagnosis heightens risks of irreversible nerve damage, diabetic foot

ulcers, and falls (13). Early identification of high-risk individuals is thus

essential to enable timely intervention and potentially prevent the

progression of disease.

Existing PDPN prediction models exhibit limited generalizability

to Chinese populations owing to genetic, cultural, and healthcare

system differences (15). Of the two published models, one was

derived from Western cohorts, while the other (single-center

Chinese study) lacks external validation and regional applicability
Abbreviations: DPN, Diabetic peripheral neuropathy; T2DM, type 2 diabetes

mellitus; PDPN, painful DPN; mTCNS, modified Toronto Clinical Neuropathy

Score; DN4, Douleur Neuropathique 4; BMI, body mass index; HbA1c,

hemoglobin A1c; FPG, fasting plasma glucose; PPG, postprandial plasma

glucose; DBP, diastolic blood pressure; RUS-SMOTE, Random Undersampling

and the Synthetic Minority Oversampling Technique; LASSO, Least Absolute

Shrinkage and Selection Operator; 1-SE one-standard-error; LR, multivariable

logistic regression; ML, machine learning; RF, Random Forest; XGBoost, Extreme

Gradient Boosting; LightGBM, Light Gradient Boosting Machine; SVM, Support

Vector Machine; ANN, Artificial Neural Network; AUC-ROC, the Area Under

the Receiver Operating Characteristic Curve; CI, confidence interval; MCC,

Matthews correlation coefficient; SHAP, SHapley Additive exPlanations; ROS,

reactive oxygen species; DCA, Decision Curve Analysis.
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(1, 17). No model has yet addressed the high-risk T2DM population

in Beijing, where diabetes prevalence is rapidly rising.

To address this gap, we developed and validated a clinical

prediction model for PDPN using multicenter data from Beijing.

The model incorporates demographic and clinical variables,

including glycemic control indicators and common comorbidities,

to enable early risk stratification and support targeted screening in

resource-limited settings.
Methods

Study design and participants

This was a multicenter retrospective cross-sectional study

conducted between May 2023 and March 2024, involving 2,398

patients with T2DM from 13 community healthcare facilities in

Beijing. Eligible participants were identified retrospectively from

existing medical records, and subsequently invited to complete

standardized questionnaires and undergo clinical assessments during

a single study visit. The participating institutions included: Lisui Town

Health Center, Chengqu Community Health Service Center, Tianzhu

Town Health Center, Beixiaoying Community Health Service Center,

Longshan Street Community Health Service Center, Wanshoulu

Community Health Service Center, Financial Street Community

Health Service Center, Ganjia Kou Community Health Service

Center, Wanping Community Health Service Center, Wulidian

Community Health Service Station, Yongxin Jiayuan Community

Health Service Station, Honghuiyuan Community Health Service

Station, Zhuanta Community Health Service Station. All cases

reached a final definite diagnosis of either PDPN or Non-PDPN.

Inclusion criteria: (1) age ≥18 years; (2) diagnosed with T2DM.

Exclusion criteria: psychiatric or neurological disorders (e.g.,

cognitive impairment) potentially confounding PDPN assessment.

Patients diagnosed with PDPN met all the following criteria (18):

(1) presence of distal symmetrical polyneuropathy, confirmed by a

modified Toronto Clinical Neuropathy Score (mTCNS) of ≥5 (19); (2)

presence of daily neuropathic pain for at least three months, verified by

a Douleur Neuropathique 4 (DN4) questionnaire score of ≥4 (20).

The diagnosis of T2DM was established according to the World

Health Organization (WHO) 1999 criteria, requiring either a fasting

plasma glucose (FPG) ≥ 7.0 mmol/L, a 2-hour plasma glucose ≥

11.1 mmol/L during a 75-g oral glucose tolerance test (OGTT), or a

random plasma glucose ≥ 11.1 mmol/L in the presence of typical

symptoms. For asymptomatic individuals, confirmation by repeated

testing on a separate day was required.

After initial screening of 2,398 participants, 3 were excluded due

to duplicate records, 164 due to unclear or non–T2DM diagnoses,

and 247 due to missing data, leaving 1,984 eligible participants for

the final analysis. The protocol was approved by the Ethics

Committee of China-Japan Friendship Hospital (approval no.

2023-KY-343), with a waiver of informed consent due to the

retrospective nature of the data analysis. Our research adheres to

the ethical guidelines outlined in the Declaration of Helsinki

(October 2013).
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Data collection and variables

A structured questionnaire was designed to collect information

on potential risk factors associated with PDPN, covering

demographic and lifestyle characteristics, glycemic control, and

comorbid conditions. Demographic and lifestyle variables included

age, sex, body mass index (BMI), blood pressure, occupation,

education level (categorized as junior high school or below, high

school/vocational/technical school, associate degree, bachelor’s

degree, and postgraduate or above), marital status (unmarried,

married, widowed, or divorced), smoking history (defined as

smoking at least one cigarette per day for a cumulative duration of

six months or more), alcohol consumption history (defined as

consuming alcohol at least once per week for a continuous period

of six months or longer), and physical activity level. Physical activity

was classified into three categories based on occupational demands:

low-intensity (≥75% of working time spent sitting or standing with

minimal exertion, such as office workers, watch repairers, sales

personnel, and hotel staff), moderate-intensity (≥75% of time

engaged in physically active tasks, such as vehicle drivers and

electricians), and high-intensity (≥60% of time spent performing

strenuous physical labor, including manual agricultural workers,

steelworkers, dancers, athletes, porters, and miners). Glycemic

control variables included diabetes duration, most recent

hemoglobin A1c (HbA1c), FPG (categorized as < 6 mmol/L, 6~7

mmol/L, 7~8 mmol/L, > 8 mmol/L), postprandial plasma glucose

(PPG; < 8 mmol/L, 8~10 mmol/L, 10~11.1 mmol/L, > 11.1 mmol/L),

adherence to blood glucose self-monitoring (defined as performing

self-monitoring of blood glucose at least 80% of the frequency

individually recommended by the treating physician), and

antidiabetic treatment regimen (oral hypoglycemic agents, insulin

injections, both, or none). For HbA1c, values measured within the 3

months prior to study enrollment were used. If multiple HbA1c

measurements were available within this timeframe, the most recent

value was selected. Comorbidities included metabolic syndrome,

hypertension, cardiovascular disease, hyperlipidemia, rheumatology

conditions, and musculoskeletal disorders.
Model development, evaluation and
interpretation

In this study, we employed stratified random sampling to divide

the dataset into three distinct subsets: a training set (49% of the total

sample), a validation set (21%), and an independent test set (30%).

