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Mitophagy is a catabolic mechanism that selectively degrades damaged

mitochondria and precisely modulates mitochondrial content, thereby

maintaining intracellular homeostasis under stress conditions. To date, most

reviews on mitophagy have predominantly focused on neurodegenerative

diseases, cardiovascular disorders, cancer, metabolic syndromes, and

inflammation- or immune-related diseases. In recent years, accumulating

evidence has highlighted the critical involvement of mitophagy in various

physiological and pathological processes associated with female reproduction.

This review systematically synthesizes existing evidence to elucidate the

regulatory roles of mitophagy during the occurrence and development of

follicles, oocyte fertilization, and embryo implantation, as well as its essential

contributions to the pathogenesis of endometriosis, polycystic ovary syndrome,

primary ovarian insufficiency, and ovarian aging. Furthermore, we outline current

therapeutic strategies targeting mitophagy while emphasizing the potential value

of traditional Chinese medicine. Our aim is to provide novel insights into the

regulatory network and specific targets of mitophagy in female reproduction,

facilitate clinical translation, and offer innovative approaches for managing

female reproductive health.
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Introduction

In 1963, the Belgian cell biologist Christian de Duve coined the term

“autophagy” to describe the cellular process wherein membrane-bound

vesicles engulf cytoplasmic components. In the 1990s, Yoshinori

Ohsumi and his team successfully identified key autophagy-related

genes, and the subsequent cloning of the autophagy-related gene 1

marked a pivotal advancement in autophagy research. Following this

breakthrough, the characterization of autophagy genes in mammals was

achieved (1–3). Autophagy is a ubiquitous process in eukaryotic cells

and can be categorized into macroautophagy, microautophagy, and

chaperone-mediated autophagy, all of which play critical roles in

maintaining cellular and tissue homeostasis. The form of autophagy

primarily discussed in this review is macroautophagy. The discovery of

the autophagy receptor sequestosome-1 (SQSTM1/P62) (4) established

autophagy as a highly selective recycling mechanism. Depending on the

specific molecules and subcellular components targeted for lysosomal

degradation and recycling, autophagy can be further subdivided into

specialized forms such as mitophagy, ribophagy, reticulophagy, and

lipophagy (5). Mitochondria, as double-membrane-bound organelles

ubiquitous in eukaryotic cells, are responsible for generating substantial

amounts of adenosine triphosphate, which is essential for cellular energy

metabolism. Moreover, mitochondria are involved in various critical

cellular processes, including fatty acid synthesis, amino acidmetabolism,

calcium homeostasis, innate immune responses, and apoptosis

regulation (6). Mitophagy represents a fundamental mechanism for

preserving mitochondrial function and homeostasis by selectively

targeting and degrading damaged mitochondria, thereby ensuring the

integrity and quality of the mitochondrial population (7–9). In the

context of the reproductive system, a sequence of highly coordinated

molecular pathways govern sequential stages, encompassing

gametogenesis, fertilization, pre-implantation embryo development,

embryo implantation, and post-implantation development (10). As

the primary energy providers for the ovaries and uterus,

mitochondria and their associated autophagic mechanisms are vital to

these processes. An increasing body of evidence (11–13) suggests that

the mitophagy pathway is intricately involved in key reproductive

physiological processes, such as follicular development, fertilization,

and implantation, and is closely linked to the pathogenesis of various

female reproductive disorders, including endometriosis, polycystic ovary

syndrome (PCOS), premature ovarian insufficiency (POI), and ovarian

aging (OA). This review systematically summarizes and critically

evaluates the current body of research. Furthermore, existing

therapeutic strategies targeting mitophagy are classified, the current

state of research progress is discussed, and potential future directions are

proposed. This comprehensive approach aims to provide novel insights

into the treatment of diseases affecting the female reproductive system

while improving reproductive health outcomes in women.
Mitochondrial quality control and
mitophagy

Mitochondrial quality control involves maintaining the dynamic

balance of mitochondrial fission and fusion, repairing mitochondrial
Frontiers in Endocrinology 02
DNA (mtDNA) mutations, and executing its core mechanism,

mitophagy, to ensure the functional integrity of the mitochondrial

network (14). Mitochondrial dysfunction may occur during cellular

differentiation, hypoxic responses, or paternal mtDNA elimination

after fertilization. Upon detecting mitochondrial damage, cells regulate

mitochondrial distribution and morphology through fusion and fission

while activating the mitochondrial unfolded protein response (UPRmt)

to address the accumulation of misfolded proteins and restore

intracellular homeostasis. However, when these mechanisms fail to

adequately restore mitochondrial function, mitophagy selectively

targets and degrades damaged mitochondria, thereby preserving

mitochondrial quality and maintaining cellular homeostasis (15–18).

The process of mitophagy, from its initiation to the clearance of

dysfunctional mitochondria, can be divided into four steps (19): 1) A

significant loss of mitochondrial membrane potential (MMP/DYm) in

the damaged mitochondria. 2) Complete engulfment of mitochondria

by autophagosomes, forming mitophagosomes. 3) Fusion of

mitophagosomes with lysosomes. 4) Formation of autolysosomes or

translocation of lysosomal acid hydrolases into autophagosomes for the

degradation of damaged mitochondria. Concurrently, new proteins

and lipids are synthesized and integrated into the existing

mitochondrial network. With a few exceptions, such as the

development of mature lens fiber cells in vertebrates (20), mitophagy

and mitochondrial biogenesis are two opposing yet complementary

processes that synergistically mediate mitochondrial renewal at

multiple levels to restore mitochondrial function.
The molecular mechanism of
mitophagy

The molecular mechanisms of mitophagy are broadly categorized

into ubiquitin-dependent and ubiquitin-independent pathways (21).

The prototypical ubiquitin-dependent pathway involves the PTEN-

induced putative kinase 1 (PINK1)/PARK2 gene-encoded protein

(Parkin) signaling cascade, which has emerged as a focal point in

studies of mitophagy during female reproduction. Under

physiological conditions (22–24), PINK1 is translocated to

polarized mitochondria via the outer membrane translocase and

inner membrane translocase complex. Upon crossing the inner

mitochondrial membrane (IMM), PINK1 undergoes dual cleavage

by the phosphoglycerate mutase family member 5-related rhomboid

protease within the IMM. This generates an N-terminal fragment

containing phenylalanine 104, which is retrotranslocated to the

cytosol and subsequently degraded via the N-end rule pathway in a

proteasome-dependent manner. This process ensures that PINK1

expression is maintained at low levels in healthy mitochondria.

