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Sugar-sweetened beverage
consumption predicts
metabolic associated fatty
liver disease in patients with
type 2 diabetes mellitus
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Ping Feng® and Gang Lin™

‘Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou,
Zhejiang, China, 2Department of Endocrinology, Taizhou Central Hospital (Taizhou University
Hospital), Taizhou, Zhejiang, China

Background: Metabolic associated fatty liver disease (MAFLD) is a leading cause
of chronic liver disease worldwide, with heightened prevalence and progression
risks in individuals with type 2 diabetes mellitus (T2DM). Emerging evidence
suggests dietary factors, particularly sugar-sweetened beverage (SSB)
consumption, may exacerbate metabolic dysregulation, yet this relationship
remains underexplored in MAFLD populations.

Method: We enrolled 3,305 T2DM patients from Taizhou University Hospital,
classifying them into MAFLD and non-MAFLD groups via liver ultrasonography.
SSB consumption was quantified as weekly intake. Clinical parameters and SSB
consumption were analyzed using logistic regression. External validation
leveraged NHANES data, focusing on total sugar intake and surrogate markers.
Results: MAFLD patients exhibited significantly higher BMI, waist/hip ratios, and
SSB consumption than non-MAFLD counterparts (p<0.001). SSB consumption
emerged as an independent MAFLD risk factor, with dose-dependent escalation in
MAFLD odds. The MAFLD model based on glycometabolism (MMBGQG), integrating
SSB consumption, C-peptide, and glucose, outperformed traditional indices, such
as TyG, VAI, and AIP, achieving superior AUC (0.712 vs. 0.631-0.666), enhanced
clinical utility and higher Brier scores (p<0.05, respectively). NHANES validation
confirmed BMI, central obesity, hyperglycemia, and sugar intake as
MAFLD predictors.

Conclusion: SSB consumption independently predicts MAFLD risk in T2DM
patients, with synergistic effects from dysregulated glycometabolism. The
MMBG model, incorporating SSB consumption and glycometabolic
parameters, offers a robust tool for early MAFLD risk identification and
personalized interventions.
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Introduction

Metabolic associated fatty liver disease (MAFLD) (1) stands as
the most prevalent chronic liver disease globally, with the latest
statistics revealing that approximately one- (2) and one-quarter of
adolescents (3) are affected, thus ranking it among the foremost
non-communicable diseases. Notably, the prevalence of MAFLD
exhibits ethnic disparities, with Hispanics having the highest rate of
51.4% and African Americans the lowest at 21.5% (4). A
comprehensive meta-analysis conducted in Asia reveals that the
overall prevalence of MAFLD among Asian adults is 29.6% (4). By
2030, China is anticipated to witness a staggering number of 315
million MAFLD patients, positioning it as the country with the
fastest growth (5).

MAFLD is a chronic and progressive disease characterized by
excessive accumulation of fat in the liver, constituting 5% or more of
the liver’s weight (6). The latest diagnostic criteria for MAFLD,
released in 2020, categorize the condition into three groups: type 2
diabetes mellitus (T2DM), obesity, and non-obesity without T2DM
(1). The development of MAFLD are intimately linked to metabolic
disorders and insulin resistance, resulting in a significantly higher
prevalence among T2DM patients, ranging from 60 to 75% (7, 8).
Notably, T2DM and MAFLD share insulin resistance and systemic
hyperinsulinemia as common pathophysiological mechanisms,
which not only heighten the risk of mutual exacerbation but also
influence the natural course (9). Specifically, T2DM exacerbate
MAFLD by promoting hepatitis or fibrosis, whereas MAFLD
worsen the natural progression of diabetic complications,
including microvascular and macrovascular issues, in T2DM
patients (10). Furthermore, MAFLD is associated with an
increased incidence and mortality rate of extrahepatic diseases,
such as cardiovascular and cerebrovascular diseases, as well as
chronic kidney disease (11). Increasing evidence suggests that
MAFLD actively participates in the pathogenesis of these
complications, rather than serving as a metabolic marker (12).

MAFLD can evolve from simple steatosis to Metabolic
steatohepatitis (MASH), fibrosis, cirrhosis, and ultimately
hepatocellular carcinoma (HCC) (13). Given the absence or
inconsistency of MAFLD guidelines, coupled with the asymptomatic
nature in early stage, it is not uncommon for diabetic patients to receive
delayed diagnoses of NASH, cirrhosis, or HCC (13). T2DM poses a
significant global public health burden, accounting for approximately
90-95% of all diabetes (14). Over the past four decades, the global

Abbreviations: MAFLD, Metabolic associated fatty liver disease; T2DM, Type 2
diabetes mellitus; T1IDM, Type 1 diabetes mellitus; MMBG, MAFLD model based
on glycometabolism; MASH, Metabolic steatohepatitis; HCC, Hepatocellular
carcinoma; MMC, Metabolic Management Center; BMI, Body Mass Index;
GLU, Glucose; Cr, Creatinine; HbAlc, Glycosylated hemoglobin; RCS,
Restricted cubic splines; ROC, Receiver operating characteristic; DCA, Decision
Curve Analysis; AUC, Areas under the ROC curves; OR, Odds ratio; VAI
Visceral Adiposity Index; TyG, Triglyceride-Glucose Index; AIP, Atherogenic

Index of Plasma; SSB, Sugar-Sweetened Beverage; VIF, Variance Inflation Factor.
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prevalence of diabetes among adults has quadrupled, rising from 108
million in 1980 to 463 million in 2019 (15). Consequently, it is
imperative for the T2DM population to undergo systematic non-
invasive testing. Assessing patients’ metabolic fatty liver conditions,
based on practical anthropometric and biological parameters, along
with potential glucose monitoring, holds significant importance for
accurate disease assessment and tailored interventional strategies.

