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Development and validation of a
risk prediction model for painful
diabetic peripheral neuropathy in
type 2 diabetes mellitus: a
multicenter retrospective study
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Naichong Hu®, Wenhui Liu®, Yi Zhang? Peng Mao?, Liyuan Xu?,
Qian Zhu?, Bifa Fan® and Yifan Li**

*Beijing University of Chinese Medicine, Beijing, China, 2Department of Pain Management, China-
Japan Friendship Hospital, Beijing, China, *Department of Pain Management, The Fourth Affiliated
Hospital of Soochow University, Jiangsu, China

Objective: To construct and validate a clinical model to predict painful diabetic
peripheral neuropathy (PDPN) risk in type 2 diabetes mellitus (T2DM) patients for
early identification and intervention in primary care.

Methods: A total of 1,984 patients with T2DM were included in the analysis. After
data preprocessing and application of the Synthetic Minority Oversampling
Technique (SMOTE) with a 200% oversampling ratio, feature selection was
performed using Least Absolute Shrinkage and Selection Operator (LASSO)
regression with 10-fold cross-validation. Six predictive models: multivariable
logistic regression (LR), random forest (RF), extreme gradient boosting (XGBoost),
Light Gradient Boosting Machine (LightGBM), artificial neural network (ANN), and
support vector machine (SVM)—were developed and tuned using repeated 5-fold
cross-validation. Model performance was evaluated on the independent test cohort
using comprehensive discrimination and calibration metrics. To enhance clinical
interpretability, a nomogram and SHapley Additive exPlanations (SHAP) analysis were
implemented to visualize predictor contributions.

Results: Ten variables were selected as predictors. Among 1,984 patients, 81
(4.08%) had PDPN. LR model demonstrated the most favorable trade-off for
screening purposes, with an area under the receiver operating characteristic
curve (AUC-ROC) of 0.894 (95% Cl: 0.814-0.964), area under the precision—
recall curve (PR-AUC) of 0.470 (95% Cl: 0.258-0.665), and balanced accuracy of
0.826 (95% Cl: 0.667-0.932). SHAP analysis identified musculoskeletal disorders
and HbAlc as the most influential predictors. A user-friendly dynamic web-based
nomogram was constructed to support clinical implementation.

Conclusion: We established and validated a clinically interpretable model for PDPN
risk prediction in patients with T2DM. The dynamic nomogram enables
individualized risk estimation and may assist timely intervention in routine practice.

KEYWORDS

machine learning, SHAP analysis, web-based nomogram, multivariable logistic
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Introduction

Diabetic peripheral neuropathy (DPN) is one of the most
prevalent chronic complication of type 2 diabetes mellitus
(T2DM), affecting an estimated 30% to 90% of patients globally
(1, 2). Its prevalence increases markedly with age and disease
duration, posing a significant public health concern as
populations age and diabetes incidence rises. Approximately
21.0% to 53.7% of DPN cases progress to painful DPN (PDPN)
(3, 4), characterized by distal symmetric polyneuropathy and
neuropathic pain (e.g. hyperalgesia, burning sensations, and
electric-shock sensations) (3, 4). The prevalence of PDPN has
been reported to range from 3.3% to 65.3%, influenced by
variations in study methodology, diagnostic criteria, and patient
population selection (5-7). Recent systematic reviews provide more
precise estimates, with Tao et al. (8) reporting a pooled global
prevalence of 46.7% (95% CI, 41.8-51.7) and Zhou et al. (9)
estimating 33.9% (95% CI, 19.4-48.5).

The economic and quality-of-life burden of PDPN is
considerable. Annual direct medical costs per patient have been
estimated at USD 9,349 to 20,887, driven by hospitalization, long-
term analgesic use, and management of related complications (10,
11). Additionally, PDPN is frequently associated with sleep
disturbances (up to 70%) and depressive symptoms (30%~45%),
resulting in a 40%~60% reduction in quality of life (12-14).

Current PDPN management remains suboptimal: fewer than one-
third of patients achieve adequate pain relief with pharmacotherapy,
largely due to the lack of pathophysiology-targeted agents (15).
Moreover, PDPN is critically underdiagnosed (detection rate: ~50%),
attributable to insidious symptom onset and the absence of
standardized screening protocols in primary care (11, 16). Delayed
diagnosis heightens risks of irreversible nerve damage, diabetic foot
ulcers, and falls (13). Early identification of high-risk individuals is thus
essential to enable timely intervention and potentially prevent the
progression of disease.

Existing PDPN prediction models exhibit limited generalizability
to Chinese populations owing to genetic, cultural, and healthcare
system differences (15). Of the two published models, one was
derived from Western cohorts, while the other (single-center
Chinese study) lacks external validation and regional applicability

Abbreviations: DPN, Diabetic peripheral neuropathy; T2DM, type 2 diabetes
mellitus; PDPN, painful DPN; mTCNS, modified Toronto Clinical Neuropathy
Score; DN4, Douleur Neuropathique 4; BMI, body mass index; HbAlc,
hemoglobin Alc; FPG, fasting plasma glucose; PPG, postprandial plasma
glucose; DBP, diastolic blood pressure; RUS-SMOTE, Random Undersampling
and the Synthetic Minority Oversampling Technique; LASSO, Least Absolute
Shrinkage and Selection Operator; 1-SE one-standard-error; LR, multivariable
logistic regression; ML, machine learning; RF, Random Forest; XGBoost, Extreme
Gradient Boosting; LightGBM, Light Gradient Boosting Machine; SVM, Support
Vector Machine; ANN, Artificial Neural Network; AUC-ROC, the Area Under
the Receiver Operating Characteristic Curve; CI, confidence interval; MCC,
Matthews correlation coefficient; SHAP, SHapley Additive exPlanations; ROS,

reactive oxygen species; DCA, Decision Curve Analysis.

Frontiers in Endocrinology

02

10.3389/fendo.2025.1651493

(1, 17). No model has yet addressed the high-risk T2DM population
in Beijing, where diabetes prevalence is rapidly rising.

To address this gap, we developed and validated a clinical
prediction model for PDPN using multicenter data from Beijing.
The model incorporates demographic and clinical variables,
including glycemic control indicators and common comorbidities,
to enable early risk stratification and support targeted screening in
resource-limited settings.

Methods
Study design and participants

This was a multicenter retrospective cross-sectional study
conducted between May 2023 and March 2024, involving 2,398
patients with T2DM from 13 community healthcare facilities in
Beijing. Eligible participants were identified retrospectively from
existing medical records, and subsequently invited to complete
standardized questionnaires and undergo clinical assessments during
a single study visit. The participating institutions included: Lisui Town
Health Center, Chengqu Community Health Service Center, Tianzhu
Town Health Center, Beixiaoying Community Health Service Center,
Longshan Street Community Health Service Center, Wanshoulu
Community Health Service Center, Financial Street Community
Health Service Center, Ganjia Kou Community Health Service
Center, Wanping Community Health Service Center, Wulidian
Community Health Service Station, Yongxin Jiayuan Community
Health Service Station, Honghuiyuan Community Health Service
Station, Zhuanta Community Health Service Station. All cases
reached a final definite diagnosis of either PDPN or Non-PDPN.

Inclusion criteria: (1) age 218 years; (2) diagnosed with T2DM.

Exclusion criteria: psychiatric or neurological disorders (e.g.,
cognitive impairment) potentially confounding PDPN assessment.

Patients diagnosed with PDPN met all the following criteria (18):
(1) presence of distal symmetrical polyneuropathy, confirmed by a
modified Toronto Clinical Neuropathy Score (mTCNS) of =5 (19); (2)
presence of daily neuropathic pain for at least three months, verified by
a Douleur Neuropathique 4 (DN4) questionnaire score of >4 (20).