Under pathological conditions (25–28), particularly when cells are

exposed to oxidative stress induced by reactive oxygen species (ROS)

or other stressors, mitochondrial membrane depolarization prevents

PINK1 from being imported into the mitochondria. As a result,

PINK1 accumulates on the outer mitochondrial membrane (OMM)

and undergoes autophosphorylation at serine 228. Activated PINK1

subsequently phosphorylates ubiquitin at serine 65, generating

phosphorylated ubiquitin, which exhibits a high affinity for Parkin
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and recruits it from the cytoplasm to the mitochondrial surface.

Subsequently, PINK1 directly or indirectly phosphorylates Parkin via

phospho-Ser65-ubiquitin-mediated recruitment, exposing Parkin’s

catalytic domain and triggering its E3 ubiquitin ligase activity. This

leads to the formation of extensive ubiquitin chains on proteins on

the OMM, serving as substrates for PINK1 and establishing a positive

feedback loop that enhances Parkin recruitment and ubiquitination

efficiency. Autophagy receptors such as optineurin (OPTN), nuclear

dot protein 52 (NDP52), p62, BRCA1-associated protein 1 (NBR1),

and TAX1-binding protein 1 (TAX1BP1), which possess ubiquitin-

binding domains, recognize and bind to ubiquitinated proteins on

damaged mitochondria (29). These receptors interact with

Microtubule-Associated Protein 1 Light Chain 3 (LC3) positive

autophagosomes, facilitating the selective engulfment and

degradation of dysfunctional mitochondria.

In contrast, the ubiquitin-independent pathway primarily relies on

receptors that directly interact with LC3 or its homologs. Key

mediators of this pathway include the Bcl-2 interacting protein 3-like

(BNIP3L/Nix), Bcl-2 interacting protein 3 (BNIP3), and FUN14

domain-containing 1 (FUNDC1) pathways (30, 31). BNIP3L, an

OMM protein, mediates mitochondrial fission and mitosis (32, 33)

and directly interacts with LC3 on the autophagosomal membrane

through its LC3-interacting region (LIR), promoting the engulfment of

damaged mitochondria (34, 35). BNIP3 works synergistically with Nix

in recruiting Parkin and maintains mitochondrial homeostasis via the

PINK1-Parkin pathway (36). FUNDC1, another outer membrane

protein harboring an LIR domain, undergoes dephosphorylation at

specific residues under hypoxic conditions, enhancing its affinity for

LC3 and thereby promoting mitophagy (37). Besides, FUNDC1

synergizes with UNC-51-like kinase 1 (ULK1), leading to Ser17

phosphorylation and enhancing mitophagy activity (38).
Mitophagy and female reproductive
processes

Mitophagy plays a pivotal role in regulating multiple cellular

processes during female reproductive physiology, including

folliculogenesis, oocyte fertilization, and embryo implantation. The

regulatory function of mitophagy can be categorized into four distinct

developmental stages: primordial follicles, primary follicles, secondary

follicles, and mature follicles. Within primordial follicles, anti-

Müllerian hormone (AMH), secreted by granulosa cells, can inhibit

interaction with mitophagy. During the transition from primordial to

primary follicles, mitophagy may synergize with mitochondrial fusion

and fission mechanisms to facilitate oocyte maturation; however, this

hypothesis requires further experimental validation. In secondary

follicles, mitophagy prevents lipid peroxidation via its substrate

Sirtuin 1 (SIRT1), while another sirtuin, SIRT5, suppresses ULK1

phosphorylation, thereby maintaining mitophagy homeostasis and

preserving mitochondrial function and oocyte quality. As follicles

mature, mitophagy ensures oocyte maturation by suppressing the

expression of growth arrest-specific gene 6 (Gas6). However,

excessive mitophagy can trigger follicular atresia by exacerbating

granulosa cell apoptosis. During fertilization and implantation,
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mitophagy mediates the elimination of paternal mitochondria,

subsequently promoting oocyte protein degradation, modulating

trophoblast cell function, and participating in placental angiogenesis

and vascular remodeling. The precise role of mitophagy in these later

developmental stages remains to be fully elucidated. Finally, we

examine the hormonal regulation of mitophagy and its implications

for reproductive physiology.
The genesis and development of follicles

Primordial follicle
Primordial follicles constitute the most fundamental follicular

structure in the ovary, comprising an oocyte arrested at the

diplotene stage of meiosis I and a surrounding monolayer of

flattened granulosa cells (GCs) (39). These structures form during

embryonic development but predominantly remain in a quiescent

or atretic state throughout a person’s life. It is estimated that the

number of primordial follicles declines from 2 million at birth to

400,000 by the time of menarche (40). The secretion of AMH by

GCs in preantral and small antral follicles (AFs) acts as a critical

inhibitory factor of primordial follicle activation. Research by

Zhang et al. observed that AMH exerts an inhibitory effect on

forkhead box protein O3a, an upstream effector of the PINK1-

Parkin pathway (41). This finding indicates a potential link between

mitophagy and activation of primordial follicles.

Primary follicle
During the growth phase, the oocyte within the primordial

follicle exhibits an increase in volume, while the surrounding GCs

transition from a flattened to a cuboidal or columnar shape and

differentiate into 5–6 layers. At this stage, the primordial follicle

develops into a primary follicle (42). To date, there is no direct

evidence indicating that the mitophagy pathway regulates the

formation of primary follicles. However, Yamada et al.

demonstrated that PINK1 and the mitochondrial fusion protein

mitofusin 1 work synergistically to maintain the balance between

mitochondrial fission and fusion within follicles. This process

ensures the maintenance of mitochondrial quality and quantity,

thereby facilitating oocyte development and maturation (43, 44).

Given that mitochondrial morphology and abundance serve as key

biomarkers of cell function, the importance of mitophagy in

maintaining mitochondrial quality, as well as its role during

primary follicle formation, warrants further investigation.