While obesity and dysglycemia are established MAFLD drivers,
the role of dietary sugar particularly sugar-sweetened beverages (SSB)
remains contentious. SSB contribute >40% of added sugar intake
globally, promoting hepatic de novo lipogenesis and insulin resistance
(16). Although SSB consumption correlates with non-alcoholic fatty
liver disease (NAFLD) (17), MAFLD’s distinct diagnostic framework,
encompassing concurrent metabolic and liver disorders (18),
necessitates dedicated investigation. Notably, no prior studies have
examined SSB-MAFLD associations in T2DM populations, a high-
risk cohort with compounded metabolic vulnerabilities.

Materials and methods
Subjects

Between June 2020 and May 2024, a total of 3,776 patients with
diabetes were screened at the Metabolic Management Center
(MMC) of Taizhou Central Hospital (Taizhou University
Hospital). The diagnosis of T2DM was made in accordance with
the Chinese T2DM guidelines (19). The diagnostic criteria for
MAFLD encompassed imaging evidence of hepatic steatosis,
coupled with the presence of any one of the following three
additional criteria: overweight/obesity, T2DM, or metabolic
dysfunctions (1). All patients underwent ultrasound examination
for the diagnosis of hepatic steatosis. The diagnosis was confirmed
when two of the following three criteria were met: diffuse
enhancement of liver near-field ultrasound echoes, liver echoes
stronger than kidney echoes, blurred vascular distribution, and
gradual attenuation of far-field ultrasound echoes.

Exclusion criteria: 1) Lack of crucial information such as age,
gender, or ultrasound examination; 2) Presence of Cushing’s
syndrome, receipt of total parenteral nutrition, and administration
of medications that may induce specific fatty liver conditions,
including amiodarone, valproic glucocorticoids, methotrexate, etc.
3) Diagnosis of other types of diabetes; 4) Malignant tumors; 5)
Pregnant and lactating women.

Patients with type 1 diabetes (n=49), suspected late-onset
autoimmune diabetes in adults with positive GAD antibodies
(n=100), or other type of diabetes (n=35), as well as individuals
with significant information gaps or comorbid conditions (n=287),
were excluded from the study. A total of 3,305 individuals were
enrolled in this study. Of these, 1,074 patients with confirmed fatty
liver disease comprised the MAFLD group, while 2231 patients
without fatty liver disease constituted the non-MAFLD group
(Figure 1). The study protocol was approved by the ethics
committee of the participating hospital, and all participants
provided written informed consent.
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FIGURE 1

Flow chart of enrolled cases. T2DM, Type 2 diabetes mellitus; TIDM, Type 1 diabetes mellitus; MAFLD, Metabolic associated fatty liver disease.

General information and clinical
parameters

Comprehensive clinical data were collected from all enrolled
patients, encompassing demographics such as age and gender,
lifestyle habits including drinking and smoking histories, past
medical conditions, educational background, and household
annual income. Additionally, dietary intakes of vegetables, fruits,
fish, beans, salt, and SSB, as well as sleep patterns, were meticulously
recorded. The specific volume of one bottle of sugar-sweetened
beverage was defined as 500ml. Sugar-sweetened beverages refer to
those with added sugars (e.g., sucrose, high-fructose corn syrup,
glucose, fructose) during production or preparation, or naturally
high-sugar liquid foods primarily consumed as beverages, excluding
ultra-processed beverages containing sweeteners and chemical
additives. For drinking history, regular drinking was categorized
as consuming at least one standard alcoholic beverage per week for
a minimum of six months, while infrequent drinking fell short of
this criterion. Similarly, in smoking history, regular smoking was
defined as smoking more than 10 cigarettes weekly for at least six
months, with anything less considered occasional smoking.

On the first day of admission, patients’ anthropometric
measurements were taken in a fasting state, including height,
weight, Body Mass Index (BMI), head, neck, waist, and hip
circumference. On the second day, fasting blood samples were
collected early in the morning for the unified assessment of
glucose (GLU), C-peptide, serum creatinine (Cr), and

Frontiers in Endocrinology

glycosylated hemoglobin (HbA1C). Postprandial GLU and C-
peptide levels were also evaluated two hours after a meal.
Furthermore, urine samples were collected in a fasting state for
the uniform analysis of urine protein, sugar, ketones, and creatinine.

NHANES database

The NHANES database served as the validation set for our
study. NHANES, a public database, employs a cross-sectional,
stratified, and multi-stage probability design to capture a
representative sample of the civilian, non-hospitalized population
in the United States. This database comprises comprehensive survey
data, encompassing questionnaires, demographic information,
laboratory test results, and physical examination details. The
research protocol adhered to ethical standards and received
approval from the Research Ethics Review Committee of the
National Health Center. All participants provided written
informed consent prior to their involvement. Detailed
information on the study design and survey procedures is
accessible online (https://wwwn.cdc.gov/nchs/nhanes/).

