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Urinary lipid metabolites and
progression of kidney disease in
individuals with type 2 diabetes
Yu Xiao †, Caifeng Shi †, Songyan Qin, Aiqin He, Xiaomei Wu,
Chunsun Dai* and Yang Zhou*

Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, Nanjing,
China
Objective: A substantial proportion of individuals with type 2 diabetes (T2D)

experience a fast decline (FD) in kidney function, a high-risk phenotype not

reliably identified by current clinical markers. This study aimed to evaluate the

potential of urinary lipid metabolites as novel predictors for the rapid progression

of diabetic kidney disease (DKD).

Methods: This investigation employed a dual-phase design comprising cross-

sectional screening and longitudinal validation. In the initial phase, targeted

lipidomic profiling of urine samples from 152 patients with T2D and DKD and

152 age- and sex-matched individuals with uncomplicated diabetes revealed

distinct metabolite patterns. The subsequent validation phase utilized an

independent cohort of 248 T2D patients, in which rapid kidney function

decline was defined as the highest quartile of annual estimated glomerular

filtration rate (eGFR) reduction. Feature selection was performed using

machine learning algorithms (random forest and Boruta) to identify potential

biomarkers from the differentially expressedmetabolites. The prognostic value of

these lipid markers for predicting future renal function decline was assessed

against clinical variables using receiver operating characteristic (ROC) analysis.

Results: The analysis of fasting spot urine specimens quantified 104 lipid

metabolites out of 508 targeted species, with all concentrations normalized to

urinary creatinine. The comparative analysis identified 21 lipid metabolites that

were significantly upregulated in the DKD group. Feature selection algorithms

isolated nine (Boruta) and eight (random forest) candidate biomarkers from this

pool. During a median follow-up period of 33 months (IQR 17–47), 62

participants showing the most rapid eGFR decline were classified as the FD

group. These individuals exhibited significantly elevated baseline levels of the

identified lipid metabolites. The lipid panel demonstrated superior predictive

performance for future kidney function decline compared with traditional clinical

predictors, including baseline eGFR, hemoglobin A1c, and albuminuria.

Conclusions: Our findings reveal a strong association between urinary lipid

metabolites and DKD progression. Specifically, urinary lipid profiling shows promise

as a non-invasive tool to identify T2D patients at a high risk for rapid kidney function

decline, outperforming the current clinical standard of albuminuria and eGFR.
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Introduction

Diabetic kidney disease (DKD) affects 20%–40% of adults with

diabetes (1–3) and substantially elevates their risk of cardiovascular

events and mortality (4). Although recent pharmacological

advances have improved glycemic and metabolic control,

available treatments still cannot fully prevent progression to end-

stage kidney disease (ESKD), which often necessitates renal

replacement therapy (5).

Clinically, DKD in type 2 diabetes (T2D) is diagnosed based on

the presence of albuminuria or a gradual decline in estimated

glomerular filtration rate (eGFR) in the absence of other renal

pathologies (6). While DKD typically develops after long-standing

diabetes, some patients already show signs of kidney impairment at

T2D diagnosis. Unlike in type 1 diabetes, where nephropathy and

retinopathy frequently co-occur, retinopathy exhibits only

moderate specificity and sensitivity as a surrogate for biopsy-

confirmed DKD in T2D (7, 8). Renal biopsy is generally not

recommended unless atypical features are present, such as active

urinary sediment, rapidly rising albuminuria, nephrotic syndrome,

or a rapid decline in eGFR. Moreover, a non-albuminuric

phenotype of eGFR loss has become increasingly common in

diabetes (9–11).

Notably, a subset of T2D patients experience rapid kidney

function decline, categorized as fast decline (FD) (12, 13). Early

identification of these high-risk individuals is critical for

personalized intervention, yet current clinical markers lack

sufficient predictive accuracy.

Dysregulated lipid metabolism is a well-established driver of

DKD (13), where specific intracellular lipid species like ceramides

and diacylglycerols act as direct mediators of renal cell injury

(lipotoxicity) rather than mere disease consequences (14). Most

prior lipidomic studies, however, have focused on circulating lipids

in plasma, which may not fully reflect pathological processes within

the kidney. In contrast, the urinary lipidome, as a direct effluent

from the kidney, remains a largely untapped resource for

biomarker discovery.

To bridge this gap, we conducted a comprehensive targeted

lipidomic study in urine. The novelty of our work is twofold: first,

we systematically profiled a wide array of lipid species in a well-

phenotyped cohort to identify a cross-sectional signature of DKD;

second and more importantly, we leveraged a longitudinal design to

rigorously evaluate whether specific urinary lipids at baseline can

predict the future risk of rapid kidney function decline, a critical

unmet need in clinical practice. Our findings contribute a novel,

non-invasive predictive tool and provide new pathophysiological

insights into the lipid-centric mechanisms of DKD progression.
Materials and methods

Ethics statement

All study procedures were conducted in accordance with the

ethical principles of the Declaration of Helsinki. The study protocol
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was reviewed and approved by the Ethics Committee of Nanjing

Medical University (approval no. 2019-KY-097). Written informed

consent was obtained from every participant prior to enrollment.