Secondary follicle
The follicle with the lowest hormone threshold develops into a

dominant follicle, exhibiting continuous volume expansion. The

follicular cells proliferate to form 6–12 layers, and the follicular

antrum, along with the cumulus oophorus, begins to emerge. GCs

surrounding the follicular antrum form the follicular wall, while the

theca differentiates into inner and outer layers, thereby establishing

secondary follicles. Sirtuin 1 (SIRT1) is a nicotinamide adenine

dinucleotide (NAD+) dependent deacetylase and a substrate of

mitophagy (45). SIRT1 agonists can reduce the lipid content in
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porcine secondary follicles cultivated in vitro and prevent lipid

peroxidation (46). Furthermore, SIRT1 serves as a crucial regulatory

factor of the UPRmt. When cells activate the UPRmt pathway for

protein folding and the process fails, this may subsequently trigger

protein degradation mechanisms or ultimately induce mitophagy

(47). Hence, during the developmental process of secondary

follicles, there might exist a correlation between mitophagy and

the SIRT-related UPRmt pathway. Sirtuin 5 (SIRT 5), another

member of the SIRT family, is localized in mitochondria and

plays a critical role in regulating spindle assembly and

chromosome alignment during meiosis. This function provides

the energy required for biochemical reactions and structural

transformations in developing oocytes, thereby promoting oocyte

maturation in mice. Inhibition of SIRT5 induces ULK1

phosphorylation and disrupts the balance of the Parkin-

dependent mitophagy pathway, resulting in an inability to

suppress excessive mitochondrial clearance. Consequently, this

leads to mitochondrial dysfunctions, redox impairments, and

ultimately compromised oocyte quality. Therefore, Parkin-

mediated mitophagy may represent potential therapeutic targets

for SIRT5 to enhance oocyte quality and address reproductive

disorders associated with mitochondrial dysfunction (48).

Mature follicle
Mature follicles, known as AFs, develop from secondary

follicles. During this process, the follicular antrum enlarges, the

granulosa cell layer thins, and a fluid-filled cystic structure forms.

As development progresses, the AF moves closer to the ovarian

surface and protrudes outward (49, 50). The maturation of oocytes

requires the coordinated development of both cytoplasm and

nucleus. The oocyte growth arrest-specific gene 6 (Gas6) is

essential for pronucleus formation during oocyte maturation. A

deficiency in Gas6 not only impedes oocyte maturation but is also

closely linked to the accumulation of dysfunctional mitochondria

within the cytoplasm. In vitro studies on mice have demonstrated

that silencing Gas6 expression suppresses mitophagy, thereby

causing impaired cytoplasmic maturation and mitochondrial

dysfunction (51). Consequently, Gas6 may play a critical role in

promoting oocyte cytoplasmic maturation and maintaining

mitochondrial function through the regulation of mitophagy.

Furthermore, a significant depletion of RAD51 recombinase 1 in

oocytes activates mitophagy, which leads to a decrease in mtDNA

copy number and the emergence of mitochondrial dysfunctions.

Finally, cytoplasmic maturation of oocytes is inhibited (52). This

evidence clearly suggests a close link between the stimulatory role of

RAD51 recombinase 1 in the cytoplasmic maturation of oocytes

and mitophagy.

Atretic follicle
At the end of the ovarian cycle, most follicles that do not

undergo ovulation eventually undergo atresia and degenerate, with

99% of all follicles being subject to this process (53). In mammalian

embryos, atretic follicles begin to develop as early as six weeks of

gestation in utero. Atresia can occur at any stage of follicular

development; however, it is most prevalent during the AF stage.
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The apoptosis of GCs represents the primary cause of follicular

atresia. Oxidative stress plays a critical role in GC-induced follicular

atresia. Follicle-stimulating hormone (FSH) protects GCs, which

are highly sensitive to ROS, from undergoing apoptosis and reduces

GCmortality. Specifically, FSH inhibits PINK1 expression, prevents

Parkin translocation to mitochondria, suppresses excessive

mitophagy activation, and thereby maintains GC viability (54)

(Figure 1). Furthermore, FSH can activate the phosphoinositide

3-kinase (PI3K)-AKT-mechanistic target of rapamycin (MTOR)

pathway. The PI3K-AKT-MTOR pathway is a crucial pathway for

the downregulation of autophagy. By suppressing excessive

autophagy, it protects GCs in an oxidative damage milieu and

facilitates ovulation (Figure 2). Mitophagy exhibits bidirectional

regulatory properties. In this respect, Li et al. demonstrated that

under hypoxic conditions, FSH activates the mitophagy pathway,

leading to upregulated expression of Parkin, PINK1, and PTEN,

which in turn inhibits germ cell apoptosis. This indicates that

mitophagy is not merely a simple on/off mechanism. In the

context of female reproduction, the tissue-specific characteristics

and molecular signaling intensity thresholds associated with the

bidirectional regulation of mitophagy warrant further investigation,

as they may be closely linked to the clinical therapeutic window for

reproductive disorders (55).
Fertilization and implantation

The process of sperm-egg fertilization is associated with the

elimination of specific reproductive organelles. In many species,

selective autophagy mediates the degradation of paternal

mitochondria following fertilization while preserving maternal

mitochondria. In C. elegans, the elimination of paternal mitochondria

is mediated through ubiquitination and the mitophagy pathway, with

the mitophagy process being directly regulated by FUNDC1 (56, 57).

The phenomenon of paternal mitochondrial elimination has also been

observed in mice. Upon the sperm reaches the oviduct, most of its

mitochondria have already undergone phagocytosis and degradation

(58). The strict maternal inheritance of mitochondria in mice is

dependent on the interplay between mitochondrial E3 ubiquitin

protein ligase 1 and the Parkin-mediated mitophagy pathway (59). In

early embryos, the autophagy mechanism mediates the degradation of

oocyte proteins, thereby facilitating embryonic implantation (60). At the

blastocyst stage, trophoblast cells are regulated by autophagy, which

promotes normal placental development (61). Autophagy collaborates

with C-X-C chemokine ligand 12 and its receptors to participate in

placental angiogenesis and vascularization, maintaining placental

homeostasis (62). The key autophagy factors ATG5 and BECN1 play

essential roles in embryonic organogenesis and development (63, 64).

Collectively, autophagy is involved in a series of developmental

processes, including pre-implantation, implantation, and post-

implantation stages of embryogenesis. However, whether mitophagy

directly modulates fertilization and implantation during female

reproductive processes remains to be elucidated. According to current

studies (65, 66), mitophagy may sustain cellular energy metabolism and

oxidative stress balance, thereby providing adequate energy support for
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blastocyst cell migration, embryo adhesion, and embryogenesis. The

precise mechanisms underlying this biological process warrant

further investigation.
Sex hormones

As previously discussed, follicular atresia is regulated by both

apoptosis and mitophagy, with FSH serving as a key regulatory

factor linking these two mechanisms. FSH modulates granulosa cell

activity by either activating or suppressing excessive mitophagy under

varying redox conditions. Furthermore, high-dose FSH has been

shown to induce autophagy in bovine granulosa cells via the AKT-

MTOR signaling pathway, thereby enhancing estradiol (E2) production

(67). In a study involving porcine oocytes, E2 was found to alleviate

oxidative stress, inhibit apoptosis, and promote in vitromaturation and
Frontiers in Endocrinology 05
developmental competence through autophagy-related mechanisms

(68). These findings collectively indicate that FSH plays a pivotal role

in mitophagy in the context of improving female reproductive

function. During follicular development, AMH, secreted by granulosa

cells of preantral and small antral follicles in the ovary, has been shown

to inhibit forkhead box O3a (FOXO3a), an upstream effector of the

PINK1-Parkin-mediated mitophagy pathway. This suggests that

mitophagy may be involved in follicular activation; however, direct

experimental evidence is required to confirm this hypothesis.

