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Urinary lipid metabolites and
progression of kidney disease in
individuals with type 2 diabetes

Yu Xiao', Caifeng Shi', Songyan Qin, Aigin He, Xiaomei Wu,
Chunsun Dai* and Yang Zhou*

Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing,
China

Objective: A substantial proportion of individuals with type 2 diabetes (T2D)
experience a fast decline (FD) in kidney function, a high-risk phenotype not
reliably identified by current clinical markers. This study aimed to evaluate the
potential of urinary lipid metabolites as novel predictors for the rapid progression
of diabetic kidney disease (DKD).

Methods: This investigation employed a dual-phase design comprising cross-
sectional screening and longitudinal validation. In the initial phase, targeted
lipidomic profiling of urine samples from 152 patients with T2D and DKD and
152 age- and sex-matched individuals with uncomplicated diabetes revealed
distinct metabolite patterns. The subsequent validation phase utilized an
independent cohort of 248 T2D patients, in which rapid kidney function
decline was defined as the highest quartile of annual estimated glomerular
filtration rate (eGFR) reduction. Feature selection was performed using
machine learning algorithms (random forest and Boruta) to identify potential
biomarkers from the differentially expressed metabolites. The prognostic value of
these lipid markers for predicting future renal function decline was assessed
against clinical variables using receiver operating characteristic (ROC) analysis.
Results: The analysis of fasting spot urine specimens quantified 104 lipid
metabolites out of 508 targeted species, with all concentrations normalized to
urinary creatinine. The comparative analysis identified 21 lipid metabolites that
were significantly upregulated in the DKD group. Feature selection algorithms
isolated nine (Boruta) and eight (random forest) candidate biomarkers from this
pool. During a median follow-up period of 33 months (IQR 17-47), 62
participants showing the most rapid eGFR decline were classified as the FD
group. These individuals exhibited significantly elevated baseline levels of the
identified lipid metabolites. The lipid panel demonstrated superior predictive
performance for future kidney function decline compared with traditional clinical
predictors, including baseline eGFR, hemoglobin Alc, and albuminuria.
Conclusions: Our findings reveal a strong association between urinary lipid
metabolites and DKD progression. Specifically, urinary lipid profiling shows promise
as a non-invasive tool to identify T2D patients at a high risk for rapid kidney function
decline, outperforming the current clinical standard of albuminuria and eGFR.

diabetic kidney disease, lysophosphatidylcholine, phosphatidylcholine, sphingomyelin,
fast decline, targeted lipidomics
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Introduction

Diabetic kidney disease (DKD) affects 20%-40% of adults with
diabetes (1-3) and substantially elevates their risk of cardiovascular
events and mortality (4). Although recent pharmacological
advances have improved glycemic and metabolic control,
available treatments still cannot fully prevent progression to end-
stage kidney disease (ESKD), which often necessitates renal
replacement therapy (5).

Clinically, DKD in type 2 diabetes (T2D) is diagnosed based on
the presence of albuminuria or a gradual decline in estimated
glomerular filtration rate (eGFR) in the absence of other renal
pathologies (6). While DKD typically develops after long-standing
diabetes, some patients already show signs of kidney impairment at
T2D diagnosis. Unlike in type 1 diabetes, where nephropathy and
retinopathy frequently co-occur, retinopathy exhibits only
moderate specificity and sensitivity as a surrogate for biopsy-
confirmed DKD in T2D (7, 8). Renal biopsy is generally not
recommended unless atypical features are present, such as active
urinary sediment, rapidly rising albuminuria, nephrotic syndrome,
or a rapid decline in eGFR. Moreover, a non-albuminuric
phenotype of eGFR loss has become increasingly common in
diabetes (9-11).

Notably, a subset of T2D patients experience rapid kidney
function decline, categorized as fast decline (FD) (12, 13). Early
identification of these high-risk individuals is critical for
personalized intervention, yet current clinical markers lack
sufficient predictive accuracy.

Dysregulated lipid metabolism is a well-established driver of
DKD (13), where specific intracellular lipid species like ceramides
and diacylglycerols act as direct mediators of renal cell injury
(lipotoxicity) rather than mere disease consequences (14). Most
prior lipidomic studies, however, have focused on circulating lipids
in plasma, which may not fully reflect pathological processes within
the kidney. In contrast, the urinary lipidome, as a direct effluent
from the kidney, remains a largely untapped resource for
biomarker discovery.

To bridge this gap, we conducted a comprehensive targeted
lipidomic study in urine. The novelty of our work is twofold: first,
we systematically profiled a wide array of lipid species in a well-
phenotyped cohort to identify a cross-sectional signature of DKD;
second and more importantly, we leveraged a longitudinal design to
rigorously evaluate whether specific urinary lipids at baseline can
predict the future risk of rapid kidney function decline, a critical
unmet need in clinical practice. Our findings contribute a novel,
non-invasive predictive tool and provide new pathophysiological
insights into the lipid-centric mechanisms of DKD progression.

Materials and methods
Ethics statement

All study procedures were conducted in accordance with the
ethical principles of the Declaration of Helsinki. The study protocol
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was reviewed and approved by the Ethics Committee of Nanjing
Medical University (approval no. 2019-KY-097). Written informed
consent was obtained from every participant prior to enrollment.