The training set was used in model development, the validation set

for hyperparameter tuning and classification threshold optimization.

The independent test set was reserved strictly for final

model evaluation.

To address the class imbalance during model development, we

applied the Synthetic Minority Oversampling Technique (SMOTE)

exclusively to the minority class (PDPN+) in the training set, with a

200% oversampling ratio. All majority class (PDPN−) samples were

retained to preserve clinical information. Feature selection was
Frontiers in Endocrinology 03
conducted on the balanced development dataset (training +

validation) using the Least Absolute Shrinkage and Selection

Operator (LASSO) regression with 10-fold cross-validation.

Predictors with non-zero coefficients at the regularization

parameter selected according to the one-standard-error (1-SE)

rule were retained for subsequent modeling .

Based on the selected features, we developed a multivariable

logistic regression (LR) model and five machine learning (ML)

classifiers: Random Forest (RF), Extreme Gradient Boosting

(XGBoost), Light Gradient Boosting Machine (LightGBM),

Support Vector Machine (SVM) and Artificial Neural Network

(ANN). To enhance model robustness and prevent overfitting, 5-

fold cross-validation repeated 5 times was applied within the

training and validation cohorts during model development and

hyperparameter tuning. Hyperparameter optimization was

performed using exhaustive grid search combined with repeated

cross-validation within the training and validation cohorts. For each

combination of hyperparameters, the area under the receiver

operating characteristic curve (AUC-ROC) was used as the

primary selection criterion. All final models were retrained using

the optimal hyperparameters on the combined development data

before independent evaluation. To ensure reliability, all model

performance metrics are reported as the mean and 95%

confidence interval (CI) derived from 1000 bootstrap resamplings

of the test set.

Model performance was evaluated on the independent test set

using a comprehensive set of metrics, including AUC-ROC, area

under the precision–recall curve (PR-AUC), Brier score, G-mean,

sensitivity, specificity, F1-score, recall, balanced accuracy, Matthews

correlation coefficient (MCC) and decision curve analysis (DCA).

To further strengthen the clinical applicability and

interpretability of the proposed model, we constructed a

nomogram derived from the LR analysis and deployed an

interactive, web-based dynamic nomogram that delivers patient-

specific risk estimates to support real-time clinical decision-making.

In addition, we applied the SHapley Additive exPlanations (SHAP)

framework to compute and visualize feature-attribution plots for

each model, thereby providing transparent, model-agnostic insights

into variable importance. The complete modeling workflow is

depicted in Figure 1.
Statistical analysis

Patients were divided into PDPN and non-PDPN groups

according to PDPN status. Between-group differences were

analyzed using chi-square, t-tests, or Mann-Whitney U tests.

Continuous variables were described as mean ± standard deviation

for normally distributed data, or as median and interquartile range

(Q1, Q3) for non-normally distributed data. Categorical variables

were reported as counts (n) and corresponding percentages (%).

All analyses were conducted using R (version 4.5.0) and Python

(version 3.13). Statistical significance was defined as a two-sided

p-value less than 0.05.
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Results

Baseline characteristics of study population

A total of 1,984 patients with T2DM were included in the final

analysis, comprising 959 males (48%) and 1,025 females (52%). Of

these, 1,903 patients (95.92%) did not develop PDPN, while 81

patients (4.08%) were diagnosed with PDPN. The patients were

randomly divided into a development set (n = 1,390; 70%) and an

independent test set (n = 594; 30%). Baseline characteristics were

compared between the two sets. Except for rheumatology conditions,

which showed a statistically significant difference, all other

characteristics were comparable between the groups. In the

development set, 57 patients (4.10%) developed PDPN, whereas 24
Frontiers in Endocrinology 04
patients (4.04%) in the test set developed PDPN. Table 1 summarizes

the key baseline characteristics of the participants, while the detailed

characteristics are provided in Supplementary Table 1.
Feature selection and model development

LASSO regression was performed in the balanced development

set to automatically select important features (see Figure 2). By

adjusting the regularization coefficient lambda (l), LASSO

regression reduces the loss function (binomial deviation) and

shrinks the coefficients of less predictive variables to zero. Ten of

the available features were identified as the most predictive at a

shrinkage parameter (lambda.1se) of 0.03007005. The selected
FIGURE 1

Workflow of data preprocessing, resampling, feature selection, model development, and validation.
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features were musculoskeletal conditions (b = 1.95), antidiabetic

treatment regimen involving both oral hypoglycemic agents and

insulin injections (b = 1.66), antidiabetic treatment regimen with

oral hypoglycemic agents alone (b = −0.03), hyperlipidemia (b =

1.17), HbA1c (b = 0.86), neurological conditions (b = 0.85),

hypertension (b = 0.24), FPG levels within the range of 7–8

mmol/L (b = −0.12), BMI (b = 0.09), sex (b = 0.05), and diastolic

blood pressure (DBP; b = 0.02). Among these predictors,

musculoskeletal conditions, combined antidiabetic therapy,

hyperlipidemia, and elevated HbA1c levels emerged as the most

significant positive predictors of PDPN, whereas moderate FPG

levels showed a weak negative association. These variables were

subsequently included in the machine learning model. For the LR

model, 81 PDPN events and 10 retained predictors yielded an

event-per-variable (EPV) ratio of 8.1.
Frontiers in Endocrinology 05
Development and comparison of
prediction models

Based on clinically and statistically significant features selected via

LASSO regression, six predictive models were developed and evaluated:

LR, RF, LightGBM, XGBoost, ANN, and SVM. Except for LR,

hyperparameter tuning was performed via grid search with five-fold

cross-validation on the training set to maximize mean AUC-ROC. The

optimal parameters are summarized in Table 2. Model performance

was comprehensively evaluated on the independent test cohort using a

bootstrap resampling procedure (B = 1000), with all results reported as

means and 95% CI. A summary of all model evaluation metrics is

provided in Table 3. Figure 3 shows the ROC curves for the 6 models,

while Supplementary Figure 1 presents DCA to better capture model

performance in the context of low prevalence.
TABLE 1 Baseline characteristics of participants with T2DM.

