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Primary osteoporosis (POP) is a systemic metabolic bone disorder marked by

diminished bone density and deterioration of bone microstructure, presenting a

considerable challenge to global public health due to its widespread occurrence

and heightened fracture risk. Although conventional western pharmaceutical

treatments are efficacious, they are often associated with adverse events.

Conversely, traditional Chinese medicine (TCM) exhibits distinct potential owing

to its multi-targeted andmulti-pathway regulatory benefits. This systematic review

elucidates the molecular mechanisms of flavonoids, polyphenols, saponins,

polysaccharides, coumarins, and alkaloids in the prevention and treatment of

POP. The study elucidates the mechanisms of action by modulating critical

signaling pathways, including the Wnt/b-catenin, RANKL/OPG pathways and so

on, thereby facilitating osteoblast differentiation, suppressing osteoclast activity,

and ameliorating oxidative stress, inflammation, and dysbiosis of the intestinal

microbiota, ultimately restoring the balance of the bone microenvironment. This

research aims to advance the development of innovative POP medications based

on TCM principles and to provide scientific validation for individualized therapy.
KEYWORDS

primary osteoporosis, traditional Chinese medicine, active constituents, mechanism,
signaling pathways
1 Introduction

Primary osteoporosis (POP) is a systemic metabolic bone disorder characterized by

diminished bone mass, deterioration of bone microarchitecture, and heightened bone fragility.

It is predominantly observed in postmenopausal women and older males. Clinically designated

as the “silent killer”, hip fracture resulting from osteoporosis (OP) frequently represent “the

final fractures an individual endure in their lifetime”. Globally, one-third of women and one-

fifth of men over the age of 50 will experience a fracture attributable to OP (1). A 2021 meta-
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analysis found that the global prevalence of OP is 18.3%, with women

accounting for 23.1% and men for 11.7% in the general population

across various pooled sample sizes (2). The causes are multifaceted,

encompassing estrogen insufficiency, aging, and additional variables

(3). The treatments are varied, encompassing contemporary

pharmacological medicines, traditional Chinese medicine (TCM),

physical therapies, and additional modalities.

Current pharmacological interventions primarily consist of

bisphosphonates (4), receptor activator of nuclear factor kappa-B

ligand(RANKL) inhibitors (5), sclerostin inhibitors (6), and active

vitamin D, along with its analogs (7). TCM predominantly

encompasses herbal medicine, acupuncture, and various other

comprehensive intervention measures (8–10). Moreover, consistent

physical activity has been shown to influence the management of OP

positively (11). Despite the beneficial effects of these methods on the

treatment of POP, certain limitations persist. For instance, although

bisphosphonates commonly used in clinical can inhibit bone

resorption, there are adverse reactions such as osteonecrosis,

atypical femoral fractures, and esophageal cancer (12). Teriparatide

can enhance osteoblast activity, thereby stimulating bone production,

however, it may result in undesirable effects, including limb pain,

muscle spasms, fractures, and elevated calcium levels (13). Although,

Chinese herbal formula exhibits multi-target synergistic benefits, their

complicated ingredients frequently result in an ambiguous

pharmacodynamic material foundation, and the isolation and study

of single compounds may inadequately reveal their holistic therapeutic

effects and underlying mechanisms of action (14, 15).

Consequently, identifying safer and more efficacious treatments

is pivotal to the management of POP. The active constituents of

TCM modulate bone metabolism via multifaceted, multi-target

pathways, and certain chemicals can be used in combination with

other drugs to enhance their effectiveness or alleviate their adverse

effects. Panax ginseng saponins, flavonoids, and polysaccharides

have shown potential efficacy in synergistically enhancing

bone mass in arthritic rats and were well tolerated (16). The

active constituents of Chinese medicines compensate for the

shortcomings inherent in the intricate composition of traditional

compound formulae and the ambiguity surrounding their

mechanisms. As one of the key characteristics of TCM therapy,

the active constituents in herbs offer diverse therapeutic options for

patients and support the health of those with OP. This review

delineates the role and application of active constituents in TCM

therapy for the treatment of POP, utilizing databases such as China

National Knowledge Infrastructure and PubMed to provide a

comprehensive overview of diverse treatment options available to

patients (Figure 1). The objective is to provide novel insights into

the prevention and treatment of OP through TCM and its

active constituents.
2 Pathogenesis of POP

POP arises from the interplay of genetic, endocrine,

microenvironmental, and gut microbiota variables, characterized
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by a complex pathophysiology involving multi-system and multi-

pathway interactions (Figure 2).
2.1 Hereditary influences

Genetic factors significantly contribute to the etiology of OP.

Genome-wide association studies and candidate gene analyses have

discovered several significant gene variants strongly linked to

diminished bone mineral density (BMD) and increased fracture

risk. The genetic influence on OP differs by phenotype. Specifically,

hereditary predisposition to osteoporotic fractures is around 25%,

wrist fractures range from 25% to 54%, and hip fractures can reach

up to 48% (17). Genome-wide association studies systematically

revealed the molecular network of OP susceptibility genes, mainly

involving the following pathways: vitamin D metabolism pathways

(VDR, DBP), estrogen signaling (ESR1, ESR2, CYP19A1), the

Wnt/b-catenin pathway (LRP5, SOST, WNT10B), and the

RANKL-RANK-OPG system (TNFRSF11A, TNFRSF11B) (18).

Polymorphisms in the vitamin D receptor (VDR) gene are among

the most well-investigated genetic determinants. Research involving

174 postmenopausal women (aged 43–71) revealed the following

distribution of the FokI genotype: FF (33.3%), Ff (50.6%), and ff

(16.1%). The ff genotype exhibited a significantly reduced lumbar

spine BMD compared to those with the FF genotype, and the

prevalence of the ff genotype was markedly greater in the OP cohort

than in the normal bone mass cohort, indicating that FokI

polymorphism may affect bone metabolism by modulating VDR

protein function (19). Studies have identified several single

nucleotide polymorphisms linked to OP, including rs1061947

(COL1A1), rs10793442 (ZNF239), and rs11614913 (miR-196a),

which are associated with fracture risk, while rs5854 (MMP1) and

rs2910164 (miR-146a) correlate significantly with low BMD. And,

rs10098470 (TPD52), rs11540149 (VDR), rs1042673 (SOX9),

rs1054204 (SPARC), and rs1712 (FBXO5) have been identified as

prevalent genetic markers for fractures and low BMD (20). Family

studies have corroborated that the rs11029986 allele of the LGR4

gene is associated with hip BMD, whereas the rs12796247 and

rs2219783 polymorphisms affect lumbar spine BMD (21). Key

genetic variables associated with POP, particularly in its early

stages, include the core genes LRP5, COL1A1, COL1A2, WNT1,

and PLS3 (22). A study in the Volga-Ural region of Russia has

demonstrated that hypomethylation of the RUNX2 gene’s promoter

region is associated with POP, specifically at the CpG1 locus. The

CpG1 locus may serve as a potential biomarker, with a more

pronounced epigenetic profile observed in male individuals (23).