Human study 1: a cross-sectional study

We recruited adult participants with T2D from outpatients
visiting the Department of Internal Medicine at the Second
Affiliated Hospital of Nanjing Medical University. T2D was
diagnosed according to the 2018 criterial of American Diabetes
The cohort included 152 individuals with
clinically diagnosed DKD as urinary albumin-to-creatinine (UACR)
>30 mg/g or estimated glomerular filtration rate (eGFR) <60 mL/
min/1.73 m* in the absence of signs or symptoms of other primary
causes of kidney damage (6). We further selected 152 subjects with
uncomplicated T2D with matched age and sex as a matched cohort.

Association (15).

We applied chronic kidney disease epidemiology collaboration
equation (CKD-EPI equation, http://www.nkdep.nih.gov) to
calculate the eGFR. The exclusion criteria were acute kidney
injury, acute inflammatory diseases, malignant neoplasm,
systemic diseases, or having received kidney replacement therapy.

Human study 2: a longitudinal study

An independent cohort of 248 T2D subjects (163 male and 85
female) was established from the same hospital’s physical
examination center. The annual eGFR slope for each participant
was determined using the least squares method based on
measurements from baseline and at least two subsequent time
points per year (16). FD in kidney function was defined as
belonging to the highest quartile of eGFR slope distribution (17).
Fasting spot urine samples were collected from all participants at
baseline and stored at -80 °C for subsequent analysis.

Clinical and laboratory measurement

All human samples were collected, stored, and measured
according to the standard operating protocol of the hospital.
Blood pressure (systolic and diastolic), body mass index (BMI),
waist-to-hip ratio (WHR), fasting blood glucose levels, fasting
serum lipid profiles [total cholesterol (TC), triglyceride (TG), high
density lipoprotein cholesterol (HDL-c), and low density
lipoprotein cholesterol (HDL-c)], kidney functions tests [serum
creatinine (SCr), uric acid (UA)], hemoglobin (Hb), hemoglobin
Alc (HbAlc), albumin (Alb), and fast spot urine albumin and
creatinine levels were determined and recorded. Hypertension was
diagnosed if systolic blood pressure (SBP) 2140 mmHg or diastolic
blood pressure (DBP) 290 mmHg or if the patient is on
antihypertension medication (18).

Urine sample collection
We collected fasting spot urine in our study, which is a well-

established and practical alternative in large-scale clinical and
epidemiological research, effectively balancing rigor with
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feasibility. Key steps were taken to ensure data quality, namely: (1)
all samples were collected under a standardized protocol (fasting
state) to minimize pre-analytical variability related to diet and
hydration; (2) samples were processed and frozen immediately at
-80°C after collection to prevent degradation; and (3) all lipid
abundances were normalized to urinary creatinine to correct for
differences in urine concentration, which is a critical step for spot
urine samples and significantly improves reliability.

Targeted lipidomics analysis

Quality control and targeted lipidomics were performed by
Metabo-Profile Biotechnology (Shanghai) Co., Ltd. (Shanghai,
China). Sample preparation and derivation were as follows: an
aliquot of 20 UL of each urine sample was mixed with 120 uL of
standard solution containing 508 lipid metabolites, focusing on
major lipid classes relevant to human metabolism (19). Supernatant
of 30 UL was added to a 96-well plate after 13,500g centrifugation
for 10 min at 4°C. After adding 10 pL of freshly prepared derivative
reagents (20) to each well, derivation was carried out for 1 h at 60°C.
Subsequently, 400 UL of 50% methanol was added. After 4,000g
centrifugation for 30 min at 4°C, 135 UL of supernatant was
transferred to a new 96-well plate for ultra-performance liquid
chromatography/targeted quantification mass spectrometry
(UPLC/TQMS) analysis. A Waters ACQUITY ultraperformance
LC system coupled with a Waters XEVO TQ-S mass spectrometer
with an ESI source controlled by MassLynx 4.1 software (Waters,
Milford, MA, USA) was used for all analyses based on the published
conditions and parameters (21, 22). Raw data files were ultimately
processed by targeted metabolome batch quantification (TMBQ)
software (v1.0, HMI, Shenzhen, Guangdong, China). Regarding the
actual detection rate, of the 508 targeted lipids, a total of 104 were
consistently detected and passed our stringent quality control (QC)
filters in the fasting spot urine samples. Our QC criteria included a
signal-to-noise ratio >10, a coefficient of variation <15% in the
pooled quality control samples, and a detection rate >80% across all
samples. Quantification for each metabolite in fast spot urine
sample was normalized to urinary creatinine concentrations.
According to a standard practice in metabolomics data
processing, metabolites with more than 20% missing values (or
below the detection limit) across all samples were excluded from the
analysis. For the remaining metabolites with sporadic missing
values, we imputed these with half of the minimum positive value
for that specific metabolite across the dataset.