Variables Total (n = 1984) Test set (n = 594) Development set (n = 1390) Statistic P

Age, M (Q1, Q3) 64.00 (57.00, 70.00) 64.00 (57.00, 70.00) 65.00 (57.00, 70.00) Z=-0.53 0.593

Sex, n(%) c²=1.92 0.166

male 959 (48.34) 273 (45.96) 686 (49.35)

female 1025 (51.66) 321 (54.04) 704 (50.65)

BMI,
M (Q1, Q3)

25.39 (23.44, 27.68) 25.39 (23.34, 27.72) 25.39 (23.44, 27.68) Z=-0.04 0.967

Duration, M (Q1, Q3) 98.00 (45.00, 163.00) 93.00 (40.25, 158.00) 98.00 (48.00, 164.00) Z=-1.78 0.075

HbA1c, M (Q1, Q3) 6.50 (6.00, 7.00) 6.50 (6.00, 7.00) 6.50 (6.00, 7.00) Z=-1.02 0.309

FPG, n(%) c²=6.31 0.098

<6 mmol/L 268 (13.51) 87 (14.65) 181 (13.02)

6–7 mmol/L, 942 (47.48) 288 (48.48) 654 (47.05)

7–8 mmol/L 521 (26.26) 135 (22.73) 386 (27.77)

>8 mmol/L 253 (12.75) 84 (14.14) 169 (12.16)

PPG, n(%) c²=1.24 0.744

<8 mmol/L 433 (21.82) 139 (23.40) 294 (21.15)

8–10 mmol/L 905 (45.61) 265 (44.61) 640 (46.04)

10–11.1 mmol/L 397 (20.01) 117 (19.70) 280 (20.14)

>11.1 mmol/L 249 (12.55) 73 (12.29) 176 (12.66)

Antidiabetic treatment regimen, n(%) c²=0.91 0.824

oral hypoglycemic agents 1491 (75.15) 452 (76.09) 1039 (74.75)

insulin 91 (4.59) 29 (4.88) 62 (4.46)

both 259 (13.05) 73 (12.29) 186 (13.38)

none 143 (7.21) 40 (6.73) 103 (7.41)

PDPN, n(%) c²=0.00 0.950

yes 1903 (95.92) 570 (95.96) 1333 (95.90)

no 81 (4.08) 24 (4.04) 57 (4.10)
f

Z, Mann-Whitney test; c², Chi-square test; M, Median; Q1, 1st Quartile; Q3, 3rd Quartile; BMI, Body Mass Index; HbA1c, Hemoglobin A1c; FPG, Fasting Plasma Glucose; PPG, Postprandial
Plasma Glucose; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; PDPN, Painful Diabetic Peripheral Neuropathy.
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Among all models, LR demonstrated the most favorable profile

for screening purposes. Although its PR-AUC (0.470, 95% CI:

0.258–0.665) and AUC-ROC (0.894, 95% CI: 0.814–0.964) were

slightly lower than those of more complex models, LR achieved the

highest sensitivity (0.688), G-Mean (0.807), and balanced accuracy

(0.826). These metrics indicate a strong ability to detect true positive

cases while maintaining reasonable specificity (0.965). Importantly,

LR also yielded a PPV of 0.514 and an NPV of 0.987, highlighting its

clinical utility as a screening tool to effectively rule out PDPN.

Additionally, the interpretability and simplicity of LR further

support its utility in clinical settings where early identification is

prioritized, particularly given the constraints of a limited number of

events. DCA confirmed that the LR model provided greater net

benefit than both the “treat-all” and “treat-none” strategies across a
Frontiers in Endocrinology 06
low-risk threshold range (0.01–0.30), reinforcing its value for early

risk screening where sensitivity is paramount.

The RFmodel yielded the highest overall discrimination with a PR-

AUC of 0.488 and AUC-ROC of 0.913, alongside the lowest Brier score

(0.029), suggesting well-calibrated risk probabilities. RF performed

particularly well on PPV (0.652) and NPV (0.982), reflecting reliable

case identification in positive predictions. However, sensitivity was

lower (0.571), making RF less optimal for screening contexts where

minimizing missed cases is critical. Supplementary Figure 2 presents

the DCA, which demonstrated that the RF model consistently yielded

greater net benefit across a clinically relevant threshold range (0.01–

0.25), highlighting its potential value for risk stratification and for

reducing unnecessary interventions.

LightGBM showed balanced performance, with PR-AUC 0.413

and ROC-AUC 0.902. PPV and NPV were 0.504 and 0.984,

respectively, demonstrating reliable negative prediction but only

moderate positive predictive value. Sensitivity (0.620) was relatively

strong, suggesting LightGBM may be useful where case detection

is prioritized.

XGBoost achieved a ROC-AUC of 0.901 and a PR-AUC of

0.421. Its PPV was relatively high (0.639), alongside an NPV of

0.978, and it achieved the highest specificity (0.988). However, recall

was the lowest (0.475), limiting its utility as a first-line screening

tool despite strong calibration and high precision.

ANN achieved a ROC-AUC of 0.875 and PR-AUC of 0.427.

The PPV was 0.527 and NPV 0.982, indicating acceptable

classification balance. Sensitivity was 0.579 and specificity 0.973,

suggesting ANN provided a moderate trade-off but did not exceed

LR in clinically critical measures.

The SVM model performed the worst overall, with the lowest

PR-AUC (0.290), F1 score (0.481), and MCC (0.349), limiting its

suitability for clinical use in this context.

Taken together, LR provides the most clinically appropriate balance

of sensitivity and overall classification performance for early PDPN risk
FIGURE 2

Feature selection using LASSO regression. (A) Plot of cross-validation error versus log(l). The vertical dashed lines indicate the optimal values of the
regularization parameter l: l.min (red), which gives the minimum mean cross-validated error, and l.1se (blue), the most regularized model within
one standard error of the minimum. (B) LASSO coefficient profiles of the selected features. Each curve represents the trajectory of a feature’s
coefficient as the regularization parameter l changes.
TABLE 2 Optimal parameters for five ML models in predicting PDPN.