Moreover, miR-422a may facilitate the lipogenic differentiation

of human bone marrow mesenchymal stem cells (BMSCs)

by downregulating MeCP2, potentially resulting in increased

bone marrow adiposity and decreased bone production (24).

These genetic factors interact through various pathways to

establish the molecular foundation of OP, collectively regulating

the balance between osteogenesis and resorption and influencing

bone homeostasis.
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2.2 Endocrine regulatory dysregulation

An imbalance in the endocrine system is a fundamental factor

contributing to the start and progression of OP, predominantly

characterized by estrogen insufficiency, abnormalities in parathyroid

hormone (PTH), and disorders in vitamin D metabolism.

Estrogen irregularities: Estrogen is integral to bone metabolism via

its receptors (ERa and ERb), sustaining metabolic equilibrium in

bone, and is a fundamental pathway in POP (25). Postmenopausal

estrogen insufficiency results in an altered RANKL/OPG ratio,

increased osteoclast activation, and expedited bone resorption.

Estrogen specifically facilitates the production of OPG

and suppresses RANKL-induced osteoclast differentiation (26).

Moreover, estrogen diminishes the secretion of bone resorption

factors such as IL-6 and RANKL while augmenting the activity of

bone formation factors like TGF-b (27). At the molecular level,

estrogen activates the ERa/Akt signaling pathway, which

subsequently enhances the activation of the Wnt/b-catenin signaling

pathway, thereby stimulating osteoblast proliferation and

differentiation (28, 29).

Elevated PTH: PTH is crucial for regulating calcium

metabolism, and older individuals with OP frequently exhibit

increased PTH levels. This may result from age-related renal
Frontiers in Endocrinology 03
impairment, which diminishes the production of 1,25(OH)2D3,

thereby reducing intestinal calcium absorption, lowering serum

calcium levels, and subsequently inducing elevated PTH secretion,

which promotes bone resorption (30). PTH interacts with the PTH1

receptor (PTH1R) to initiate the G protein-coupled signaling

cascade, consequently modulating two principal pathways: protein

kinase A (PKA) and protein kinase C. Upon binding to PTH1R,

PTH activates the Gs protein, which stimulates adenylate cyclase to

produce cAMP, thereby activating PKA and controlling the

differentiation, proliferation, and death of osteoblasts. PTH can

activate phospholipase C via Gq protein, producing IP3 and DAG,

the latter of which activates protein kinase C, thus affecting the

expression of genes associated with bone metabolism (31, 32).

Disorders in vitamin D metabolism: Inadequate levels of active

vitamin D can result in disturbances in calcium and phosphorus

metabolism, hence impacting bone mineralization (33). Vitamin D

deficiency diminishes intestinal calcium absorption, resulting in

decreased blood calcium levels that trigger increased PTH secretion

(34). Elevated PTH enhances osteoclast activation by upregulating

RANKL expression and concurrently inhibits the Wnt/b-catenin
signaling pathway in osteoblasts, culminating in augmented bone

resorption and diminished bone formation (35). Clinical studies

indicate a significant correlation between vitamin D deficiency and
FIGURE 1

Active constituents of traditional Chinese medicine for the treatment of POP.
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elevated levels of bone metabolism markers, such as PINP, B-CTX,

and N-MID (36).
2.3 Oxidative stress and inflammatory
response

Oxidative stress and chronic inflammation are significant

contributors to OP. The excessive accumulation of reactive oxygen

species (ROS) disturbs the osteogenic-osteoclastic equilibrium,

resulting in heightened osteoclast formation and suppressed

osteoblast activity (37). In osteoblasts, oxidative stress impedes the

nuclear translocation of nuclear factor E2-related factor 2 (Nrf2),

which contributes to increased osteoclast formation (38). The

inactivation of Nrf2 leads to the accumulation of ROS in

osteoblasts, inducing ferroptosis, characterized by abnormal

mitochondrial morphology and elevated lipid peroxidation products

(e.g., 4-HNE), which subsequently impedes osteogenic differentiation

and results in bone loss (23). Furthermore, ROS activate the NF-kB
and MAPK signaling pathways, enhancing the expression of essential

osteoclast transcription factors (including c-Fos and NFATc1),

therefore facilitating bone resorption (39).

In a chronic low-grade inflammatory condition, pro-inflammatory

mediators such as TNF-a, IL-1b, and IL-6 are consistently elevated,

promoting osteoclast development through the activation of the

RANKL-RANK signaling pathway. Clinical studies indicate that

systemic immune inflammation indices are markedly elevated in
Frontiers in Endocrinology 04
patients with OP, and when these indices surpass 613.03, the risk of

OP significantly escalates (40). Furthermore, monocytes derived from

female OP patients can autonomously differentiate into osteoclasts in

vitro without external stimulation (41), while macrophages and

monocytes further facilitate osteoclastogenesis by secreting IL-1 and

TNF-a (42).
2.4 Gut microbiota and bone immune
dysfunction

The gut microbiota modulates bone metabolism via the “gut-bone

axis,” employing mechanisms that include immune modulation and

metabolite-mediated signaling pathways (43). Research indicates that

gut microbiota can affect the equilibrium of Th17 and Treg cells by

modulating the differentiation and functionality of immune cells.

Th17 cells secrete pro-inflammatory mediators, including IL-17,

RANKL, and TNF-a, which directly facilitate osteoclast

differentiation and activation while concurrently inhibiting

osteoblast activity; conversely, Treg cells produce anti-inflammatory

mediators, such as IL-10 and TGF-b, which not only suppress

osteoclast formation but also enhance the expression of osteoblast-

related factors (44). The disruption of this equilibrium results in bone

remodeling disorders, and the overactivation of Th17 cells markedly

increases bone resorption via the RANKL/RANK pathway (45).

