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To date, no shared guidelines have been approved for the diagnosis and

management of low bone mineral density (BMD), especially in early infancy.

Therefore, there is an increasing demand for new methodologies to allow the

assessment of bone health status in this specific cohort, which is exposed to

several risk factors (e.g. maternal vitamin D deficiency, pregnancy-associated

diseases, preterm birth and comorbidities, low birth weight, intrauterine growth

restriction). Currently, the assessment of BMD in newborn and infants relies

mainly on serum and urinary biochemical markers, in association with several

technologies to measure bone mineral content, such as dual-energy X-ray

absorptiometry (DXA) and quantitative ultrasound (QUS) being traditionally

used, despite many limitations. More recently, Radiofrequency Echographic

Multi-Spectrometry (REMS) emerged as a promising tool in clinical practice for

screening and monitoring BMD. Due to the radiation-free technology, an

extremely ease of use, low costs, an excellent degree of sensitivity, specificity,

and reproducibility, REMS technology has proven to be the gold standard

technique in sensitive populations such as pregnant women, newborns and

infants, allowing mass extended screening strategies. However, to date no

validate cut-off reference for REMS in paediatric age are available. Future
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longitudinal studies on REMS methodology are needed to build reference

standards and new shared algorithms, combining biochemical and

instrumental data, for the diagnosis, management and treatment of decreased

BMD before and after birth.
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1 Introduction

The term “bone health” usually refers to bone’s strength,

expressed as fracture resistance and measured by bone mineral

reserve (1, 2). However, bone health appears to be more complex,

including also all the intrinsic and extrinsic factors that may

contribute to it, already during prenatal life. As a result, bone

health relies on a sophisticated interplay between biological,

genetics, metabolic, hormonal, environmental, mechanical, and

nutritional factors, whose intricate interaction starts in the early

stages of intrauterine life, continuing throughout childhood, and

peaking between the second and third decade of life, when “peak

bone mass” is reached (3). Indeed, it is well known that the main

factors determining bone health exert their influence since prenatal

age and mainly during the third trimester of pregnancy (Figure 1),

when up to 80% of fetal bone mineral accumulation occurs, and a

progressive expansion of bone volume takes place through an

increase in trabecular thickness and cortical architecture under

the control of mineral availability (4). Therefore, most of the

information on factors affecting bone health in early childhood

comes from studies carried on premature infants. Since the great

majority of bone mineralization occurs during the third trimester,

preterm birth represents per se a risk factor for decreased bone

mass: the sudden interruption of transplacental transport of

calcium and phosphate due to premature birth and the co-

occurrence of conditions such as sepsis, necrotizing enterocolitis,

cholestasis, bronchopulmonary dysplasia, etc., as well as low birth

weight (less than 1500 g) or intrauterine growth restriction (IUGR)

make premature babies more at risk of developing reduced bone

mineralization in later life (5).

In recent years, expanding knowledge of fetal bone development

has led to the identification of a growing number of endocrine and

non-endocrine factors that play a key role in ensuring bone health.

The role of leptin, cytokines, oxidative stress (OS) and

endocrine disrupting chemicals (EDCs) on bone formation and

resorption is emerging, in addition to the pregnancy specific

regulation of calcium-phoshate metabolism and the well-known

influence of cortisol, GH/IGF-1 axis and vitamin D status. In

particular, cytokines (IL-1, IL-6 and TNF-a) and oxidative stress

exert their negative effects by impairing osteoblast differentiation

and bone remodeling in favor of resorption. Likewise, high plasma

levels of EDCs, such as poly- and perfluoroalkyl substances (PFAS),
02
in first 1000 days of life are associated with lower bone mineral

density (BMD) SDS at age of 3 years (5–8). Furthermore, these

substances seem to have long-term effects on bone health through

multiple epigenetic mechanisms and gene expression modulation.