Statistical analysis

Continuous data were appropriately presented as mean *
standard deviation (SD) or median and interquartile range (IQR)
depending on the distribution of variables determined by
Kolmogorov-Smirnov test. Differences between groups in
continuous variables were tested by t-test, Mann-Whitney U test,
or Wilcoxon signed-rank test, depending on the normality of data
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and homogeneity of variance, and chi-squared test was used for class
variables. The differential lipid metabolites were obtained using
univariate statistical analysis with the threshold value of |log, fold
change (FC)| 21.5 and p <0.05. A multivariable linear regression was
performed to determine if the differences in the urinary lipid
metabolites between the groups remain significant after adjusting
for potential confounders. A model was built for each lipid
metabolite, including group, diabetes duration, HbAlc, and lipid
profiles as independent variables. We conducted multivariate logistic
regression analyses to determine if the lipid metabolite signature is
an independent predictor of rapid kidney function decline. The
model was adjusted for relevant clinical covariables, including age,
sex, baseline eGFR, HbA1c, and albuminuria. Random forest (RF) or
Boruta analysis was carried out to find out candidate biomarkers
from these differential lipid metabolites. Specifically, more reliable
potential biomarkers were selected by getting the union/intersection
of the differential metabolites from univariate statistics and the top
10 important differential metabolites by RF/Boruta. Spearman
correlation analysis was performed to evaluate the association
between the lipid metabolites and clinical parameters, and the
strength of association was presented with r-value. Binary logistic
regression analysis was used for statistical modeling, while receiver
operating characteristic (ROC) curve was performed to assess the
clinical benefit of using individual or total differential lipid
metabolites as a predictor of fastest eGFR decline quantile. The
areas under the receiver operating characteristic curve (AUC) of the
different prediction models were compared using DeLong’s test. The
analyses were performed using SPSS 25 (process procedure for SPSS
version 3.4) and R software. A p-value less than 0.05 was
considered significant.

Results
Shifted urinary lipid composition in DKD

To investigate the association between urinary lipid metabolites
and DKD, we performed targeted lipidomic profiling in a cohort of
T2D patients. The study included 152 participants diagnosed with
DKD and 152 age- and sex-matched individuals with
uncomplicated diabetes. As summarized in Table 1, the matching
procedure successfully balanced the age and sex distribution
between the two groups.

Lipidomic profiling of fasting spot urine specimens yielded
quantifiable data for 104 lipid metabolites from a predefined set
of 508 targets. The abundance of each metabolite is expressed as a
ratio to urinary creatinine. Comparative analysis revealed
substantial alterations in urinary lipid composition between the
groups (Figure 1). Specifically, the DKD group exhibited
significantly lower relative abundances of triacylglycerol (TAG)
and lysophosphatidylcholine (LPC) classes alongside elevated
levels of phosphatidylcholine (PC) and sphingomyelin (SM)
classes compared with the uncomplicated diabetes group. In
contrast, the relative abundance of diacylglycerol (DAG)
remained comparable between the two groups.
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TABLE 1 Clinical characteristics of matched subjects with uncomplicated diabetes and DKD in the cross-sectional study.

Clinical characteristics Uncomplicated diabetes (n = 152) DKD (n = 152)
Male sex (%) 96 (63.16%) 98 (64.47%) 0811
Age (year) 57.50 (49.25, 61.00) 57.00 (51.00, 62.00) 0.939
Duration of diabetes (month) 47.00 (8.00, 137.50) 96.50 (22.00, 185.75) 0.003
BMI (kg/m?) 24.34 (22.24, 26.67) 25.43 (23.62, 27.83) 0.011
WHR 0.93 +0.07 0.95 + 0.06 0.059
SBP (mmHg) 130.00 (121.00, 141.00) 138.00 (124.00, 146.00) 0.007
DBP (mmHg) 81.21 +9.08 85.65 + 11.41 <0.001
HR (per minute) 85.00 (78.00, 93.25) 78.00 (70.00, 84.00) 0.807
Hb (g/L) 145.00 (134.00, 155.50) 141.00 (126.50, 154.00) 0011
Alb (g/1) 46.40 (42.33, 49.18) 43.40 (38.88, 46.73) <0.001
FBG (mmol/L) 8.19 (6.83, 10.90) 8.75 (6.80, 11.67) 0.080
HbAlc (%) 8.20 (6.70, 10.00) 8.50 (6.90, 10.13) <0.001
SCr (umol/L) 64.45 (54.00, 73.75) 72.45 (57.48, 105.05) <0.001
UA (umol/L) 292.00 (245.00, 342.00) 343.00 (290.50, 412.50) <0.001
TC (mmol/L) 447 (3.69, 5.34) 475 (3.92, 5.55) 0.052
TG (mmol/L) 1.45 (1.03, 2.17) 1.82 (1.18, 2.81) 0.001
HDL-C (mmol/L) 1.13 (0.96, 1.32) 1.05 (0.90, 1.24) 0.006
LDL-C (mmol/L) 2.99 (221, 3.79) 2.89 (2.24, 3.75) 0.999
UACR (mg/g) 8.60 (4.60, 14.42) 168.40 (53.69, 697.21) <0.001
eGFR (mL/min/1.73%) 101.25 (92.59, 107.91) 94.27 (65.13, 107.37) <0.001

Data are presented as mean + SD, median (IQR), or n (%). The two groups were matched for age and sex.