Human study 1: a cross-sectional study
We recruited adult participants with T2D from outpatients

visiting the Department of Internal Medicine at the Second

Affiliated Hospital of Nanjing Medical University. T2D was

diagnosed according to the 2018 criterial of American Diabetes

Association (15). The cohort included 152 individuals with

clinically diagnosed DKD as urinary albumin-to-creatinine (UACR)

≥30 mg/g or estimated glomerular filtration rate (eGFR) <60 mL/

min/1.73 m2 in the absence of signs or symptoms of other primary

causes of kidney damage (6). We further selected 152 subjects with

uncomplicated T2D with matched age and sex as a matched cohort.

We applied chronic kidney disease epidemiology collaboration

equation (CKD-EPI equation, http://www.nkdep.nih.gov) to

calculate the eGFR. The exclusion criteria were acute kidney

injury, acute inflammatory diseases, malignant neoplasm,

systemic diseases, or having received kidney replacement therapy.

Human study 2: a longitudinal study
An independent cohort of 248 T2D subjects (163 male and 85

female) was established from the same hospital’s physical

examination center. The annual eGFR slope for each participant

was determined using the least squares method based on

measurements from baseline and at least two subsequent time

points per year (16). FD in kidney function was defined as

belonging to the highest quartile of eGFR slope distribution (17).

Fasting spot urine samples were collected from all participants at

baseline and stored at -80 °C for subsequent analysis.
Clinical and laboratory measurement

All human samples were collected, stored, and measured

according to the standard operating protocol of the hospital.

Blood pressure (systolic and diastolic), body mass index (BMI),

waist-to-hip ratio (WHR), fasting blood glucose levels, fasting

serum lipid profiles [total cholesterol (TC), triglyceride (TG), high

density lipoprotein cholesterol (HDL-c), and low density

lipoprotein cholesterol (HDL-c)], kidney functions tests [serum

creatinine (SCr), uric acid (UA)], hemoglobin (Hb), hemoglobin

A1c (HbA1c), albumin (Alb), and fast spot urine albumin and

creatinine levels were determined and recorded. Hypertension was

diagnosed if systolic blood pressure (SBP) ≥140 mmHg or diastolic

blood pressure (DBP) ≥90 mmHg or if the patient is on

antihypertension medication (18).
Urine sample collection

We collected fasting spot urine in our study, which is a well-

established and practical alternative in large-scale clinical and

epidemiological research, effectively balancing rigor with
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feasibility. Key steps were taken to ensure data quality, namely: (1)

all samples were collected under a standardized protocol (fasting

state) to minimize pre-analytical variability related to diet and

hydration; (2) samples were processed and frozen immediately at

-80°C after collection to prevent degradation; and (3) all lipid

abundances were normalized to urinary creatinine to correct for

differences in urine concentration, which is a critical step for spot

urine samples and significantly improves reliability.
Targeted lipidomics analysis

Quality control and targeted lipidomics were performed by

Metabo-Profile Biotechnology (Shanghai) Co., Ltd. (Shanghai,

China). Sample preparation and derivation were as follows: an

aliquot of 20 mL of each urine sample was mixed with 120 mL of

standard solution containing 508 lipid metabolites, focusing on

major lipid classes relevant to human metabolism (19). Supernatant

of 30 mL was added to a 96-well plate after 13,500g centrifugation

for 10 min at 4°C. After adding 10 mL of freshly prepared derivative

reagents (20) to each well, derivation was carried out for 1 h at 60°C.

Subsequently, 400 mL of 50% methanol was added. After 4,000g

centrifugation for 30 min at 4°C, 135 mL of supernatant was

transferred to a new 96-well plate for ultra-performance liquid

chromatography/targeted quantification mass spectrometry

(UPLC/TQMS) analysis. A Waters ACQUITY ultraperformance

LC system coupled with a Waters XEVO TQ-S mass spectrometer

with an ESI source controlled by MassLynx 4.1 software (Waters,

Milford, MA, USA) was used for all analyses based on the published

conditions and parameters (21, 22). Raw data files were ultimately

processed by targeted metabolome batch quantification (TMBQ)

software (v1.0, HMI, Shenzhen, Guangdong, China). Regarding the

actual detection rate, of the 508 targeted lipids, a total of 104 were

consistently detected and passed our stringent quality control (QC)

filters in the fasting spot urine samples. Our QC criteria included a

signal-to-noise ratio >10, a coefficient of variation <15% in the

pooled quality control samples, and a detection rate >80% across all

samples. Quantification for each metabolite in fast spot urine

sample was normalized to urinary creatinine concentrations.

According to a standard practice in metabolomics data

processing, metabolites with more than 20% missing values (or

below the detection limit) across all samples were excluded from the

analysis. For the remaining metabolites with sporadic missing

values, we imputed these with half of the minimum positive value

for that specific metabolite across the dataset.
Statistical analysis

Continuous data were appropriately presented as mean ±

standard deviation (SD) or median and interquartile range (IQR)

depending on the distribution of variables determined by

Kolmogorov–Smirnov test. Differences between groups in

continuous variables were tested by t-test, Mann–Whitney U test,

or Wilcoxon signed-rank test, depending on the normality of data
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and homogeneity of variance, and chi-squared test was used for class