Mitochondrial uncoupling protein 2 (UCP2), a mitochondrial

membrane protein, contributes to mitochondrial homeostasis by

reducing ROS, regulating apoptosis, and maintaining calcium

homeostasis. In human cumulus cells, UCP2 has been implicated in

the regulation of ROS production, apoptosis, and progesterone

synthesis via autophagy, thereby participating in follicular

development and early embryo implantation (69). Given the close
FIGURE 1

Excessive mitophagy in granulosa cells leads to follicular atresia. The molecular mechanism and progression of mitophagy involve two major
pathways: the ubiquitin-dependent pathway and the ubiquitin-independent pathway. The PINK1/Parkin pathway represents a canonical example of
the ubiquitin-dependent mitophagy mechanism. Under pathological conditions, such as oxidative stress, mitochondrial membrane depolarization
results in the stable accumulation of PINK1 on the outer mitochondrial membrane, where it undergoes autophosphorylation and becomes activated.
Activated PINK1 phosphorylates ubiquitin molecules, which facilitates the recruitment of cytosolic Parkin to the mitochondrial surface and activates
its E3 ubiquitin ligase activity through phosphorylation. Parkin then catalyzes the assembly of ubiquitin chains on mitochondrial surface proteins,
thereby labeling damaged mitochondria for selective degradation and establishing a positive feedback loop that amplifies the mitophagy signal.
Ubiquitin-binding autophagy receptors, including OPTN, NDP52, p62, NBR1, and TAX1BP1, recognize these ubiquitinated proteins and bridge the
interaction with LC3-positive autophagosomal membranes, thereby mediating the selective engulfment and lysosomal degradation of impaired
mitochondria. In contrast, the ubiquitin-independent pathway primarily relies on the direct interaction between mitochondrial outer membrane
proteins, such as Nix, BNIP3, and FUNDC1, and LC3 or its homologs to initiate mitophagy. The overall process of mitophagy can be delineated into
four sequential stages: initiation, sequestration of dysfunctional mitochondria via autophagosome formation, fusion of autophagosomes with
lysosomes, and degradation of mitochondrial components within autolysosomes to ensure the elimination of damaged mitochondria. This
schematic illustrates the pathogenic cascade through which excessive mitophagy, driven by oxidative stress, triggers follicular atresia in ovarian
granulosa cells. The dysregulation of this quality-control mechanism leads to uncontrolled mitochondrial clearance, culminating in bioenergetic
failure and the initiation of apoptosis. The subsequent extensive loss of granulosa cells directly drives follicular degeneration.Ub: ubiquitin, Parkin:
PARK2 gene-encoded protein, PINK1:PTEN-induced putative kinase 1, ROS: reactive oxygen species, MMP/DYm: mitochondrial membrane potential,
LC3: Microtubule-Associated Protein 1 Light Chain 3, OMM: outer mitochondrial membrane, OPTN: optineurin, NDP52: nuclear dot protein 52,
SQSTM1/P62: sequestosome-1, NBR1: BRCA1-associated protein 1, TAX1BP1: TAX1-binding protein 1, TBK1:TANK-Binding Kinase 1, BNIP3L/Nix: Bcl-
2 interacting protein 3-like, BNIP3: Bcl-2 interacting protein 3, FUNDC1: FUN14 domain-containing 1.
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interplay between mitophagy, oxidative stress, and apoptosis, it is of

scientific interest to investigate whether UCP2 interacts with

mitophagy and whether such interaction contributes to reproductive

function. This warrants further experimental exploration.
Mitophagy and female reproductive
disorders

Mitophagy is closely associated with the onset and progression

of diseases affecting the female reproductive system, including

endometriosis, PCOS, POI, and OA (Table 1). In the context of

endometriosis, mitophagy plays a regulatory role in the apoptosis

and migration of endometrial stromal cells, thereby suppressing the

formation of ectopic implantation lesions. Regarding PCOS,

mitophagy primarily affects ovarian granulosa cells. Excessive

activation of mitophagy may impair granulosa cell function, as
Frontiers in Endocrinology 06
evidenced by reduced expression of MMPs and mtDNA. The

administration of Reverse Erythroblastosis Virus Oncogene

Homolog (REV-ERB) has been shown to ameliorate such cellular

dysfunction. Furthermore, iron-dependent mitophagy operates

under varying oxidative conditions within granulosa cells,

contributing to improved follicular development. The role of

mitophagy in POI is complex. Notably, increased levels of

autophagosomes and autolysosomes have been observed in

granulosa cells of POI mouse models, along with elevated

expression of mitophagy-related proteins in ovarian tissues

compared to normal controls. Conversely, some studies have

suggested that enhanced mitophagy activity may promote

follicular development and regulate sex hormone levels, thereby

improving ovarian function; however, the underlying mechanisms

require further investigation. Finally, in OA, mitophagy primarily

influences the meiotic progression of germinal vesicle-stage oocytes,

helping to correct maturation defects. Suppression of
FIGURE 2

FSH suppresses mitophagy to prevent follicular atresia. FSH prevents follicular atresia by deploying a dual strategy in granulosa cells. Activation of the
PI3K-AKT-mTOR pathway suppresses autophagic activity, while inhibition of the PINK1-Parkin pathway dampens mitophagy, thereby alleviating
oxidative damage and preventing excessive mitochondrial loss. This coordinated regulation thus enhances granulosa cell vitality and forestalls the
onset of atresia.
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hyperactivated mitophagy has been shown to enhance oocyte

quality in OA.
Endometriosis

Endometriosis is a chronic, hormone-dependent inflammatory

disorder characterized by the ectopic implantation of endometrial

glands and stroma outside the uterine cavity. It has been established

as one of the leading causes of pelvic pain, dysmenorrhea, and

infertility, affecting approximately 5% to 10% of women of

reproductive age (86, 87). Accumulating evidence indicates that

the interplay among apoptosis, angiogenesis, autophagy, and

mitophagy plays a complex role in the pathogenesis of

endometriosis in rodent models (88). PINK1 serves as a key

initiator of mitophagy. In rat models of endometriosis (70), the

PINK1-Parkin-mediated mitophagy pathway suppresses cell

proliferation, migration, and invasion through upregulation of

prohibitin 2. Furthermore, the PINK1-Parkin mitophagy pathway

represents a critical mechanism by which macrophage stimulator 1

(Mst1), a negative regulator of endometriosis, modulates apoptosis

and migration in human endometrial stromal cells (ESCs) (89).