In addition, maternal issues during pregnancy, such as vitamin D

deficiency, impaired body composition and nutrition, pregnancy-

related diseases, have been widely reported as influencing fetal bone

mass and BMD and peak bone mass in adulthood, even though the

pathogenic mechanisms of fetal endocrine programming is not yet

completely understood (9–13).

It is therefore quite necessary to implement effective strategies

for bone health prevention, starting with the identification of the

categories of patients most at risk, including the application of new

technologies that could be non-invasive, easily, and longitudinally

performed, suitable and applicable in early childhood, to assess any

changes in bone health status (14, 15). Over the years, several

technologies have been proposed to measure bone mineral content,

including dual-energy X-ray absorptiometry (DXA) and

quantitative ultrasound (QUS), which are traditionally used (16–

20). Most recently, Radiofrequency Echographic Multi-

Spectrometry (REMS) has emerged as a promising tool in clinical

practice for screening and monitoring BMD.

Aim of this narrative review is to summarize the state of the art

on technologies currently available for the assessment of bone

health in the early infancy, focusing on new emergent

methodologies for early identification, stratification, and

management of osteopenia in this specific cohort of patients.
2 The main technologies to assess
bone health in early infancy

2.1 Dual x-ray absorptiometry and x-ray

Dual X- ray absorptiometry (DXA) is a speed, precise, safety,

relatively low-cost technique and it has been considered recently as

the gold standard for the evaluation of bone density

parameters.Since its introduction in clinical practice, DXA scans

have been performed both in infants and children, and numerous

research studies validated its precision and accuracy (16, 21, 22).

Two DXA parameters, BMC (bone mineral content) and BMD,

provide informations on the state of bone health through the
frontiersin.org

https://doi.org/10.3389/fendo.2025.1651094
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Pepe et al. 10.3389/fendo.2025.1651094
analysis of different X-ray absorption by the bone, subtracting soft

tissue components.

In clinical practice, the reference parameter is Z-score, defining

the number of standard deviations of the patient’s bone density with

respect to a reference population of the same age, gender

and ethnicity.

Due to the rapid growth characterizing the early age of life, the

information about BMD in children under 3 years of age is mainly

obtained through the evaluation of whole-body measurements,

while the posterior anterior lumbar spine scans are less frequently

used under 5 years of age. Although both the sites have been

validated by current recommendations of the International Society

for Clinical Densitometry (ISCD) (23), areal BMD measurement

should not be used routinely in infants (difficulty to place the babies

in appropriate positioning, scarce uniformity of bones in the three

dimensions secondary to the rapid growth process) (24).

There are some important limitations to the use of DXA in early

infancy: in addition to limited availability secondary to cumulative

radiation exposure, the accuracy of DXA is also affected by technical

and operator variability, with significant variation in the parameters

reported for a subject due to different skills and software used for

analysis. In addition, variations in height, skeletal size and shape

and the amount of soft tissue that occurs during the rapid growth of

infants may limit the comparative evaluation of DXA scans at

various ages. In children, DXA BMD measurements are influenced

by height, so bone mineral apparent density, and height-for-age Z

score are used and recommended to reduce the confounding effect

of short stature on spine bone density (16, 25–27).

Overall, X-rays have limited application in assessing bone

status. According to the literature, X-rays could be used to

identify significant signs of osteoporosis or bone fractures, but
Frontiers in Endocrinology 03
they are not suitable for early diagnosis: some forms of

osteoporosis with bone loss <20-40% may not be evident with

this technique, and significant degrees of demineralization or

fractures may be absent at an early stage (28). Despite this, the

Koo score (29) is still used to describe the radiological features of

metabolic bone disease (MBD) in premature infants.
2.2 Quantitative ultrasound

Quantitative Ultra Sound (QUS) is an non-invasive, unexpensive,

portable and radiation-free method to assess bone density in children,

especially for very young pediatric populations, where the use of

traditional techniques, such as DXA may be less appropriate

considering the exposition to ionizing radiation (30). It assesses

both BMC and quantitative properties of bone (cortical thickness,

microarchitecture, and elasticity), providing comprehensive

information on “bone strength” through the evaluation of two

parameters: speed of sound (SOS) and bone transmission time

(BTT), depending on the velocity or attenuation of the ultrasound

waves through the bone tissue (29, 31). QUS could be used in the

assessment of bone mineral status in both preterm infants and

children and appropriately in the evaluation of MBD. Most QUS

devices are designed to be positioned only on a single skeletal site (e.g.