variables. The differential lipid metabolites were obtained using

univariate statistical analysis with the threshold value of |log2 fold

change (FC)| ≥1.5 and p <0.05. Amultivariable linear regression was

performed to determine if the differences in the urinary lipid

metabolites between the groups remain significant after adjusting

for potential confounders. A model was built for each lipid

metabolite, including group, diabetes duration, HbA1c, and lipid

profiles as independent variables. We conducted multivariate logistic

regression analyses to determine if the lipid metabolite signature is

an independent predictor of rapid kidney function decline. The

model was adjusted for relevant clinical covariables, including age,

sex, baseline eGFR, HbA1c, and albuminuria. Random forest (RF) or

Boruta analysis was carried out to find out candidate biomarkers

from these differential lipid metabolites. Specifically, more reliable

potential biomarkers were selected by getting the union/intersection

of the differential metabolites from univariate statistics and the top

10 important differential metabolites by RF/Boruta. Spearman

correlation analysis was performed to evaluate the association

between the lipid metabolites and clinical parameters, and the

strength of association was presented with r-value. Binary logistic

regression analysis was used for statistical modeling, while receiver

operating characteristic (ROC) curve was performed to assess the

clinical benefit of using individual or total differential lipid

metabolites as a predictor of fastest eGFR decline quantile. The

areas under the receiver operating characteristic curve (AUC) of the

different prediction models were compared using DeLong’s test. The

analyses were performed using SPSS 25 (process procedure for SPSS

version 3.4) and R software. A p-value less than 0.05 was

considered significant.
Results

Shifted urinary lipid composition in DKD

To investigate the association between urinary lipid metabolites

and DKD, we performed targeted lipidomic profiling in a cohort of

T2D patients. The study included 152 participants diagnosed with

DKD and 152 age- and sex-matched individuals with

uncomplicated diabetes. As summarized in Table 1, the matching

procedure successfully balanced the age and sex distribution

between the two groups.

Lipidomic profiling of fasting spot urine specimens yielded

quantifiable data for 104 lipid metabolites from a predefined set

of 508 targets. The abundance of each metabolite is expressed as a

ratio to urinary creatinine. Comparative analysis revealed

substantial alterations in urinary lipid composition between the

groups (Figure 1). Specifically, the DKD group exhibited

significantly lower relative abundances of triacylglycerol (TAG)

and lysophosphatidylcholine (LPC) classes alongside elevated

levels of phosphatidylcholine (PC) and sphingomyelin (SM)

classes compared with the uncomplicated diabetes group. In

contrast, the relative abundance of diacylglycerol (DAG)

remained comparable between the two groups.
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TABLE 1 Clinical characteristics of matched subjects with uncomplicated diabetes and DKD in the cross-sectional study.

Clinical characteristics Uncomplicated diabetes (n = 152) DKD (n = 152) p-value

Male sex (%) 96 (63.16%) 98 (64.47%) 0.811

Age (year) 57.50 (49.25, 61.00) 57.00 (51.00, 62.00) 0.939

Duration of diabetes (month) 47.00 (8.00, 137.50) 96.50 (22.00, 185.75) 0.003

BMI (kg/m2) 24.34 (22.24, 26.67) 25.43 (23.62, 27.83) 0.011

WHR 0.93 ± 0.07 0.95 ± 0.06 0.059

SBP (mmHg) 130.00 (121.00, 141.00) 138.00 (124.00, 146.00) 0.007

DBP (mmHg) 81.21 ± 9.08 85.65 ± 11.41 <0.001

HR (per minute) 85.00 (78.00, 93.25) 78.00 (70.00, 84.00) 0.807

Hb (g/L) 145.00 (134.00, 155.50) 141.00 (126.50, 154.00) 0.011

Alb (g/L) 46.40 (42.33, 49.18) 43.40 (38.88, 46.73) <0.001

FBG (mmol/L) 8.19 (6.83, 10.90) 8.75 (6.80, 11.67) 0.080

HbA1c (%) 8.20 (6.70, 10.00) 8.50 (6.90, 10.13) <0.001

SCr (mmol/L) 64.45 (54.00, 73.75) 72.45 (57.48, 105.05) <0.001

UA (mmol/L) 292.00 (245.00, 342.00) 343.00 (290.50, 412.50) <0.001

TC (mmol/L) 4.47 (3.69, 5.34) 4.75 (3.92, 5.55) 0.052

TG (mmol/L) 1.45 (1.03, 2.17) 1.82 (1.18, 2.81) 0.001

HDL-C (mmol/L) 1.13 (0.96, 1.32) 1.05 (0.90, 1.24) 0.006

LDL-C (mmol/L) 2.99 (2.21, 3.79) 2.89 (2.24, 3.75) 0.999

UACR (mg/g) 8.60 (4.60, 14.42) 168.40 (53.69, 697.21) <0.001

eGFR (mL/min/1.732) 101.25 (92.59, 107.91) 94.27 (65.13, 107.37) <0.001
F
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Data are presented as mean ± SD, median (IQR), or n (%). The two groups were matched for age and sex.
Alb, albumin; BMI, body mass index; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; FBG, fast blood glucose; Hb, hemoglobin; HbA1c, hemoglobin A1c; HDL-C, high
density lipoprotein cholesterol; HR, heart rate; LDL-C, low density lipoprotein cholesterol; SBP, systolic blood pressure; SCr, serum creatinine; TC, total cholesterol; TG, triglyceride; UA, uric
acid; UACR, urinary albumin creatinine ratio; WHR, waist–hip ratio.
FIGURE 1