Alb, albumin; BMI, body mass index; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; FBG, fast blood glucose; Hb, hemoglobin; HbAlc, hemoglobin Alc; HDL-C, high
density lipoprotein cholesterol; HR, heart rate; LDL-C, low density lipoprotein cholesterol; SBP, systolic blood pressure; SCr, serum creatinine; TC, total cholesterol; TG, triglyceride; UA, uric
acid; UACR, urinary albumin creatinine ratio; WHR, waist-hip ratio.
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FIGURE 1
Relative abundance of each metabolite class in spot urine from matched subjects with uncomplicated diabetes and DKD. The stacked bar chart
shows the relative abundance of each metabolite class in two groups. Significance levels are marked as *p < 0.05; ***p < 0.001.
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FIGURE 2

Abundance of the 21 significantly changed lipid metabolites in spot urine from matched subjects with uncomplicated diabetes and DKD. The
boxplots show the abundance of 21 qualified differential metabolites selected according to the threshold value of |log,FC| > 1.5 and p < 0.05 based
on univariate statistics. All lipid concentrations were normalized to urinary creatinine to account for variations in urine concentration. The abundance
data were log,-transformed prior to statistical analysis and visualization to better approximate a normal distribution. Significance levels are marked as
**p < 0.01; ***p < 0.001. A green or yellow square indicates that the lipid metabolite is one of the top 10 important differential metabolites selected
by Boruta or random forest.
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DKD is associated with higher urinary
concentrations of lipid metabolites

Based on the screening criteria of |log,FC| 21.5 and p < 0.05, we
identified 21 lipid metabolites that were significantly altered in the
DKD group compared with the matched uncomplicated diabetes
group. A comprehensive volcano plot provides a global overview of
all detected lipids, highlighting the 21 significantly upregulated
metabolites (Supplementary Figure S1).

The abundance of the 21 individual metabolites, including LPC
20:3, LPC 20:4, LPC 22:6, PC(16:0|16:0), PC(16:0|18:1), PC(16:0|
18:2), PC(16:0|20:4), PC(16:0e|20:4), PC(16:0¢|22:5), PC(16:0e[22:6),
PC(18:0[18:2), PC(18:0¢|18:0), PC(18:0¢|20:4), PC(18:0p|18:3), PC
(18:1¢|20:4), PC(18:2p|18:0), PC(18:2p|18:1), PC(18:2p|20:3), SM
(d18:1]18:2), SM(d18:1|22:2), and SM(d18:1|22:3), showed a
consistently higher abundance in the DKD group, as visually
summarized in Figure 2.

In addition, a multivariable linear regression analysis was used
to determine if the differences in the 21 urinary lipid metabolites
between the DKD and uncomplicated T2D groups remain
significant after adjusting for potential confounders. The results
confirm that the significant association between the DKD status and
the levels of the majority of the 21 lipid metabolites persisted after
adjusting for duration of diabetes and HbAlc and lipid profiles
(Supplementary Table S1).

10.3389/fendo.2025.1650498

To identify potential biomarkers from the 21 differential
metabolites, we performed feature selection using both RF and
Boruta algorithms, retaining metabolites with the top 10
importance scores. The Boruta analysis selected nine metabolites
[LPC 22:6, PC(16:0|18:2), PC(16:0[20:4), PC(16:0¢[22:5), PC(16:0e]
22:6), PC(18:1€|20:4), PC(18:2p|18:1), SM(d18:1[22:2), and SM
(d18:1]22:3)], indicated by green squares in Figure 2. The RF
algorithm selected eight metabolites [PC(16:0|18:2), PC(16:0|
20:4), PC(16:0¢e|22:5), PC(16:0€|22:6), PC(18:1e|20:4), PC(18:2p|
20:3), SM (d18:1]22:2), and SM(d18:1|22:3)], marked with yellow
squares in Figure 2.

Correlation of urinary lipid metabolites
with clinical variables

The correlation analyses consistently demonstrated that all 21
differential lipid metabolites exhibited significant inverse correlations
with both eGFR and albumin and positive correlations with both
serum creatinine and urinary albumin levels across the overall and
matched cohorts (Figure 3). This consistent pattern strongly reinforces
the association between this distinct urinary lipid profile and the
severity of kidney impairment in DKD.

Furthermore, these lipid metabolites showed a high degree of
positive co-regulation among themselves (Supplementary Figure
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positive; blue: negative) of the correlation. Significance levels are marked as *p < 0.05 and **p < 0.01.
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S2), suggesting that their alterations occur in a synchronized
manner rather than in isolation. This coordinated shift implies
the dysregulation of specific, interconnected lipid metabolic
pathways during the progression of DKD.

Changes in urinary lipid metabolites and
presence of DKD in individuals with T2D

The ROC curve analysis demonstrated that the collective panel
of lipid metabolites, whether comprising the nine Boruta-selected,
eight RF-selected, or all 21 differential metabolites, achieved
identical and superior diagnostic accuracy for DKD
(AUC = 0.81). The individual metabolites also showed
considerable discriminatory power, with AUCs ranging from 0.68
to 0.80 (Table 2). These results substantiate the utility of both
specific and combined urinary lipid biomarkers in identifying DKD
among patients with T2D.

