
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Åke Sjöholm,
Gävle Hospital, Sweden

REVIEWED BY

Serafino Fazio,
Federico II University Hospital, Italy
Ashot Avagimyan,
Yerevan State Medical University, Armenia

*CORRESPONDENCE

Weihan Lin

linwhan@126.com

Juan Wu

juanwuluck@163.com

†These authors have contributed equally to
this work

RECEIVED 11 June 2025

ACCEPTED 17 October 2025
PUBLISHED 03 November 2025

CITATION

Chen H, Chen Q, Xia L, Lu S, Cai X, Huang X,
Wu J and Lin W (2025) Threshold effect and
age interaction of TyG index on diabetes
incidence in normolipidemic population: a
multicenter cohort study.
Front. Endocrinol. 16:1645344.
doi: 10.3389/fendo.2025.1645344

COPYRIGHT

© 2025 Chen, Chen, Xia, Lu, Cai, Huang, Wu
and Lin. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 03 November 2025

DOI 10.3389/fendo.2025.1645344
Threshold effect and age
interaction of TyG index on
diabetes incidence in
normolipidemic population: a
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Background: Although the triglyceride-glucose (TyG) index-diabetes association

has been widely studied, its relationship in normolipidemic populations remains

poorly understood.

Methods: A retrospective cohort of 60,103 normolipidemic Chinese adults was

included from routine health screening programs conducted across 32

healthcare institutions in China. Data collection included demographic

characteristics, anthropometric measurements, serum biochemical parameters,

smoking and alcohol consumption history, and family history of diabetes. We

employedmultivariable Cox regression, restricted cubic spline analysis, threshold

effect analysis, stratified analysis, and interaction tests to comprehensively assess

the association between the TyG index and incident diabetes.

Results: Multivariable-adjusted Cox regression revealed a robust positive

association between the TyG index and incident diabetes in normolipidemic

subjects (HR: 10.10, 95% CI: 7.94–12.84, P < 0.001). Restricted cubic spline

analysis detected a nonlinear relationship, with a critical threshold at TyG ≥ 8.53,

beyond which diabetes risk increased exponentially (HR: 51.84, 95% CI: 24.83–

108.24, P < 0.001). Despite consistent findings across subgroups, a significant

interaction with age was detected (P for interaction < 0.05).

Conclusions: In normolipidemic individuals, the TyG index demonstrated a

nonlinear positive association with diabetes risk, particularly above 8.53. It can

serve as an early warning signal for diabetes risk in normolipidemic individuals,

facilitating personalized prevention strategies for diabetes prevention

and control.
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Introduction

Diabetes mellitus is a highly prevalent chronic metabolic disorder

worldwide. It is projected that by 2040, the global diabetic population

will reach 642 million, with 60% of cases occurring in Asia (1, 2). The

situation is particularly severe in Southeast Asia, where the mortality

rate among its 82 million diabetic patients is as high as 14% (3).

Epidemiological data reveal a dual high-prevalence trend in both

developed countries and developing countries. China, the country

with the largest diabetic population globally, reported an adult

prevalence rate of 11.2% in 2020 (4). Beyond dysregulated glucose

metabolism, diabetes leads to multisystem complications, including

cardiovascular diseases, diabetic nephropathy, and retinopathy,

which significantly impair patients’ quality of life, reduce life

expectancy, and impose a substantial burden on healthcare systems.

In 2021, China ranked second globally in diabetes-related healthcare

expenditures, underscoring the urgency of disease prevention and

control (5). Notably, diabetes is highly preventable. Studies have

demonstrated that lifestyle modifications, such as balanced nutrition,

regular physical activity, and early screening interventions, can

effectively reduce diabetes risk and slow disease progression (6).