Models Optimal parameter

LR –

RF
n_estimators=1000, max_features=2, min_samples_leaf=3,
criterion="gini", bootstrap=True, random_state=42

LightGBM
objective binary, num_leaves 32, learning_rate 0.03, lambda_l2 5,
num_threads 15, nrounds 145

XGBoost
nrounds = 300, max_depth = 5, eta = 0.05, gamma = 0.00,
colsample_bytree = 0.60, min_child_weight = 1, subsample = 0.80,
scale_pos_weight = 24.6, alpha = 0.01, objective = "binary:logistic"

ANN size 5, decay 0.1, maxit 500, maxit 500*

SVM C=10.000, sigma=0.100
“size = 5” indicates the number of neurons in the hidden layer, “decay = 0.1” represents the
weight decay parameter (L2 regularization), and “maxit = 500” refers to the maximum
number of training iterations.
LR, multivariable Logistic Regression; RF, Random Forest; LightGBM, Light Gradient
Boosting Machine; XGBoost, Extreme Gradient Boosting; ANN, Artificial Neural Network,
SVM, Support Vector Machine
frontiersin.org

https://doi.org/10.3389/fendo.2025.1651493
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2025.1651493

Frontiers in Endocrinology 07
screening, particularly in settings where underdiagnosis remains a

concern. It should also be noted that the relatively small number of

PDPN events may have limited the statistical power of more complex

models such as ANN, RF, and XGBoost, potentially underestimating

their true performance. As a sensitivity analysis, we repeated the

random split of training and test sets. Results remained consistent

(see Supplementary Table 2), supporting the stability of our findings.
Model interpretation

Across all six algorithms, musculoskeletal disorders and HbA1c

were the strongest predictors of PDPN, followed—without a

consistent order—by DBP, hyperlipidemia, and BMI (see

Figure 4). The direction and magnitude of each predictor’s effect

in the logistic regression model were further evaluated using a

SHAP summary plot with overlaid violin distributions (see

Figure 5). Predictors are ranked vertically by mean absolute

SHAP value, representing their global importance in the model.

Each point denotes a single patient’s contribution, with color

reflecting the feature value (blue: low, red: high). SHAP values >

0 indicate a positive impact on predicted PDPN risk, while values <

0 suggest a protective effect. The width of each violin plot at a given

SHAP value corresponds to the density of data points with that level

of impact. Musculoskeletal disorders demonstrated the widest

SHAP range (approximately –3 to +5). This suggests that their

presence typically increases PDPN risk, but in some contexts, the

effect may be neutral or even protective. HbA1c, BMI, and DBP

showed consistently positive SHAP values, suggesting that higher

levels are associated with increased PDPN risk. Hyperlipidemia,

female sex, hypertension, and neurological disorders also

contributed positively, though with narrower SHAP distributions.

FPG exhibited a negative association with PDPN risk, where higher

values corresponded to lower SHAP scores. Finally, the antidiabetic

treatment regimen revealed that patients receiving insulin had the

highest model-estimated risk for PDPN.

The logistic-regression nomogram (see Figure 6) assigns point

values to each of the ten variables; the sum of these points is converted

directly to an individual probability of PDPN. Thus, clinicians can

estimate risk simply by adding the scores for a patient’s characteristics.

For bedside application, we have created an interactive web-based

version of the nomogram https://ganzhi.shinyapps.io/PDPN/;

temporary access is available from the corresponding author.

Figure 7 shows representative screenshots. In the first example, a

female patient with musculoskeletal and neurological disorders,

hypertension, no hyperlipidemia, oral antidiabetic therapy, an

HbA1c of 5%, FPG of 6~7 mmol/L, BMI of 22 kg/m², and DBP

of 74 mmHg has an estimated risk of 31%. In contrast, a male

patient with musculoskeletal disorders, hyperlipidemia, and

neurological disorders, no hypertension, insulin-only therapy, an

HbA1c of 7%, FPG of 6–7 mmol/L, BMI of 24 kg/m², and DBP of 82

mmHg has an estimated PDPN risk of 99%. These examples

underscore the nomogram’s ability to translate routinely collected

clinical information into intuitive, patient-specific risk estimates

that can be accessed on any smartphone or computer.
T
A
B
LE

3
P
re
d
ic
ti
ve

p
e
rf
o
rm

an
ce

o
f
si
x
m
o
d
e
ls

in
id
e
n
ti
fy
in
g
P
D
P
N
.

M
o
d
e
ls

R
O
C
.A
U
C

(9
5
%

C
I)

P
R
.A
U
C

(9
5
%

C
I)

B
ri
e
r

Sc
o
re

G
-M

e
an

Se
n
si
ti
vi
ty

Sp
e
ci
fi
ci
ty

P
P
V

(P
re
ci
si
o
n
)

N
P
V

P
P
V
/

N
P
V

F1
Sc

o
re

re
ca

ll
B
al
an

ce
d

A
cc

u
ra
cy

M
C
C

LR
0.
89
4
(0
.8
14
–

0.
96
4)

0.
47
0
(0
.2
58
–

0.
66
5)

0.
03
8
(0
.0
27
–

0.
05
1)

0.
80
7
(0
.5
77
–

0.
93
2)

0.
68
8
(0
.3
33
–

0.
91
3)

0.
96
5
(0
.9
36
–

0.
99
8)

0.
51
4
(0
.3
06
-

0.
92
3)

0.
98
7
(0
.9
73
-

0.
99
6)

0.
52
1

0.
54
9
(0
.4
14
–

0.
68
6)

0.
69
5

0.
82
6
(0
.6
67
–
0.
93
2)

0.
54
1

R
F

0.
91
3
(0
.8
34
-0
.9
74
)

0.
48
8
(0
.2
76
-

0.
69
4)

0.
02
9
(0
.0
21
-

0.
03
9)

0.
74
4
(0
.5
91
-

0.
88
9)

0.
57
1
(0
.3
53
-

0.
83
3)

0.
98
3
(0
.9
36
-

0.
99
8)

0.
65
2
(0
.3
33
-

0.
94
1)

0.
98
2
(0
.9
70
-

0.
99
1)

0.
66
4

0.
58
2
(0
.4
19
-

0.
73
9)

0.
57
5

0.
77
7
(0
.6
72
-0
.8
92
)

0.
56

Li
gh
tG

B
M

0.
90
2
(0
.8
22
–

0.
96
8)

0.
41
3
(0
.2
18
–

0.
61
5)

0.
03
1
(0
.0
22
–

0.
04
2)

0.
77
2
(0
.6
34
–

0.
90
7)

0.
62
0
(0
.4
09
–

0.
87
9)

0.
97
1
(0
.9
23
–

0.
99
1)

0.
50
4
(0
.3
00
-

0.
71
4)

0.
98
4
(0
.9
73
-

0.
99
5)

0.
51
2

0.
54
2
(0
.3
89
–

0.
68
4)

0.
62
4

0.
79
6
(0
.6
97
–
0.
90
7)