Furthermore, gut microbiota can affect bone remodeling by

modulating immune cell function through metabolic byproducts
FIGURE 2

Mechanism diagram of POP.
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such as short-chain fatty acids (SCFAs) (46). Butyrate can diminish

the expression of iNOS, TNF-a, and IL-6 by reducing NFkB
transcriptional activity while simultaneously boosting IL-10

expression and suppressing the development of Th17 cells (47, 48).

Propionate inhibits histone deacetylase, reducing ROR-gt expression,
thereby inhibiting Th17 cell differentiation (49). SUN et al. discovered

that the administration of Jiangu granules could modulate intestinal

flora homeostasis, enhance the secretion of short-chain fatty acids,

adjust the Treg/Th17 cell ratio, andmodify the expression of cytokines

associated with bone immunomodulation in ovariectomized rats,

thereby inhibiting osteoclast differentiation and effectively

preventing bone loss (50). Blautia, Parabacteroides, and

Ruminococcaceae exhibited notable disparities between osteoporotic

and healthy persons, influencing bone health (51). In conclusion, the

imbalance of intestinal flora and bone immunological diseases is

significantly linked to OP, offering a theoretical foundation for

targeting intestinal flora as an intervention strategy.
3 Mechanisms and applications of
active constituents in the prevention
and treatment of POP

3.1 Flavonoids

3.1.1 Icariin
Icariin is the primary bioactive component of Epimedium

brevicornu Maxim, a plant belonging to the Berberidaceae family

(Figure 3A). In TCM, it is extensively utilized for the management of

OP owing to its capabilities in warming and tonifying kidney yang, as

well as fortifying tendons and bones. Icariin is the predominant

flavonoid glycoside in Epimedium brevicornu Maxim,

demonstrating functions that enhance cardiovascular function,

bolster immune system efficacy, and regulate the endocrine system,

and it exhibits antitumor, antiviral, antihypoxia and reperfusion injury

properties (52). Contemporary research demonstrates that icariin

treats OP primarily by modulating the levels and functions of

osteoclasts and osteoblasts, regulating the differentiation of BMSCs,

thereby promoting bone formation, inhibiting bone resorption, and

restoring bonemass homeostasis, thus treating OP (53). Regarding the

inhibition of bone resorption, icariin can influence the differentiation

and function of osteoclasts through various mechanisms. Zhiwei Li

et al. discovered that icariin inhibits the formation of the osteoclast

cytoskeletal filamentous actin (F-actin) ring in a dose-dependent

manner by upregulating the expression of the negative regulatory

factor guanine nucleotide-binding protein subunit a13 (Ga13),
thereby obstructing the downstream PKB/GSK-3b/NFATc1

signaling pathway and consequently inhibiting osteoclast formation

(54). Additionally, Yuhao Si et al. demonstrated that icariin activates

the Cullin 3/Nrf2/HO-1 pathway, which inhibits osteoclast

differentiation, significantly reduces oxidative stress levels, decreases

the number of TRAP-positive osteoclasts in the bone tissue of

ovariectomized (OVX) rats, lowers bone tissue ROS levels, and
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increases BMD (55). Regarding the promotion of bone formation,

icariin enhances bone metabolism by regulating the bone marrow

microenvironment and stem cell differentiation. Long Bai et al.

discovered that icariin stimulates the autophagy process, mitigates

the inflammatory aging phenotype of senescent macrophages, and

diminishes the release of the senescence-associated secretory

phenotype, thereby enhancing the bone immune microenvironment

and restoring the osteogenic potential of aged BMSCs, ultimately

alleviating OP (52). Shaozi Lin et al. also found that icariin inhibits the

Hippo-YAP/TAZ signaling pathway, reduces YAP/TAZ

phosphorylation, and suppresses the adipogenic regulator PPARg,
thereby promoting the osteogenic differentiation of ADSCs and

inhibiting adipogenic differentiation (56). Therefore, icariin regulates

the “bone formation-bone resorption” balance in a bidirectional

manner, inhibiting osteoclast-mediated bone resorption while

promoting osteogenic differentiation and improving the bone

microenvironment, thereby restoring bone mass homeostasis.

3.1.2 Puerarin
Puerarin is an isoflavone compound isolated from the dried

rhizomes of wild kudzu [Pueraria montana (Lour.) Merr.]

(Figure 3B). It possesses anti-inflammatory, antioxidant, and

estrogen-like pharmacological effects and can positively influence

bone metabolism by modulating multiple signaling pathways (57).

Research indicates that puerarin modulates osteoclast differentiation by

obstructing the TRAF6/ROS-dependent MAPK/NF-kB signaling

pathway. This is achieved through the downregulation of NOX1

expression, reduction of ROS production, and upregulation of HO-1

levels, which collectively inhibit the activation of theMAPK andNF-kB
pathways, leading to the downregulation of osteoclast-specific genes

such as NFATc1, MMP9, and CTSK (58). Furthermore, it facilitates

osteoblast differentiation through the activation of the ERK1/2 and

p38-MAPK pathways, markedly enhancing BMD, bone volume

fraction (BV/TV), and trabecular number (Tb.N) in OVX rats (59).

Additionally, puerarin suppresses the activation of the JAK2/STAT3

signaling pathway, efficiently mitigating bone loss and microstructural

damage in postmenopausal osteoporosis(PMOP) rats (60). A meta-

analysis established that puerarin exhibits a significant bone-sparing

effect on ovariectomy-induced PMOP, demonstrating efficacy

comparable to estrogen and enhanced safety (61). These results offer

a robust theoretical foundation for the prospective application of

puerarin as a therapeutic agent for POP.

3.1.3 Naringin
Naringin is a natural flavonoid compound (Figure 3C) and one of

the active constituents of the TCM Drynariae Rhizoma. It possesses

multiple pharmacological effects, including promoting bone growth,

anti-inflammatory activity, and promoting microvascular

regeneration (62). The mechanism of action of naringin in

regulating POP has been widely studied, and the existing evidence

shows that it can regulate POP activity through multiple pathways.