We retrieved population data from the NHANES database,
focusing on individuals from the testing cycles between 2017 and
2023. Out of the total 36,747 individuals extracted, we excluded
14,402 individuals due to the absence of liver ultrasound data,
19,013 non-diabetics, and 2,325 individuals with incomplete data.
Consequently, a cohort of 1,007 individuals was established. Based
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on ultrasound findings, 853 cases with CAP value exceeding 248
were categorized as the MAFLD group, while remaining 154 cases
comprised the non-MAFLD group. The wtint2yr data was utilized
to analyze the weight information of cases. (Figure 1)

Statistical analysis

Statistical analysis was conducted using SPSS 22.0 (IBM Corp.,
Armonk, New York, USA), R (version 4.4.1, Foundation for Statistical
Computing, Vienna, Austria, https://www.R-project.org), and the
nhanesR package. Multiple imputation of data was accomplished
utilizing the MICE package. For measurement data, t-tests were
applied for normally distributed data, while rank sum tests were
employed for skewed distributions. The results were presented as
Mean+SD or median (interquartile range). %2 tests were utilized for
the analysis of count data, and all data were represented as
proportions. Univariate and multivariate logistic regression
analyses were performed to explore the association between
various parameters and the MAFLD. The rcssci package
facilitated the creation of restricted cubic splines (RCS). Receiver
operating characteristic (ROC) curves and Decision Curve Analysis
(DCA) were utilized to assess the predictive value of different
indicators. The DeLong test was employed to compare the areas
under the ROC curves (AUC). A p-value of less than 0.05 was
considered statistically significant.

Results
General characteristics of T2DM

A total of 3,305 patients with T2DM were enrolled in the study,
with 1,074 (28.4%) belonging to the MAFLD group. To address
missing data, the MICE package was utilized for multiple
imputation (Supplementary Figure SI). Notably, the proportion
of males in the MAFLD group (73.8%) was significantly higher
compared to the non-MAFLD group (69.2%) (p<0.01).
Furthermore, the mean age of patients in the MAFLD group
(49.0£13.0 years) was significantly lower than that of the non-
MAFLD group (52.3+11.8 years). (p<0.001, respectively) (Table 1).
An analysis of patient characteristics revealed that the MAFLD
group exhibited significantly higher BMI, head, neck, waist, and hip
circumference compared to the non-MAFLD group (p<0.001,
respectively) (Table 1). These findings underscore the distinct
bodily characteristics of the MAFLD group, particularly their
elevated BMI and waist circumference.

The analysis of patients’ employment and income statuses
revealed that within the MAFLD group, 465 cases (43.3%) with
high school education or higher, 753 (70.1%) were engaged in full-
time employment, and 297 (27.7%) had an annual income exceeding
300,000 yuan. These percentages were significantly higher than those
observed in the non-MAFLD group, where 733 patients (32.9%) had
a high school education or higher, 1424 (63.8%) were employed full-
time, and 537 (24.1%) earned an annual income exceeding 300,000
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yuan (p<0.01, respectively) (Table 1). In terms of dietary habits,
patients in the MAFLD group exhibited significantly lower average
daily vegetable intake compared to the non-MAFLD group, whereas
their average daily fruit intake was notably higher. No significant
differences were observed in terms of daily intake of beans, fish, salt,
as well as the alcohol consumption, smoking habits, and sleep
patterns. Regarding SSB, 324 cases (30.2%) in the MAFLD group
reported consuming more than one sugary drink per week, a
significantly higher rate than the 427 patients (19.1%) in the non-
MAFLD group (p<0.001). Therefore, T2DM with MAFLD tend to
have a higher proportion of individuals with higher education and
income levels, the higher intake of SSB or fruits may increase the risk
of developing MAFLD.

Univariate and multivariate logistic regression analyses
demonstrated that gender, BMI, neck, waist, hip circumference,
education, and SSB consumption were independent predictors of
MAFLD (Supplementary Table S1; Supplementary Figure S2). To
further investigate the impact of SSB on MAFLD, we constructed
another three models: Model 2 adjusted for age and gender, Model 3
adjusted for age, gender, BMI, waist circumference, and education
level, and Model 4 adjusted for all other factors. Notably, across all
models, SSB consumption emerged as an independent risk factor
for MAFLD, with a clear trend indicating that increased beverage
intake is associated with a heightened risk of MAFLD in T2DM (p
value for trend <0.001) (Supplementary Table S2; Figure 2).

Abnormal glycometabolism correlated with
MAFLD

The fasting and postprandial GLU, C-peptide, HbAlc levels, as
well as creatinine, urine protein were individually assayed to assess
glycometabolism in T2DM patients. The results revealed
significantly elevated levels in the MAFLD group compared to the
non-MAFLD group, specifically: postprandial GLU (14.26+4.88
mmol/L vs. 13.60+4.89 mmol/L), fasting C-peptide (2.14+1.24
mmol/L vs. 1.72+1.13 mmol/L), postprandial C-peptide (4.21
+2.79 vs. 3.59+2.56), HbAlc (9.77+2.34 vs. 9.47+2.60), and urine
creatinine (12164.56+6741.25 vs. 11219.40+6623.04) (p<0.01,
respectively). No significant differences were observed in the other
parameters between the two groups (Table 2). Univariate and
multivariate logistic regression analyses identified fasting C-
peptide, HbAlc, and urine creatinine as independent risk factors
for the MAFLD (Supplementary Table S3).