Relative abundance of each metabolite class in spot urine from matched subjects with uncomplicated diabetes and DKD. The stacked bar chart
shows the relative abundance of each metabolite class in two groups. Significance levels are marked as *p < 0.05; ***p < 0.001.
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FIGURE 2

Abundance of the 21 significantly changed lipid metabolites in spot urine from matched subjects with uncomplicated diabetes and DKD. The
boxplots show the abundance of 21 qualified differential metabolites selected according to the threshold value of |log2FC| ≥ 1.5 and p < 0.05 based
on univariate statistics. All lipid concentrations were normalized to urinary creatinine to account for variations in urine concentration. The abundance
data were log2-transformed prior to statistical analysis and visualization to better approximate a normal distribution. Significance levels are marked as
**p < 0.01; ***p < 0.001. A green or yellow square indicates that the lipid metabolite is one of the top 10 important differential metabolites selected
by Boruta or random forest.
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DKD is associated with higher urinary
concentrations of lipid metabolites

Based on the screening criteria of |log2FC| ≥1.5 and p < 0.05, we

identified 21 lipid metabolites that were significantly altered in the

DKD group compared with the matched uncomplicated diabetes

group. A comprehensive volcano plot provides a global overview of

all detected lipids, highlighting the 21 significantly upregulated

metabolites (Supplementary Figure S1).

The abundance of the 21 individual metabolites, including LPC

20:3, LPC 20:4, LPC 22:6, PC(16:0|16:0), PC(16:0|18:1), PC(16:0|

18:2), PC(16:0|20:4), PC(16:0e|20:4), PC(16:0e|22:5), PC(16:0e|22:6),

PC(18:0|18:2), PC(18:0e|18:0), PC(18:0e|20:4), PC(18:0p|18:3), PC

(18:1e|20:4), PC(18:2p|18:0), PC(18:2p|18:1), PC(18:2p|20:3), SM

(d18:1|18:2), SM(d18:1|22:2), and SM(d18:1|22:3), showed a

consistently higher abundance in the DKD group, as visually

summarized in Figure 2.

In addition, a multivariable linear regression analysis was used

to determine if the differences in the 21 urinary lipid metabolites

between the DKD and uncomplicated T2D groups remain

significant after adjusting for potential confounders. The results

confirm that the significant association between the DKD status and

the levels of the majority of the 21 lipid metabolites persisted after

adjusting for duration of diabetes and HbA1c and lipid profiles

(Supplementary Table S1).
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To identify potential biomarkers from the 21 differential

metabolites, we performed feature selection using both RF and

Boruta algorithms, retaining metabolites with the top 10

importance scores. The Boruta analysis selected nine metabolites

[LPC 22:6, PC(16:0|18:2), PC(16:0|20:4), PC(16:0e|22:5), PC(16:0e|

22:6), PC(18:1e|20:4), PC(18:2p|18:1), SM(d18:1|22:2), and SM

(d18:1|22:3)], indicated by green squares in Figure 2. The RF

algorithm selected eight metabolites [PC(16:0|18:2), PC(16:0|

20:4), PC(16:0e|22:5), PC(16:0e|22:6), PC(18:1e|20:4), PC(18:2p|

20:3), SM (d18:1|22:2), and SM(d18:1|22:3)], marked with yellow

squares in Figure 2.
Correlation of urinary lipid metabolites
with clinical variables

The correlation analyses consistently demonstrated that all 21

differential lipid metabolites exhibited significant inverse correlations

with both eGFR and albumin and positive correlations with both

serum creatinine and urinary albumin levels across the overall and

matched cohorts (Figure 3). This consistent pattern strongly reinforces

the association between this distinct urinary lipid profile and the

severity of kidney impairment in DKD.

Furthermore, these lipid metabolites showed a high degree of

positive co-regulation among themselves (Supplementary Figure
FIGURE 3

Heatmaps of Spearman correlation coefficients of 21 significantly changed metabolites with representative clinical characteristics. The heatmap
visualizes correlation coefficients (r) between the 21 metabolites and key clinical variables. Color intensity reflects the strength and direction (red:
positive; blue: negative) of the correlation. Significance levels are marked as *p < 0.05 and **p < 0.01.
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S2), suggesting that their alterations occur in a synchronized

manner rather than in isolation. This coordinated shift implies

the dysregulation of specific, interconnected lipid metabolic

pathways during the progression of DKD.
Changes in urinary lipid metabolites and
presence of DKD in individuals with T2D

The ROC curve analysis demonstrated that the collective panel

of lipid metabolites, whether comprising the nine Boruta-selected,

eight RF-selected, or all 21 differential metabolites, achieved

ident ica l and superior diagnost ic accuracy for DKD

(AUC = 0.81). The individual metabolites also showed

considerable discriminatory power, with AUCs ranging from 0.68

to 0.80 (Table 2). These results substantiate the utility of both

specific and combined urinary lipid biomarkers in identifying DKD

among patients with T2D.
Kidney function decline is associated with
higher urinary concentrations of lipid
metabolites