proximal phalanges of the hand, heel, radius and/or tibia), but a

multisite QUS device is also available, with different probes on one or

more skeletal sites, which in children are usually the tibia (midshaft)

and radius (distal third) (20, 32–34).

Althoug QUS devices are suitable for pediatric patients, there

are currently insufficient data to determine whether this technique

is equivalent to DXA in providing an estimate of bone health, and
FIGURE 1

Factors influencing negatively bone health status before and after birth. IUGR, intrauterine growth restriction; BPD, Bronchopulmonary dysplasia;
NEC, Necrotizing enterocolitis.
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the limited information available from comparing BMD measured

with QUS and DXA has shown conflicting results.

Furthermore, the absence of reliable reference values for

pediatric age, the impossibility to using it for the axial skeleton,

and technological diversity among QUS devices, both in terms of

measurements sites and bone parameters, represent a major

problem in the widespread use of QUS in clinical practice (35–38).
2.3 Radiofrequency echographic multi
spectrometry

The most recently validated instrumental technique to measure

bone mineral status is known as Radiofrequency Echographic

Multi-Spectrometry (REMS). REMS is a non-invasive radiation-

free methodology, based on the use of ultrasound (39–41).

In adults, REMS technology enables the assessment of axial

BMD by a rapid ultrasound scan of lumbar vertebrae (80 s scan)

and femoral neck (40 s scan), which represents central anatomical

reference sites (42).

The basic principles of this technology consist in a combination

between radiofrequencies signals and ultrasound imaging, acquired

by a transducer. Simultaneous acquisition of radiofrequencies

(native unfiltered ultrasound signals) allows to obtain all available

information about the site studied, resulting in more precise and

complete acquisition than other conventional ultrasound-

based approaches.

The unfiltered radiofrequency signals acquired are then

processed by a fully automatic algorithm, transformed into a

specific spectrum of the patient, and compared with previously

established reference spectral models matched by gender, age and

BMI of healthy and osteoporotic bones (39, 43).

Starting from a simple and fast ultrasound scan, this approach

allows to obtain quantitatively and qualitatively relevant information

about bone health status. Indeed, in addition to quantitative

parameters provided by DXA examination, REMS technology

provides also a measure of bone quality through the Fragility score,

a system validated to estimate 5-years prediction of fracture risk (44).

The 5-year follow-up study by Pisani et al. showed that REMS

fragility score to be superior to the only BMD in fracture risk

prediction for femur and spine, thanks to the additional

information conveyed by REMS technology (45).

Di Paola et al. (46) compared REMSmethodology with DXA for

osteoporosis diagnosis, enhancing a satisfactory accuracy and

precision. Interestingly, the high level of precision of REMS

indicates a low intra-operator variability, which represents one of

the main advantages of this technology.

Likewise, the REMS methodology showed a specificity and

sensitivity (90.4% and 95.5%, respectively) comparable to DXA at

femoral neck evaluation. Furthermore, studies in both Caucasian

and Japanese subjects recently enhanced a potentially more accurate

measure of REMS BMD versus DXA BMD, thanks to the possibility

to automatically ignore artefacts due to calcifications, osteophytes,

fractures, etc. (47–49).
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Notably, the non-ionizing radiation technology and the high

rate of reproducibility of REMS examinations makes this technique

suitable for regular monitoring of BMD, both in primary prevention

and in tracking therapeutic responses. Moreover, the extremely ease

of use, the portability of the device, and the lower costs allow REMS

methodology to be successfully employed in several healthcare

settings, minimizing operator-dependent bias (41).