The development of diabetes mellitus results from a complex

interplay of multiple pathological factors, among which impaired

insulin sensitivity and defective pancreatic b-cell function serve as

the central pathogenic mechanisms (7). Additional contributing factors

include genetic predisposition, chronic inflammation, oxidative stress,

and gut microbiota dysbiosis (8). Notably, insulin resistance typically

precedes b-cell dysfunction and persists throughout the disease course,

currently recognized as the primary andmost critical initiating factor in

diabetes pathogenesis. Dyslipidemia represents a well-established risk

factor, with hypertriglyceridemia and reduced high-density lipoprotein

cholesterol (HDL-C) levels serving as characteristic markers of insulin

resistance (9). Mechanistically, elevated triglycerides exacerbate insulin

resistance by activating inflammatory signaling pathways and

inhibiting insulin receptor substrate phosphorylation (10). While the

detrimental effects of dyslipidemia on metabolic and cardiovascular

diseases are well-documented, the diabetes risk factors in

normolipidemic individuals remain less clearly defined. Even within

normal lipid ranges, these individuals may harbor other underlying

metabolic disturbances - including insulin resistance, chronic low-

grade inflammation, and oxidative stress - that potentially elevate

diabetes risk. This highlights the importance of evaluating diabetes

susceptibility in normolipidemic populations, particularly regarding

insulin resistance assessment. The hyperinsulinemic-euglycemic clamp

remains the gold standard for insulin resistance measurement.

However, its widespread clinical application is limited by substantial

costs, time-consuming procedures, and requirements for specialized

equipment and technical expertise, currently restricting its use

primarily to research settings (11).

The triglyceride-glucose (TyG) index, calculated from fasting

plasma glucose (FPG) and triglyceride (TG) levels, has emerged as a

simple, cost-effective, and reliable surrogate marker for insulin

resistance (12). Growing evidence has highlighted its research

value in metabolic and cardiovascular diseases in recent years (11,

13–16). Notably, multiple studies have demonstrated that the TyG
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index outperforms established diabetes risk predictors, including

the homeostasis model assessment of insulin resistance, oral glucose

tolerance test, and triglyceride to high-density lipoprotein

cholesterol ratio, in predicting type 2 diabetes mellitus (17–19).

Substantial evidence also indicates a strong association between the

TyG index and diabetes risk, suggesting its potential as an early

warning indicator for diabetes development (20, 21). However,

most existing studies have focused on general populations or

high-risk individuals with dyslipidemia (22, 23). Whether the

TyG index maintains its predictive value for diabetes risk in

normolipidemic populations remains unclear and warrants

further investigation.

Our study aims to examine the relationship between the TyG

index and diabetes incidence in individuals with normal lipid

profiles, thereby evaluating its clinical utility in this specific

population. The results could support the development of more

effective screening and prevention protocols for diabetes in

individuals with apparently normal lipid profiles.
Method

Data source

The data for our study were obtained from the Dryad Digital

Repository (https://datadryad.org), a specialized platform for

medical and health science research data. Dryad database

maintains strict adherence to ethical guidelines and privacy

protection principles throughout its data storage and sharing

processes. The dataset utilized in our study has been fully

anonymized, with all personally identifiable information removed

to ensure participant confidentiality. As such, this secondary

analysis of de-identified data did not require additional informed

consent from participants, in accordance with standard research

ethics protocols for publicly available, non-identifiable datasets. The

open-access nature of these data supports their legitimate use by

researchers for secondary analytical purposes.
Study population

In our study, we analyzed medical examination data provided

by the Rich Healthcare Group, which included adults aged 20 years

and older who underwent a minimum of two health check-ups

between 2010 and 2016 at 32 sites across 11 cities in China. The

initial exclusion criteria, as outlined by Chen et al. (24), were as

follows (1): absence of data on body weight, height, or sex (n =

103,947) (2); absence of FPG data (n = 31,370) (3); extreme body

mass index (BMI) values, defined as < 15 kg/m² or > 55 kg/m² (n =

152) (4); individuals with an inter-visit interval of less than 2 years

(n = 324,233) (5); a baseline diagnosis of diabetes (n = 7,112) (6);

undetermined diabetes status (n = 6,630). Following these

exclusions, the initial cohort consisted of 211,833 participants.