To assess the relationship between urinary lipid metabolites and

subsequent kidney function decline, we analyzed a longitudinal

cohort of 248 patients with T2D (163 male and 85 female). Based on

the quartiles of the annual eGFR decline rate over a median follow-

up of 33 months (IQR 17–47), the participants were categorized

into a fast decline (FD) group (n = 62), with a median eGFR slope of

–10.92 mL/min/1.73 m²/year (IQR –18.81 to –6.78), and a non-FD

group (n = 186), with a median eGFR slope of –1.14 mL/min/1.73

m²/year (IQR –2.64 to 1.23). At baseline, the FD group exhibited

higher urinary albumin-to-creatinine ratio (UACR) and a greater

proportion of females, though the sex difference was not statistically

significant; baseline eGFR was comparable between the two groups

(Table 3). Notably, the FD group showed significantly higher

baseline concentrations of all 21 individual lipid metabolites

compared with the non-FD group (Figure 4).

To evaluate the independent and incremental predictive value of

the urinary lipid signature, we performed multivariate logistic

regression. After adjusting for established clinical risk factors,

including age, sex, baseline eGFR, HbA1c, and albuminuria, the 21-

lipid metabolite panel, the eight- and nine-lipid metabolite panels, and

LPC 20:4 each remained significant independent predictors of rapid

kidney function decline (Supplementary Table S2).
Changes in urinary lipid metabolites are
associated with the fast decline in kidney
function in individuals with T2D

The predictive performance was further compared using ROC

curves (Table 4). The ROC curve analysis indicated that the

combined panel of all 21 lipid metabolites achieved the highest
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predictive accuracy for rapid kidney function decline, with an AUC

of 0.80. Among individual metabolites, LPC 20:4 demonstrated the

strongest predictive value (AUC = 0.72). The eight-metabolite panel

derived from RF analysis yielded an AUC of 0.70, with a specificity

of 0.83, outperforming both the full 21-metabolite panel and LPC

20:4 in specificity. The predictive model based on clinical variables

(including baseline eGFR, HbA1c, and albuminuria) alone achieved

an AUC of 0.70. The addition of the 21-lipid metabolite panel

significantly improved the predictive performance, yielding a

combined AUC of 0.79 (p for comparison = 0.002). However, this

combined AUC did not exceed that of the 21-metabolite lipid panel

alone, indicating that the predictive power of the combined model is

predominantly driven by the lipid panel, with clinical variables

contributing limited additional information.
TABLE 2 ROC analyses of individual and combined lipid metabolites for
DKD in the cross-sectional study.

Panel of
lipid

metabolites
AUC (95% CI) Sensitivity Specificity

FC (n = 21) 0.81 (0.76, 0.86) 0.71 0.77

FC + Br (n = 9) 0.81 (0.76, 0.86) 0.66 0.82

FC + RF (n = 8) 0.81 (0.76, 0.86) 0.56 0.93

SM (d18:1|22:3) 0.80 (0.76, 0.85) 0.55 0.93

SM (d18:1|22:2) 0.80 (0.75, 0.85) 0.74 0.78

PC (16:0e|22:5) 0.79 (0.74, 0.84) 0.65 0.88

PC (18:1e|20:4) 0.79 (0.73, 0.84) 0.66 0.88

PC (18:0e|20:4) 0.78 (0.73, 0.83) 0.74 0.73

PC (16:0e|20:4) 0.78 (0.73, 0.83) 0.57 0.91

PC (18:0p|18:3) 0.78 (0.73, 0.83) 0.59 0.87

PC (18:2p|18:1) 0.78 (0.73, 0.83) 0.63 0.82

PC (16:0|18:2) 0.77 (0.72, 0.83) 0.54 0.90

PC (16:0e|22:6) 0.77 (0.72, 0.83) 0.66 0.83

PC (18:2p|20:3) 0.77 (0.71, 0.82) 0.61 0.83

PC (18:2p|18:0) 0.76 (0.70, 0.81) 0.68 0.72

PC (18:0|18:2) 0.74 (0.69, 0.80) 0.61 0.79

PC (16:0|20:4) 0.73 (0.67, 0.79) 0.56 0.88

LPC 22:6 0.73 (0.67, 0.78) 0.55 0.88

LPC 20:4 0.72 (0.66, 0.77) 0.53 0.86

PC (16:0|18:1) 0.71 (0.65, 0.77) 0.72 0.63

PC (16:0|16:0) 0.71 (0.65, 0.77) 0.66 0.70

SM (d18:1|18:2) 0.71 (0.65, 0.76) 0.60 0.76

LPC 20:3 0.70 (0.64, 0.76) 0.54 0.84

PC (18:0e|18:0) 0.68 (0.62, 0.74) 0.52 0.80
The diagnostic performance of individual metabolites and a combined panel is summarized.
Br, Boruta; FC, |log2 fold change| ≥ 1.5; LPC, lysophosphatidyl choline; PC,
phosphatidylcholine; RF, random forest; SM, sphingomyelin.
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We have now performed additional analyses using the common

thresholds: a fixed eGFR decline of –5 or –10 mL/min/1.73 m²/year

or a 40% decline in eGFR from baseline. The results of these

analyses are now presented in Supplementary Tables S3–S5,

respectively. We are pleased to report that the predictive

performance of our urinary lipid metabolite panel remains robust

and statistically significant across all of these alternative definitions

of rapid progression. This consistency greatly strengthens our

conclusion that urinary lipids are reliable predictors of future

kidney function decline in patients with T2D irrespective of the

specific threshold used.
Discussion

Our lipidomic analysis revealed a distinct urinary lipid profile in

patients with DKD, characterized by significant alterations in major

lipid classes and elevated levels of specific metabolites. Furthermore,

we established that higher baseline concentrations of these

differential lipid metabolites are implicated in the future decline

of kidney function among individuals with type 2 diabetes,
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highlighting their potential as prognostic biomarkers for

disease progression.