0.
52
5

X
G
B
oo
st

0.
90
1
(0
.8
18
–

0.
96
6)

0.
42
1
(0
.2
24
–

0.
62
2)

0.
03
1
(0
.0
19
–

0.
04
5)

0.
68
0
(0
.5
25
–

0.
82
4)

0.
47
5
(0
.2
78
–

0.
68
8)

0.
98
8
(0
.9
66
–

0.
99
7)

0.
63
9
(0
.3
70
-

0.
87
5)

0.
97
8
(0
.9
66
-

0.
99
0)

0.
65
3

0.
53
5
(0
.3
53
–

0.
71
4)

0.
47
5

0.
73
1
(0
.6
33
–
0.
83
8)

0.
52
9

A
N
N

0.
87
5
(0
.7
86
–

0.
95
3)

0.
42
7
(0
.2
10
–

0.
63
5)

0.
03
6
(0
.0
25
–

0.
04
8)

0.
74
5
(0
.5
74
–

0.
88
8)

0.
57
9
(0
.3
33
–

0.
82
6)

0.
97
3
(0
.9
36
-

0.
99
8)

0.
52
7
(0
.2
96
-

0.
87
5)

0.
98
2
(0
.9
71
-

0.
99
3)

0.
53
7

0.
52
6
(0
.3
79
–

0.
66
7)

0.
58
5

0.
77
6
(0
.6
61
–
0.
89
1)

0.
50
9

SV
M

0.
87
3
(0
.7
92
–

0.
94
5)

0.
29
0
(0
.1
51
–

0.
46
7)

0.
03
7
(0
.0
25
–

0.
05
0)

0.
71
0
(0
.5
58
–

0.
83
8)

0.
52
4
(0
.3
18
–

0.
73
7)

0.
97
2
(0
.9
44
–

0.
98
9)

0.
46
0
(0
.2
59
-

0.
66
7)

0.
98
0
(0
.9
68
-

0.
99
0)

0.
46
9

0.
48
1
(0
.3
16
–

0.
63
0)

0.
52
5

0.
74
8
(0
.6
49
–
0.
84
8)

0.
34
9

LR
,
m
ul
ti
va
ri
ab
le

Lo
gi
st
ic

R
eg
re
ss
io
n;

R
F,

R
an
do

m
Fo

re
st
;
Li
gh
tG

B
M
,
Li
gh
t
G
ra
di
en
t
B
oo

st
in
g
M
ac
hi
ne
;
X
G
B
oo

st
,
E
xt
re
m
e
G
ra
di
en
t
B
oo

st
in
g;

A
N
N
,
A
rt
ifi
ci
al

N
eu
ra
l
N
et
w
or
k;

SV
M
,
Su
pp

or
t
V
ec
to
r
M
ac
hi
ne
;
A
U
C
-R
O
C
,
A
re
a
U
nd

er
th
e
R
ec
ei
ve
r
O
pe
ra
ti
ng

C
ha
ra
ct
er
is
ti
c
C
ur
ve
;C

I,
C
on

fi
de
nc
e
In
te
rv
al
;P

R
-A

U
C
,A

re
a
U
nd

er
th
e
P
re
ci
si
on

-R
ec
al
l
C
ur
ve
;P

P
V
,P

os
it
iv
e
P
re
di
ct
iv
e
V
al
ue
;N

P
V
,N

eg
at
iv
e
P
re
di
ct
iv
e
V
al
ue
;M

C
C
,M

at
th
ew

s
C
or
re
la
ti
on

C
oe
ffi
ci
en
t.
frontiersin.org

https://ganzhi.shinyapps.io/PDPN/
https://doi.org/10.3389/fendo.2025.1651493
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2025.1651493
Discussion

In this study, we developed and validated six clinical prediction

models for PDPN among patients with T2DM, using multicenter

community-based data from Beijing. The prevalence of PDPN in
Frontiers in Endocrinology 08
our cohort was 4.08%, markedly lower than reported in many

tertiary care studies (1). This discrepancy may reflect differences in

study settings, as our data were collected from primary care

populations where patients typically present with milder or

earlier-stage disease. Variability in diagnostic criteria, screening
FIGURE 3

ROC curves of six predictive models for PDPN in the independent test set (n = 594). Diagonal line represents no discrimination (AUC = 0.5). Higher
AUC indicates better performance; RF achieved the highest AUC. AUC and 95% CI for each model were: LR, 0.894 (0.814–0.964); RF, 0.913 (0.834–
0.974); LightGBM, 0.902 (0.822–0.968); XGBoost, 0.901 (0.818–0.966); ANN, 0.875 (0.786–0.953); SVM, 0.873 (0.792–0.945).
FIGURE 4

SHAP importance score ranking of the top 10 predictive features in the independent test set (n = 594). Key predictors include HbA1c,
musculoskeletal disorders, DBP, hyperlipidemia, and BMI.
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intensity, and the likelihood of under-recognition in primary care

settings may also contribute. These findings underscore the

importance of enhanced PDPN screening strategies in

community-based populations. In addition, by leveraging

multicenter community-based data, our work extends beyond

existing single-center or tertiary-hospital models and reflects the

real-world risk profile of Chinese primary care populations.

Ten variables were selected via LASSO regression for model

development: musculoskeletal disorders, antidiabetic treatment

regimen, hyperlipidemia, HbA1c, neurological conditions,

hypertension, FPG, BMI, sex, and DBP. The resulting EPV of 8.1

is slightly below the traditional rule-of-thumb of 10, but still within

an acceptable range supported by prior methodological studies (21,

22). However, overfitting risk was robustly mitigated through

LASSO feature selection, bootstrap resampling, and independent

test set validation, supporting the stability of our findings.

Notably, this study is among the first to incorporate antidiabetic

treatment regimen as a predictive factor for PDPN. The inclusion of

musculoskeletal and rheumatologic disorders, together with common

comorbidities, further distinguishes this model and enhances its

potential clinical applicability in early risk stratification.

Of the six models developed, LR and RF demonstrated superior

performance. While RF yielded the highest AUC-ROC and PR-

AUC, LR showed the highest sensitivity (0.688), G-Mean (0.807),

and balanced accuracy (0.826), making it more suitable for pre-

screening applications. Moreover, LR’s interpretability and ease of

clinical integration, particularly through its transformation into a

web-based nomogram, further support its practical utility in

frontline healthcare settings.