Yubo Cui et al. found that naringin promotes osteoblast differentiation

by activating the Wnt/b-catenin signaling pathway, inhibiting bone
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resorption and thereby improving OP in OVX mice (63). Hui Wang

et al. found that naringin binds to ESR1 and HSP90AA1, activates the

Wnt/b-catenin and PI3K/Akt signaling pathways, induces GSK-3b
phosphorylation, promotes b-catenin nuclear translocation, thereby

reversing the inhibitory effects of oxidative stress on osteoblast

differentiation (64). Naringin may influence OPG mRNA expression

in a time- and dose-dependent manner, facilitating the secretion of

OPG protein, upregulating OPG expression, and increasing the OPG/

RANKL ratio, which inhibits osteoclast differentiation and activation,

thereby diminishing bone resorption, concurrently, it synergistically

enhances OPG secretion with vitamin D3, further substantiating its

stimulatory effect on bone formation (65). Wang Wang et al.

demonstrated that naringin inhibits the JAK2/STAT3 signaling

pathway, enhances the proliferation and osteoblast differentiation of

BMSCs, and diminishes osteoclast activity, thereby rectifying the

imbalance between bone formation and resorption in PMOP rats,

modulating bone metabolism, and mitigating OP (66). Furthermore,

naringin decreases VEC apoptosis by attenuating endoplasmic

reticulum stress (downregulating GRP78, CHOP, and caspase-12)

and mitochondrial-mediated apoptosis pathways while also regulating

the ET/NO balance to facilitate bone vascularization (67). So, naringin

regulates osteoblasts to treat OP by modulating signaling pathways,

including the Wnt/b-catenin, JAK2/STAT3, PI3K/Akt, and estrogen

receptor signaling pathways, as well as mitochondrial apoptosis

pathways, thereby regulating osteoblast function and treating OP.

3.1.4 Luteolin
Luteolin is a naturally occurring flavonoid compound

(Figure 3D) found in medicinal plants such as Dendranthema

morifolium, Lonicera japonica Thunb, Prunella vulgaris L., and

Eclipta prostrata L. Luteolin is frequently utilized in TCM for

“tonifying the kidneys and strengthening bones.” As an active
Frontiers in Endocrinology 06
constituent of various medicinal plants, luteolin exhibits

substantial therapeutic effects in the prevention and treatment

of OP through mult i faceted regulatory mechanisms.

Research indicates that luteolin not only enhances the osteogenic

differentiation of BMSCs by activating the PI3K-Akt signaling

pathway (68), mitigates osteoclast pyroptosis and improves bone

microstructure, (69) but also inhibits the RANKL signaling pathway

to downregulate transcription factors such as NFATc1, thereby

synergistically diminishing levels of inflammatory factors like TNF-

a and IL-6 (70). Luteolin significantly improves osteoblast function

via estrogen receptors and the Wnt/b-catenin pathway (71).

Furthermore, in an OVX animal model, it exhibited efficacy akin

to estrogen replacement therapy without associated carcinogenic

risks (70), underscoring its potential as a safe and effective anti-

OP agent.

3.1.5 Kaempferol
Kaempferol is a flavonoid active compound extracted from

various plants, exhibiting anti-inflammatory, antitumor,

antioxidant, and anti-allergic properties (Figure 3E). Kaempferol

can prevent and treat OP through various signaling pathways (72).

Research indicates that kaempferol enhances BMD in OVX rats

and increases the bone mineralization capacity and ALP activity

of BMSCs. The underlying mechanism may involve the

downregulation of miR-10a-3p, which alleviates its post-

transcriptional inhibition of CXCL12, consequently upregulating

CXCL12 expression, promoting BMSC osteogenic differentiation,

and ameliorating ovariectomy-induced OP in rats (73). YAP is a

key transcriptional cofactor in the Hippo signaling pathway, which

promotes osteoblast differentiation (74). The NF-kB signaling

pathway activation is associated with inflammation, promoting

osteoclast differentiation and inhibiting osteogenesis (75).
FIGURE 3

Chemical structural formula of several flavonoids: (A) Icariin. (B) Puerarin. (C) Naringin. (D) Luteolin. (E) Kaempferol. (F) Isoflavone. (G) Quercetin.
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Wencheng Liu et al. found that kaempferol alleviates the inhibition of

YAP via the Hippo pathway, promotes YAP nuclear translocation,

thereby upregulating the expression of osteogenesis-related genes,

and inhibits RANKL-mediated osteoclast differentiation.

Additionally, YAP inhibits the phosphorylation and nuclear

translocation of NF-kB-p65 by binding to its subunits, reducing the

release of inflammatory factors, thereby weakening osteoclast

differentiation signals (76).

3.1.6 Soy isoflavones
Soy isoflavones is a natural phytoestrogen belonging to the

flavonoid compound family and is widely present in leguminous

plants, where it is an important secondary metabolite formed

during growth (Figure 3F). Studies have shown that the primary

active metabolite of soy isoflavone, equol, binds to ERb receptors,

upregulates the OPG/RANKL pathway, and promotes osteoblast

proliferation while inhibiting apoptosis in a dose-dependent

manner, thereby exerting a protective effect against PMOP (77).

Bing et al. further confirmed that the soy isoflavone metabolite

equol can promote osteoblast secretion of OPG through ERb,
significantly increase the OPG/RANKL ratio, and effectively

inhibit the activation of the RANKL/RANK signaling pathway,

thereby suppressing osteoclast activation (78). Additionally, soy

isoflavones can promote the differentiation of BMSCs into

osteoblasts by activating the Wnt/b-catenin signaling pathway

(79). Animal experiments have confirmed that a dose of 60 mg/

kg of soy isoflavone can bidirectionally regulate the activity of

osteoblasts and osteoclasts, with its effects on improving BMD and

bone microstructure comparable to those of estrogen therapy (80).

These findings provide robust experimental evidence supporting

soy isoflavone as a safer alternative to estrogen therapy.

3.1.7 Quercetin
Quercetin (Figure 3G) is a flavonol substance exhibiting

numerous biological actions, predominantly located in the stem

bark, flowers, leaves, buds, seeds, and fruits of various plants,

frequently as glycosides. Quercetin exhibits anti-osteoporotic

effects through various synergistic mechanisms, including the

promotion of bone formation, inhibition of bone resorption, anti-

inflammatory properties, and antioxidative stress, thereby

providing a theoretical foundation for the development of

innovative OP therapeutic strategies (81). Quercetin enhances

BMD, improves bone microstructure and biomechanical

properties, inhibits bone resorption, promotes bone formation,

enhances muscle morphology and locomotion, and decreases

fracture risk in denuded mice by modulating the GPRC6A/

AMPK/MTOR-mediated glycolipid metabolism pathway (82).