The diagnosis of T2DM was established according to the World
Health Organization (WHO) 1999 criteria, requiring either a fasting
plasma glucose (FPG) = 7.0 mmol/L, a 2-hour plasma glucose >
11.1 mmol/L during a 75-g oral glucose tolerance test (OGTT), or a
random plasma glucose > 11.1 mmol/L in the presence of typical
symptoms. For asymptomatic individuals, confirmation by repeated
testing on a separate day was required.

After initial screening of 2,398 participants, 3 were excluded due
to duplicate records, 164 due to unclear or non-T2DM diagnoses,
and 247 due to missing data, leaving 1,984 eligible participants for
the final analysis. The protocol was approved by the Ethics
Committee of China-Japan Friendship Hospital (approval no.
2023-KY-343), with a waiver of informed consent due to the
retrospective nature of the data analysis. Our research adheres to
the ethical guidelines outlined in the Declaration of Helsinki
(October 2013).
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Data collection and variables

A structured questionnaire was designed to collect information
on potential risk factors associated with PDPN, covering
demographic and lifestyle characteristics, glycemic control, and
comorbid conditions. Demographic and lifestyle variables included
age, sex, body mass index (BMI), blood pressure, occupation,
education level (categorized as junior high school or below, high
school/vocational/technical school, associate degree, bachelor’s
degree, and postgraduate or above), marital status (unmarried,
married, widowed, or divorced), smoking history (defined as
smoking at least one cigarette per day for a cumulative duration of
six months or more), alcohol consumption history (defined as
consuming alcohol at least once per week for a continuous period
of six months or longer), and physical activity level. Physical activity
was classified into three categories based on occupational demands:
low-intensity (275% of working time spent sitting or standing with
minimal exertion, such as office workers, watch repairers, sales
personnel, and hotel staff), moderate-intensity (275% of time
engaged in physically active tasks, such as vehicle drivers and
electricians), and high-intensity (260% of time spent performing
strenuous physical labor, including manual agricultural workers,
steelworkers, dancers, athletes, porters, and miners). Glycemic
control variables included diabetes duration, most recent
hemoglobin Alc (HbAlc), FPG (categorized as < 6 mmol/L, 6~7
mmol/L, 7~8 mmol/L, > 8 mmol/L), postprandial plasma glucose
(PPG; < 8 mmol/L, 8~10 mmol/L, 10~11.1 mmol/L, > 11.1 mmol/L),
adherence to blood glucose self-monitoring (defined as performing
self-monitoring of blood glucose at least 80% of the frequency
individually recommended by the treating physician), and
antidiabetic treatment regimen (oral hypoglycemic agents, insulin
injections, both, or none). For HbAlc, values measured within the 3
months prior to study enrollment were used. If multiple HbAlc
measurements were available within this timeframe, the most recent
value was selected. Comorbidities included metabolic syndrome,
hypertension, cardiovascular disease, hyperlipidemia, rheumatology
conditions, and musculoskeletal disorders.

Model development, evaluation and
interpretation

In this study, we employed stratified random sampling to divide
the dataset into three distinct subsets: a training set (49% of the total
sample), a validation set (21%), and an independent test set (30%).
The training set was used in model development, the validation set
for hyperparameter tuning and classification threshold optimization.
The independent test set was reserved strictly for final
model evaluation.

To address the class imbalance during model development, we
applied the Synthetic Minority Oversampling Technique (SMOTE)
exclusively to the minority class (PDPN+) in the training set, with a
200% oversampling ratio. All majority class (PDPN—) samples were
retained to preserve clinical information. Feature selection was
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conducted on the balanced development dataset (training +
validation) using the Least Absolute Shrinkage and Selection
Operator (LASSO) regression with 10-fold cross-validation.
Predictors with non-zero coefficients at the regularization
parameter selected according to the one-standard-error (1-SE)
rule were retained for subsequent modeling .

Based on the selected features, we developed a multivariable
logistic regression (LR) model and five machine learning (ML)
classifiers: Random Forest (RF), Extreme Gradient Boosting
(XGBoost), Light Gradient Boosting Machine (LightGBM),
Support Vector Machine (SVM) and Artificial Neural Network
(ANN). To enhance model robustness and prevent overfitting, 5-
fold cross-validation repeated 5 times was applied within the
training and validation cohorts during model development and
hyperparameter tuning. Hyperparameter optimization was
performed using exhaustive grid search combined with repeated
cross-validation within the training and validation cohorts. For each
combination of hyperparameters, the area under the receiver
operating characteristic curve (AUC-ROC) was used as the
primary selection criterion. All final models were retrained using
the optimal hyperparameters on the combined development data
before independent evaluation. To ensure reliability, all model
performance metrics are reported as the mean and 95%
confidence interval (CI) derived from 1000 bootstrap resamplings
of the test set.

Model performance was evaluated on the independent test set
using a comprehensive set of metrics, including AUC-ROC, area
under the precision-recall curve (PR-AUC), Brier score, G-mean,
sensitivity, specificity, F1-score, recall, balanced accuracy, Matthews
correlation coefticient (MCC) and decision curve analysis (DCA).

To further strengthen the clinical applicability and
interpretability of the proposed model, we constructed a
nomogram derived from the LR analysis and deployed an
interactive, web-based dynamic nomogram that delivers patient-
specific risk estimates to support real-time clinical decision-making.
In addition, we applied the SHapley Additive exPlanations (SHAP)
framework to compute and visualize feature-attribution plots for
each model, thereby providing transparent, model-agnostic insights
into variable importance. The complete modeling workflow is
depicted in Figure 1.

Statistical analysis

Patients were divided into PDPN and non-PDPN groups
according to PDPN status. Between-group differences were
analyzed using chi-square, t-tests, or Mann-Whitney U tests.
Continuous variables were described as mean + standard deviation
for normally distributed data, or as median and interquartile range
(Q1, Q3) for non-normally distributed data. Categorical variables
were reported as counts (n) and corresponding percentages (%).

All analyses were conducted using R (version 4.5.0) and Python
(version 3.13). Statistical significance was defined as a two-sided
p-value less than 0.05.
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Balancing: SMOTE
Feature selection: LASSO
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Parameter tuning: 5 fold
cross-validation
¢ LR
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, Balanced Accuracy, MCC, PPV, Bootstrap(n=1000)
NPV, PPV/NPV
Conclusion
| —
FIGURE 1

Workflow of data preprocessing, resampling, feature selection, model development, and validation.

Results
Baseline characteristics of study population

A total of 1,984 patients with T2DM were included in the final
analysis, comprising 959 males (48%) and 1,025 females (52%). Of
these, 1,903 patients (95.92%) did not develop PDPN, while 81
patients (4.08%) were diagnosed with PDPN. The patients were
randomly divided into a development set (n = 1,390; 70%) and an
independent test set (n = 594; 30%). Baseline characteristics were
compared between the two sets. Except for rheumatology conditions,
which showed a statistically significant difference, all other
characteristics were comparable between the groups. In the
development set, 57 patients (4.10%) developed PDPN, whereas 24
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patients (4.04%) in the test set developed PDPN. Table 1 summarizes
the key baseline characteristics of the participants, while the detailed
characteristics are provided in Supplementary Table 1.

Feature selection and model development

LASSO regression was performed in the balanced development
set to automatically select important features (see Figure 2). By
adjusting the regularization coefficient lambda (A), LASSO
regression reduces the loss function (binomial deviation) and
shrinks the coefficients of less predictive variables to zero. Ten of
the available features were identified as the most predictive at a
shrinkage parameter (lambda.lse) of 0.03007005. The selected
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TABLE 1 Baseline characteristics of participants with T2DM.