Kidney function decline is associated with
higher urinary concentrations of lipid
metabolites

To assess the relationship between urinary lipid metabolites and
subsequent kidney function decline, we analyzed a longitudinal
cohort of 248 patients with T2D (163 male and 85 female). Based on
the quartiles of the annual eGFR decline rate over a median follow-
up of 33 months (IQR 17-47), the participants were categorized
into a fast decline (FD) group (1 = 62), with a median eGFR slope of
-10.92 mL/min/1.73 m*/year (IQR -18.81 to -6.78), and a non-FD
group (n = 186), with a median eGFR slope of -1.14 mL/min/1.73
m?/year (IQR -2.64 to 1.23). At baseline, the FD group exhibited
higher urinary albumin-to-creatinine ratio (UACR) and a greater
proportion of females, though the sex difference was not statistically
significant; baseline eGFR was comparable between the two groups
(Table 3). Notably, the FD group showed significantly higher
baseline concentrations of all 21 individual lipid metabolites
compared with the non-FD group (Figure 4).

To evaluate the independent and incremental predictive value of
the urinary lipid signature, we performed multivariate logistic
regression. After adjusting for established clinical risk factors,
including age, sex, baseline eGFR, HbAlc, and albuminuria, the 21-
lipid metabolite panel, the eight- and nine-lipid metabolite panels, and
LPC 20:4 each remained significant independent predictors of rapid
kidney function decline (Supplementary Table S2).

Changes in urinary lipid metabolites are
associated with the fast decline in kidney
function in individuals with T2D

The predictive performance was further compared using ROC

curves (Table 4). The ROC curve analysis indicated that the
combined panel of all 21 lipid metabolites achieved the highest
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TABLE 2 ROC analyses of individual and combined lipid metabolites for
DKD in the cross-sectional study.

Panel of
lipid AUC (95% CI) @ Sensitivity = Specificity

metabolites
FC (n = 21) 0.81 (0.76, 0.86) 0.71 0.77
FC + Br (n=9) 0.81 (0.76, 0.86) 0.66 0.82
EC + RE (n = 8) 0.81 (0.76, 0.86) 0.56 093
SM (d18:1[22:3) 0.80 (0.76, 0.85) 0.55 093
SM (d18:1|22:2) 0.80 (0.75, 0.85) 0.74 0.78
PC (16:0¢[22:5) 0.79 (0.74, 0.84) 0.65 0.88
PC (18:1¢[20:4) 0.79 (0.73, 0.84) 0.66 0.88
PC (18:0¢[20:4) 0.78 (0.73, 0.83) 0.74 0.73
PC (16:0¢[20:4) 0.78 (0.73, 0.83) 0.57 091
PC (18:0p|18:3) 0.78 (0.73, 0.83) 0.59 0.87
PC (18:2p|18:1) 0.78 (0.73, 0.83) 0.63 0.82
PC (16:0]18:2) 0.77 (0.72, 0.83) 0.54 0.90
PC (16:0¢[22:6) 0.77 (0.72, 0.83) 0.66 0.83
PC (18:2p|20:3) 0.77 (0.71, 0.82) 0.61 0.83
PC (18:2p|18:0) 0.76 (0.70, 0.81) 0.68 0.72
PC (18:0]18:2) 0.74 (0.69, 0.80) 0.61 0.79
PC (16:0]20:4) 0.73 (0.67, 0.79) 0.56 0.88
LPC 22:6 0.73 (0.67, 0.78) 0.55 0.88
LPC 20:4 0.72 (0.66, 0.77) 0.53 0.86
PC (16:0]18:1) 0.71 (0.65, 0.77) 0.72 0.63
PC (16:0]16:0) 0.71 (0.65, 0.77) 0.66 0.70
SM (d18:1]18:2) 0.71 (0.65, 0.76) 0.60 0.76
LPC 20:3 0.70 (0.64, 0.76) 0.54 0.84
PC (18:0¢|18:0) 0.68 (0.62, 0.74) 0.52 0.80

The diagnostic performance of individual metabolites and a combined panel is summarized.
Br, Boruta; FC, |log, fold change| > 1.5; LPC, lysophosphatidyl choline; PC,
phosphatidylcholine; RF, random forest; SM, sphingomyelin.

predictive accuracy for rapid kidney function decline, with an AUC
of 0.80. Among individual metabolites, LPC 20:4 demonstrated the
strongest predictive value (AUC = 0.72). The eight-metabolite panel
derived from RF analysis yielded an AUC of 0.70, with a specificity
of 0.83, outperforming both the full 21-metabolite panel and LPC
20:4 in specificity. The predictive model based on clinical variables
(including baseline eGFR, HbA1c, and albuminuria) alone achieved
an AUC of 0.70. The addition of the 21-lipid metabolite panel
significantly improved the predictive performance, yielding a
combined AUC of 0.79 (p for comparison = 0.002). However, this
combined AUC did not exceed that of the 21-metabolite lipid panel
alone, indicating that the predictive power of the combined model is
predominantly driven by the lipid panel, with clinical variables
contributing limited additional information.
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TABLE 3 Baseline clinical characteristics of T2D subjects in future fast decline (FD) and Non-FD groups in the longitudinal study.