From this cohort, we further excluded individuals with (1):

missing lipid profile data, specifically HDL-C (n = 94,562),
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low-density lipoprotein cholesterol (LDL-C) (n = 93,421), TG (n =

4,887), and total cholesterol (TC) (n = 4,854) (2); dyslipidemia (n =

56,945); and (3) baseline TG equal to zero (n = 23) or missing

follow-up FPG data (n = 3). After implementing all exclusion

criteria, our final analytical sample comprised 60,103

participants (Figure 1).
Missing value handling

The dataset exhibited variable-specific missing data patterns,

with missingness proportions as follows: smoking status and

alcohol consumption shared identical missing rates (73.47%, n =

44,157 each), followed by aspartate aminotransferase (AST; 56.85%,

n = 34,169). Other variables showed minimal missingness: alanine

aminotransferase (ALT; 0.40%, n = 242), blood urea nitrogen

(BUN; 2.23%, n = 1,343), serum creatinine (Scr; 1.35%, n = 814),

and blood pressure measures (systolic and diastolic both 0.01%, n =

6 each). The pattern and proportion of missing data for all variables

are presented in Supplementary Table 1.

For continuous variables with more than 50% missing data,

such as AST, we employed tertile categorization, designating

missing values as “NA”. Similarly, categorical variables with over

50% missingness, including smoking and alcohol status, were

assigned “NA”. Continuous variables with less than 5%

missingness were subjected to multiple imputation using chained

equations (25). This stratified methodology was designed to
Frontiers in Endocrinology 03
optimize analytical validity while maintaining the integrity of the

dataset, despite the presence of substantial incomplete observations.

The primary outcome analyses in our study were conducted using

the imputed dataset.
Data collection

The study protocol involved systematic acquisition of

demographic characteristics (age, sex), lifestyle parameters (tobacco

use, alcohol consumption patterns), and familial diabetes history

through standardized questionnaires. Certified personnel conducted

anthropometric assessments encompassing height, body mass, and

blood pressure measurements. During each clinical assessment,

fasting venous blood samples (minimum 10-hour fasting duration)

were obtained for comprehensive biochemical profiling, including

quantitative analysis of lipid profile (HDL-C, LDL-C, TC, TG), FPG,

renal function markers (BUN, Scr), liver enzymes (ALT, AST). The

observation period spanned from baseline evaluation to either study

termination or incident diabetes diagnosis.
Definition

The TyG is a marker based on FPG and TG levels, used to assess

insulin resistance. Its calculation formula is: TyG = ln [FBG (mg/

dL) × TG (mg/dL)]
FIGURE 1

Flowchart outlining the structure of the study.
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Diabetes was defined as either FPG ≥ 7.0 mmol/L or self-

reported diabetes (26).

Prediabetes was defined as FPG between 5.6 and 6.9 mmol/L

and no history of diabetes (26).

Hyperlipidemia is defined as an abnormal elevation of blood

lipids, including:

TC > 5.2 mmol/L, TG > 1.7 mmol/L, LDL-C > 3.12 mmol/L or

HDL-C < 1.03 mmol/L (27).

Normal blood pressure is defined as systolic blood pressure (SBP)

< 120 mmHg and diastolic blood pressure (DBP) < 80 mmHg (28).
Statistical analysis

Continuous variables were expressed as mean ± standard

deviation or median (interquartile range) based on distributional

characteristics, while categorical variables were presented as

frequencies (percentages). Inter-group comparisons across TyG

index quartiles were performed using ANOVA or Kruskal-Wallis

tests for continuous measures and chi-square tests for categorical

variables. The standardized mean difference (SMD) was calculated

to quantify covariate balance between groups, with an absolute

SMD >0.1 indicating potential imbalance.

Survival analyses were conducted using Kaplan-Meier estimators

stratified by the TyG quartiles with log-rank tests. Multivariable Cox

proportional hazards models were constructed to evaluate independent

associations. Confounders were selected based on clinical judgment

and previous scientific literature (29, 30). We constructed a total of 4

models for the analysis: No covariates were adjusted for Model 1.

Model 2 adjusted for age and sex. Model 3 further accounted for BMI,

SBP, DBP, ALT, AST, BUN, and Scr base on model 2. Model 4

designated as the main model, included all previous adjustments and

additionally accounted for family history of diabetes, smoking status,

and alcohol consumption. Effect estimates were expressed as hazard

ratios (HR) with 95% confidence intervals (95% CI).