A key advantage of utilizing urinary lipidomics in DKD, as

opposed to conventional plasma-based approaches, lies in its

potential to offer a more direct and kidney-specific readout of

pathological processes. While plasma lipidomics provides a

systemic overview, it can be confounded by non-renal metabolic

alterations inherent to diabetes. In contrast, the lipid species detected

in urine are likely derived from several pathophysiologically

relevant sources: they may originate from the shedding of lipid-

laden tubular cells, reflect the breakdown of the apical membrane

under lipotoxic stress, or directly leak from damaged podocytes. This

intra-renal origin positions urinary lipids as a rich source of

biomarkers that intimately mirror the local tissue injury and

metabolic perturbations within the kidney. While we acknowledge

that urine is inevitably influenced by the circulating lipidome, we

posit that the disease-specific alterations in this “contaminated”

matrix are precisely the signals we aim to capture. Notably, from a

clinical translation perspective, urine is a completely non-invasive

and readily available biofluid, making any discovered biomarkers

more applicable for routine screening and monitoring.
TABLE 3 Baseline clinical characteristics of T2D subjects in future fast decline (FD) and Non-FD groups in the longitudinal study.

Clinical characteristics Non-FD (n = 186) FD (n = 62) p-value

Male sex (%) 127 (68.28%) 36 (58.06%) 0.142

Age (year) 57.00 (51.00, 61.25) 58.00 (49.00, 62.25) 0.66

Duration of diabetes (month) 78.00 (13.75, 179.25) 67.00 (8.50, 159.50) 0.561

BMI (kg/m2) 25.00 (22.89, 27.47) 24.77 (23.01, 26.69) 0.595

WHR 0.93 ± 0.06 0.95 ± 0.07 0.254

SBP (mmHg) 133.36 ± 16.07 134.93 ± 18.95 0.526

DBP (mmHg) 84.00 (75.00, 90.00) 80.00 (74.00, 90.00) 0.223

HR (per min) 78.00 (71.00, 85.00) 78.00 (70.50, 85.00) 0.886

Hb (g/L) 143.36 ± 17.08 136.52 ± 19.22 0.012

Alb (g/L) 45.10 (42.40, 48.80) 41.80 (37.43, 46.10) <0.001

FBG (mmol/L) 8.35 (6.92, 11.96) 9.50 (6.47, 11.96) 0.349

HbA1c (%) 7.90 (6.65, 9.60) 9.20 (7.40, 10.80) 0.001

SCr (mmol/L) 69.35 (57.93, 87.63) 69.25 (55.55, 86.58) 0.817

UA (mmol/L) 324.00 (264.75, 384.25) 304.00 (257.00, 380.00) 0.442

TC (mmol/L) 4.51 (3.77, 5.19) 4.95 (4.25, 6.12) 0.004

TG (mmol/L) 1.61 (1.06, 2.56) 1.73 (1.18, 2.44) 0.666

HDL-C (mmol/L) 1.09 (0.94, 1.29) 1.10 (0.96, 1.32) 0.566

LDL-C (mmol/L) 2.95 ± 1.14 3.47 ± 1.36 0.004

UACR (mg/g) 23.10 (7.30, 102.41) 54.54 (14.78, 1,424.86) <0.001

eGFR (mL/min/1.732) 98.01 (80.01, 106.65) 95.74 (74.77, 108.81) 0.940
Data are presented as mean ± SD, median (IQR), or n (%).
Alb, albumin; BMI, body mass index; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; FBG, fast blood glucose; Hb, hemoglobin; HbA1c, hemoglobin A1c; HDL-C, high
density lipoprotein cholesterol; HR, heart rate; LDL-C, low density lipoprotein cholesterol; FD, fast decline; SBP, systolic blood pressure; SCr, serum creatinine; TC, total cholesterol; TG,
triglyceride; UA, uric acid; UACR, urinary albumin creatinine ratio; WHR, waist–hip ratio.
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FIGURE 4

Abundance of the 21 lipid metabolites in spot urine of all, male, and female subjects in future fast decline (FD) and non-FD groups. The boxplots
show the abundance of 21 lipid metabolites in the spot urine of all (n = 248), male (n = 163), and female (n = 85) subjects in future FD (n = 62) and
non-FD (n = 186) groups. All lipid concentrations were normalized to urinary creatinine to account for variations in urine concentration. The
abundance data were log2-transformed prior to statistical analysis and visualization to better approximate a normal distribution. The fast decline (FD)
group was defined as the highest quartile of annual eGFR loss. Significance levels are marked as *p < 0.05; **p < 0.01; ***p < 0.001. A green or
yellow square indicates that the lipid metabolite is one of the top 10 important differential metabolites selected by Boruta or random forest.
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Consequently, urinary lipid profiling not only serves as a sensitive

prognostic tool but also provides invaluable pathophysiological

insights into the progression of DKD, paving the way for

future studies.
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Our analysis yields a critical insight. The superior predictive

capacity of the lipid panel, to which clinical variables added

minimal incremental value, strongly suggests that it captures the

core pathophysiological signal of rapid renal decline. It is plausible

that these urinary lipids directly reflect key disease-specific

processes, such as tubular injury, oxidative stress, or specific

inflammatory pathways, that are not fully captured by

conventional clinical metrics. From a translational perspective,

this finding indicates that a more streamlined, lipid-based

prognostic tool could offer a highly accurate and potentially more

cost-effective strategy to identify high-risk patients.