Accordingly, the several advantages of REMS support the use of

this technology as a valuable alternative to DXA and QUS in bone

health evaluation, especially in sensitive populations, such as the

foetus and the newborn, which enable to safely fulfill extended mass

screening strategies. However, the use of REMS is only partially

known and shared in clinical practice to date, especially in early

infancy. De Gennaro et al. validated REMS methodology in

pregnant women, suggesting REMS as the new gold standard for

the evaluation of the BMD in this specific cohort (37, 40, 50).

Data on the use of REMS in the newborns are extremely scarce

and consequently reference models and population-based data are

still lacking. In this regard, Perrone et al. proposed an algorithm

which emphasizes the use of REMS during prenatal and postnatal

life, in presence of maternal and fetal risk factors. This model is

based on the association of echographic data with serum and

urinary markers of bone metabolism to determine bone mineral

status (51). Very recently, the same authors developed a pioneering

study protocol to evaluate and standardize REMS BMD from

intrauterine to extrauterine life. It consists in a multicenter

clinical trial - currently ongoing- and included 200 mother-

newborn dyads, with REMS follow-up planned until 12 months

of age (52). Of course, to get an accurate and precise measurement

in newborn and infants, it could be advisable to hold the baby still

during the scanning by using immobilisation devices, parents, and/

or staff, and to make repeated scans of the same site. Indeed, due to

its safe and easy use, REMS technology could contribute to improve

the knowledge of bone health before and after birth, thus allowing

effective prevention strategies and stratification of the risk of

fractures, with valuable insights for both obstetric and neonatal

care (e.g type of delivery, type of intervention for the shoulder

dystocia, specific programs for newborns with low bone

mineral status).
3 Discussion

The accumulation of “bone mass”, which is a determining factor

in bone strength and fracture risk, takes place during a delicate

“time window” that begins during intrauterine life, and extends

from childhood to early adulthood, representing an important

period for achieving maximum growth and development of bone

mineral tissue. Currently, bone health assessment cannot be

separated from the analysis of serum and urinary biochemical

markers, whose levels are reliable indicators of bone health and

turnover, useful in identifying conditions associated with decreased

BMD. However, there are still significant limitations for early

diagnosis of MBD, even in at-risk categories.
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In recent years, most research has focused on identifying

screening strategies to measure bone mineral status in targeted

populations, known to be more exposed to risk factors for

osteopenia, such as premature birth, low or very low birth weight,

IUGR, comorbidities of prematurity, total parenteral nutrition,

maternal vitamin D deficiency, and several pregnancy-associated

diseases (e.g., gestational diabetes). However, to date there are no

shared guidelines or universal consensus for the diagnosis and

management of MBD, particularly in early childhood.

In addition to already known pathological conditions, there are

other factors that appear to influence bone health and strength, thus

modulating lifetime risk of osteoporosis, such as the recently

discovered epigenetic effects of fetal programming, OS and EDCs,

also in full term healthy babies (51, 53–55).

The measurement of BMD in early infants is a controversial issue,

due to the limitation of current diagnostic techniques in detecting

early markers and/or signs of MBD, which is usually diagnosed in

advanced stages, when there is a consistent lack of the expected

mineralization for age. To date there is no universally accepted

method for a large-scale screening of bone health, mainly because

most techniques used for BMD measurement require ionizing

radiation, instrumental dimensions are often inadequate for infants,

and the time required to motion artifacts represent an unresolved

issue. Nevertheless, there is an urgent need for non-invasive screening

programs for the implementation of prevention strategies and early

identification of BMD alterations (11–14, 51, 56, 57).