Mst1 inhibits Parkin transcription and expression, thereby

suppressing mitophagy and promoting ESC apoptosis while

restricting cell migration. Specifically, Mst1 overexpression leads

to reduced Parkin expression, mitochondrial fragmentation,

impaired lysosomal co-localization, cytoplasmic calcium overload,
Frontiers in Endocrinology 07
and decreased F-actin expression. Besides, the coordinated

regulation of mitophagy and apoptosis via the PINK1-Parkin

pathway has been associated with the mTOR signaling cascade

(90, 91). Both autophagy and PINK1-Parkin-mediated mitophagy

activate the mTOR pathway, which in turn stimulates pro-apoptotic

Bcl-2 family proteins on the mitochondrial membrane, ultimately

inducing apoptosis through calcium channel blockers. Endometrial

cell apoptosis can counteract angiogenesis to some extent, thereby

reducing the volume, area, and diameter of endometriotic lesions

and impeding disease progression.

The mitochondrial quality control system in endometriosis has

been closely linked to REV-ERB. Brain and muscle aryl hydrocarbon

receptor nuclear translocator-like 1 (BMAL1) and Circadian

Locomotor Output Cycles Kaput (CLOCK) are core components of

the circadian clock machinery. REV-ERB forms a feedback regulatory

loop with downstream target genes, directly influencing mitochondrial

quality control and sleep-wake patterns (71). The chronic estrogen

dependence of endometriosis may further contribute to sleep

disturbances. Modulating circadian rhythms and restoring

mitochondrial function may offer therapeutic potential for

endometriosis. Although direct evidence linking mitophagy to

circadian regulation remains limited, mitochondrial fission and

fusion, processes closely associated with mitophagy, exhibit circadian

oscillations synchronized with the light/dark cycle through the

phosphorylation-dependent activation and inactivation of DRP1 (92).

These findings suggest that mitophagymay play a role in the regulation

of circadian rhythms and the progression of endometriosis.
TABLE 1 Mitophagy and reproductive disorders.

Reproductive disorder Mitophagy contribution Reference

Endometriosis PINK1-Parkin-mediated mitophagy inhibits cell proliferation, migration and invasion, and enhances apoptosis.
REV-ERB directly acts on the mitochondrial quality control system.

(70)
(71)

PCOS REV-ERB agonists attenuate the excessive activation of mitophagy in mice with PCOS, promote the normal
development of follicles.

(72, 73)

An elevation in iron levels triggers the activation of the TFRC/NOX1/PINK1/ACSL4 pathway, consequently
impairing the normal development of follicles in PCOS mice and KNG cells.

(74)

Inhibition of CISD2 expression in PCOS patients and testosterone-treated mice activates the PINK1-Parkin
pathway, preserves the stability of the follicular microenvironment.

(75)

Melatonin inhibits the over-activated PINK1/Parkin mitophagy pathway in DHT-treated KGN cells and mice, as
well as in PCOS patients, thereby alleviating granulosa cell damage in PCOS.

(76, 77, 78)

POI Overexpression of Nur77 in the ovaries of mice with POI induces activation of the PINK1-Parkin pathway,
thereby enhancing follicular development and restoring sex hormone levels.

(79)

OA RAB7 suppresses excessive PINK1-Parkin-mediated mitophagy, thereby enhancing the quality of oocytes in mice
with OA.

(80)

CNP suppressed excessive mitophagy in the oocytes of OA mice, mitigated DNA damage and apoptosis, and
provided adequate time for cytoplasmic maturation.

(81, 82)

Spermidine enhances oocyte quality through the activation of mitophagy. (83)

Rg1 induces the activation of t-BHP-mediated mitophagy in Drosophila and mitigates reproductive damage
associated with oxidative stress.

(84)

Salidroside activates mitophagy, thereby enhancing mitochondrial function and alleviating oxidative damage in
oocytes of OA mice.

(85)
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PCOS

PCOS is the most prevalent endocrine disorder in women of

reproductive age, with major characteristics encompassing

ovulation dysfunction, hyperandrogenism and polycystic ovarian

morphology. One in six women of reproductive age is afflicted by

PCOS, which constitutes the primary cause of subfertility (93, 94).

The pathogenesis of PCOS is closely linked to mitochondrial energy

metabolism (95). Studies have shown that in human ovarian

granulosa cells (KNG) treated with dihydrotestosterone, the MMP

and mtDNA content were reduced, whereas the abundance of

autophagosomes and the levels of key mitophagy proteins PINK1

and Parkin were elevated. This suggests that excessive activation of

mitophagy contributes to GC damage. Comparable alterations were

detected in the GCs of individuals diagnosed with PCOS. In

addition, the study by Zhao et al. revealed that in the GCs of

patients with PCOS, in addition to the previously mentioned

alterations, the mitophagy receptors Nix and RHEB were also

highly expressed. This finding provides further evidence of the

involvement of mitophagy in granulosa cell dysfunction in PCOS.

Dysfunctional GCs can induce oxidative stress and chronic

inflammation, consistent with the pathophysiological mechanisms

underlying PCOS (96, 97). Future studies should aim to directly

validate this targeted relationship, thereby facilitating potential

clinical translation.

REV-ERB serves as a central regulator of the circadian clock and

is intricately linked to mitochondrial biosynthetic functions (98).

REV-ERB inhibits the translocation of Park2, a key factor in

mitophagy, to mitochondria or modulates the activity of the

mitophagy activator ULK1, thereby maintaining mitochondrial

structure and function (72). In PCOS patients, REV-ERB

expression is significantly reduced in GCs (73). A study by

Amador et al. found that treating PCOS mice with SR9009, a

REV-ERB agonist, suppressed over-activated mitophagy. This

upregulated the expression of peroxisome proliferator-activated

receptor g coactivator 1a, nuclear respiratory factor 1, and

mitochondrial transcription factor A, genes associated with

mitochondrial biogenesis. The enhanced expression of these genes

promoted mitochondrial biogenesis, corrected quality defects in

GCs caused by PCOS, and facilitated follicular development and

maturation, thereby regulating female reproductive capacity.