However, the observation that the combined model did not

outperform the lipid-only model also raises important questions.

The diminished marginal contribution of clinical variables may

point to underlying collinearity, where factors like hyperglycemia

and dyslipidemia exert their influence precisely by altering the lipid

metabolism represented in our signature. Therefore, while our

results underscore the paramount importance of the lipid

signature, future studies in larger, independent cohorts are

warranted to confirm its standalone power and to disentangle the

complex interplay between conventional risk factors and the

underlying lipid biology in DKD progression.

The robustness of our urinary lipid metabolite signature was

further substantiated through sensitivity analyses employing

alternative, standardized definitions of rapid kidney function

decline. Crucially, the predictive performance remained

statistically significant across all of these thresholds. This

consistency underscores that the association is not contingent on

a single, arbitrarily chosen cutoff point, thereby strengthening the

broader clinical applicability of our findings. While the primary

analysis utilized a study-specific quartile to maximize statistical

power, these supplementary analyses confirm that the biomarker

signature is a reliable predictor of renal function decline,

independent of the specific progression criterion applied.

Quantitative data for the prediction of progression of kidney

disease in patients with T2D are scarce. Although albuminuria and

eGFR are the most important factors, their predictive abilities are

modest, including clinical or laboratory parameters that barely

improve (23). Abnormal metabolism and intrarenal accumulation

of lipids, including phospholipids (13, 24, 25), sphingolipids (26, 27),

cholesterol (28), triglycerides, and fatty acids (29–31), are strongly

associated with the development and progression of DKD. A meta-

analysis of 34 clinical-based metabolomics studies identified five

essential metabolites related to DKD compared with healthy

control, suggesting lipid metabolism pathways related to DKD (32).

Modern lipidomics based on mass spectrometry have enabled the

identification and quantitation of lipids (33). Patients with DKD had

higher plasma/serum acylcarnitines compared with diabetic patients

without a kidney disease (34–36), which also predicted DKD

progression (34, 36–38). Lower long-chain acylcarnitine and higher

medium- and short-chain acylcarnitine were associated with GFR

reduction in patients with DKD (39). Double-bond TAG species and

polyunsaturated PE species were predictors of DKD progression in

T2D (40). Circulating ceramide (Cer) (18:1/16:0) and Cer(18:1/16:1)

were significantly increased in patients with T2D DKD compared
TABLE 4 ROC analyses of lipid metabolites and clinical variables for the
fast decline of renal function in patients with diabetes in a 33-month
longitudinal study.

Panel of lipid
metabolites
and clinical
variables

AUC (95% CI) Sensitivity Specificity

FC (n = 21) 0.80 (0.74, 0.86) 0.77 0.70

FC + CV (n = 24) 0.79 (0.73, 0.86) 0.61 0.86

FC + RF + CV
(n = 11)

0.74 (0.66, 0.81) 0.54 0.84

FC + Br + CV
(n = 12)