Ruibing Feng et al. discovered that quercetin can modulate

intestinal microbiota, enhance the synthesis of SCFAs, suppress

inflammation, and diminish the risk of OP. SCFAs modulate the

“gut flora - SCFAs - inflammation” axis to ameliorate OP and

suppress inflammatory responses, hence safeguarding bone

integrity in ovariectomized rats (83). A study utilizing in vitro

cellular experiments and in vivo animal models revealed that

quercetin enhances iron and vitamin B2/HO-1 signaling pathways
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by activating the Nrf2/HO-1 signaling pathway, which mitigates

iron overload-induced apoptosis and oxidative stress, thereby

restoring osteoblast function and alleviating OP (84).
3.2 Polyphenolic

3.2.1 Resveratrol
Resveratrol is a natural plant-derived polyphenolic compound

(Figure 4A) with antioxidant, anti-inflammatory, anti-aging, and

phytohormonal activities. Resveratrol is found in various TCM

plants, including Mori Fructus and Giant knotweed rhizome (85). It

operates through multiple mechanisms, such as modulating gut

microbiota, enhancing intestinal barrier integrity, and facilitating

epigenetic regulation (86). A 24-month randomized, double-blind,

placebo-controlled, crossover trial indicated that long-term

resveratrol supplementation (75 mg bid) significantly enhanced

BMD in the lumbar spine and femoral neck of postmenopausal

women, decreased bone resorption, and may correlate with

phytoestrogen effects, improved systemic vascular function, and

synergistic interactions with vitamin D/calcium (87). A preclinical

study further demonstrated that resveratrol can markedly enhance

BMD and microstructure in animal models of POP by modulating

bone metabolism signals, exhibiting antioxidant and anti-

inflammatory properties, and displaying estrogen-like activity.

The dosage range is specified as 5–200 mg/kg/day, with more

significant effects observed at doses of 40–80 mg/kg/day (88). An

animal study corroborated that resveratrol markedly enhanced

BMD in OVX rats, with the underlying mechanism involving the

upregulation of the Wnt/b-Catenin signaling pathway, which

promotes osteogenesis and inhibits osteoclast activity, thus

rectifying bone metabolic imbalance (89).

3.2.2 Gallic acid
Gallic acid is a natural polyphenol (Figure 4B) primarily derived

from TCMs, such as Galla Chinensis, and exhibits anti-

inflammatory and antioxidant properties. It demonstrates clear

anti-bone loss effects both in vitro and in vivo. Peng Zhang et al.

found that GA improves BMD, BV/TV, trabecular thickness, and

trabecular number in OVX mice while reducing trabecular spacing.

It also reduced fat accumulation and osteoclast numbers in bone

tissue of OVX mice by inhibiting the Akt, ERK, and JNK signaling

pathways and downregulating the NFATc1/c-Fos/CTSK axis,

thereby suppressing osteoclast generation (90).
3.3 Saponins

3.3.1 Ginsenosides
Ginsenosides are the primary active constituents of Ginseng Radix

et Rhizoma (Figure 5A), which are essentially non-toxic to normal

human cells. Ginsenosides can elevate the expression of critical

markers, including Runx2 and ALP, in osteoblasts, thereby

promoting mineralization while simultaneously diminishing

osteoclast generation and activity. This results in a reduction of
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TRAP (+) multinucleated cells and RANKL levels, an increase in OPG

expression, and antioxidant effects through enhanced glutathione levels

and decreased production of ROS and nitric oxide (91). Research

indicates that ginsenosides with distinct structures influence biological

processes via specific molecular mechanisms. Fei Xi et al. observed an

increase in bone mass and enhancement of bone metabolic markers in

OVX rats administered ginsenoside Rg3, potentially linked to the

modulation of the RANKL/RANK/TRAF6 signaling pathway, which

regulates bone metabolism and osteoclast activity in PMOP (92).

Shanfu Wang et al. discovered through animal and cellular

experiments that ginsenoside Rc elevates the levels of TGF-b, BMP2,

and p-Smad2/3 proteins in OVX rats, activates the TGF-b/Smad

pathway and concurrently enhances the mRNA and protein

expression of Col1a1 and Col1a2, as well as increases alkaline

phosphatase activity, indicating promotion of collagen synthesis and

bone matrix formation, thus ameliorating OP symptoms in OVX rats

(93). Ginsenoside Rg2 inhibits the phosphorylation of the MAPK

pathway, downregulates the expression of c-Fos and NFATc1, and

consequently diminishes the transcription of osteoclast-specific

markers (Acp5, Oscar), establishing a regulatory axis of “MAPK-c-

Fos/NFATc1-osteoclast markers,” thereby significantly impeding

RANKL-induced osteoclast differentiation (94). Ginsenoside Rh2

may modulate the OPG/RANKL signaling pathway to inhibit

osteoclast differentiation and activity, while enhancing Runx2

expression, thereby facilitating osteoblast development and bone

formation. This results in increased bone mass and density in aged

rats, as well as improved bone microstructure and strength (95).

Clinical studies have corroborated that ginsenoside extract

administered at a dosage of 3 g/day for 12 weeks significantly

elevated serum osteocalcin levels and decreased the DPD/OC ratio in

postmenopausal women, demonstrating favorable safety (96). These

mechanisms collectively form the molecular foundation for the

multifaceted enhancement of bone metabolism by ginsenosides,

which is achieved through their antioxidant properties, promotion of

osteogenic differentiation, and inhibition of osteoclast activity.

3.3.2 Notoginsenosides
Notoginsenosides are the primary active constituents of the

traditional Chinese medicinal herb Notoginseng Radix (Figure 5B),

derived from the dried roots and rhizomes of the Araliaceae family

plant Panax notoginseng. Notoginsenosides R1 can augment BMD
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and osteoblast activity, as well as facilitate fracture healing (97).