Iron-mediated mitophagy plays a critical role in the

pathogenesis of PCOS. Ammonium ferric citrate activates

transferrin receptor 1 (TFRC), thereby increasing intracellular

iron levels, which leads to the accumulation and release of ROS,

overactivation of the PINK1-dependent mitophagy pathway,

induction of ferroptosis, and inhibition of follicular development

via the TFRC/NOX1/PINK1/ACSL4 signaling axis. Therefore,

reducing iron uptake may facilitate normal follicular development

in PCOS. Zhang et al. (74) consistently reported that activation of

ACSL4 in KNG cells suppressed normal follicular development,

with abnormal follicle formation being closely associated with the

initiation and progression of PCOS (99). The regulatory mechanism

of mitophagy is influenced by the cellular redox status. CDGSH

iron-sulfur domain 2 (CISD2), a protein found on the outer
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mitochondrial membrane, endoplasmic reticulum, and

mitochondria-associated membranes, functions as a [2Fe-2S]

cluster-containing protein with oxygen-reducing activity, and

participates in the regulation of cellular iron metabolism, ROS

homeostasis, and mitophagy (100–103). The involvement of

CISD2 in electron and iron-sulfur cluster transfer defines its

functional relationship with mitophagy. Under reducing

conditions, CISD2 is unable to transfer [2Fe-2S] clusters;

however, under oxidative stress, CISD2 facilitates iron transport

into the mitochondrial matrix and transfers electrons to oxygen

through oxidized NAD+ (an electron donor), thereby promoting

oxidative stress and generating superoxide radicals (O2
−) (104–

106). Wu et al. (75) established a PCOS model in KNG cells using

testosterone and observed elevated CISD2 expression under

oxidative conditions. Silencing CISD2 expression via shRNA

significantly enhanced PINK1-Parkin-mediated mitophagy and

upregulated SOD2 expression, thereby attenuating oxidative stress

and stabilizing the follicular microenvironment.

Besides, studies have explored PCOS-related clinical features

such as insulin resistance and obesity. In obese humans and rats, the

expression levels of mitophagy-related molecules, including Parkin,

FUNDC1, and BNIP3, are markedly decreased. These mitophagy

defects impair the metabolic differentiation of adipose tissue,

contributing to insulin resistance (76–78). Therefore, mitophagy

may alleviate PCOS symptoms by modulating metabolic pathways,

offering valuable insights for developing clinical strategies.
POI

POI, characterized by the premature depletion of ovarian

follicles before the age of 40, is a major contributor to female

infertility (107). Mitophagy plays a critical role in maintaining

ovarian function by mitigating excessive ROS accumulation and

preventing mtDNA damage. However, excessive activation of

mitophagy may contribute to the development of POI. Miao et al.

demonstrated that in POI mice, the expression levels of PINK1 and

Parkin were elevated in the ovaries, accompanied by an increased

number of autophagosomes and autolysosomes in GCs, suggesting

that excessive mitophagy is involved in the pathogenesis of POI

(108). A cohort study involving 375 patients identified mitophagy as

a potential therapeutic target for POI (109). Sequencing analysis

revealed a homozygous single-nucleotide insertion in exon 1 of the

SPATA33 gene (NM_153025.2: c.34dup; p.Cys12LeufsTer2).

SPATA33, a protein exclusively expressed in mitochondrial germ

cells, has been recognized as a novel mediator of mitophagy (110),

providing genetic evidence linking POI with mitophagy. There are

varying perspectives on the precise relationship between mitophagy

and the pathogenesis of POI. Some studies have indicated that the

pathological process of POI is closely associated with the

suppression of the PINK1-Parkin pathway (111, 112). Yao et al.

overexpressed neurotrophin-induced gene B (Nur77) in the ovaries

of POI mice. Nur77, a member of the nuclear hormone receptor

NR4A family, regulates pathological processes such as metabolic

abnormalities, hypoxia stress, and inflammation. Activation of
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Nur77 can induce PINK1-Parkin pathway-mediated mitophagy,

thereby improving follicular development and sex hormone levels

in POI mice and enhancing ovarian function. However, this study

lacked a control group with inhibited mitophagy and did not

include recovery experiments following Nur77 overexpression

(79). Compared to other reproductive disorders, research on POI

is extensive and diverse, offering multiple perspectives for future

investigations and aiding in the elucidation of the precise

mechanisms of mitophagy’s involvement.
OA

OA is defined as the progressive decline and ultimate

exhaustion of ovarian function, marked by a reduction in follicle

abundance and deterioration in oocyte quality (13). Furthermore,

compromised oocyte quality is strongly associated with adverse

reproductive outcomes, such as fertilization failure, impaired

embryo development, and miscarriage. Wang et al. demonstrated

that excessive activation of mitophagy mediated by the PINK1-

Parkin pathway plays a critical role in the physiological mechanisms

underlying OA, particularly in germinal vesicle-stage oocytes (113).

Pan et al. proposed that both mitophagy and mitochondrial

trafficking contribute to OA. Specifically, Parkin, lysosome-

associated membrane protein 2, and mitochondrial dynamics-

related protein 1 worked synergistically with mitochondrial Rho-

GTPase, an OMM protein, to regulate mitochondrial transport and

mitophagy during oocyte meiosis, thereby alleviating maturation

defects in OA oocytes (114). Jin et al. further revealed that

mitophagy exerts regulatory effects during this process. Notably,

RAB7, a key regulator of the late endosome/lysosome network,

remains active during meiosis to suppress excessive PINK1-Parkin-

mediated mitophagy, thus enhancing oocyte quality in the context

of OA (80). Besides, endogenous C-type natriuretic peptide (CNP),

secreted by GCs in the follicular wall, mitigates DNA damage and

apoptosis in OA oocytes, ensuring adequate time for cytoplasmic

maturation (81, 82). This effect is primarily achieved through CNP

destabilizing PINK1 and inhibiting Parkin recruitment, thereby

restoring mitochondrial oxidative phosphorylation. The

therapeutic potential of compounds like spermidine and

traditional Chinese medicine for OA will be discussed in more

detail later.
Targeted mitophagy-based
therapeutic strategies

In addition to the aforementioned strategies, both molecular

compounds and TCM have shown considerable promise for

enhancing female reproductive function. Key molecular

compounds include melatonin, zinc, spermine, and prostaglandin

F2a (PGF2a). Current evidence suggests that melatonin modulates

granulosa cell function through activation of the mitophagy pathway,

specifically by mitigating oxidative stress-induced damage and

apoptosis. Zinc and spermine exert beneficial effects on oocyte
Frontiers in Endocrinology 09
mitochondrial function through distinct regulatory mechanisms:

zinc suppresses excessive mitophagy activation, whereas spermine

promotes mitophagy activity, ultimately contributing to improved

oocyte quality. PGF2a plays a crucial role in initiating luteolysis by

activating mitophagy during the early phase of corpus luteum

regression, which may help ameliorate luteal insufficiency in

women. In the context of TCM, ginsenoside Rg1 and salidroside

have been demonstrated to enhance mitochondrial function in

oocytes and improve overall reproductive capacity.
Molecular compound

Melatonin (N-acetyl-5-methoxytryptamine) is a compound

secreted in the ovary, composed of indoleamine and acetyl

groups. Its receptors, MT1 and MT2, are highly expressed in

GCs, thereby enhancing cellular communication between GCs

and melatonin. This not only supports the physiological functions

of GCs but also amplifies melatonin’s regulatory effects on GCs

(115–117) Several studies (118, 119) have confirmed that during

female reproduction, melatonin mitigates oxidative damage in GCs,

reduces cell apoptosis, and promotes oocyte maturation. Xu et al.