The RCS curve provided an intuitive demonstration of these
correlations, revealing that as the levels of postprandial GLU and C-
peptide increase, the OR value for MAFLD also rises significantly.
Notably, a significant positive correlation is observed between
MAFLD and HbAlc (with levels below 11.0), whereas a negative
correlation emerges when HbAlc levels reach or exceed 11.0
(p<0.01). Additionally, the correlation analysis conducted on log-
transformed urinary creatinine suggested a significant nonlinear
association with MAFLD (p<0.05) (Figure 3). These findings
suggested that abnormal glycometabolism may elevate the risk of
MAFLD among T2DM patients.
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TABLE 1 General characteristics of enrolled T2DM patients.

10.3389/fendo.2025.1651370

Variables MAFLD (n=1074) t/x2/Z value
Age (years) 52.3%11.8 49.0+13.0 7.052 <0.001
Gender (Male) 1543(69.2%) 793 (73.8%) 7.644 0.006
BMI (kg/mz) 24.52+3.66 26.82+3.69 16.873 <0.001
Head circumference (cm) 55.92+2.40 56.67+2.24 8.564 <0.001
Neck circumference (cm) 36.62+3.64 38.40+3.42 13.678 <0.001
Waistline (cm?) 87.38+9.76 93.5249.11 17.738 <0.001
Hip circumference (cm?) 93.69+6.97 97.01+6.88 12.867 <0.001
Efiucatlon (a high school education or 733(32.9%) 465(43.3%) 34.200 <0.001
higher)
Full time job 1424(63.8%) 753(70.1%) 12.734 <0.001
<10000 50(2.2%) 16(1.5%)
10000-30000 117(5.2%) 43(4.0%)
Annual household
X 30000-100000 497(22.3%) 224(20.9%) 2.720 0.007
income (¥)
100000-300000 1030(46.2%) 494(46.0%)
>300000 537(24.1%) 297(27.7%)
None 1560(69.9%) 722(67.2%)
Smoking Infrequent 95(4.3%) 52(4.8%) 1.523 0.128
Regular 576(25.8%) 300(27.9%)
None 1445(64.8%) 665(61.9%)
Drinking (alcohol) Infrequent 643(28.8%) 336(31.3%) 1.548 0.122
Regular 143(6.4%) 73(6.8%)
<200g 531(23.8%) 312(29.1%)
200-400g 1102(49.4%) 529(49.3%)
Vi 1
ege:fb - 3.957 <0.001
(per day) 400-600g 566(25.4%) 224(20.9%)
>600g 32(14.3%) 9(8.4%)
<200g 1552(69.6%) 696(64.8%)
Fruit 200-400g 542(24.3%) 281(26.2%)
d 3.042 0.002
(per day) 400-600g 112(5.0%) 81(7.5%)
>600g 25(1.1%) 16(1.5%)
<1 time 430(19.3%) 221(20.6%)
>2 i 5
Fish tmes 350(15.7%) 169(15.7%)
<100g/time 0.850 0.395
(per day)
>2 times,
1451(65.0% 4(63.79
>100g/time 51(65.0%) 684(63.7%)
<100g 1310(58.7%) 647(60.2%)
Bean 100-250g 823(36.9%) 367(34.2%)
day) 0.522 0.602
(per day 250-400g 76(3.4%) 47(4.4%)
>400g 22(1.0%) 13(1.2%)
(Continued)
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TABLE 1 Continued

Variables M MAFLD (n=1074)  t/x2/Z value
<4g 113(5.1%) 46(4.3%)
Salt 4-6g 633(28.4%) 302(28.1%)
0.925 0.355
(per day) 6-8g 1073(48.1%) 515(48.0%)
>8¢g 412(18.5%) 211(19.6%)
1;;:12 or<l 1804(80.1%) 750(69.8%)
Sugar-Sweetened 1-2 bottles 194(8.7%) 121(11.3%)
Beverage 7.302 <0.001
(per week) 3-4 bottles 79(3.5%) 71(6.6%)
Ig/i(t’;ee:han > 154(6.9%) 132(12.3%)
Good 1781(79.8%) 837(77.9%)
Sleep Poor 442(19.8%) 233(21.7%) 1255 0.209
g:;fn dence 8(0.4%) 4(0.4%)
T2DM, Type 2 diabetes mellitus; MAFLD, Metabolic associated fatty liver disease; BMI, Body Mass Index.
Sugary Drinks (peer week) OR(95%Cl, P-value)
Model1 :
None or <1 bottle Reference
1-2 bottles —— 1.50 (1.18-1.91, p=0.001**)
3-4 bottles — 2.16 (1.55-3.01, p<0.001***)
More than 5 bottles . 2.06 (1.61-2.64, p<0.001***)
Model2 |
None or <1 bottle Reference
1-2 bottles '—-— 1.28 (0.99-1.64, p=0.059)
3-4 bottles —— 1.76 (1.24-2.47, p=0.001**)
More than 5 bottles — 1.64(1.26-2.14, p<0.001***)
Model3
None or <1 bottle | Reference
1-2 bottles —'— 1.16 (0.89-1.52, p=0.276)
3-4 bottles — 1.79 (1.25-2.58, p=0.002**)
More than 5 bottles —-— 1.41 (1.06-1.87, p=0.017%)
Model4 5
None or <1 bottle Reference
1-2 bottles —-— 1.13 (0.86-1.48, p=0.396)
3-4 bottles j —C—— 1.72 (1.25-2.58, p=0.004**)
More than 5 bottles - 1.31(0.98-1.75, p=0.070)
051 2 3

FIGURE 2

The multi-model logistic regression analysis for MAFLD exploring consumption of SSB in T2DM. Model 1 focused on a single-factor logistic
regression for SSB. Model 2 adjusted for the confounding factors of age and gender. Model 3 further incorporated BMI, waist circumference, and
education level into the lastly. Model 4 adjusted for all pertinent general characteristic parameters associated with MAFLD. T2DM, Type 2 diabetes
mellitus; MAFLD, Metabolic associated fatty liver disease; OR, Odds ratio.
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TABLE 2 Clinical parameters related to glycometabolism of enrolled T2DM patients.