Variables Total (n = 1984)

Test set (n = 594)

10.3389/fendo.2025.1651493

Statistic

Development set (n = 1390)

Age, M (Q;, Q3) 64.00 (57.00, 70.00) 64.00 (57.00, 70.00) 65.00 (57.00, 70.00) 7=-0.53 0.593
Sex, n(%) x*=1.92 0.166
male 959 (48.34) 273 (45.96) 686 (49.35)
female 1025 (51.66) 321 (54.04) 704 (50.65)
BMI,
M Q) Q) 25.39 (23.44, 27.68) 25.39 (23.34, 27.72) 25.39 (23.44, 27.68) 7=-0.04 0.967
Duration, M (Q,, Q3) 98.00 (45.00, 163.00) 93.00 (40.25, 158.00) 98.00 (48.00, 164.00) 7=-1.78 0.075
HbAlc, M (Q;, Qs) 6.50 (6.00, 7.00) 6.50 (6.00, 7.00) 6.50 (6.00, 7.00) Z=-1.02 0.309
FPG, n(%) x*=6.31 0.098
<6 mmol/L 268 (13.51) 87 (14.65) 181 (13.02)
6-7 mmol/L, 942 (47.48) 288 (48.48) 654 (47.05)
7-8 mmol/L 521 (26.26) 135 (22.73) 386 (27.77)
>8 mmol/L 253 (12.75) 84 (14.14) 169 (12.16)
PPG, n(%) x’=1.24 0.744
<8 mmol/L 433 (21.82) 139 (23.40) 294 (21.15)
8-10 mmol/L 905 (45.61) 265 (44.61) 640 (46.04)
10-11.1 mmol/L 397 (20.01) 117 (19.70) 280 (20.14)
>11.1 mmol/L 249 (12.55) 73 (12.29) 176 (12.66)
Antidiabetic treatment regimen, n(%) x*=0.91 0.824
oral hypoglycemic agents 1491 (75.15) 452 (76.09) 1039 (74.75)
insulin 91 (4.59) 29 (4.88) 62 (4.46)
both 259 (13.05) 73 (12.29) 186 (13.38)
none 143 (7.21) 40 (6.73) 103 (7.41)
PDPN, n(%) %>=0.00 0.950
yes 1903 (95.92) 570 (95.96) 1333 (95.90)
no 81 (4.08) 24 (4.04) 57 (4.10)

Z, Mann-Whitney test; x Chi-square test; M, Median; Q,, 1st Quartile; Q;, 3rd Quartile; BMI, Body Mass Index; HbAlc, Hemoglobin Alc; FPG, Fasting Plasma Glucose; PPG, Postprandial
Plasma Glucose; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; PDPN, Painful Diabetic Peripheral Neuropathy.

features were musculoskeletal conditions (B = 1.95), antidiabetic
treatment regimen involving both oral hypoglycemic agents and
insulin injections (B = 1.66), antidiabetic treatment regimen with
oral hypoglycemic agents alone (§ = —0.03), hyperlipidemia (§ =
1.17), HbAlc (B = 0.86), neurological conditions (B = 0.85),
hypertension (B = 0.24), FPG levels within the range of 7-8
mmol/L (B = -0.12), BMI (B = 0.09), sex (B = 0.05), and diastolic
blood pressure (DBP; B = 0.02). Among these predictors,
musculoskeletal conditions, combined antidiabetic therapy,
hyperlipidemia, and elevated HbAlc levels emerged as the most
significant positive predictors of PDPN, whereas moderate FPG
levels showed a weak negative association. These variables were
subsequently included in the machine learning model. For the LR
model, 81 PDPN events and 10 retained predictors yielded an
event-per-variable (EPV) ratio of 8.1.
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Development and comparison of
prediction models

Based on clinically and statistically significant features selected via
LASSO regression, six predictive models were developed and evaluated:
LR, RF, LightGBM, XGBoost, ANN, and SVM. Except for LR,
hyperparameter tuning was performed via grid search with five-fold
cross-validation on the training set to maximize mean AUC-ROC. The
optimal parameters are summarized in Table 2. Model performance
was comprehensively evaluated on the independent test cohort using a
bootstrap resampling procedure (B = 1000), with all results reported as
means and 95% CIL. A summary of all model evaluation metrics is
provided in Table 3. Figure 3 shows the ROC curves for the 6 models,
while Supplementary Figure 1 presents DCA to better capture model
performance in the context of low prevalence.

frontiersin.org


https://doi.org/10.3389/fendo.2025.1651493
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Li et al.

10.3389/fendo.2025.1651493

A 35 35 35 34 34 34 34 34 34 34 33 31 29 26 24 24 24 17 12 9 6 6 5 4 3 2 0

B 38 34 21 3

<7 --- Optimal Lambda
--- 1-SELambda

--- Optimal Lambda
--- 1-SELambda

2 - \\,
5 5 s ———
i - : H —
g2 -
s s = e
g
] H mN T el /
° Ml
N —
H‘ 1444l 111
T 4 ‘
H‘ ‘ ‘ 1 ‘ ....... U
. . \ T . : : :
8 -6 -4 2 8 6 -4 2

Log(x)

FIGURE 2

Log Lambda

Feature selection using LASSO regression. (A) Plot of cross-validation error versus log(A). The vertical dashed lines indicate the optimal values of the
regularization parameter A: A.min (red), which gives the minimum mean cross-validated error, and A.1se (blue), the most regularized model within
one standard error of the minimum. (B) LASSO coefficient profiles of the selected features. Each curve represents the trajectory of a feature’'s

coefficient as the regularization parameter A changes.

Among all models, LR demonstrated the most favorable profile
for screening purposes. Although its PR-AUC (0.470, 95% CI:
0.258-0.665) and AUC-ROC (0.894, 95% CI: 0.814-0.964) were
slightly lower than those of more complex models, LR achieved the
highest sensitivity (0.688), G-Mean (0.807), and balanced accuracy
(0.826). These metrics indicate a strong ability to detect true positive
cases while maintaining reasonable specificity (0.965). Importantly,
LR also yielded a PPV of 0.514 and an NPV of 0.987, highlighting its
clinical utility as a screening tool to effectively rule out PDPN.
Additionally, the interpretability and simplicity of LR further
support its utility in clinical settings where early identification is
prioritized, particularly given the constraints of a limited number of
events. DCA confirmed that the LR model provided greater net
benefit than both the “treat-all” and “treat-none” strategies across a

TABLE 2 Optimal parameters for five ML models in predicting PDPN.

Models Optimal parameter

LR -

RE n_estimators=1000, max_features=2, min_samples_leaf=3,
criterion="gini", bootstrap=True, random_state=42

LightGBM objective binary, num_leaves 32, learning_rate 0.03, lambda_I2 5,
num_threads 15, nrounds 145
nrounds = 300, max_depth = 5, eta = 0.05, gamma = 0.00,

XGBoost colsample_bytree = 0.60, min_child_weight = 1, subsample = 0.80,
scale_pos_weight = 24.6, alpha = 0.01, objective = "binary:logistic"

ANN size 5, decay 0.1, maxit 500, maxit 500%

SVM C=10.000, sigma=0.100

“size = 5” indicates the number of neurons in the hidden layer, “decay = 0.1” represents the
weight decay parameter (L2 regularization), and “maxit = 500" refers to the maximum
number of training iterations.

LR, multivariable Logistic Regression; RF, Random Forest; LightGBM, Light Gradient
Boosting Machine; XGBoost, Extreme Gradient Boosting; ANN, Artificial Neural Network,
SVM, Support Vector Machine
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low-risk threshold range (0.01-0.30), reinforcing its value for early
risk screening where sensitivity is paramount.