(120) proposed that melatonin regulates GCs via mitophagy.

Specifically, melatonin upregulates the expression of PINK1,

Parkin, BECLIN1, and LC3II/LC3I in bovine GCs, activating

PINK1-Parkin-mediated mitophagy and enhancing reproductive

capacity. The activation of mitophagy by melatonin relies on the

SIRT1-FoxO1 signaling pathway. More precisely, melatonin

interacts with NAD+-dependent histone deacetylase SIRT1, which

deacetylates FoxO1 and inhibits its activity (121, 122), thereby

reducing the transcriptional activity of pro-apoptotic factors

mediated by FoxO1, decreasing GC apoptosis, and improving

follicular development (123). In the context of PCOS, mitophagy

exhibits protective effects on GCs through diverse regulatory

mechanisms (124). In KNG cells, mice, and PCOS patients,

melatonin significantly increases SIRT1 expression, suppresses

excessive activation of the PINK1-Parkin pathway, restores

mitochondrial function, and alleviates GC damage caused by

PCOS, thereby improving both in vivo and in vitro phenotypes of

PCOS. Therefore, further investigation into the mechanism of

melatonin’s effects on GCs through mitophagy in various cellular

environments is warranted.

Research (125, 126) on porcine oocytes has demonstrated that

excessive activation of PINK1-Parkin-mediated mitophagy can lead to

zinc deficiency. Zinc is an essential trace element that plays a critical

role in numerous cellular physiological processes, including

transcription, protein synthesis, enzyme activity, cell division, growth,

and transport. In the female reproductive system, zinc deficiency

inhibits the synthesis and activity of copper-zinc SOD2, increases the

acetylation level of SOD2, and enhances cellular sensitivity to ROS,

thereby triggering oxidative stress and early apoptosis in oocytes. These

cellular events impair meiotic progression, disrupt cytoskeletal

integrity, and cause mitochondrial dysfunction, ultimately reducing

oocyte quality. Therefore, zinc supplementation may serve to inhibit

hyperactivated mitophagy, alleviate oxidative stress, restore
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mitochondrial function in oocytes, and thereby maintain intracellular

homeostasis within oocytes. Selenium is an essential trace element for

female reproductive health. It is predominantly localized in the

granulosa cell layer and highly expressed in large, healthy follicles,

where it may serve as an antioxidant during the later stages of follicular

development (127). Given the bidirectional regulatory relationship

between mitophagy and oxidative stress, it is essential to investigate

the involvement of mitophagy in selenium-mediated regulation of the

female reproductive system. Furthermore, Zhang et al. (83) confirmed

through non-targeted metabolomics technology that spermidine, a

polyamine metabolite, is a key metabolite in the ovary. Increasing

the level of spermidine in the ovaries of aged mice promoted follicular

development, oocyte maturation, and early embryo development.

Microtranscriptomic studies further revealed that this improvement

in oocyte quality was achieved through activation of mitophagy and

mitochondrial function mediation, and this mechanism remains active

under oxidative stress conditions in porcine oocytes. In summary,

regulating the mitophagy pathway effectively enhances oocyte quality.

Luteolysis is a pivotal regulatory mechanism in the female

reproductive cycle. Bennegard et al. (128) suggested that

elucidating the cellular events occurring during early luteolysis

could be an important strategy for improving female fertility.

Auletta et al. demonstrated that increasing PGF2a levels in the

rhesus monkey luteum could induce luteolysis (129). Similarly,

Plewes et al. observed this phenomenon in bovine luteum (130).

During the early stages of luteolysis, PGF2a activates PINK1 and

stimulates Parkin phosphorylation. This finding suggests that

mitophagy and mitochondrial fission are involved in the early

cellular activities of luteolysis. Although the PGF2a analogues

used in these studies do not fully replicate the PGF2a secreted by

the uterus, and physiological luteolysis involves more complex

mechanisms than PGF2a signaling alone, this research highlights

the potential of mitophagy as a therapeutic target for luteal

insufficiency. The aforementioned therapeutic approaches

targeting mitophagy have shown promising effects on granulosa

cell damage, oocyte quality defects, and luteal insufficiency. Thus,

mitophagy holds significant potential as a therapeutic target for

enhancing female reproductive capacity.
TCM

Ginseng, a perennial herb belonging to the genus Panax in the

family Araliaceae, contains ginsenoside Rg1 as its primary bioactive

constituent. Ginsenoside Rg1 is a tetracyclic triterpene saponin that

has demonstrated protective effects against oxidative stress-induced

damage in various pathological conditions, including diabetes,

ischemic stroke, and depression (131–133). In diabetic rat models,

ginsenoside Rg1 significantly elevated superoxide dismutase (SOD)

levels. In both in vivo and in vitro models of ischemic stroke,

ginsenoside Rg1 activated the Nrf2/ARE signaling pathway, thereby

enhancing the cellular antioxidant defense system. Furthermore,

ginsenoside Rg1 was shown to downregulate the expression of

NADPH oxidase isoforms NOX1 and NOX4 in the hippocampus

of depression-induced rats, thereby alleviating oxidative stress. As
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between oxidative stress and mitophagy. Ginsenoside Rg1 has also

been reported to improve fertility in ovarian aging mouse models by

increasing antioxidant enzyme levels, suggesting its potential

regulatory role in the female reproductive system via mitophagy

modulation (134). A study by Yang et al. (84) established an

oxidative stress-induced OA model in Drosophila using tert-butyl

hydroperoxide and demonstrated that ginsenoside Rg1 treatment

induced PINK1-mediated mitophagy, thereby reducing oxidative

damage and improving reproductive capacity. Molecular docking

analysis further revealed that Rg1 exhibited strong binding affinity

with the active domain of PINK1 and formed hydrogen bonds.