Variables Non-MAFLD (n=2231) MAFLD (n=1074)

t/x2/Z value

GLU (Fasting, mmol/L) 9.20+3.57 9.31+3.37 0.836 0.403
GLU (2 hours postprandial, mmol/L) 13.60+4.89 14.261+4.88 3.670 <0.001
C peptide (Fasting, ng/mL) 1.72£1.13 2.14+1.24 9.343 <0.001
C peptide (2 hours postprandial, ng/mL) | 3.59+2.56 4.21%2.79 6.115 <0.001
HbAlc (%) 9.47+2.60 9.77+2.34 3.311 0.001
Cr (mmol/L) 69.16+26.64 69.06+21.45 0.121 0.904
Microalbuminuria (mg/L) 109.10+430.24 85.67+302.50 1.807 0.071
Urine creatinine (umol/L) 11219.40+6623.04 12164.56+6741.25 3.820 <0.001
- 1923(86.2%) 909(84.6%)
1+ 179(8.0%) 114(10.6%)
Urine protein 1.011 0.312
2+ 88(3.9%) 36(3.4%)
3+ 41(1.8%) 15(1.4%)
- 955(42.8%) 414(38.5%)
1+ 131(5.9%) 72(6.7%)
Urine sugar 2+ 140(6.3%) 76(7.1%) 1.513 0.130
3+ 359(16.1%) 201(18.7%)
4+ 646(29.0%) 311(29.0%)
- 2035(91.2%) 990(92.2%)
1+ 107(4.8%) 46(4.3%)
Uroketone 0.912 0.362
2+ 65(2.9%) 22(2.1%)
3+ 24(1.1%) 16(1.5%)

T2DM, Type 2 diabetes mellitus; MAFLD, Metabolic associated fatty liver disease; GLU, Glucose; Cr, Creatinine; HbAlc, Glycosylated hemoglobin.

Prediction model of MAFLD for T2DM

By pooling all parameters, a multivariate logistic regression
analysis was conducted to identify the independent factors of
MAFLD in patients with T2DM. These factors encompassed
fasting C-peptide, HbAlc, Ln (urine creatinine), gender, BMI, neck,
waist, and hip circumference, education level, and sugar drink
consumption, with VIF < 5 for all variables (Supplementary Table
S4). Subsequently, a forest plot was generated based on the OR values
and corresponding 95% confidence intervals for each parameter
(Figure 4). By integrating the regression coefficients, a MAFLD
model based on glycometabolism, termed MMBG, was successfully
established. Y=-7.605 + 0.106*(fasting C peptide)+ 0.080*(HbAlc)+
0.147*Ln (urine creatinine)- 0.387*(gender, male=1,female=0)
+0.066*(BMI)+ 0.052*(Waistline)+ 0.053*(neck circumference)-
0.040*(hip circumference)+ 0.255*(education, less than high school
=0, high school and above=1)+ 0.089(SSB, per week, 0: None or <1
bottle, 1: 1-2bottles, 2: 3—4 bottles, 3: More than 5 bottles).

The ROC and DCA analyses were further conducted using the
predicted values of the MMBG. Compared to the AUC values of
each clinical indicator, such as BMI, waist circumference, C-
peptide, HbAlc, and Ln (urine creatinine), the AUC value of the

Frontiers in Endocrinology

MMBG was significantly higher (Figure 5A; Table 3). Additionally,
the DCA curve suggested that the MMBG model possessed the
highest clinical application value (Figure 5B). Furthermore, the
calibration curve visually demonstrated a high degree of fit between
the MMBG and MAFLD, with a birer scaled value of only 0.11,
indicating its desirability as an ideal prediction model (Figure 5C).

In addition, the MMBG model achieved an AUC of 0.712 in
ROC analysis for MAFLD association, significantly outperforming
the AUC values of the comparator models: VAI (0.664), AIP
(0.666), and TyG (0.631) (Figure 5D; Table 4). Further decision
curve analysis (DCA) confirmed the superior clinical utility of
MMBG compared to other models (Figure 5E). Calibration curve
analysis revealed Brier scores of 0.03, 0.04, and 0.06 for the VAI,
AIP, and TyG models (Figure 5F), all significantly lower than that of
the MMBG model, further underscoring its robustness as a
predictive tool.