The RF model yielded the highest overall discrimination with a PR-
AUC 0f 0.488 and AUC-ROC of 0.913, alongside the lowest Brier score
(0.029), suggesting well-calibrated risk probabilities. RF performed
particularly well on PPV (0.652) and NPV (0.982), reflecting reliable
case identification in positive predictions. However, sensitivity was
lower (0.571), making RF less optimal for screening contexts where
minimizing missed cases is critical. Supplementary Figure 2 presents
the DCA, which demonstrated that the RF model consistently yielded
greater net benefit across a clinically relevant threshold range (0.01-
0.25), highlighting its potential value for risk stratification and for
reducing unnecessary interventions.

LightGBM showed balanced performance, with PR-AUC 0.413
and ROC-AUC 0.902. PPV and NPV were 0.504 and 0.984,
respectively, demonstrating reliable negative prediction but only
moderate positive predictive value. Sensitivity (0.620) was relatively
strong, suggesting LightGBM may be useful where case detection
is prioritized.

XGBoost achieved a ROC-AUC of 0.901 and a PR-AUC of
0.421. Its PPV was relatively high (0.639), alongside an NPV of
0.978, and it achieved the highest specificity (0.988). However, recall
was the lowest (0.475), limiting its utility as a first-line screening
tool despite strong calibration and high precision.

ANN achieved a ROC-AUC of 0.875 and PR-AUC of 0.427.
The PPV was 0.527 and NPV 0.982, indicating acceptable
classification balance. Sensitivity was 0.579 and specificity 0.973,
suggesting ANN provided a moderate trade-off but did not exceed
LR in clinically critical measures.

The SVM model performed the worst overall, with the lowest
PR-AUC (0.290), F1 score (0.481), and MCC (0.349), limiting its
suitability for clinical use in this context.

Taken together, LR provides the most clinically appropriate balance
of sensitivity and overall classification performance for early PDPN risk
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LR, multivariable Logistic Regression; RF, Random Forest; LightGBM, Light Gradient Boosting Machine; XGBoost, Extreme Gradient Boosting; ANN, Artificial Neural Network; SVM, Support Vector Machine; AUC-ROC, Area Under the Receiver Operating

Characteristic Curve; CI, Confidence Interval; PR-AUC, Area Under the Precision-Recall Curve; PPV, Positive Predictive Value; NPV, Negative Predictive Value; MCC, Matthews Correlation Coefficient.
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screening, particularly in settings where underdiagnosis remains a
concern. It should also be noted that the relatively small number of
PDPN events may have limited the statistical power of more complex
models such as ANN, RF, and XGBoost, potentially underestimating
their true performance. As a sensitivity analysis, we repeated the
random split of training and test sets. Results remained consistent
(see Supplementary Table 2), supporting the stability of our findings.

Model interpretation

Across all six algorithms, musculoskeletal disorders and HbAlc
were the strongest predictors of PDPN, followed—without a
consistent order—by DBP, hyperlipidemia, and BMI (see
Figure 4). The direction and magnitude of each predictor’s effect
in the logistic regression model were further evaluated using a
SHAP summary plot with overlaid violin distributions (see
Figure 5). Predictors are ranked vertically by mean absolute
SHAP value, representing their global importance in the model.
Each point denotes a single patient’s contribution, with color
reflecting the feature value (blue: low, red: high). SHAP values >
0 indicate a positive impact on predicted PDPN risk, while values <
0 suggest a protective effect. The width of each violin plot at a given
SHAP value corresponds to the density of data points with that level
of impact. Musculoskeletal disorders demonstrated the widest
SHAP range (approximately -3 to +5). This suggests that their
presence typically increases PDPN risk, but in some contexts, the
effect may be neutral or even protective. HbAlc, BMI, and DBP
showed consistently positive SHAP values, suggesting that higher
levels are associated with increased PDPN risk. Hyperlipidemia,
female sex, hypertension, and neurological disorders also
contributed positively, though with narrower SHAP distributions.
FPG exhibited a negative association with PDPN risk, where higher
values corresponded to lower SHAP scores. Finally, the antidiabetic
treatment regimen revealed that patients receiving insulin had the
highest model-estimated risk for PDPN.

The logistic-regression nomogram (see Figure 6) assigns point
values to each of the ten variables; the sum of these points is converted
directly to an individual probability of PDPN. Thus, clinicians can
estimate risk simply by adding the scores for a patient’s characteristics.
For bedside application, we have created an interactive web-based
version of the nomogram https://ganzhi.shinyapps.io/PDPN/;
temporary access is available from the corresponding author.
Figure 7 shows representative screenshots. In the first example, a
female patient with musculoskeletal and neurological disorders,
hypertension, no hyperlipidemia, oral antidiabetic therapy, an
HbAlc of 5%, FPG of 6~7 mmol/L, BMI of 22 kg/m’, and DBP
of 74 mmHg has an estimated risk of 31%. In contrast, a male
patient with musculoskeletal disorders, hyperlipidemia, and
neurological disorders, no hypertension, insulin-only therapy, an
HbAc of 7%, FPG of 6-7 mmol/L, BMI of 24 kg/m?*, and DBP of 82
mmHg has an estimated PDPN risk of 99%. These examples
underscore the nomogram’s ability to translate routinely collected
clinical information into intuitive, patient-specific risk estimates
that can be accessed on any smartphone or computer.

frontiersin.org


https://ganzhi.shinyapps.io/PDPN/
https://doi.org/10.3389/fendo.2025.1651493
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Li et al. 10.3389/fendo.2025.1651493
ROC Curve
e
@ 4
=]
@ |
2o
4
°
z
3
3
9
°
Z <
= 3
= LR0.894(0.814-0.964)
~ | e RF 0.913(0.834-0.974)
e LightGBM 0.902 (0.822 - 0.968)
XGBoost 0.901 (0.818 ~0.966)
—~— ANN0875(0.786 -0.953)
S\SVM 0,873 (0.792 - 0.945)
N
e 4
=]
T T T T T T T T
12 1.0 0.8 0.6 0.4 0.2 0.0 -0.2
False Positive Rate
FIGURE 3

ROC curves of six predictive models for PDPN in the independent test set (n = 594). Diagonal line represents no discrimination (AUC = 0.5). Higher
AUC indicates better performance; RF achieved the highest AUC. AUC and 95% ClI for each model were: LR, 0.894 (0.814-0.964); RF, 0.913 (0.834—
0.974); LightGBM, 0.902 (0.822-0.968); XGBoost, 0.901 (0.818-0.966); ANN, 0.875 (0.786-0.953); SVM, 0.873 (0.792-0.945).

Discussion

In this study, we developed and validated six clinical prediction
models for PDPN among patients with T2DM, using multicenter
community-based data from Beijing. The prevalence of PDPN in

our cohort was 4.08%, markedly lower than reported in many
tertiary care studies (1). This discrepancy may reflect differences in
study settings, as our data were collected from primary care
populations where patients typically present with milder or
earlier-stage disease. Variability in diagnostic criteria, screening
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SHAP importance score ranking of the top 10 predictive features in the independent test set (n = 594). Key predictors include HbAlc,

musculoskeletal disorders, DBP, hyperlipidemia, and BMI.
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intensity, and the likelihood of under-recognition in primary care
settings may also contribute. These findings underscore the
importance of enhanced PDPN screening strategies in
community-based populations. In addition, by leveraging
multicenter community-based data, our work extends beyond
existing single-center or tertiary-hospital models and reflects the
real-world risk profile of Chinese primary care populations.