Cellular experiments have demonstrated that notoginsenosides R1

mitigates oxidative stress-induced mitochondrial damage by

inhibiting the JNK signaling pathway, decreases cell apoptosis, and

fosters osteogenic differentiation (98). TingWang et al. discovered that

notoginsenosides R1 enhances bone formation by activating ERa/b
receptors, stimulating ERE-mediated transcription, upregulating

osteogenic gene expression, modulating the OPG/RANKL ratio,

inhibiting bone resorption, thus facilitating bone formation, while

also diminishing reproductive toxicity (99). Yi Liu et al. found that

notoginsenosides R1 may promote the proliferation, differentiation,

andmineralization of pre-osteoblasts MC3T3-E1 by activating the p38

MAPK or Wnt signaling pathways, regulating transcription factors

such as Runx2 and Osterix and significantly enhancing bone

formation (100).In OVX rat experiments, total ginsenosides from

Panax notoginseng can improve bone tissue damage by upregulating

CTRP6 expression, inhibiting RhoA/Rock pathway activation, and

alleviating inflammatory responses and oxidative stress (101). These

findings systematically elucidate the multifaceted mechanisms by

which notoginsenosides improve bone metabolism through

“antioxidant-promoting osteogenesis-inhibiting osteoclasts”.
3.4 Polysaccharides

3.4.1 Lycium barbarum polysaccharide
Lycium barbarum polysaccharide is the main active ingredient,

exhibiting antioxidant, anti-ageing, immune-modulating, and anti-

OP effects (102). Studies have shown that lycium barbarum

polysaccharide not only activates the Wnt/b-catenin signaling

pathway to upregulate the expression of b-catenin and Wnt10b

proteins (103), promoting the differentiation of BMSCs into

osteoblasts but also by regulating gut microbiota structure

(promoting Lactobacillus proliferation) to increase short-chain

fatty acid (acetic acid, propionic acid, butyric acid) production

(104), thereby promoting bone matrix mineralization through the

BMP-2/RUNX2 pathway (105). In an OVX rat model, lycium

barbarum polysaccharide improves bone remodeling metabolism

by upregulating serum TGF-b1 and NOS levels while alleviating

oxidative stress-induced damage to osteoblasts by enhancing SOD

and GSH-Px activity (106). These findings systematically reveal that
FIGURE 4

Chemical structural formula of several polyphenols: (A) Resveratrol. (B) Gallic acid.
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lycium barbarum polysaccharide improve bone metabolism

through a triple action mechanism of “directly promoting bone

formation, indirectly regulating the microbiota, and synergistically

exerting antioxidant effects”.

3.4.2 Astragalus polysaccharide
Astragalus polysaccharide is the primary macromolecular active

component of the Astragali Radix, exhibiting various biological

funct ions , inc luding ant i - inflammatory , ant ioxidant ,

immunomodulatory, and osteogenic effects (107). Extensive studies

have confirmed that astragalus polysaccharide can prevent and treat

OP by promoting osteogenesis and inhibiting osteoclast activity. In

animal models, astragalus polysaccharide significantly improved OP

in OVX rats by regulating the FoxO3a/Wnt2/b-catenin signaling

pathway, with mechanisms including inhibiting FoxO3a mRNA

expression while activating the transcription of Wnt2, LRP5, and

b-catenin, thereby increasing BMD, optimizing bone biomechanical

properties, and reducing fracture risk (108). At the cellular level,

astragalus polysaccharide promotes the proliferation and osteogenic

differentiation of human BMSCs in a concentration-dependent

manner (optimal concentration: 200 mg/ml),a mechanism

potentially involving the inhibition of miR-760 expression and the

relief of its transcriptional repression on ANKFY1 (109).

Additionally, astragalus polysaccharide can effectively alleviate iron

overload-induced functional impairment in BMSCs by inhibiting

mitochondrial ROS accumulation, maintaining cell proliferation

capacity, suppressing apoptosis and senescence, and preserving

pluripotency gene expression (110). Furthermore, astragalus

polysaccharide can also promote osteogenesis-related gene

expression by activating the BMP-2/Smads signaling pathway

through upregulating the expression of BMP-2, p-Smad1, and p-
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Smad5, thereby improving bone microstructure and bone metabolic

indicators in OVX rats (111).

3.4.3 Achyranthes bidentata polysaccharide
Radix Achyranthis Bidentatae, a TCM used to tonify the liver and

kidneys and strengthen the tendons and bones, contains the active

component achyranthes bidentata polysaccharide (ABP), which exhibits

multi-target regulatory effects in the prevention and treatment of OP.

Yang Hao et al. found that it can activate the Wnt/b-catenin pathway,

promote the expression of genes and proteins such as b-catenin, Runx2,
and Osterix, significantly improve bone metabolism in osteoporotic

fracture rats, increase BMD, and alleviate bone tissue pathological

damage (112). Dezhi Song et al. found that bone marrow

mononuclear cells and bone marrow macrophages, 10 mM ABP can

inhibit RANKL-induced MAPK phosphorylation and c-Fos expression,

thereby blocking the activation of the NFATc1 signaling pathway, and

achieving a full-cycle inhibition of osteoclast differentiation, fusion, and

bone resorption (113). Additionally, the soluble polysaccharide ABPB

and its purified component ABPB-3, from A,chyranthes bidentata

exhibit anti-osanti-osteoporotics by improving bone microstructure

and increasing bone matrix synthesis (114). The mechanism of ABP

also involves regulating the OPG/RANKL/RANK system by

upregulating OPG and downregulating RANKL expression to inhibit

osteoclast activity while increasing bone formation markers (OC, BAP)

levels and reducing bone resorption markers (TPACP5b, NTX, CTX)

levels, thereby improving bone metabolism and enhancing bone

biomechanical properties in elderly osteoporotic rats (115). These

findings collectively reveal the multidimensional pharmacological

effects of ABP in preventing and treating OP through a bidirectional

regulatory mechanism of “promoting bone formation and inhibiting

bone resorption”.
FIGURE 5

Chemical structural formula of several saponins: (A) Ginsenoside Rb 1. (B) Notoginsenoside R1.
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3.5 Coumarin derivatives

3.5.1 Osthole
Osthole is a coumarin compound from Cnidii Fructus

(Figure 6A). It promotes osteoblast differentiation and bone

formation while inhibiting bone resorption (116). Studies have

shown that osthole significantly increases bone mass in aged mice

while inhibiting osteoclast formation and promoting OPG

expression. This mechanism may involve activating the b-
catenin-OPG signaling pathway to enhance OPG expression.