NHANES data validation

A total of 1007 diabetic patients were enrolled in the study,
comprising 853 patients with MAFLD (84.7%) and 154 patients
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without MAFLD (15.3%). Owing to the absence of serum C-peptide
data, we resorted to serum insulin as an alternative. Consistent with
the findings from our hospital’s cases, patients in the MAFLD group
exhibited significantly elevated levels of BMI, waist and hip
circumference, GLU, insulin, HbAlc, and urinary creatinine
compared to the non-MAFLD group (p<0.01, respectively).
Notably, there were no significant differences in other parameters
such as age, gender, and education level between the two groups.
To assess the association between dietary differences and
MAFLD, we analyzed the daily intake of energy, carbohydrates,
sugars, fats, proteins, and dietary fiber among the patients. These
intakes were categorized into four quartiles: Q1, Q2, Q3, and Q4.
The comparison revealed that the intake of sugars, fats, and proteins
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was significantly higher in the MAFLD group (p<0.05, respectively).
However, there were no significant differences in other parameters,
including energy, carbohydrate, and dietary fiber, as well as
smoking, drinking, and sleep habits, between the two groups.
(Supplementary Table S5)

Consistent with our findings, the univariate and multivariate
logistic regression analysis revealed that BMI, waist, hip
circumference, and sugars intake were independent influencing
factors for the MAFLD in diabetic patients. However, a notable
difference emerged in the NHANES data, where hyperglycemia
emerged as an independent risk factor for MAFLD, rather than
HbAlc, insulin, or urine creatinine (Figure 6; Supplementary
Table S6).
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Variables Levels OR(95Cl, P-value)
C peptide (Omin) 1.11 (1.03-1.19, p=.005) E-.-
HbA1c 1.08 (1.04-1.12, p<.001) E.
Ln(Urine creatinine) 1.15 (1.00-1.33, p=.042) :—.—'
Gender Female Reference *
Male 0.68 (0.54-0.86, p=.001) —— i
BMI 1.07 (1.03-1.12, p=.002) E.
Neck circumference 1.05 (1.02-1.09, p=.003) _
Waistline 1.05 (1.04-1.07, p<.001) |.
Hip circumference 0.96 (0.94-0.98, p<.001) .
Education Less than high school Reference i
High school and above 1.28 (1.09-1.52, p=.003) E ——
Sugary drinks None or <1 bottle Reference *
(peer week) |
1-2 bottles 1.09 (0.84-1.42, p=.525) 1
3-4 bottles 1.52 (1.06-2.19, p=.023) i
More than 5 bottles 1.21 (0.91-1.62, p=.186) —_—
05 10 15 20
Odds Ratio (95% CI)
FIGURE 4

Forest plot depicting the OR values and 95% CI of independent factors for MAFLD in T2DM through multivariate logistic regression analysis. T2DM,
Type 2 diabetes mellitus; MAFLD, Metabolic associated fatty liver disease; BMI, Body Mass Index; HbAlc, Glycosylated hemoglobin; OR, Odds ratio.

Discussion

In 2020, there was a notable paradigm shift in the classification
of fatty liver diseases, marked by the introduction of MAFLD (1,
20). This revolutionary concept significantly enhanced the
description of liver diseases by incorporating indicators of
metabolic abnormalities, including insulin resistance, sensitivity to
C-reactive protein, and various other accompanying metabolic
predisposition factors (1, 20). The pathogenesis of MAFLD
involves ectopic accumulation of “unhealthy” fat, primarily in the
liver, muscle, and visceral adipose tissue (21). Unlike NAFLD,
which excludes viral hepatitis, alcoholic liver disease, and other
liver conditions, the diagnostic criteria for MAFLD adopt a more
practical approach by incorporating metabolic markers (22, 23).

In this study, we observed that among T2DM patients with
MAFLD, the proportion of individuals with high BMI, education
and income levels was significantly higher than that among non-
MAFLD. Notably, the consumption of SSB emerged as the factor for
the development of MAFLD in T2DM, with an escalating risk
associated with increased beverage intake. Epidemiological research
across 184 countries revealed that diet-related T2DM is generally
more prevalent among urban residents compared to rural ones, and
individuals with higher educational levels tend to be more (24).
Consistent with our findings, the odds ratio (OR) for MAFLD
among T2DM patients increases significantly with elevations in
serum C-peptide and GLU, indicating a close association between
the abnormal glycometabolism and the risk of MAFLD.

Frontiers in Endocrinology

Excessive consumption of SSB not only increases the risk of
T2DM but also leads to insulin resistance, ectopic fat accumulation,
and PB-cell dysfunction, and involves complex interactions with
conditions such as vascular-hepatic diseases. Under prolonged
high-sugar stimulation, pancreatic fB-cell function gradually
impairs, resulting in relative or absolute insulin deficiency and
leading to insulin resistance (25). In the state of insulin resistance,
the liver’s sensitivity to insulin’s suppression of gluconeogenesis
decreases, but hepatic de novo lipogenesis (DNL) is not suppressed
and may even be enhanced, leading to hepatic steatosis and liver
disease (26). For example, in Latino populations with the PNPLA3
GG genotype, the intake of total sugar, fructose, sucrose, and
glucose was associated with liver disease incidence and liver
stiffness (27). Recent evidence suggests that sugar-driven
metabolic stress also affects systemic vascular damage. Chronic
hyperglycemia disrupts endothelial homeostasis by inducing
oxidative stress, manifested as increased p65 phosphorylation,
upregulation of PTEN, and inhibition of SET protein, thereby
promoting monocyte/endothelial adhesion (28). Hyperglycemia
also activates the advanced glycation end products (AGEs)-RAGE
axis, exacerbating oxidative stress and inflammatory phenotypic
switching in vascular smooth muscle cells (29). Additionally,
glycemic variability (especially high-low fluctuations) further
impairs endothelial function and increases reactive oxygen species
(ROS) generation via the TGF-B/SMAD3 pathway (30). In patients
with familial hypercholesterolemia (FH), synergistic effects between
high LDL-C levels and hyperglycemia were observed: the NLDLR
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FIGURE 5