We categorized TyG into quartiles to assess the trend in its

association with the diabetes incidence. This approach allowed us to

verify the results obtained when considering TyG as a continuous

variable and to explore potential non-linear relationships. To

evaluate the robustness of our findings, we conducted sensitivity

analyses excluding participants with any history of tobacco use or

alcohol consumption. Additionally, we validated the stability of

imputed results using the original dataset. Finally, we performed

separate analyses among individuals with normoglycemia and those

with prediabetes at baseline to evaluate the association between the

TyG index and the risk of incident diabetes across different glycemic

statuses. Moreover, Subgroup analyses were conducted, evaluating

TyG-diabetes associations across clinically relevant partitions (age

[< 50/≥ 50 years old] (31), sex, BMI [< 24/≥ 24 kg/m²] (32), blood

pressure status, and family history of diabetes). Interaction effects

were quantified using multiplicative terms, with statistical

significance determined via Wald tests.

To further investigate the relationship between the TyG index

and diabetes risk, we utilized a restricted cubic spline (RCS) model

to generate smoothed curves that visualize the potential non-linear

dose-response association. In this model, TyG was treated as a
Frontiers in Endocrinology 04
continuous variable, utilizing four knots at the 5th, 35th, 65th, and

95th percentiles. Threshold effects were evaluated through two-

piecewise binary logistic regression model, with the statistical

significance of inflection points determined by likelihood ratio tests.

For subgroups exhibiting statistically significant interaction

effects, comprehensive assessments of effect modification were

conducted. We utilized a dual-stratification analytical framework

(1): Age stratification with a cutoff at 50 years old (2); Stratification

of the TyG index using thresholds determined through RCS analysis.

Utilizing this stratification framework, participants were categorized

into four mutually exclusive subgroups for interaction analysis (1):

Younger age (< 50 years old) with a low TyG index (below the RCS-

derived threshold) (2); Younger age (< 50 years old) with a high TyG

index (above the RCS-derived threshold) (3); Older age (≥ 50 years

old) with a low TyG index (4); Older age (≥ 50 years old) with a high

TyG index. We conducted a systematic evaluation of both

multiplicative and additive interactions to thoroughly investigate

the relationship between age and the TyG index. Multiplicative

interaction refers to whether the combined effect of two factors

exceeds the product of their individual effects, whereas additive

interaction evaluates whether their joint effect surpasses the sum of

their separate effects. To assess multiplicative interaction, we

incorporated a product term (age group × TyG category) into

multivariable logistic regression models. A statistically significant

product term (P < 0.05) signifies effect modification on the

multiplicative scale. Additive interaction was assessed utilizing two

well-established metrics: the relative excess risk due to interaction

(RERI) and the attributable proportion (AP), with statistical

significance evaluated through 95% CI. The RERI measures the

incremental disease risk attributable to the synergistic interaction

between TyG index and diabetes incidence, beyond the anticipated

additive effects of their individual contributions. The AP denotes the

proportion of disease incidence among individuals exposed to both

risk factors that is specifically attributable to their interaction,

expressed as a percentage of the overall risk.
Statistical software

All statistical analyses were executed using R Statistical Software

(Version 4.2.2, http://www.R-project.org, The R Foundation) and the

Free Statistics analysis platform (Version 2.1.1, Beijing, China,

http://www.clinicalscientists.cn/freestatistics). Free Statistics is a

software package that provides intuitive interfaces for common

analyses and data visualization, utilizing R as its underlying statistical

engine and employing a graphical user interface developed in Python. A

two-sided p-value of less than 0.05 was deemed statistically significant.
Results

Baseline demographic and clinical profiles

As shown in Table 1, the longitudinal cohort (N = 60,103)

demonstrated 732 incident diabetes cases during a mean follow-up
frontiersin.org
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TABLE 1 Baseline characteristics of the participants stratified by TyG quartiles.

TyG quartiles Total
Quartile 1 Quartile 2 Quartile 3 Quartile 4

P-value SMD
≤ 7.78 > 7.78, ≤ 8.09 > 8.09, ≤ 8.41 > 8.41

Participants (Numbers) 60,103 15,021 15,024 15,029 15,029

Age (Years) 41.0 ± 11.9 37.7 ± 9.6 39.7 ± 11.1 41.8 ± 12.3 44.9 ± 13.2 < 0.001 0.342

Sex < 0.001 0.419

male 27,347 (45.5) 4,109 (27.4) 5,992 (39.9) 7,719 (51.4) 9,527 (63.4)

female 32,756 (54.5) 10,912 (72.6) 9,032 (60.1) 7,310 (48.6) 5,502 (36.6)