The pathophysiology of PDPN remains incompletely understood

and is likely multifactorial, involving metabolic, vascular,
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inflammatory, and neural mechanisms (18, 23). Genetic,

psychological, and sociocultural factors may also contribute to

disease susceptibility and symptom expression (12). We observed

that patients with PDPN had a greater burden of comorbid

conditions than those without. However, due to the cross-sectional

nature of our study, we cannot determine causal directionality.

Musculoskeletal disorders emerged as a key predictor of PDPN

in our model, with SHAP values ranging from strongly positive to

mildly negative, suggesting a heterogeneous and context-dependent

relationship. The risk-enhancing effects are likely mediated by

inflammatory and mechanical pathways. Chronic conditions such

as osteoarthritis and cervical spondylosis elevate systemic IL-6 and

TNF-a levels (24, 25), both of which are implicated in neuropathic

pain pathogenesis (26). Structural abnormalities like joint instability

and spinal degeneration may also aggravate nerve damage via

mechanical compression, compounding metabolic or ischemic

injury (27). Epidemiological data show that nearly half of T2DM

patients have coexisting arthritis, supporting this link. Conversely,

DPN may contribute to musculoskeletal decline through muscle

atrophy, impaired contractility, altered gait, and biomechanical

imbalances—further accelerating bone loss and joint degeneration

(28, 29). This bidirectional relationship may reflect a feedback loop

between neuropathic and musculoskeletal pathology.

In contrast, the negative SHAP values observed in some

individuals may reflect earlier healthcare engagement. Patients

with musculoskeletal complaints are more likely to access care,

potentially leading to earlier recognition and management of

diabetic complications. Moreover, standard therapies—such as

physical rehabilitation, anti-inflammatory agents, and vitamin D

supplementation—may confer incidental neuroprotective effects

(30). Overall, the observed association likely reflects overlapping
FIGURE 5

SHAP summary plot of the LR model in the independent test set (n = 594). Each dot represents an individual patient, with color indicating the
feature value: red for higher or positive values, and blue for lower or negative values. The horizontal spread of points reflects the magnitude of each
feature’s contribution to the model output; greater dispersion indicates a stronger impact.
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pathophysiological domains between PDPN and musculoskeletal

disorders, including neuroinflammation, metabolic stress, and

impaired neuromuscular control. Further prospective studies are

needed to clarify causality and underlying mechanisms.

Elevated HbA1c was another strong predictor of PDPN.

Chronic hyperglycemia promotes neuronal damage and pain

hypersensitivity via multiple molecular pathways, including

MAPK and PKC signaling and systemic inflammation (31–33).

Numerous studies have confirmed the association between HbA1c

and both painful and painless DPN subtypes (34, 35).

Hyperlipidemia also contributed positively to PDPN risk in

our model. This observation is consistent with established

pathophysiological mechanisms, whereby elevated levels of free

fatty acids in hyperlipidemic states undergo b-oxidation, leading
to peripheral nerve injury—particularly affecting Schwann cells

(36–39). The resulting oxidative stress, driven by reactive oxygen

species (ROS), together with macrophage-mediated systemic and

local inflammation, promotes the production of pro-inflammatory

cytokines and chemokines. These processes, in turn, exacerbate

neural damage (40, 41).

Unexpectedly, higher FPG levels were associated with a lower

risk of PDPN in our dataset, contrary to most previous reports.

Several explanations may account for this paradox. First, recall

bias cannot be excluded, as FPG was self-reported. Second, lower

current FPG may not reflect better long-term glycemic control but

greater glycemic variability. Patients with lower fasting values can

still experience substantial postprandial excursions, which have

been shown to induce greater oxidative stress and neuronal injury
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than sustained hyperglycemia (42–44). Third, PDPN involves

multiple overlapping pathogenic pathways (e.g., oxidative stress,

neuroinflammation) driven by chronic hyperglycemia and

glycemic excursions — factors not captured by a single FPG

measurement (45). Fourth, intensive glucose-lowering therapy

may paradoxically induce neuropathic pain in some patients

(46). Finally, reverse causation and confounding are possible, as

patients with PDPN may receive more intensive treatment or

adhere more strictly to regimens, resulting in lower FPG despite

prolonged dysglycemia.

Hypertension has been identified in multiple studies as an

independent risk factor for DPN (47). Experimental models further

support this association. Studies comparing hypertensive diabetic rats

with normotensive diabetic controls have demonstrated more severe

neuropathic damage, including reduced nerve perfusion, heightened

oxidative stress, decreased Schwann cell density, axonal atrophy, and

small fiber degeneration (47, 48).

BMI exhibited a nonlinear yet notable impact, with higher

values (represented by red points) clustering on the positive end

of the SHAP axis. This indicates that increased BMI is associated

with elevated PDPN risk—a finding consistent with population-

based studies across multiple countries, where obesity is commonly

observed in DPN cohorts (49, 50). In contrast, sex (female)

demonstrated a modest clustering near zero SHAP values,

indicating a limited direct contribution within the model.

Nevertheless, this pattern is consistent with clinical observations:

women are less likely to exhibit objective signs of neuropathy but

more frequently report painful DPN symptoms compared to men
FIGURE 6

Nomogram of the LR model. For each variable, a vertical line is drawn upward to the “Points” row to determine its assigned score. The total score,
obtained by summing all variable points, is then projected downward to the “Total Points” row to estimate the predicted probability of PDPN.
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(15). This apparent paradox may reflect sex-specific differences in

pain perception or reporting behavior, as female sex has been

independently identified as a risk factor for painful—as opposed

to painless—DPN (15).

Among the antidiabetic treatment regimens and neurological

conditions analyzed, insulin therapy was associated with the highest

risk of PDPN. This finding is consistent with previous studies

identifying insulin use as a risk factor for DPN. Experimental

studies have further suggested that insulin administration may

induce significant intraneural hypoxic effects, which could

contribute to nerve dysfunction (51).