OPG, as a decoy receptor for RANKL, inhibits the binding of

RANKL to RANK, thereby suppressing osteoclast differentiation

and activity and reducing bone resorption (117). Sheng Zheng et al.

also found that osthole activates the Wnt/b-catenin pathway,

inducing osteogenic-angiogenic coupling in BMSCs, upregulating

the mRNA and protein expression of osteogenic markers (ALP,

OCN) and angiogenic factors (VEGFA, CD31), accelerating the

healing of tibial fractures in OVX rats, and finding that the optimal

dose of osthole was 10 mM (118). Studies have shown that osthole

activates key signaling pathways, such as the Wnt/b-catenin and

BMP-2/p38 pathways, and upregulates the expression of

autophagy-related genes (Beclin1, LC3) in BMMSCs, thereby

inducing autophagy. This process promotes the expression of

osteogenic-related genes by regulating the activity of transcription

factors (such as Runx2 and Osterix) while inhibiting adipogenic

differentiation, thereby significantly enhancing the osteogenic

differentiation capacity of BMSCs. In an estrogen-deficient OP

model, this mechanism was confirmed to effectively increase bone

mass and improve bone metabolic indicators (119). Zhong-Rong

Zhang et al. found that osthole, on the one hand, upregulates the

expression of the transcription factor osterix through the cAMP/

CREB signaling pathway, thereby promoting the expression of

osteogenesis-related genes such as alkaline phosphatase and

osteocalcin; on the other hand, it activates the BMP signaling

pathway, producing a synergistic effect with the cAMP/CREB

pathway. This dual pathway activation mechanism significantly

promotes osteoblast differentiation in vitro and exhibits

therapeutic effects, including accelerating fracture healing and

enhancing bone strength in vivo (120).In terms of metabolomics,

Zhenxing Si et al. analyzed and found that osthole can inhibit bone

resorption and promote bone formation through 13 metabolic
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pathways, including linoleic acid metabolism, starch and sucrose

metabolism, and arachidonic acid metabolism, thereby effectively

improving OP induced by ovariectomy in rats (121).

3.5.2 Psoralen and isopsoralen
Isopsoralen belongs to the furanocoumarin class of extracts

from Psoraleae Fructus and is one of the plant estrogens. It is one of

the main active constituents of Psoralea corylifolia, a TCM used to

tonify the kidneys (Figure 6B). It can participate in bone

metabolism by regulating the Wnt, Runx2/MMP13, PI3K/AKT,

Axin2/PPAR-g, and WNT/b-catenin signaling pathways, thereby

improving OP (122). Studies have shown that psoralen and

isopsoralen may regulate the balance of bone remodeling by

inhibiting osteoclast activity (reducing TRACP and CTX1) and

promoting osteoblast function (increasing ALP), thereby improving

bone microstructure and strength in male and female mice with OP

induced by sex hormone deficiency (123). Jian Wang et al. found

that psoralen can inhibit the expression of PPAR-g, reducing the

differentiation of BMSCs into adipocytes while also alleviating the

inhibition of the WNT/b-catenin pathway by PPAR-g, thereby
promoting osteogenic differentiation. Additionally, it can reduce

ROS levels, mitigate oxidative stress-induced damage to bone cells,

inhibit caspase-3/9-mediated apoptosis, and maintain a balance

in bone remodeling, thereby improving OP symptoms in

ovariectomized rats (124). Jian Wang et al. also found that

isopsoralen can regulate the balance of BMSCs differentiation into

osteoblasts by inhibiting PPAR-g expression and upregulating

RUNX2 expression, reducing bone marrow adipogenesis,

improving bone mass and microarchitecture in OVX mice

without the adverse effects of estrogen replacement therapy,

providing a potential option for the prevention and treatment of

PMOP (125).
3.6 Alkaloids

3.6.1 Berberine
Berberine is an isoquinoline alkaloid (Figure 7A) and a major

active component of various TCMs. It is widely found in herbs such

as Coptis chinensis Franch. and Phellodendri Chinensis Cortex and

possesses multiple pharmacological effects, including antidiabetic,
FIGURE 6

Chemical structural formula of several coumarins: (A) Osthole. (B) Psoralen and Isopsoralen.
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antioxidant, and anti-inflammatory activities. In recent years, its

multi-mechanistic regulatory role in the prevention and treatment

of OP has garnered significant attention. In animal models,

berberine activates the cAMP/PKA/CREB pathway to upregulate

osteogenic genes, promoting the differentiation of BMSCs into

osteocytes. It also downregulates adipogenic genes, inhibiting the

differentiation of BMSCs into adipocytes and suppressing osteoclast

differentiation. This leads to an increase in trabecular bone volume

fraction, number, and thickness in elderly osteoporotic mice while

reducing trabecular separation (126). It can also mitigate oxidative

stress by inhibiting the RANK/RANKL/OPG pathway, thereby

reducing osteoclast activation and alleviating bone mass loss in

OVX rats (127). Additionally, berberine can exert bone-protective

effects by regulating the “gut-bone axis,” such as enriching butyrate-

producing gut microbiota, repairing intestinal barrier integrity, and

inhibiting IL-17A-mediated inflammatory responses, thereby

alleviating estrogen deficiency-induced periodontal bone

resorption (128). These findings suggest that berberine

modulates OP through a multidimensional mechanism involving

“bone metabolism regulation-oxidative stress inhibition-gut

microenvironment improvement”.

3.6.2 Evodiamine
Evodiamine is an alkaloid extracted from the TCM Medcinal

Evodia Fruit (Figure 7B), exhibiting various bioactivities, including

antitumor and anti-inflammatory effects (129). Due to its lipophilic

chemical structure and low water solubility, its derivative 3-amino-

10-hydroxy evodiamine can inhibit the phosphorylation of NF-kB
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and MAPK, thereby suppressing the activation of the downstream

transcription factor NFATc1 and reducing the expression of genes

such as NFATc1, TRAP, CTSK, and DC-STAMP. This inhibits

osteoclast differentiation, fusion, and bone resorption functions.

This protects bone microarchitecture in OVX mice by reducing

bone resorption, promoting osteogenic activity, and maintaining

bone mass and structural integrity (130). Haiming Jin also found

that evodiamine can inhibit NF-kB-mediated transcription of

osteoclast-related genes (such as c-Fos and NFATc1) and inhibit

RANKL-induced Ca2+ oscillations, thereby blocking NFATc1

activation and its downstream target gene expression, ultimately

preventing osteoclast differentiation and maturation, and

demonstrating good bone protective effects in OVX mice (131).