BMI (kg/m2) 22.4 ± 3.1 21.1 ± 2.5 21.9 ± 2.8 22.6 ± 2.9 24.0 ± 3.2 < 0.001 0.538

SBP (mmHg) 116.1 ± 15.6 111.3 ± 13.7 114.3 ± 14.8 117.2 ± 15.6 121.7 ± 16.4 < 0.001 0.376

DBP (mmHg) 72.2 ± 10.4 69.3 ± 9.5 71.1 ± 9.9 72.9 ± 10.2 75.5 ± 10.8 < 0.001 0.333

FPG (mmol/L) 4.9 ± 0.6 4.6 ± 0.5 4.8 ± 0.5 4.9 ± 0.5 5.2 ± 0.5 < 0.001 0.570

TC (mmol/L) 4.3 ± 0.5 4.1 ± 0.5 4.3 ± 0.5 4.3 ± 0.5 4.4 ± 0.5 < 0.001 0.309

TG (mmol/L) 0.9 ± 0.3 0.5 ± 0.1 0.7 ± 0.1 1.0 ± 0.1 1.4 ± 0.2 < 0.001 3.268

HDL-C (mmol/L) 1.4 ± 0.2 1.5 ± 0.3 1.5 ± 0.3 1.4 ± 0.2 1.3 ± 0.2 < 0.001 0.342

LDL-C (mmol/L) 2.4 ± 0.4 2.3 ± 0.4 2.4 ± 0.4 2.4 ± 0.4 2.5 ± 0.4 < 0.001 0.305

BUN (mmol/L) 4.6 ± 1.2 4.5 ± 1.1 4.5 ± 1.2 4.6 ± 1.2 4.7 ± 1.2 < 0.001 0.081

Scr (mmol/L) 68.2 ± 15.5 63.7 ± 13.8 66.8 ± 14.8 69.6 ± 15.4 72.8 ± 16.5 < 0.001 0.332

ALT (U/L) 15.6 (11.8, 22.4) 13.1 (10.5, 18.0) 14.5 (11.0, 20.4) 16.3 (12.0, 23.2) 19.3 (14.0, 28.0) < 0.001 0.237

AST (U/L) 21.0 (17.9, 25.0) 20.0 (17.0, 23.0) 20.0 (17.2, 24.0) 21.0 (18.0, 25.0) 22.2 (19.0, 26.9) < 0.001 0.147

Smoking status < 0.001 0.084

Current smoker 2,366 (3.9) 274 (1.8) 478 (3.2) 678 (4.5) 936 (6.2)

Ever smoker 564 (0.9) 69 (0.5) 124 (0.8) 158 (1.1) 213 (1.4)

Never smoker 13,016 (21.7) 3,182 (21.2) 3,309 (22.0) 3,324 (22.1) 3,201 (21.3)

Not recorded 44,157 (73.5) 11,496 (76.5) 11,113 (74.0) 10,869 (72.3) 10,679 (71.1)

Drinking status < 0.001 0.076

Current drinker 318 (0.5) 29 (0.2) 54 (0.4) 90 (0.6) 145 (1.0)

Ever drinker 2,438 (4.1) 347 (2.3) 535 (3.6) 698 (4.6) 858 (5.7)

Never drinker 13,190 (21.9) 3,149 (21.0) 3,322 (22.1) 3,372 (22.4) 3,347 (22.3)

Not recorded 44,157 (73.5) 11,496 (76.5) 11,113 (74.0) 10,869 (72.3) 10,679 (71.1)

Family history of diabetes 0.741 0.007

No 58,803 (97.8) 14,701 (97.9) 14,713 (97.9) 14,694 (97.8) 14,695 (97.8)

Yes 1,300 ( 2.2) 320 (2.1) 311 (2.1) 335 (2.2) 334 (2.2)

Diabetes < 0.001 0.130

No 59,371 (98.8) 14,988 (99.8) 14,946 (99.5) 14,882 (99.0) 14,555 (96.8)