In summary, this study develops a practical tool for predicting

PDPN risk in community-based T2DM patients, identifying several

clinically relevant and biologically plausible predictors. The logistic

regression model, operationalized as a web-based dynamic
Frontiers in Endocrinology 11
nomogram, is recommended as a first-line pre-screening tool for

implementation in primary care settings. Its use can facilitate early

identification of high-risk individuals, guide targeted specialist

referrals, and optimize resource allocation within community

health systems. Future work should focus on prospective

validation and the integration of this nomogram into Chinese

primary care workflows and electronic health records. In

addition, longitudinal studies are needed to clarify the causal

pathways of the identified predictors.
Limitations

Despite its strengths, this study has several limitations. First, the

retrospective design may introduce information bias and precludes
FIGURE 7

Representative screenshots of the web-based dynamic nomogram. Showing input controls for categorical and continuous predictors on the left.
Individualized predicted probability with 95% confidence interval on the right. Tooltip displays current inputs, prediction results, and CI bounds.
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causal inference. Prospective studies are needed to validate

predictive associations over time. Second, although the study

included multiple centers, all participants were from Beijing,

which may limit the generalizability of our findings to other

regions or ethnic groups. Moreover, minor differences in gender

composition or sample distribution across populations may further

influence model generalizability. External validation in independent

cohorts across diverse populations is urgently needed to confirm the

model’s robustness and applicability. Third, the relatively low

prevalence of PDPN (4.08%) may impact model performance,

particularly positive predictive value, despite the use of

imbalance-handling techniques. Fourth, PDPN diagnosis in this

study was based on mTCNS and DN4 scores. Although these tools

are validated and widely used in epidemiological research, they are

inherently subjective and prone to inter-observer variability,

which may introduce misclassification bias. The absence of

objective diagnostic modalities such as nerve conduction studies

(NCS), regarded as the gold standard, may have led to either

underestimation or overestimation of PDPN prevalence. Future

investigations incorporating NCS and other objective biomarkers

are warranted to enhance diagnostic precision and strengthen

external validity. Finally, the dataset lacked detailed information

on lifestyle factors, comorbidity duration, medication specifics, and

genetic predisposition, which may further improve risk prediction

in future models.
Conclusion

In conclusion, this study developed and validated a multicenter

clinical prediction model for PDPN in T2DM patients based on

data from 13 community hospitals in Beijing. The RF and LR

models, incorporating ten easily obtainable clinical and

demographic variables, demonstrated strong predictive

performance and good calibration. Key predictors, notably

HbA1c , muscu loske l e t a l d i sorder s , DBP , BMI , and

hyperlipidemia underscore important clinical considerations.

Importantly, this model provides a practical and interpretable

tool for early risk stratification and targeted screening of PDPN

in primary care and community settings, where specialized

neurological assessments are often limited. By integrating this

prediction model into routine diabetes management, such as

electronic health record systems or web-based nomograms,

clinicians can proactively identify high-risk individuals, optimize

referral pathways, and support preventive interventions. Such

integration may enhance clinical decision-making, promote

personalized management, and ultimately reduce the burden of

diabetic neuropathy.
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Nutrición (English ed). (2022) 69:591–9. doi: 10.1016/j.endien.2022.03.009

30. Yammine K, Wehbe R, Assi C. A systematic review on the efficacy of vitamin D
supplementation on diabetic peripheral neuropathy. Clin Nutr. (2020) 39:2970–4.
doi: 10.1016/j.clnu.2020.01.022

31. Chong ZZ, Menkes DL, Souayah N. Targeting neuroinflammation in distal
symmetrical polyneuropathy in diabetes. Drug Discov Today. (2024) 29:104087.
doi: 10.1016/j.drudis.2024.104087
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2025.1651493/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2025.1651493/full#supplementary-material
https://doi.org/10.3389/fendo.2024.1477570 
https://doi.org/10.1016/S1474-4422(22)00188-0
https://doi.org/10.1016/S1474-4422(22)00188-0
https://doi.org/10.1097/j.pain.0000000000001744
https://doi.org/10.1007/s40200-020-00661-7
https://doi.org/10.1097/WNP.0b013e3182051334
https://doi.org/10.1016/S0168-8227(02)00010-4
https://doi.org/10.1016/j.diabres.2013.12.003
https://doi.org/10.1016/j.diabres.2025.112099
https://doi.org/10.3389/fneur.2025.1564867
https://doi.org/10.1212/CPJ.0000000000000671
https://doi.org/10.1007/s12020-024-03954-6
https://doi.org/10.1007/s11892-019-1150-5
https://doi.org/10.2147/DMSO.S370050
https://doi.org/10.1186/s12955-021-01697-w
https://doi.org/10.4093/dmj.2023.0018
https://doi.org/10.1016/j.diabres.2023.110765
https://doi.org/10.1186/s12911-022-01890-x
https://doi.org/10.1186/s12911-022-01890-x
https://doi.org/10.1016/S0140-6736(22)01472-6
https://doi.org/10.1016/S0140-6736(22)01472-6
https://doi.org/10.1111/j.1464-5491.2009.02667.x
https://doi.org/10.1111/j.1464-5491.2009.02667.x
https://doi.org/10.1016/j.pain.2004.12.010
https://doi.org/10.1186/s12874-016-0267-3
https://doi.org/10.1186/s12874-016-0267-3
https://doi.org/10.1177/0962280214558972
https://doi.org/10.1177/0962280214558972
https://doi.org/10.1038/s41574-021-00496-z
https://doi.org/10.3390/labmed2020008
https://doi.org/10.3390/labmed2020008
https://doi.org/10.3390/cells12121594
https://doi.org/10.3390/ijms251910395
https://www.sciencedirect.com/science/article/pii/B9780323959018000092
https://doi.org/10.1007/s10238-025-01710-2
https://doi.org/10.1016/j.endien.2022.03.009
https://doi.org/10.1016/j.clnu.2020.01.022
https://doi.org/10.1016/j.drudis.2024.104087
https://doi.org/10.3389/fendo.2025.1651493
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2025.1651493
32. Shivam, Gupta AK, Kumar S. Current concepts in the molecular mechanisms
and management of diabetic neuropathy by pharmacotherapeutics and natural
compounds. Cent Nerv Syst Agents Med Chem. (2024) 24:264–80. doi: 10.2174/
0118715249278438240325072758

33. Mizukami H, Osonoi S. Collateral glucose-utlizing pathwaya in diabetic
polyneuropathy. Int J Mol Sci. (2020) 22:94. doi: 10.3390/ijms22010094

34. Pai YW, Lin CH, Lee IT, Chang MH. Prevalence and biochemical risk factors of
diabetic peripheral neuropathy with or without neuropathic pain in Taiwanese adults
with type 2 diabetes mellitus. Diabetes Metab Syndrome: Clin Res Rev. (2018) 12:111–6.
doi: 10.1016/j.dsx.2017.09.013