Glycometabolism-based prediction Model, MMBG, for MAFLD in T2DM. (A, B), Comparative analysis of ROC and DCA curves between MMBG and
clinical parameters, including BMI, waist, fasting C-peptide, HbAlc, and Ln (urine creatinine). (C) Analysis of the calibration curve comparing the
predicted values of the MMBG model with the actual MAFLD status. (D, E) Comparative analysis of ROC and DCA curves between MMBG and other
models, including TyG, AIP, VAL (F) Analysis of the calibration curve comparing the predicted values of the AIP model with the actual MAFLD status.
T2DM, Type 2 diabetes mellitus; MAFLD, Metabolic associated fatty liver disease; BMI, Body Mass Index; HbAlc, Glycosylated hemoglobin; ROC,
Receiver operating characteristic; DCA, Decision Curve Analysis; VAI, Visceral Adiposity Index; TyG, Triglyceride-Glucose Index; AIP, Atherogenic
Index of Plasma.

TABLE 3 Comparison of ROC curves between MMBG model and individual clinical parameters.

Variables AUC(95%ClI) Sensitivity Specificity Z statistic (p value)
MMBG 0.712(0.696-0.728) 0.009 0.812 0.506

BMI 0.685(0.669-0.701) 0.009 0.751 0.544 <0.001

Waistline 0.684(0.668-0.700) 0.009 0.670 0.613 <0.001

C peptide (Fasting) | 0.615(0.598-0.632) 0.010 0594 0.590 0011

HbAlc 0.546(0.529-0.563) 0.010 0.667 0436 <0.001

Ln (Urine

creatinine) 0.546(0.528-0.563) 0.011 0.567 0.529 <0.001

T2DM, Type 2 diabetes mellitus; MAFLD, Metabolic associated fatty liver disease; MMBG, MAFLD model based on glycometabolism; BMI, Body Mass Index; HbAlc, Glycosylated hemoglobin;
AUC, Areas under the ROC curves.
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TABLE 4 Comparison of ROC curves between MMBG model and other models.

Variables AUC(95%ClI) Sensitivity Specificity Z statistic (p value)
MMBG ‘ 0.712(0.696-0.728) ‘ 0.009 ‘ 0.812 ‘ 0.506 ‘

VAI ‘ 0.664(0.648-0.680) ‘ 0.010 ‘ 0.628 ‘ 0.625 ‘ <0.001

AIP ‘ 0.666(0.650-0.682) ‘ 0.010 ‘ 0.713 ‘ 0.540 ‘ <0.001

TYG 0.631(0.614-0.648) 0.010 ‘ 0.649 0.541 <0.001

T2DM, Type 2 diabetes mellitus; MAFLD, Metabolic associated fatty liver disease; MMBG, MAFLD model based on glycometabolism; VAI, Visceral Adiposity Index; TyG, Triglyceride-Glucose

Index; AIP, Atherogenic Index of Plasma.

group showed higher FPG and HbAIc levels than the LDLR group,
suggesting that the impact of different genotypes on glucose
metabolism may exacerbate vascular inflammation through
mitochondrial dysfunction (31). Hyperglycemia alters monocyte
glucose metabolism, promoting their recruitment into plaques and
differentiation into pro-inflammatory macrophages, directly
accelerating peripheral atherosclerosis (32).

Additionally, the liver-kidney axis has been increasingly
recognized as playing a key role in metabolic diseases. In cases of
mild acute hyperbilirubinemia (total bilirubin 12.4+7.3 mg/dL) with
normal conventional renal parameters (such as creatinine and
urea), patients still showed significantly elevated urinary markers
of renal tubular injury (u-NGAL, u-B2M, u-OPN, u-TFF3, u-Cys),
indicating the presence of subclinical renal tubular damage and
supporting the important role of metabolic stress in the liver-kidney
axis (33). Recent research has also confirmed the significant impact
of dietary sugar intake on kidney disease. For example, a high-
fructose diet (24 weeks) can induce insulin resistance, dyslipidemia,
and renal dysfunction, manifested as decreased glomerular filtration
rate and elevated markers of renal tubular injury (34). This damage

Univariate Logistics Analysis

may be related to oxidative stress and activation of inflammatory
pathways resulting from fructose metabolism, in which the JNK
signaling pathway plays a key role in the renal stress response (34).
On the other hand, the conversion of fructose into glucose, lactate,
and fatty acids in the liver may produce nephrotoxic metabolites
(35). The combined intake of high-sugar and high-fat diets can
accelerate functional disorders of the liver-kidney metabolic axis
through insulin resistance and elevated triglyceride-rich
lipoproteins (36).