Ten variables were selected via LASSO regression for model
development: musculoskeletal disorders, antidiabetic treatment
regimen, hyperlipidemia, HbAlc, neurological conditions,
hypertension, FPG, BM], sex, and DBP. The resulting EPV of 8.1
is slightly below the traditional rule-of-thumb of 10, but still within
an acceptable range supported by prior methodological studies (21,
22). However, overfitting risk was robustly mitigated through
LASSO feature selection, bootstrap resampling, and independent
test set validation, supporting the stability of our findings.

Notably, this study is among the first to incorporate antidiabetic
treatment regimen as a predictive factor for PDPN. The inclusion of
musculoskeletal and rheumatologic disorders, together with common
comorbidities, further distinguishes this model and enhances its
potential clinical applicability in early risk stratification.

Of the six models developed, LR and RF demonstrated superior
performance. While RF yielded the highest AUC-ROC and PR-
AUC, LR showed the highest sensitivity (0.688), G-Mean (0.807),
and balanced accuracy (0.826), making it more suitable for pre-
screening applications. Moreover, LR’s interpretability and ease of
clinical integration, particularly through its transformation into a
web-based nomogram, further support its practical utility in
frontline healthcare settings.

The pathophysiology of PDPN remains incompletely understood
and is likely multifactorial, involving metabolic, vascular,

Frontiers in Endocrinology

inflammatory, and neural mechanisms (18, 23). Genetic,
psychological, and sociocultural factors may also contribute to
disease susceptibility and symptom expression (12). We observed
that patients with PDPN had a greater burden of comorbid
conditions than those without. However, due to the cross-sectional
nature of our study, we cannot determine causal directionality.

Musculoskeletal disorders emerged as a key predictor of PDPN
in our model, with SHAP values ranging from strongly positive to
mildly negative, suggesting a heterogeneous and context-dependent
relationship. The risk-enhancing effects are likely mediated by
inflammatory and mechanical pathways. Chronic conditions such
as osteoarthritis and cervical spondylosis elevate systemic IL-6 and
TNF-a levels (24, 25), both of which are implicated in neuropathic
pain pathogenesis (26). Structural abnormalities like joint instability
and spinal degeneration may also aggravate nerve damage via
mechanical compression, compounding metabolic or ischemic
injury (27). Epidemiological data show that nearly half of T2DM
patients have coexisting arthritis, supporting this link. Conversely,
DPN may contribute to musculoskeletal decline through muscle
atrophy, impaired contractility, altered gait, and biomechanical
imbalances—further accelerating bone loss and joint degeneration
(28, 29). This bidirectional relationship may reflect a feedback loop
between neuropathic and musculoskeletal pathology.

In contrast, the negative SHAP values observed in some
individuals may reflect earlier healthcare engagement. Patients
with musculoskeletal complaints are more likely to access care,
potentially leading to earlier recognition and management of
diabetic complications. Moreover, standard therapies—such as
physical rehabilitation, anti-inflammatory agents, and vitamin D
supplementation—may confer incidental neuroprotective effects
(30). Overall, the observed association likely reflects overlapping
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Nomogram of the LR model. For each variable, a vertical line is drawn upward to the “Points” row to determine its assigned score. The total score,
obtained by summing all variable points, is then projected downward to the “Total Points” row to estimate the predicted probability of PDPN.

pathophysiological domains between PDPN and musculoskeletal
disorders, including neuroinflammation, metabolic stress, and
impaired neuromuscular control. Further prospective studies are
needed to clarify causality and underlying mechanisms.

Elevated HbAlc was another strong predictor of PDPN.
Chronic hyperglycemia promotes neuronal damage and pain
hypersensitivity via multiple molecular pathways, including
MAPK and PKC signaling and systemic inflammation (31-33).
Numerous studies have confirmed the association between HbAlc
and both painful and painless DPN subtypes (34, 35).

Hyperlipidemia also contributed positively to PDPN risk in
our model. This observation is consistent with established
pathophysiological mechanisms, whereby elevated levels of free
fatty acids in hyperlipidemic states undergo [B-oxidation, leading
to peripheral nerve injury—particularly affecting Schwann cells
(36-39). The resulting oxidative stress, driven by reactive oxygen
species (ROS), together with macrophage-mediated systemic and
local inflammation, promotes the production of pro-inflammatory
cytokines and chemokines. These processes, in turn, exacerbate
neural damage (40, 41).

Unexpectedly, higher FPG levels were associated with a lower
risk of PDPN in our dataset, contrary to most previous reports.
Several explanations may account for this paradox. First, recall
bias cannot be excluded, as FPG was self-reported. Second, lower
current FPG may not reflect better long-term glycemic control but
greater glycemic variability. Patients with lower fasting values can
still experience substantial postprandial excursions, which have
been shown to induce greater oxidative stress and neuronal injury

Frontiers in Endocrinology

than sustained hyperglycemia (42-44). Third, PDPN involves
multiple overlapping pathogenic pathways (e.g., oxidative stress,
neuroinflammation) driven by chronic hyperglycemia and
glycemic excursions — factors not captured by a single FPG
measurement (45). Fourth, intensive glucose-lowering therapy
may paradoxically induce neuropathic pain in some patients
(46). Finally, reverse causation and confounding are possible, as
patients with PDPN may receive more intensive treatment or
adhere more strictly to regimens, resulting in lower FPG despite
prolonged dysglycemia.

Hypertension has been identified in multiple studies as an
independent risk factor for DPN (47). Experimental models further
support this association. Studies comparing hypertensive diabetic rats
with normotensive diabetic controls have demonstrated more severe
neuropathic damage, including reduced nerve perfusion, heightened
oxidative stress, decreased Schwann cell density, axonal atrophy, and
small fiber degeneration (47, 48).

BMI exhibited a nonlinear yet notable impact, with higher
values (represented by red points) clustering on the positive end
of the SHAP axis. This indicates that increased BMI is associated
with elevated PDPN risk—a finding consistent with population-
based studies across multiple countries, where obesity is commonly
observed in DPN cohorts (49, 50). In contrast, sex (female)
demonstrated a modest clustering near zero SHAP values,
indicating a limited direct contribution within the model.
Nevertheless, this pattern is consistent with clinical observations:
women are less likely to exhibit objective signs of neuropathy but
more frequently report painful DPN symptoms compared to men
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(15). This apparent paradox may reflect sex-specific differences in
pain perception or reporting behavior, as female sex has been
independently identified as a risk factor for painful—as opposed
to painless—DPN (15).

Among the antidiabetic treatment regimens and neurological
conditions analyzed, insulin therapy was associated with the highest
risk of PDPN. This finding is consistent with previous studies
identifying insulin use as a risk factor for DPN. Experimental
studies have further suggested that insulin administration may
induce significant intraneural hypoxic effects, which could
contribute to nerve dysfunction (51).

In summary, this study develops a practical tool for predicting
PDPN risk in community-based T2DM patients, identifying several
clinically relevant and biologically plausible predictors. The logistic
regression model, operationalized as a web-based dynamic
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nomogram, is recommended as a first-line pre-screening tool for
implementation in primary care settings. Its use can facilitate early
identification of high-risk individuals, guide targeted specialist
referrals, and optimize resource allocation within community
health systems. Future work should focus on prospective
validation and the integration of this nomogram into Chinese
primary care workflows and electronic health records. In
addition, longitudinal studies are needed to clarify the causal
pathways of the identified predictors.