35. Hossain M, Sarkar M, Mahbub I, Islam S. A study on peripheral neuropathy and
its related risk factors associated with hba1c levels. J bio-sci. (2021) 29:123–38.
doi: 10.3329/jbs.v29i2.54961

36. Padilla A, Descorbeth M, Almeyda AL, Payne K, De Leon M. Hyperglycemia
magnifies Schwann cell dysfunction and cell death triggered by PA-induced
lipotoxicity. Brain Res. (2011) 1370:64–79. doi: 10.1016/j.brainres.2010.11.013

37. Rumora AE, Kim B, Feldman EL. A role for fatty acids in peripheral neuropathy
associated with type 2 diabetes and prediabetes. Antioxid Redox Signal. (2022) 37:560–
77. doi: 10.1089/ars.2021.0155

38. Xu D, Liang J, Cui M, Zhang L, Ren S, Zheng W, et al. Saturated fatty acids
activate the inflammatory signalling pathway in Schwann cells: Implication in sciatic
nerve injury. Scand J Immunol. (2020) 92:e12896. doi: 10.1111/sji.12896

39. Sundaram VK, Schütza V, Schröter NH, Backhaus A, Bilsing A, Joneck L, et al.
Adipo-glial signaling mediates metabolic adaptation in peripheral nerve regeneration.
Cell Metab. (2023) 35:2136–52. doi: 10.1016/j.cmet.2023.10.017

40. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett
DL, et al. Diabetic neuropathy. Nat Rev Dis Primers. (2019) 5:41. doi: 10.1038/s41572-
019-0092-1

41. Legrand-Poels S, Esser N, L’homme L, Scheen A, Paquot N, Piette J. Free fatty
acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem
Pharmacol. (2014) 92:131–41. doi: 10.1016/j.bcp.2014.08.013
Frontiers in Endocrinology 14
42. Chang KC, Pai YW, Lin CH, Lee IT, Chang MH. Glycemic variability’s impact
on painful diabetic peripheral neuropathy in type 2 diabetes patients. Sci Rep. (2024)
14:22276. doi: 10.1038/s41598-024-73472-y

43. Chang CM, Hsieh CJ, Huang JC, Huang IC. Acute and chronic fluctuations in
blood glucose levels can increase oxidative stress in type 2 diabetes mellitus. Acta
Diabetol. (2012) 49:171–7. doi: 10.1007/s00592-012-0398-x

44. Sun S, Shen X, Huang Q, Sun J. The Effects and Mechanisms of High Glucose
Fluctuations at Different Levels on the Expression of Cytokines in Monocytes (2024).
Available online at: https://www.researchsquare.com/article/rs-5254126/v1 (Accessed
May 20, 2025).

45. Zhu J, Hu Z, Luo Y, Liu Y, Luo W, Du X, et al. Diabetic peripheral neuropathy:
pathogenetic mechanisms and treatment. Front Endocrinol. (2024) 14:1265372.
doi: 10.3389/fendo.2023.1265372

46. Stainforth-Dubois M, McDonald EG. Treatment-induced neuropathy of diabetes
related to abrupt glycemic control. CMAJ. (2021) 193:E1085–8. doi: 10.1503/cmaj.202091

47. Sethi Y, Uniyal N, Vora V, Agarwal P, Murli H, Joshi A, et al. Hypertension the
‘Missed modifiable risk factor’ for diabetic neuropathy: a systematic review. Curr
Problems Cardiol. (2023) 48:101581. doi: 10.1016/j.cpcardiol.2022.101581

48. Sanada LS, Tavares MR, Sato KL, Ferreira RDS, Neubern MCM, Castania JA,
et al. Association of chronic diabetes and hypertension in sural nerve morphometry: an
experimental study. Diabetol Metab Syndr. (2015) 7:9. doi: 10.1186/s13098-015-0005-8

49. Huang Y, Zhang X, Li B, Zhu X, Li C, Zhou C, et al. Association of BMI and waist
circumference with diabetic microvascular complications: A prospective cohort study
from the UK Biobank and Mendelian randomization analysis. Diabetes Res Clin
Practice. (2023) 205:110975. doi: 10.1016/j.diabres.2023.110975

50. Fakkel TM, Çakici N, Coert JH, Verhagen AP, Bramer WM, Van Neck JW. Risk
factors for developing diabetic peripheral neuropathy: a meta-analysis. SN Compr Clin
Med. (2020) 2:1853–64. doi: 10.1007/s42399-020-00480-0

51. Nicodemus JM, Enriquez C, Marquez A, Anaya CJ, Jolivalt CG. Murine model
and mechanisms of treatment-induced painful diabetic neuropathy. Neuroscience.
(2017) 354:136–45. doi: 10.1016/j.neuroscience.2017.04.036
frontiersin.org

https://doi.org/10.2174/0118715249278438240325072758
https://doi.org/10.2174/0118715249278438240325072758
https://doi.org/10.3390/ijms22010094
https://doi.org/10.1016/j.dsx.2017.09.013
https://doi.org/10.3329/jbs.v29i2.54961
https://doi.org/10.1016/j.brainres.2010.11.013
https://doi.org/10.1089/ars.2021.0155
https://doi.org/10.1111/sji.12896
https://doi.org/10.1016/j.cmet.2023.10.017
https://doi.org/10.1038/s41572-019-0092-1
https://doi.org/10.1038/s41572-019-0092-1
https://doi.org/10.1016/j.bcp.2014.08.013
https://doi.org/10.1038/s41598-024-73472-y
https://doi.org/10.1007/s00592-012-0398-x
https://www.researchsquare.com/article/rs-5254126/v1
https://doi.org/10.3389/fendo.2023.1265372
https://doi.org/10.1503/cmaj.202091
https://doi.org/10.1016/j.cpcardiol.2022.101581
https://doi.org/10.1186/s13098-015-0005-8
https://doi.org/10.1016/j.diabres.2023.110975
https://doi.org/10.1007/s42399-020-00480-0
https://doi.org/10.1016/j.neuroscience.2017.04.036
https://doi.org/10.3389/fendo.2025.1651493
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Development and validation of a risk prediction model for painful diabetic peripheral neuropathy in type 2 diabetes mellitus: a multicenter retrospective study
	Introduction
	Methods
	Study design and participants
	Data collection and variables
	Model development, evaluation and interpretation
	Statistical analysis

	Results
	Baseline characteristics of study population
	Feature selection and model development
	Development and comparison of prediction models
	Model interpretation

	Discussion
	Limitations

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