In this study, we integrated the independent influencing factors of
MAFLD, including fasting C-peptide, HbA ¢, BMI, waist, and SSB, to
develop a glycometabolism-based prediction model, MMBG, for
MAFLD in T2DM. The clinical utility of MMBG was significantly
superior to any individual clinical indicator, exhibiting a high degree
of concordance with the actual data. Further external validation using
NHANES data confirmed that BMI, waist, hip, sugar intake, and
hyperglycemia were independent predictors of MAFLD in diabetic
patients in the United States. Despite the high prevalence and severe
implications of MAFLD in patients with T2DM, it often remains
overlooked in clinical practice. Given MAFLD’s contribution to

Multivariate Logistics Analysis

Variable OR(95%Cl, p value) OR(95%Cl, p value)
BMI 1.18 (1.11-1.25, p<0.001) | + 1.15 (1.01-1.32, p=0.04) —'—
Waistline 1.08 (1.06-1.10, p<0.001) - 1.09 (1.04-1.13, p<0.001) +
Hip 1.07 (1.04-1.09, p<0.001) l 0.93 (0.87-0.99, p=0.02) +
Glu 1.21 (1.08-1.36, p=0.002) —— 1.24 (1.08-1.42, p=0.003) ——
Insulin 1.04 (1.00-1.07, p=0.04) n 1.00 (1.00-1.01, p=0.33) i
HbA1c 1.20 (1.05-1.37, p=0.01) + 0.88 (0.68-1.14, p=0.33) —-—
Ln(urine creatinine) 2.07 (1.42-3.01, p<0.001) : —_— 1.23 (0.88-1.71, p=0.22) _'_'—
Energy 1.27 (0.97-1.67, p=0.08) *—H
Carbohydrate 1.27 (0.96-1.67, p=0.09) ‘—I— .
Total sugars 1.31(1.01-1.70, p=0.04) + 1.48 (1.12-1.95, p=0.01) _—
Total fat 1.39 (1.01-1.92, p=0.04) —-— 1.26 (0.82-1.95, p=0.28) ——'—
Total protein 1.44 (1.04-1.98, p=0.03) —-— 1.35 (0.03-1.96, p=0.11) —-—-7
Dietary fiber 1.21 (0.93-1.58, p=0.15) —|—
l l \ i !
1 2 3 1 2

Odds Ratio (95%Cl)

FIGURE 6

0Odds Ratio (95%Cl)

Forest plot depicting the OR values and 95% CI of independent factors for MAFLD among diabetes patients sourced from the NHANES database,
analyzed through univariate and multivariate logistic regression. T2DM, Type 2 diabetes mellitus; MAFLD, Metabolic associated fatty liver disease;
BMI, Body Mass Index; GLU, Glucose; HbAlc, Glycosylated hemoglobin; OR, Odds ratio.
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extrahepatic morbidities and mortality, it is imperative to enhance
awareness among all key stakeholders, including primary care
physicians, specialists, and health policymakers, regarding MAFLD
as a prevalent end-organ complication of T2DM, alongside the well-
established microvascular and macrovascular complications (37). As
early as 2016, the European Association for the Study of the Liver
jointly issued the first recommendation for universal screening of
NAFLD/MAFLD in patients with T2DM (38).

Among various diagnostic tools, liver biopsy remains the gold
standard for diagnosing MAFLD. However, its invasiveness poses as
one of its major drawbacks. Although ultrasound offers a cost-
effective option, its accuracy heavily relies on the operator’s
experience and the intricacies of the technique. Other imaging
modalities, including magnetic resonance spectroscopy, computed
tomography, and vibration-controlled transient elastography, are
prohibitively expensive for widespread screening. In this study, we
demonstrate that a combination of anthropometric measurements,
sugar intake assessment, and GLU/HbAlc monitoring can
effectively predict the risk of MAFLD in T2DM. This approach
holds significant value in assessing patient conditions and
facilitating individualized interventions.

To put these findings into practice, we propose feasible
strategies. Integrating SSB intake screening into routine diabetes
care through electronic health record alerts and the MMBG risk
model can guide personalized dietary counseling. Advocating for
taxation on SSBs and subsidies for healthy alternatives, especially in
high-risk urban T2DM populations, is recommended. Nutritional
education for T2DM patients should emphasize the direct
association between sugary beverages and T2DM-related risks,
helping patients identify free and added sugars and avoid hidden
sugar intake. Furthermore, the predictive value of the MMBG score
can also guide early pharmacological interventions. For example,
emerging lipid-lowering and hypoglycemic drugs, as well as anti-
inflammatory approaches, can synergize with dietary strategies to
slow the progression of MAFLD and even renal injury. Studies have
shown that soy-derived genistein, in animal models, regulates lipid
metabolism, reduces hepatic lipid accumulation, and indirectly
improves MAFLD-related renal metabolic abnormalities by
modulating gut microbiota-produced butyrate (39). Pueraria
flavonoid activates the AMPK pathway, exerting lipid-lowering
and anti-inflammatory effects, and may enhance drug efficacy
when combined with dietary intervention (40).

As a single-center study, this paper has several defects and
limitations. For example, the performance of the MMBG prediction
model (AUC = 0.712) is moderate, which limits its immediate
clinical application. The diagnosis of MAFLD relies on ultrasound,
lacking mechanistic biomarkers such as adipokines, cytokines, or
oxidative stress mediators. There is also a lack of assessment of
overall dietary patterns. Future prospective studies should combine
non-invasive imaging technology with biomarker analysis and
further evaluate total caloric intake, macronutrients, overall
dietary patterns, and physical activity levels to comprehensively
assess the impact of dietary nutritional factors on metabolic diseases
such as MAFLD.
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In summary, for patients with T2DM, SSB is an independent
risk factor for MAFLD. Based on the positive correlation between
MAFLD and abnormal glycometabolism, the developed MMBG
model can effectively predict the risk of MAFLD in T2DM and will
have significant value in patient assessment and personalized
intervention strategies.
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