Clinical characteristics Non-FD (n = 186) FD (n = 62)

Male sex (%) 127 (68.28%) 36 (58.06%) 0.142
Age (year) 57.00 (51.00, 61.25) 58.00 (49.00, 62.25) 0.66
Duration of diabetes (month) 78.00 (13.75, 179.25) 67.00 (8.50, 159.50) 0.561
BMI (kg/m?) 25.00 (22.89, 27.47) 24.77 (23.01, 26.69) 0.595
WHR 0.93 * 0.06 0.95 + 0.07 0254

SBP (mmHg) 133.36 + 16.07 134.93 + 18.95 0.526
DBP (mmHg) 84.00 (75.00, 90.00) 80.00 (74.00, 90.00) 0223
HR (per min) 78.00 (71.00, 85.00) 78.00 (70.50, 85.00) 0.886

Hb (g/L) 143.36 + 17.08 13652 + 19.22 0.012
Alb (g/L) 45.10 (42.40, 48.80) 41.80 (37.43, 46.10) <0.001

FBG (mmol/L) 8.35 (6.92, 11.96) 9.50 (6.47, 11.96) 0.349
HbAlc (%) 7.90 (6.65, 9.60) 9.20 (7.40, 10.80) 0.001

SCr (umol/L) 69.35 (57.93, 87.63) 69.25 (55.55, 86.58) 0.817
UA (umol/L) 324.00 (264.75, 384.25) 304.00 (257.00, 380.00) 0442

TC (mmol/L) 451 (3.77, 5.19) 495 (4.25, 6.12) 0.004

TG (mmol/L) 1.61 (1.06, 2.56) 1.73 (1.18, 2.44) 0.666
HDL-C (mmol/L) 1.09 (0.94, 1.29) 1.10 (0.96, 1.32) 0.566
LDL-C (mmol/L) 295 + 1.14 347 + 136 0.004
UACR (mg/g) 23.10 (7.30, 102.41) 54.54 (14.78, 1,424.86) <0.001
eGFR (mL/min/1.73%) 98.01 (80.01, 106.65) 95.74 (74.77, 108.81) 0.940

Data are presented as mean + SD, median (IQR), or n (%).

Alb, albumin; BMI, body mass index; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; FBG, fast blood glucose; Hb, hemoglobin; HbA1c, hemoglobin Alc; HDL-C, high
density lipoprotein cholesterol; HR, heart rate; LDL-C, low density lipoprotein cholesterol; FD, fast decline; SBP, systolic blood pressure; SCr, serum creatinine; TC, total cholesterol; TG,

triglyceride; UA, uric acid; UACR, urinary albumin creatinine ratio, WHR, waist-hip ratio.

We have now performed additional analyses using the common
thresholds: a fixed eGFR decline of -5 or -10 mL/min/1.73 m?*/year
or a 40% decline in eGFR from baseline. The results of these
analyses are now presented in Supplementary Tables S3-S5,
respectively. We are pleased to report that the predictive
performance of our urinary lipid metabolite panel remains robust
and statistically significant across all of these alternative definitions
of rapid progression. This consistency greatly strengthens our
conclusion that urinary lipids are reliable predictors of future
kidney function decline in patients with T2D irrespective of the
specific threshold used.

Discussion

Our lipidomic analysis revealed a distinct urinary lipid profile in
patients with DKD, characterized by significant alterations in major
lipid classes and elevated levels of specific metabolites. Furthermore,
we established that higher baseline concentrations of these
differential lipid metabolites are implicated in the future decline
of kidney function among individuals with type 2 diabetes,
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highlighting their potential as prognostic biomarkers for
disease progression.

A key advantage of utilizing urinary lipidomics in DKD, as
opposed to conventional plasma-based approaches, lies in its
potential to offer a more direct and kidney-specific readout of
pathological processes. While plasma lipidomics provides a
systemic overview, it can be confounded by non-renal metabolic
alterations inherent to diabetes. In contrast, the lipid species detected
in urine are likely derived from several pathophysiologically
relevant sources: they may originate from the shedding of lipid-
laden tubular cells, reflect the breakdown of the apical membrane
under lipotoxic stress, or directly leak from damaged podocytes. This
intra-renal origin positions urinary lipids as a rich source of
biomarkers that intimately mirror the local tissue injury and
metabolic perturbations within the kidney. While we acknowledge
that urine is inevitably influenced by the circulating lipidome, we
posit that the disease-specific alterations in this “contaminated”
matrix are precisely the signals we aim to capture. Notably, from a
clinical translation perspective, urine is a completely non-invasive
and readily available biofluid, making any discovered biomarkers
more applicable for routine screening and monitoring.
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FIGURE 4

Abundance of the 21 lipid metabolites in spot urine of all, male, and female subjects in future fast decline (FD) and non-FD groups. The boxplots

show the abundance of 21 lipid metabolites in the spot urine of all (n = 248), male

(n = 163), and female (n = 85) subjects in future FD (n = 62) and

non-FD (n = 186) groups. All lipid concentrations were normalized to urinary creatinine to account for variations in urine concentration. The
abundance data were log,-transformed prior to statistical analysis and visualization to better approximate a normal distribution. The fast decline (FD)
group was defined as the highest quartile of annual eGFR loss. Significance levels are marked as *p < 0.05; **p < 0.01; ***p < 0.001. A green or
yellow square indicates that the lipid metabolite is one of the top 10 important differential metabolites selected by Boruta or random forest.
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TABLE 4 ROC analyses of lipid metabolites and clinical variables for the
fast decline of renal function in patients with diabetes in a 33-month
longitudinal study.