Currently, DXA and QUS are traditionally used, despite several

limitations (Table 1). Although DXA remains the gold standard

technique for evaluating bone health, the issue of radiation exposure

and the rapid changes in skeletal size may limit its application in

early age. The use of QUS has been implemented in recent years,

probably due to its accessibility and safety, but its validity in

measuring BMD in early childhood is still a matter of debate. The

lack of universal QUS threshold values and validated reference cut-

offs, the differences in ROIs and bone properties measured, and

high percentage of classification errors compared to DXA scans
Frontiers in Endocrinology 05
make these techniques non-interchangeable in assessing the bone

status of children (36, 58–60).

More recently, REMS has been proposed as an innovative

ultrasound-based technology with valuable insights in several

clinical settings. Over the last years, studies carried out in

adulthood underlined that REMS is a promising and ductile

methodology, relying on a specificity and sensitivity highly

comparable to DEXA at femoral neck evaluation, together with a

satisfactory degree of accuracy and precision (42, 46, 47). Moreover,

when compared to other densitometric techniques, REMS

technology showed a potential superiority, providing not only

traditional quantitative parameters (BMD, T-score and Z-score),

but also qualitative estimation of bone quality through the Fragility

score (44, 45). These features, in addition with a high rate of

reproducibility, make REMS BMD measurements suitable for

short-term therapeutic monitoring, overcoming the temporal

limits existing for other densitometric techniques, which typically

require a minimum interval of at least 1 year between two scans.

Due to the non-ionizing radiation methodology, an extremely ease

of use, a high rate of reproducibility, and low costs, REMS appears

to be the elective technology for BMD screening, even in sensitive

populations such as in pregnancy and childhood.

Despite these advantages, there are some limitations in the

application of REMS methodology on a large scale of patients,

including the impossibility to obtain “whole body” measurements,

which could be useful in early childhood because of the rapid

growth of body. Above all, reference limit values for measurements

of BMD with REMS in early childhood is still missing. The lack of

information about the distribution of BMD in newborns limits the

application of this methodology, but preliminary and encouraging

data from ongoing research studies may support the validity of

BMD Z-score measurement in a single site to evaluate bone

status (52).

In the future, the integration of REMS in early MBD screening

could have important insights, taking into account the actual

absence of a technique giving complete information on bone
TABLE 1 Key points of the main technologies to assess bone health in early infancy.

Technologies Advantages Disadvantages

DXA

• Gold standard, widely used.
• Cut-off values available for pediatric age.
• Measures bone quantity (BMC and BMD).
• Good precision and accuracy.
• Medium cost.

• Ionizing radiation exposure.
• Not portable.
• No information on bone quality.
• Intra-operator variability.

QUS

• Radiation-free.
• Measures bone quantity by computing SOS and BTT.
• Easy to use.
• Portable.
• Low cost.

• Single site (usually) - Not suitable for axial skeleton.
• Not well-defined accuracy in BMD estimation in pediatric age.
• Lack of reference cut off for pediatric age.

REMS

• Radiation-free.
• Measures bone quantity and quality (BMD, fragility score).
• High precision and accuracy.
• Easy to use.
• Portable.
• Low cost.

• Not whole body measurement.
• Lack of reference cut off for pediatric age.
• Not widely used and shared in clinical practice.
DXA, Dual X- ray absorptiometry; QUS, Quantitative Ultra Sound; REMS, Radiofrequency Echographic Multi-Spectrometry; BMC, bone mineral content; BMD, bone mineral density; SOS,
speed of sound; BTT, bone transmission time.
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mineral quality in newborns and infants. Of course, the

identification of early physiological and non-physiological

variations of bone structure through REMS may have long-term

implications for lifelong skeletal health, thus offering unique

information not always accessible via traditionally used

imaging techniques.

In conclusion, innovative, non-invasive and ductile

technologies, such as REMS methodology, would open new

scenarios to significantly improve neonatal/pediatric care with

screening strategies for bone health assessment, resulting in a

potential reduction in MBD. and risk of long-term fractures.

Future longitudinal studies on this issue are needed to allow the

building of new shared algorithms and dedicated software,

combining biochemical and instrumental data, for the diagnosis,

management and treatment of decreased BMD in early infancy.
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