Limitations

Despite its strengths, this study has several limitations. First, the
retrospective design may introduce information bias and precludes
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causal inference. Prospective studies are needed to validate
predictive associations over time. Second, although the study
included multiple centers, all participants were from Beijing,
which may limit the generalizability of our findings to other
regions or ethnic groups. Moreover, minor differences in gender
composition or sample distribution across populations may further
influence model generalizability. External validation in independent
cohorts across diverse populations is urgently needed to confirm the
model’s robustness and applicability. Third, the relatively low
prevalence of PDPN (4.08%) may impact model performance,
particularly positive predictive value, despite the use of
imbalance-handling techniques. Fourth, PDPN diagnosis in this
study was based on mTCNS and DN4 scores. Although these tools
are validated and widely used in epidemiological research, they are
inherently subjective and prone to inter-observer variability,
which may introduce misclassification bias. The absence of
objective diagnostic modalities such as nerve conduction studies
(NCS), regarded as the gold standard, may have led to either
underestimation or overestimation of PDPN prevalence. Future
investigations incorporating NCS and other objective biomarkers
are warranted to enhance diagnostic precision and strengthen
external validity. Finally, the dataset lacked detailed information
on lifestyle factors, comorbidity duration, medication specifics, and
genetic predisposition, which may further improve risk prediction
in future models.

Conclusion

In conclusion, this study developed and validated a multicenter
clinical prediction model for PDPN in T2DM patients based on
data from 13 community hospitals in Beijing. The RF and LR
models, incorporating ten easily obtainable clinical and
demographic variables, demonstrated strong predictive
performance and good calibration. Key predictors, notably
HbAlc, musculoskeletal disorders, DBP, BMI, and
hyperlipidemia underscore important clinical considerations.
Importantly, this model provides a practical and interpretable
tool for early risk stratification and targeted screening of PDPN
in primary care and community settings, where specialized
neurological assessments are often limited. By integrating this
prediction model into routine diabetes management, such as
electronic health record systems or web-based nomograms,
clinicians can proactively identify high-risk individuals, optimize
referral pathways, and support preventive interventions. Such
integration may enhance clinical decision-making, promote
personalized management, and ultimately reduce the burden of
diabetic neuropathy.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Frontiers in Endocrinology

12

10.3389/fendo.2025.1651493

Ethics statement

The studies involving humans were approved by the Ethics
Committee of China-Japan Friendship Hospital (approval no. 2023-
KY-343). The studies were conducted in accordance with the local
legislation and institutional requirements. The ethics committee/
institutional review board waived the requirement of written
informed consent for participation from the participants or the
participants’ legal guardians/next of kin because due to the
retrospective nature of the data analysis.

Author contributions

YPL: Data curation, Project administration, Writing — original
draft, Writing - review & editing. BF: Writing — original draft, Writing
- review & editing. HH: Writing - original draft, Writing — review &
editing. XW: Writing — original draft, Writing - review & editing. XZ:
Writing - original draft, Writing — review & editing. NH: Writing —
original draft, Writing — review & editing. WL: Writing — original draft,
Writing — review & editing. YZ: Writing — original draft, Writing -
review & editing. PM: Writing — original draft, Writing - review &
editing. YFL: Writing - original draft, Writing - review & editing. LYX:
Writing — review & editing. QZ: Writing — review & editing.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This work was supported
by National Key Research and Development Program of China
(2022YFC3602201), Project for health development research in the
capital (Number 2022-1-4061) and National High Level Hospital
Clinical Research Funding (Number 2024-NHLHCRF-JBGS-ZN-
06 and 2022-NHLHCRF-YSPY-02).

Acknowledgments

We would like to acknowledge our study participants, and data
collectors for their support.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

frontiersin.org


https://doi.org/10.3389/fendo.2025.1651493
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Li et al.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

References

1. YuZ, Zhao S, Cao J, Xie H. Analysis of risk factors for painful diabetic peripheral
neuropathy and construction of a prediction model based on Lasso regression. Front
Endocrinol (Lausanne). (2024) 15:1477570. doi: 10.3389/fend0.2024.1477570

2. Elafros MA, Andersen H, Bennett DL, Savelieff MG, Viswanathan V, Callaghan
BC, et al. Towards prevention of diabetic peripheral neuropathy: clinical presentation,
pathogenesis, and new treatments. Lancet Neurology. (2022) 21:922-36. doi: 10.1016/
$1474-4422(22)00188-0

3. Gylfadottir SS, Christensen DH, Nicolaisen SK, Andersen H, Callaghan BC, Itani
M, et al. Diabetic polyneuropathy and pain, prevalence, and patient characteristics: a
cross-sectional questionnaire study of 5,514 patients with recently diagnosed type 2
diabetes. Pain. (2020) 161:574-83. doi: 10.1097/j.pain.0000000000001744

4. Abdissa D. Prevalence and associated factors of painful diabetic peripheral
neuropathy among diabetic patients on follow up at Jimma University Medical
Center. ] Diabetes Metab Disord. (2020) 19:1407-13. doi: 10.1007/s40200-020-00661-7

5. Erbas T, Ertas M, Yucel A, Keskinaslan A, Senocak M. Prevalence of peripheral
neuropathy and painful peripheral neuropathy in turkish diabetic patients. J Clin
Neurophysiology. (2011) 28:51-5. doi: 10.1097/WNP.0b013¢3182051334

6. Sorensen L, Molyneaux L, Yue DK. Insensate versus painful diabetic neuropathy:
the effects of height, gender, ethnicity and glycaemic control. Diabetes Res Clin Practice.
(2002) 57:45-51. doi: 10.1016/S0168-8227(02)00010-4

7. Kim SS, Won JC, Kwon HS, Kim CH, Lee JH, Park TS, et al. Prevalence and
clinical implications of painful diabetic peripheral neuropathy in type 2 diabetes:
Results from a nationwide hospital-based study of diabetic neuropathy in Korea.
Diabetes Res Clin Practice. (2014) 103:522-9. doi: 10.1016/j.diabres.2013.12.003

8. Tao Y, Zhang HY, MacGilchrist C, Kirwan E, McIntosh C. Prevalence and risk
factors of painful diabetic neuropathy: A systematic review and meta-analysis. Diabetes
Res Clin Practice. (2025) 222:112099. doi: 10.1016/j.diabres.2025.112099

9. Zhou P, Zhou JS, LiJJ, Qin L, Hu WF, Zhang XY, et al. Prevalence and risk factors
for painful diabetic peripheral neuropathy: a systematic review and meta-analysis.
Front Neurol. (2025) 16:1564867. doi: 10.3389/fneur.2025.1564867

10. Kiyani M, Yang Z, Charalambous LT, Adil SM, Lee HJ, Yang S, et al. Painful
diabetic peripheral neuropathy: Health care costs and complications from 2010 to 2015.
Neur Clin Pract. (2020) 10:47-57. doi: 10.1212/CPJ.0000000000000671

11. Bromberg T, Gasquet NC, Ricker CN, Wu C. Healthcare costs and medical
utilization patterns associated with painful and severe painful diabetic peripheral
neuropathy. Endocrine. (2024) 86:1014-24. doi: 10.1007/s12020-024-03954-6

12. Shillo P, Sloan G, Greig M, Hunt L, Selvarajah D, Elliott ], et al. Painful and
painless diabetic neuropathies: what is the difference? Curr Diabetes Rep. (2019) 19:32.
doi: 10.1007/s11892-019-1150-5

13. Preston FG, Riley DR, Azmi S, Alam U. Painful diabetic peripheral neuropathy:
practical guidance and challenges for clinical management. DMSO. (2023) 16:1595-
612. doi: 10.2147/DMS0.S370050

14. Davoudi M, Rezaei P, Rajaeiramsheh F, Ahmadi SM, Taheri AA. Predicting the
quality of life based on pain dimensions and psychiatric symptoms in patients with
Painful diabetic neuropathy: a cross-sectional prevalence study in Iranian patients.
Health Qual Life Outcomes. (2021) 19:49. doi: 10.1186/s12955-021-01697-w