Panel of lipid
metabolites

and clinical AUC (95% CI) Sensitivity =~ Specificity
variables
FC (n = 21) 0.80 (0.74, 0.86) 0.77 0.70
FC + CV (n = 24) 0.79 (0.73, 0.86) 0.61 0.86
FC + RF + CV
(n=11) 0.74 (0.66, 0.81) 0.54 0.84
FC + Br + CV
(n=12) 0.74 (0.66, 0.81) 0.63 0.76
LPC 20:4 0.72 (0.65, 0.79) 0.79 0.58
CV (n=3) 0.70 (0.62, 0.78) 0.70 0.63
FC + RF (n = 8) 0.70 (0.62, 0.77) 0.50 0.83
FC+Br (n=9) 0.67 (0.59, 0.75) 0.48 0.80
LPC 20:3 0.67 (0.59, 0.75) 0.66 0.69
PC (16:0]16:0) 0.66 (0.58, 0.74) 0.44 0.82
PC (18:2p|18:1) 0.64 (0.56, 0.73) 0.39 0.91
SM (d18:1]22:2) 0.64 (0.55, 0.72) 0.42 0.90
PC (16:0]18:1) 0.64 (0.55, 0.72) 0.52 0.77
SM (d18:1]22:3) 0.64 (0.55, 0.72) 0.44 0.89
PC (18:0p|18:3) 0.64 (0.55, 0.72) 0.45 0.86
PC (16:0¢|20:4) 0.63 (0.55, 0.72) 0.39 0.91
PC (18:2p|18:0) 0.63 (0.54, 0.71) 0.45 0.82
PC (16:0¢|22:6) 0.63 (0.54, 0.71) 0.37 0.90
PC (18:0e|18:0) 0.62 (0.54, 0.71) 0.32 0.94
PC (18:0e|20:4) 0.63 (0.54, 0.71) 0.39 0.90
PC (18:1¢|20:4) 0.62 (0.54, 0.71) 0.39 0.91
PC (16:0]18:2) 0.62 (0.53, 0.71) 0.39 0.90
PC (18:0]18:2) 0.62 (0.53, 0.71) 0.40 0.87
PC (16:0e|22:5) 0.62 (0.53, 0.71) 0.39 0.91
LPC 22:6 0.62 (0.53, 0.70) 0.55 0.71
PC (16:0[20:4) 0.61 (0.52, 0.70) 0.37 0.91
PC (18:2p|20:3) 0.60 (0.51, 0.69) 0.39 0.91
SM (d18:1]18:2) 0.59 (0.50, 0.68) 0.39 0.89

The predictive performance of the clinical, lipid, and combined models for forecasting rapid
renal function decline is summarized.

Br, Boruta; CV, clinical variables, including baseline eGFR, HbAlc and UACR; FC, |log, fold
change| > 1.5; LPC, lysophosphatidyl choline; PC, phosphatidylcholine; RF, random forest;
SM, sphingomyelin.

Consequently, urinary lipid profiling not only serves as a sensitive
prognostic tool but also provides invaluable pathophysiological
insights into the progression of DKD, paving the way for
future studies.
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Our analysis yields a critical insight. The superior predictive
capacity of the lipid panel, to which clinical variables added
minimal incremental value, strongly suggests that it captures the
core pathophysiological signal of rapid renal decline. It is plausible
that these urinary lipids directly reflect key disease-specific
processes, such as tubular injury, oxidative stress, or specific
inflammatory pathways, that are not fully captured by
conventional clinical metrics. From a translational perspective,
this finding indicates that a more streamlined, lipid-based
prognostic tool could offer a highly accurate and potentially more
cost-effective strategy to identify high-risk patients.

However, the observation that the combined model did not
outperform the lipid-only model also raises important questions.
The diminished marginal contribution of clinical variables may
point to underlying collinearity, where factors like hyperglycemia
and dyslipidemia exert their influence precisely by altering the lipid
metabolism represented in our signature. Therefore, while our
results underscore the paramount importance of the lipid
signature, future studies in larger, independent cohorts are
warranted to confirm its standalone power and to disentangle the
complex interplay between conventional risk factors and the
underlying lipid biology in DKD progression.

The robustness of our urinary lipid metabolite signature was
further substantiated through sensitivity analyses employing
alternative, standardized definitions of rapid kidney function
decline. Crucially, the predictive performance remained
statistically significant across all of these thresholds. This
consistency underscores that the association is not contingent on
a single, arbitrarily chosen cutoff point, thereby strengthening the
broader clinical applicability of our findings. While the primary
analysis utilized a study-specific quartile to maximize statistical
power, these supplementary analyses confirm that the biomarker
signature is a reliable predictor of renal function decline,
independent of the specific progression criterion applied.

Quantitative data for the prediction of progression of kidney
disease in patients with T2D are scarce. Although albuminuria and
eGFR are the most important factors, their predictive abilities are
modest, including clinical or laboratory parameters that barely
improve (23). Abnormal metabolism and intrarenal accumulation
of lipids, including phospholipids (13, 24, 25), sphingolipids (26, 27),
cholesterol (28), triglycerides, and fatty acids (29-31), are strongly
associated with the development and progression of DKD. A meta-
analysis of 34 clinical-based metabolomics studies identified five
essential metabolites related to DKD compared with healthy
control, suggesting lipid metabolism pathways related to DKD (32).