0.74 (0.66, 0.81) 0.63 0.76

LPC 20:4 0.72 (0.65, 0.79) 0.79 0.58

CV (n = 3) 0.70 (0.62, 0.78) 0.70 0.63

FC + RF (n = 8) 0.70 (0.62, 0.77) 0.50 0.83

FC + Br (n = 9) 0.67 (0.59, 0.75) 0.48 0.80

LPC 20:3 0.67 (0.59, 0.75) 0.66 0.69

PC (16:0|16:0) 0.66 (0.58, 0.74) 0.44 0.82

PC (18:2p|18:1) 0.64 (0.56, 0.73) 0.39 0.91

SM (d18:1|22:2) 0.64 (0.55, 0.72) 0.42 0.90

PC (16:0|18:1) 0.64 (0.55, 0.72) 0.52 0.77

SM (d18:1|22:3) 0.64 (0.55, 0.72) 0.44 0.89

PC (18:0p|18:3) 0.64 (0.55, 0.72) 0.45 0.86

PC (16:0e|20:4) 0.63 (0.55, 0.72) 0.39 0.91

PC (18:2p|18:0) 0.63 (0.54, 0.71) 0.45 0.82

PC (16:0e|22:6) 0.63 (0.54, 0.71) 0.37 0.90

PC (18:0e|18:0) 0.62 (0.54, 0.71) 0.32 0.94

PC (18:0e|20:4) 0.63 (0.54, 0.71) 0.39 0.90

PC (18:1e|20:4) 0.62 (0.54, 0.71) 0.39 0.91

PC (16:0|18:2) 0.62 (0.53, 0.71) 0.39 0.90

PC (18:0|18:2) 0.62 (0.53, 0.71) 0.40 0.87

PC (16:0e|22:5) 0.62 (0.53, 0.71) 0.39 0.91

LPC 22:6 0.62 (0.53, 0.70) 0.55 0.71

PC (16:0|20:4) 0.61 (0.52, 0.70) 0.37 0.91

PC (18:2p|20:3) 0.60 (0.51, 0.69) 0.39 0.91

SM (d18:1|18:2) 0.59 (0.50, 0.68) 0.39 0.89
The predictive performance of the clinical, lipid, and combined models for forecasting rapid
renal function decline is summarized.
Br, Boruta; CV, clinical variables, including baseline eGFR, HbA1c and UACR; FC, |log2 fold
change| ≥ 1.5; LPC, lysophosphatidyl choline; PC, phosphatidylcholine; RF, random forest;
SM, sphingomyelin.
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with patients with T2D without DKD (35), while very long chain

(C20–26) ceramides were significantly decreased in T1DM DKD

patients as compared with T1DM without albuminuria (41). Serum

integrative omics of proteomes and metabolomes revealed serum

glycerol-3-galactoside as an independent marker to predict DKD

(42). A previous genome-wide association study and a subsequent

two-sample Mendelian randomization analysis revealed that urinary

ethanolamine, an initial precursor for PC, was associated with higher

eGFR in people with T1D (43). These findings establish targeted

lipidomics as a feasible and reliable approach to evaluate kidney

damage in diabetes.

We found that SM (d18:1|22:3) and SM (d18:1|22:2) had

identical and the highest AUC of 0.80 among the 21 individual

lipid metabolites. SM was a significant biochemical covariate of

urine albumin and the strongest lipid regressor for kidney disease in

human T1D (44). Serum SM was also highly upregulated in DKD

and significantly correlated to albuminuria (45). Lower serum SM

species was reported in participants with macroalbuminuria

compared with those with normo-albuminuria, while SM (d18:1|

24:0), SM (d40:1), and SM (d41:1) were associated with a lower risk

of kidney disease progression or mortality (46). Here PC species

constituted the predominant fraction of the differential lipid

metabolites. High-fat-diet-induced upregulation of PC-enriched

exosome contributed to insulin resistance (47). LPC was

dramatically elevated in the early stage of DKD (48). We showed

that LPC 20:4 was a strong predictor of FD in the kidney function of

T2D. Coincidentally, urinary LPC (16:0) and LPC (18:0) increased

in the fast decliner of stage G3 DKD. Moreover, tubular

accumulation of LPC enhanced organelle stress and cell

apoptosis, accelerating tubular lipotoxicity (13). These results

provided evidence that specific lipid metabolite biomarkers also

play critical roles in regulating the pathogenesis of DKD.

Our findings both corroborate and extend previous knowledge. In

line with prior research, we confirm that lipid metabolism is

profoundly disturbed in DKD, observing elevated levels of specific

lipid classes previously implicated in diabetic complications. More

importantly, our study provides several novel insights. First, we identify

a specific urinary lipid signature that is not merely associated with the

presence of DKD but is predictive of its future rate of progression. This

prognostic capacity, validated in a longitudinal cohort, addresses a

critical gap in the field. Second, we demonstrate that this urinary

lipidomic profile provides significant independent and incremental

prognostic information over standard clinical markers, including

albuminuria, glucose, and eGFR, and underscores its potential

clinical utility to identifying high-risk patients who might be missed

by current metrics. Finally, by focusing on urine, we highlight a direct,

kidney-related lipidomic footprint that is more accessible for clinical

translation than plasma or biopsy-based markers.

We acknowledge several limitations. The longitudinal findings

require confirmation in larger, multi-center cohorts to ensure

robustness. Furthermore, the observational nature of our study

cannot establish causality; mechanistic investigations are essential

to determine if these lipid metabolites are indeed drivers of pathology.

We acknowledge that intra-individual variation exists for any
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biomarker. However, by studying a sizable cohort and employing

rigorous normalization, we are confident that the strong associations

and predictive signals we observed robustly reflect the underlying

biology. The absence of detailed medication information (e.g., on

adherence and specific dosages) represents a limitation, as it

precludes a comprehensive analysis of how pharmacotherapy might

interact with or influence the urinary lipidome. Future prospective

studies designed to incorporate detailed drug monitoring are

warranted to validate our findings and to explore the interplay

between medications and lipid metabolism in DKD. Finally, it is

important to consider that our study lacked a healthy control cohort.

Therefore, the lipidomic differences identified here specifically reflect

changes associated with DKD progression within a diabetic

population but do not define the broader shifts that occur from a

state of health to diabetes. Establishing this “healthy baseline” in

future work will be crucial for a complete understanding of the

pathogenic timeline of lipid dysregulation in DKD.

In conclusion, our study establishes specific urinary lipid

metabolites as non-invasive biomarkers that not only reflect but

also predict the progression of DKD. By demonstrating their

incremental value over standard clinical parameters, this work

provides a foundation for improved risk stratification. Ultimately,

the dysregulated lipids identified here offer two pivotal

opportunities: first, as a source of mechanistic insights for future

research, and second, as a foundation to develop novel prognostic

tools and targeted therapies to alter the trajectory of kidney disease

in T2D.
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