These findings suggest that ginsenoside Rg1 may exert its

therapeutic effects in OA by activating the PINK1-mediated

mitophagy pathway in ovarian cells, promoting mitochondrial

degradation, reducing excessive ROS accumulation, and

alleviating redox imbalance caused by decreased SOD2 and

catalase activity, ultimately reversing oxidative stress-induced

reproductive damage.

Recent studies have indicated that salidroside (2-(4-

hydroxyphenyl)ethyl-b-D-glucopyranoside), the primary bioactive

compound extracted from the roots and rhizomes of Rhodiola rosea,

exhibits therapeutic potential in the treatment of premature ovarian

aging. In an experimental study on porcine oocytes (135), salidroside

significantly reduced ROS levels, enhancedMMP andATP production,

increased mitochondrial DNA copy number, and promoted both

cytoplasmic and nuclear maturation of oocytes. In subsequent

embryo development, salidroside-treated embryos exhibited increased

blastomere counts, improved blastocyst proliferation, and upregulated

expression of pluripotency genes. Moreover, mitochondrial-targeted

molecules have been shown to ameliorate spindle and chromosome

abnormalities in aged mouse and human oocytes, suggesting that

mitochondrial dysfunction plays a central role in the pathogenesis of

ovarian aging (136). Therefore, the therapeutic effects of salidroside on

OA are closely associated with mitophagy regulation. A recent study

(85) confirmed through transcriptomic and microproteomic analyses

that salidroside could maintain normal spindle and chromosome

alignment and preserve mitochondrial membrane potential via

mitophagy activation, thereby enhancing oocyte maturation,

fertilization capacity, and embryonic developmental potential in OA

mouse models.

Both ginsenoside Rg1 and salidroside are bioactive constituents

of TCM, which are characterized by their multi-target and multi-

pathway regulatory properties. Salidroside, for instance, interacts

with key molecular targets such as Tumor Necrosis Factor-alpha,

Interleukin-2, Bcl-2, Cyclooxygenase-2, Vascular Endothelial

Growth Factor, cysteine-aspartic acid protease 3, and Hypoxia-

Inducible Factor-1alpha, and modulates multiple signaling

pathways including PI3K/Akt/mTOR, Mitogen-Activated Protein

Kinases, Extracellular Signal-Regulated Kinase 1 and 2, Glycogen

Synthase Kinase-3 Beta, and Nuclear Factor Erythroid 2-Related

Factor 2. These molecular targets and pathways are closely

associated with the pathophysiological mechanisms of female

reproductive disorders, underscoring the therapeutic potential of

salidroside in reproductive medicine. Despite its promising effects,
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there remains a lack of comprehensive long-term toxicological data

to support its clinical application. However, existing toxicity studies

have not identified significant adverse effects. Besides, the

bioavailability of salidroside is closely related to its synthetic

methodology. Therefore, optimizing the synthesis and

derivatization of salidroside represents a promising avenue for

advancing its clinical application in TCM (137).
Conclusions

Mitophagy represents a critical mechanism for mitochondrial

quality control, with most current research centered on the PINK1/

Parkin signaling pathway. Within the context of female

reproductive physiology, mitophagy exerts essential regulatory

functions in follicular development and fertilization. Notably, it

demonstrates bidirectional regulatory properties during follicular

atresia, a phenomenon that is also evident in the pathogenesis and

therapeutic strategies of reproductive disorders. The bidirectional

regulation is primarily governed by the intracellular redox status.

Future investigations should aim to elucidate the biological

thresholds that determine mitophagy activation and suppression,

as well as the tissue- and cell-specific variations, which may

facilitate the development of precise regulatory interventions for

female reproductive diseases. Research on mitophagy’s role during

embryo implantation and post-implantation development remains

limited and primarily indirect. Nevertheless, this area holds

significant potential for improving female pregnancy outcomes

and advancing assisted reproductive technologies, warranting

further in-depth exploration.

In the pathological context of the female reproductive system,

mitophagy has been implicated in the progression of endometriosis,

PCOS, premature ovarian insufficiency, and ovarian aging. Studies on

the regulatory mechanisms of mitophagy have revealed that it not

only collaborates with key mitochondrial quality control pathways,

including mitochondrial biogenesis, fission/fusion dynamics, and

transport, but also interacts with the mitochondrial unfolded

protein response (UPRmt), ferroptosis signaling, and apoptotic

cascades. The complex interplay between mitophagy and apoptosis

is particularly notable across multiple biological levels and processes.

During follicular atresia, mitophagy suppresses granulosa cell

apoptosis and sustains cellular viability. In endometriosis, it

modulates the apoptotic and migratory behaviors of endometrial

stromal cells, thereby mitigating lesion progression. In PCOS,

inhibition of the PINK1/Parkin pathway reduces oocyte apoptosis

and enhances oocyte quality. Besides, melatonin and zinc have been

shown to enhance reproductive function by mitigating granulosa and

oocyte apoptosis via mitophagy induction. Emerging evidence further

suggests that epigenetic mechanisms may directly regulate the

mitochondrial quality control network, implying a potential

targeted interaction between epigenetic modifications and

mitophagy (138). However, the underlying mechanisms linking

these processes in the context of reproductive biology remain to be
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fully elucidated. Collectively, these findings expand our

understanding of the molecular regulatory networks involving

mitophagy and underscore its therapeutic potential in the

prevention and treatment of female reproductive disorders.

Beyond well-characterized compounds such as melatonin, zinc,

spermidine, and prostaglandin F2a, bioactive constituents of

traditional Chinese medicine, such as ginsenoside Rg1 and

salidroside, have demonstrated the capacity to enhance female

reproductive function through the modulation of mitophagy. The

principal mechanism involves the mitigation of ROS-induced cellular

damage. However, current studies on mitophagy in relation to

traditional Chinese medicine remain limited in both scope and

methodological rigor. Future research should focus on delineating

the interplay between mitophagy and multiple molecular signaling

pathways, while refining experimental designs to identify and validate

specific therapeutic targets. To date, most investigations into

mitophagy have been conducted using in vitro cell models or in vivo

animal systems. Advances in high-throughput sequencing technologies

and machine learning methodologies offer novel opportunities to

integrate multi-omics approaches, identify key regulatory mitophagy

factors, and validate their functional roles across experimental

platforms, including in vivo, in vitro, and clinical settings. These

developments are critical for establishing the clinical relevance of

mitophagy in the diagnosis and therapeutic management of female

reproductive disorders.
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