Modern lipidomics based on mass spectrometry have enabled the
identification and quantitation of lipids (33). Patients with DKD had
higher plasma/serum acylcarnitines compared with diabetic patients
without a kidney disease (34-36), which also predicted DKD
progression (34, 36-38). Lower long-chain acylcarnitine and higher
medium- and short-chain acylcarnitine were associated with GFR
reduction in patients with DKD (39). Double-bond TAG species and
polyunsaturated PE species were predictors of DKD progression in
T2D (40). Circulating ceramide (Cer) (18:1/16:0) and Cer(18:1/16:1)
were significantly increased in patients with T2D DKD compared
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with patients with T2D without DKD (35), while very long chain
(C20-26) ceramides were significantly decreased in TIDM DKD
patients as compared with TIDM without albuminuria (41). Serum
integrative omics of proteomes and metabolomes revealed serum
glycerol-3-galactoside as an independent marker to predict DKD
(42). A previous genome-wide association study and a subsequent
two-sample Mendelian randomization analysis revealed that urinary
ethanolamine, an initial precursor for PC, was associated with higher
eGFR in people with T1D (43). These findings establish targeted
lipidomics as a feasible and reliable approach to evaluate kidney
damage in diabetes.

We found that SM (d18:1]22:3) and SM (d18:1|22:2) had
identical and the highest AUC of 0.80 among the 21 individual
lipid metabolites. SM was a significant biochemical covariate of
urine albumin and the strongest lipid regressor for kidney disease in
human T1D (44). Serum SM was also highly upregulated in DKD
and significantly correlated to albuminuria (45). Lower serum SM
species was reported in participants with macroalbuminuria
compared with those with normo-albuminuria, while SM (d18:1|
24:0), SM (d40:1), and SM (d41:1) were associated with a lower risk
of kidney disease progression or mortality (46). Here PC species
constituted the predominant fraction of the differential lipid
metabolites. High-fat-diet-induced upregulation of PC-enriched
exosome contributed to insulin resistance (47). LPC was
dramatically elevated in the early stage of DKD (48). We showed
that LPC 20:4 was a strong predictor of FD in the kidney function of
T2D. Coincidentally, urinary LPC (16:0) and LPC (18:0) increased
in the fast decliner of stage G3 DKD. Moreover, tubular
accumulation of LPC enhanced organelle stress and cell
apoptosis, accelerating tubular lipotoxicity (13). These results
provided evidence that specific lipid metabolite biomarkers also
play critical roles in regulating the pathogenesis of DKD.

Our findings both corroborate and extend previous knowledge. In
line with prior research, we confirm that lipid metabolism is
profoundly disturbed in DKD, observing elevated levels of specific
lipid classes previously implicated in diabetic complications. More
importantly, our study provides several novel insights. First, we identify
a specific urinary lipid signature that is not merely associated with the
presence of DKD but is predictive of its future rate of progression. This
prognostic capacity, validated in a longitudinal cohort, addresses a
critical gap in the field. Second, we demonstrate that this urinary
lipidomic profile provides significant independent and incremental
prognostic information over standard clinical markers, including
albuminuria, glucose, and eGFR, and underscores its potential
clinical utility to identifying high-risk patients who might be missed
by current metrics. Finally, by focusing on urine, we highlight a direct,
kidney-related lipidomic footprint that is more accessible for clinical
translation than plasma or biopsy-based markers.

We acknowledge several limitations. The longitudinal findings
require confirmation in larger, multi-center cohorts to ensure
robustness. Furthermore, the observational nature of our study
cannot establish causality; mechanistic investigations are essential
to determine if these lipid metabolites are indeed drivers of pathology.
We acknowledge that intra-individual variation exists for any
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biomarker. However, by studying a sizable cohort and employing
rigorous normalization, we are confident that the strong associations
and predictive signals we observed robustly reflect the underlying
biology. The absence of detailed medication information (e.g., on
adherence and specific dosages) represents a limitation, as it
precludes a comprehensive analysis of how pharmacotherapy might
interact with or influence the urinary lipidome. Future prospective
studies designed to incorporate detailed drug monitoring are
warranted to validate our findings and to explore the interplay
between medications and lipid metabolism in DKD. Finally, it is
important to consider that our study lacked a healthy control cohort.
Therefore, the lipidomic differences identified here specifically reflect
changes associated with DKD progression within a diabetic
population but do not define the broader shifts that occur from a
state of health to diabetes. Establishing this “healthy baseline” in
future work will be crucial for a complete understanding of the
pathogenic timeline of lipid dysregulation in DKD.

In conclusion, our study establishes specific urinary lipid
metabolites as non-invasive biomarkers that not only reflect but
also predict the progression of DKD. By demonstrating their
incremental value over standard clinical parameters, this work
provides a foundation for improved risk stratification. Ultimately,
the dysregulated lipids identified here offer two pivotal
opportunities: first, as a source of mechanistic insights for future
research, and second, as a foundation to develop novel prognostic
tools and targeted therapies to alter the trajectory of kidney disease
in T2D.
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