15. Jang HN, Oh TJ. Pharmacological and nonpharmacological treatments for
painful diabetic peripheral neuropathy. Diabetes Metab J. (2023) 47:743-56.
doi: 10.4093/dmj.2023.0018

16. Tesfaye S, Kempler P. Conventional management and current guidelines for
painful diabetic neuropathy. Diabetes Res Clin Practice. (2023) 206:110765.
doi: 10.1016/j.diabres.2023.110765

17. Baskozos G, Themistocleous AC, Hebert HL, Pascal MMV, John ], Callaghan
BC, et al. Classification of painful or painless diabetic peripheral neuropathy and
identification of the most powerful predictors using machine learning models in large

Frontiers in Endocrinology

13

10.3389/fendo.2025.1651493

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fend0.2025.1651493/
full#supplementary-material

cross-sectional cohorts. BMC Med Inform Decis Mak. (2022) 22:144. doi: 10.1186/
$12911-022-01890-x

18. Tesfaye S, Sloan G, Petrie J, White D, Bradburn M, Julious S, et al. Comparison
of amitriptyline supplemented with pregabalin, pregabalin supplemented with
amitriptyline, and duloxetine supplemented with pregabalin for the treatment of
diabetic peripheral neuropathic pain (OPTION-DM): a multicentre, double-blind,
randomised crossover trial. Lancet. (2022) 400:680-90. doi: 10.1016/S0140-6736(22)
01472-6

19. Bril V, Tomioka S, Buchanan RA, Perkins BA, the mTCNS Study Group.
Reliability and validity of the modified Toronto Clinical Neuropathy Score in diabetic
sensorimotor polyneuropathy. Diabetic Med. (2009) 26:240-6. doi: 10.1111/j.1464-
5491.2009.02667 x

20. Bouhassira D, Attal N, Alchaar H, Boureau F, Brochet B, Bruxelle J, et al.
Comparison of pain syndromes associated with nervous or somatic lesions and
development of a new neuropathic pain diagnostic questionnaire (DN4). Pain.
(2005) 114:29-36. doi: 10.1016/j.pain.2004.12.010

21. Van Smeden M, De Groot JAH, Moons KGM, Collins GS, Altman DG,
Eijkemans MJC, et al. No rationale for 1 variable per 10 events criterion for binary
logistic regression analysis. BMC Med Res Methodol. (2016) 16:163. doi: 10.1186/
$12874-016-0267-3

22. Austin PC, Steyerberg EW. Events per variable (EPV) and the relative
performance of different strategies for estimating the out-of-sample validity of
logistic regression models. Stat Methods Med Res. (2017) 26:796-808. doi: 10.1177/
0962280214558972

23. Sloan G, Selvarajah D, Tesfaye S. Pathogenesis, diagnosis and clinical
management of diabetic sensorimotor peripheral neuropathy. Nat Rev Endocrinol.
(2021) 17:400-20. doi: 10.1038/s41574-021-00496-2

24. Coleman LJ, Byrne JL, Edwards S, O’'Hara R. Evaluating interleukin-6, tumour
necrosis factor alpha, and myeloperoxidase as biomarkers in severe osteoarthritis
patients: A biostatistical perspective. LabMed. (2025) 2:8. doi: 10.3390/
labmed2020008

25. Yadav SRM, Goyal B, Mamgain G, Kothari A, Kumar S, Saha S, et al. Genetic
variations in IL-1B, TNF-o, and TGF-f3 Associated with the severity of chronic cervical
spondylitis in patients. Cells. (2023) 12:1594. doi: 10.3390/cells12121594

26. Stoian A, Muntean C, Baba DF, Manea A, Dénes L, Simon-Szabo Z, et al. Update
on biomarkers of chronic inflammatory processes underlying diabetic neuropathy.
IIMS. (2024) 25:10395. doi: 10.3390/ijms251910395

27. Moini ], Gutierrez A, Avgeropoulos N. Chapter 19 - Spinal cord disorders. In:
Moini J, Gutierrez A, Avgeropoulos N, editors. Clinical Neuroepidemiology of Acute
and Chronic Disorders. New York, USA: Academic Press (2023). p. 299-317. Available
online at: https://www.sciencedirect.com/science/article/pii/B9780323959018000092
(Accessed May15, 2025).

28. Zhao Z, Liang J, Kang J, He ], Li M, Mao W, et al. The diabetic neuropathy and
bone mineral density in type 2 diabetes mellitus: a cross-sectional and meta-analytic
study. Clin Exp Med. (2025) 25:175. doi: 10.1007/s10238-025-01710-2

29. Mohapatra S, Ramachandran M, Behera KK, Priyadarsini N, Nanda P, Devi S.
Association of peripheral neuropathy with skeletal muscle mass and function in type
two diabetes mellitus patients: A cross-sectional study. Endocrinologia Diabetes y
Nutricion (English ed). (2022) 69:591-9. doi: 10.1016/j.endien.2022.03.009

30. Yammine K, Wehbe R, Assi C. A systematic review on the efficacy of vitamin D
supplementation on diabetic peripheral neuropathy. Clin Nutr. (2020) 39:2970-4.
doi: 10.1016/j.cInu.2020.01.022

31. Chong ZZ, Menkes DL, Souayah N. Targeting neuroinflammation in distal
symmetrical polyneuropathy in diabetes. Drug Discov Today. (2024) 29:104087.
doi: 10.1016/j.drudis.2024.104087

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fendo.2025.1651493/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2025.1651493/full#supplementary-material
https://doi.org/10.3389/fendo.2024.1477570 
https://doi.org/10.1016/S1474-4422(22)00188-0
https://doi.org/10.1016/S1474-4422(22)00188-0
https://doi.org/10.1097/j.pain.0000000000001744
https://doi.org/10.1007/s40200-020-00661-7
https://doi.org/10.1097/WNP.0b013e3182051334
https://doi.org/10.1016/S0168-8227(02)00010-4
https://doi.org/10.1016/j.diabres.2013.12.003
https://doi.org/10.1016/j.diabres.2025.112099
https://doi.org/10.3389/fneur.2025.1564867
https://doi.org/10.1212/CPJ.0000000000000671
https://doi.org/10.1007/s12020-024-03954-6
https://doi.org/10.1007/s11892-019-1150-5
https://doi.org/10.2147/DMSO.S370050
https://doi.org/10.1186/s12955-021-01697-w
https://doi.org/10.4093/dmj.2023.0018
https://doi.org/10.1016/j.diabres.2023.110765
https://doi.org/10.1186/s12911-022-01890-x
https://doi.org/10.1186/s12911-022-01890-x
https://doi.org/10.1016/S0140-6736(22)01472-6
https://doi.org/10.1016/S0140-6736(22)01472-6
https://doi.org/10.1111/j.1464-5491.2009.02667.x
https://doi.org/10.1111/j.1464-5491.2009.02667.x
https://doi.org/10.1016/j.pain.2004.12.010
https://doi.org/10.1186/s12874-016-0267-3
https://doi.org/10.1186/s12874-016-0267-3
https://doi.org/10.1177/0962280214558972
https://doi.org/10.1177/0962280214558972
https://doi.org/10.1038/s41574-021-00496-z
https://doi.org/10.3390/labmed2020008
https://doi.org/10.3390/labmed2020008
https://doi.org/10.3390/cells12121594
https://doi.org/10.3390/ijms251910395
https://www.sciencedirect.com/science/article/pii/B9780323959018000092
https://doi.org/10.1007/s10238-025-01710-2
https://doi.org/10.1016/j.endien.2022.03.009
https://doi.org/10.1016/j.clnu.2020.01.022
https://doi.org/10.1016/j.drudis.2024.104087
https://doi.org/10.3389/fendo.2025.1651493
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Li et al.