3.6.3 Matrine and oxymatrine
Matrine is an alkaloid isolated from the TCM Sophorae

Flavescentis Radix (Figure 7C). Sophorae Flavescentis Radix is the

dried root of the leguminous plant Sophora flavescens (132), which

possesses broad pharmacological activities, including anti-

inflammatory, anti-fibrotic, and antiviral effects (133). Xiao Chen

et al. found that matrine can inhibit RANKL-induced NF-kB,
MAPK, and AKT signaling pathways, downregulating NFATc1 and

its target genes (MMP-9, TRAP, etc.), thereby inhibiting osteoclast

differentiation and bone resorption, improving BV/TV, BMD, and

trabecular number in OVX mice, and reducing IL-6, TNF-a, and
TRAcp5b levels, effectively preventing bone loss in OVX mice (134).

Studies have shown that oxymatrine can increase cortical bone

thickness and bone cell numbers in castrated rats, reduce
FIGURE 7

Chemical structural formula of several alkaloid: (A) Berbine. (B) Evodiamine. (C) Matrine and Oxymatrine.
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osteoporotic cavities, and exhibit anti-osteoporotic effects comparable

to testosterone. The mechanism may involve inhibiting the NF-kB
pathway to reduce the release of inflammatory factors and enhancing

antioxidant capacity through the Nrf2/HO-1 pathway, thereby

regulating the RANKL/OPG balance and inhibiting bone resorption.

It may avoid the side effects of testosterone therapy (such as prostate

hyperplasia and cardiovascular risks) (135). Further experimental

studies are currently needed to investigate the pharmacokinetic

characteristics of oxymatrine, providing more data to support its safe

and effective use in patients.
4 Discussion

This study systematically reviewed the latest research progress in

the prevention and treatment of OP using TCM, focusing on the

molecular mechanisms by which various active constituents of TCM

(including flavonoids, polyphenols, saponins, polysaccharides,

coumarins, and alkaloids) regulate bone metabolism through multi-

target, multi-pathway synergistic regulation. It has been elaborated on

how these active constituents regulate key signaling pathways such as

the Wnt/b-catenin, RANKL/OPG pathways while simultaneously

intervening in osteoblast differentiation and osteoclast activity,

thereby restoring bone metabolic balance. The study particularly

emphasizes the unique advantages of TCM constituents in

improving the bone microenvironment (such as regulating gut

microbiota, inhibiting oxidative stress, and reducing inflammatory

responses), as well as their safety profile compared to traditional

therapy. By integrating extensive preclinical and clinical research

evidence, this study aims to provide a scientific basis for the

development of novel anti- OP drugs based on TCM theory and to

offer theoretical guidance for the formulation of personalized

treatment regimens.

There are also certain limitations at present. (1) Currently, research

endorsing the treatment of OP with active compounds from TCM

predominantly emphasizes cellular and animal studies, with limited

clinical trials in humans. Consequently, it is imperative to enhance the

transition from basic to clinical research by employing organoid or 3D

bone tissue models to forecast the impact of TCM on the human

organism. Additionally, the alterations in biomarkers in patients post-

TCM intervention can be examined through metabolomics and

proteomics to elucidate its systemic regulatory effects. (2) The

bioavailability and formulation optimization of these active

substances remain to be addressed, the active constituents of TCM

include diverse functions, and when integrated with nanomaterials,

they can markedly enhance their bioavailability and bioactivity (136).

Numerous studies exist regarding nano-delivery systems and enhanced

TCM formulations, including extracellular nanovesicles derived from

Herba Epimedium, which can augment the bioavailability and

bioactivity of TCM through the PI3K/Akt/mTOR pathway, thereby

facilitating the osteogenic differentiation of BMSCs with improved

safety (137). And nano-aggregates may demonstrate antipyretic

properties by augmenting the solubility of insoluble constituents in

Baihu Tang, hence improving cellular absorption and targeted
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administration (138).Consequently, medication delivery by

nanoparticles may emerge as a significant avenue for future research.

(3) TCM often employs compound formulas for disease treatment,

which are complex and involve multi-component synergistic

mechanisms that have not yet been fully elucidated. Consequently, it

can be integrated with contemporary analytical techniques, artificial

intelligence-assisted design, multi-histology verification, and

standardized clinical research to establish a closed-loop of “basic

research - mechanism analysis - clinical validation,” or to

disassemble the prescription. Alternatively, we can examine the

impact of each medicine on OP and subsequently integrate them to

confirm the synergistic effect. (4) Due to the variability in each patient’s

treatment plan and medication dosage, conducting large-scale western

clinical controlled trials is a challenging task. Consequently, we can

uphold the principles of TCM diagnosis and treatment by randomly

categorizing patients based on the stratification of evidence types, and

establishing a structured electronic medical record system to document

the information pertaining to the four diagnostic methods of TCM and

medication specifics. Subsequently, we can integrate artificial

intelligence to analyze medication patterns and standardize the

diagnosis and treatment protocols. (5) There is a lack of

comprehensive research on the integration of TCM active

ingredients with pharmacological techniques, particularly regarding

the combination of TCM active ingredients with first-line anti-OP

medications. Consequently, subsequent research may concentrate on

evaluating combinations of TCM active ingredients for their potential

synergistic effects in the prevention and treatment of OP, as well as

forecasting the interaction targets and possible effects of TCM active

ingredients with western pharmaceuticals, and validating these findings

through in vitro and in vivo experiments.

According to current literature reports, research on TCM

treatment for POP is still in the exploratory stage. It is anticipated

that future studies will employ new methods and technologies to

conduct in-depth investigations, uncover the complex network

mechanisms of TCM, and strengthen the integration of basic

experimental research with clinical studies, thereby providing a

more robust scientific foundation for the clinical application of

TCM and the development of new drugs. Future research could also

integrate systems pharmacology and artificial intelligence

technologies to explore the “component-target-pathway” network

of active constituents in TCM, providing a theoretical foundation

for the development of novel anti-OP drugs.

The clinical application of active substances in TCM warrants

further exploration in the future. In recent years, the integration of

active constituents from TCM with exogenous carriers has

demonstrated considerable benefits in the prevention and

treatment of OP. For example, enteric capsules created by

amalgamating epimedium glycosides with snail enzymes

markedly enhanced intestinal hydrolysis and absorption efficiency

in osteoporotic rats, resulting in a 50% improvement in the total

oral bioavailability of epimedium glycosides (139).

In conclusion, investigating the intricate mechanisms of TCM

via multidisciplinary technology to enhance clinical efficacy will

yield innovative concepts for the advancement of contemporary
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anti-OP TCM characterized by a “clear mechanism, well-defined

ingredients, and stable efficacy”.
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