32. Shivam, Gupta AK, Kumar S. Current concepts in the molecular mechanisms
and management of diabetic neuropathy by pharmacotherapeutics and natural
compounds. Cent Nerv Syst Agents Med Chem. (2024) 24:264-80. doi: 10.2174/
0118715249278438240325072758

33. Mizukami H, Osonoi S. Collateral glucose-utlizing pathwaya in diabetic
polyneuropathy. Int ] Mol Sci. (2020) 22:94. doi: 10.3390/ijms22010094

34. Pai YW, Lin CH, Lee IT, Chang MH. Prevalence and biochemical risk factors of
diabetic peripheral neuropathy with or without neuropathic pain in Taiwanese adults
with type 2 diabetes mellitus. Diabetes Metab Syndrome: Clin Res Rev. (2018) 12:111-6.
doi: 10.1016/j.dsx.2017.09.013

35. Hossain M, Sarkar M, Mahbub I, Islam S. A study on peripheral neuropathy and
its related risk factors associated with hbalc levels. J bio-sci. (2021) 29:123-38.
doi: 10.3329/jbs.v29i2.54961

36. Padilla A, Descorbeth M, Almeyda AL, Payne K, De Leon M. Hyperglycemia
magnifies Schwann cell dysfunction and cell death triggered by PA-induced
lipotoxicity. Brain Res. (2011) 1370:64-79. doi: 10.1016/j.brainres.2010.11.013

37. Rumora AE, Kim B, Feldman EL. A role for fatty acids in peripheral neuropathy
associated with type 2 diabetes and prediabetes. Antioxid Redox Signal. (2022) 37:560-
77. doi: 10.1089/ars.2021.0155

38. Xu D, Liang J, Cui M, Zhang L, Ren S, Zheng W, et al. Saturated fatty acids
activate the inflammatory signalling pathway in Schwann cells: Implication in sciatic
nerve injury. Scand J Immunol. (2020) 92:¢12896. doi: 10.1111/sji.12896

39. Sundaram VK, Schiitza V, Schréter NH, Backhaus A, Bilsing A, Joneck L, et al.
Adipo-glial signaling mediates metabolic adaptation in peripheral nerve regeneration.
Cell Metab. (2023) 35:2136-52. doi: 10.1016/j.cmet.2023.10.017

40. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett
DL, et al. Diabetic neuropathy. Nat Rev Dis Primers. (2019) 5:41. doi: 10.1038/s41572-
019-0092-1

41. Legrand-Poels S, Esser N, L’homme L, Scheen A, Paquot N, Piette J. Free fatty
acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem
Pharmacol. (2014) 92:131-41. doi: 10.1016/j.bcp.2014.08.013

Frontiers in Endocrinology

14

10.3389/fendo.2025.1651493

42. Chang KC, Pai YW, Lin CH, Lee IT, Chang MH. Glycemic variability’s impact
on painful diabetic peripheral neuropathy in type 2 diabetes patients. Sci Rep. (2024)
14:22276. doi: 10.1038/s41598-024-73472-y

43. Chang CM, Hsieh CJ, Huang JC, Huang IC. Acute and chronic fluctuations in
blood glucose levels can increase oxidative stress in type 2 diabetes mellitus. Acta
Diabetol. (2012) 49:171-7. doi: 10.1007/s00592-012-0398-x

44. Sun S, Shen X, Huang Q, Sun J. The Effects and Mechanisms of High Glucose
Fluctuations at Different Levels on the Expression of Cytokines in Monocytes (2024).
Available online at: https://www.researchsquare.com/article/rs-5254126/v1 (Accessed
May 20, 2025).

45. ZhuJ,HuZ, Luo Y, Liu Y, Luo W, Du X, et al. Diabetic peripheral neuropathy:
pathogenetic mechanisms and treatment. Front Endocrinol. (2024) 14:1265372.
doi: 10.3389/fendo0.2023.1265372

46. Stainforth-Dubois M, McDonald EG. Treatment-induced neuropathy of diabetes
related to abrupt glycemic control. CMAJ. (2021) 193:E1085-8. doi: 10.1503/cmaj.202091

47. Sethi Y, Uniyal N, Vora V, Agarwal P, Murli H, Joshi A, et al. Hypertension the
‘Missed modifiable risk factor’ for diabetic neuropathy: a systematic review. Curr
Problems Cardiol. (2023) 48:101581. doi: 10.1016/j.cpcardiol.2022.101581

48. Sanada LS, Tavares MR, Sato KL, Ferreira RDS, Neubern MCM, Castania JA,
et al. Association of chronic diabetes and hypertension in sural nerve morphometry: an
experimental study. Diabetol Metab Syndr. (2015) 7:9. doi: 10.1186/s13098-015-0005-8

49. Huang Y, Zhang X, Li B, Zhu X, Li C, Zhou C, et al. Association of BMI and waist
circumference with diabetic microvascular complications: A prospective cohort study
from the UK Biobank and Mendelian randomization analysis. Diabetes Res Clin
Practice. (2023) 205:110975. doi: 10.1016/j.diabres.2023.110975

50. Fakkel TM, Cakici N, Coert JH, Verhagen AP, Bramer WM, Van Neck JW. Risk
factors for developing diabetic peripheral neuropathy: a meta-analysis. SN Compr Clin
Med. (2020) 2:1853-64. doi: 10.1007/s42399-020-00480-0

51. Nicodemus JM, Enriquez C, Marquez A, Anaya CJ, Jolivalt CG. Murine model
and mechanisms of treatment-induced painful diabetic neuropathy. Neuroscience.
(2017) 354:136-45. doi: 10.1016/j.neuroscience.2017.04.036

frontiersin.org


https://doi.org/10.2174/0118715249278438240325072758
https://doi.org/10.2174/0118715249278438240325072758
https://doi.org/10.3390/ijms22010094
https://doi.org/10.1016/j.dsx.2017.09.013
https://doi.org/10.3329/jbs.v29i2.54961
https://doi.org/10.1016/j.brainres.2010.11.013
https://doi.org/10.1089/ars.2021.0155
https://doi.org/10.1111/sji.12896
https://doi.org/10.1016/j.cmet.2023.10.017
https://doi.org/10.1038/s41572-019-0092-1
https://doi.org/10.1038/s41572-019-0092-1
https://doi.org/10.1016/j.bcp.2014.08.013
https://doi.org/10.1038/s41598-024-73472-y
https://doi.org/10.1007/s00592-012-0398-x
https://www.researchsquare.com/article/rs-5254126/v1
https://doi.org/10.3389/fendo.2023.1265372
https://doi.org/10.1503/cmaj.202091
https://doi.org/10.1016/j.cpcardiol.2022.101581
https://doi.org/10.1186/s13098-015-0005-8
https://doi.org/10.1016/j.diabres.2023.110975
https://doi.org/10.1007/s42399-020-00480-0
https://doi.org/10.1016/j.neuroscience.2017.04.036
https://doi.org/10.3389/fendo.2025.1651493
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Development and validation of a risk prediction model for painful diabetic peripheral neuropathy in type 2 diabetes mellitus: a multicenter retrospective study
	Introduction
	Methods
	Study design and participants
	Data collection and variables
	Model development, evaluation and interpretation
	Statistical analysis

	Results
	Baseline characteristics of study population
	Feature selection and model development
	Development and comparison of prediction models
	Model interpretation

	Discussion
	Limitations

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