Yes 732 (1.2) 33 (0.2) 78 (0.5) 147 (1.0) 474 (3.2)
F
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Continuous variables were summarized using mean ± standard deviations or median (quartile 1, quartile 3), while categorical variables were expressed as n (%). BMI, body mass index; SBP,
systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; Scr, creatinine; TG, triglyceride; TyG, triglyceride-glucose index; SMD,Standardized
Mean Difference. An absolute SMD value < 0.1 typically indicates a negligible difference between groups.
The data presented in this table are derived from complete-case analysis. Cases with missing values were excluded from the present analysis and were not displayed.
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duration of 3.06 years. Significant gradient patterns across TyG

quartiles were observed for all covariates (P < 0.001 for all except

family history of diabetes). Progressive elevation of age, BMI, blood

pressure parameters, and lipid profiles (TG, TC, LDL-C)

accompanied ascending TyG quartiles, while HDL-C exhibited an

inverse pattern. The sex distribution shifted from a predominance

of females (72.6%) in the first TyG quartile to a predominance of

males (63.4%) in the fourth quartile. Additionally, hepatic enzyme

levels and the proportions of current smokers and individuals

consuming alcohol increased proportionally across TyG quartiles.

Notably, the prevalence of diabetes rose from 0.2% in the first TyG

quartile to 3.2% in the fourth quartile, indicating a 16-fold increase.

Most variables demonstrating statistically significant differences in

Table 1 (excluding BUN, smoking or drinking status, and family

history of diabetes) exhibited SMD values exceeding 0.1, indicating

substantial baseline imbalances across TyG index quartile groups.
The association between TyG and diabetes
risk

The Kaplan-Meier survival analysis demonstrated a pronounced

divergence in diabetes incidence across TyG quartiles, with the highest-

risk cohort (quartile 4) exhibiting markedly reduced diabetes-free

survival (Log-rank test P < 0.001, Figure 2). As shown in Table 2,

multivariable Cox proportional hazards modeling revealed a strong

positive association between TyG index elevation and diabetes risk. Each
Frontiers in Endocrinology 06
unit increment in TyG corresponded to a 10.10-fold escalation in

diabetes hazard (HR: 10.10, 95% CI: 7.94–12.84; P < 0.001),

maintaining statistical significance following comprehensive

adjustment for clinical covariates (Table 2, Model 4). Notably,

quartile-stratified analysis demonstrated a striking gradient effect.

Participants in the TyG quartile 4 manifested a 19.76-fold heightened

diabetes risk relative to the reference quartile 1 (HR: 19.76, 95% CI:

13.88–28.13; P < 0.001, Table 2,Model 1). This association retained both

statistical significance and clinical relevance following multivariable

adjustment, with quartile 4 subjects maintaining a 7.98-fold excess

risk (HR: 7.98, 95% CI: 5.52–11.52; P < 0.001, Table 2, Model 4).
Subgroup and sensitivity analyses

As shown in Figure 3, subgroup analyses revealed consistently

significant TyG-diabetes associations across all strata (P < 0.001),

although the strength of association varied by subgroup. Most notably,

age significantly modified this relationship (P for interaction = 0.01),

with adults < 50 years old exhibiting markedly higher risk (HR: 11.68,

95%CI: 7.23–18.85) compared to their older counterparts (HR: 8.72, 95%

CI: 6.59–11.55).While females showed numerically greater risk estimates

than males (13.43 vs. 8.66), this difference did not reach statistical

significance (P for interaction = 0.119). A similar non-significant trend

was observed in non-overweight participants, who demonstrated

marginally stronger associations compared to their overweight

counterparts (HR: 11.15 vs. 9.34; P for interaction = 0.079). In
FIGURE 2

Kaplan-Meier curves for the probability of diabetes base on TyG quartiles among normolipidemic individuals.
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contrast, hypertension status showed minimal differential effects

(normotensive: 10.46 vs hypertensive: 10.19; P for interaction = 0.280),

as did family history of diabetes (positive history: 9.04 vs negative: 10.27;

P for interaction = 0.276). After excluding smokers or drinkers, the
Frontiers in Endocrinology 07
positive relationship between TyG and diabetes events remained stable.

As showed in Supplementary Table 2, the results remained consistent in

the analysis of the original data. In participants with baseline prediabetes,

the TyG index remained significantly associated with the risk of diabetes.
TABLE 2 The association between TyG and the risk of diabetes among individuals with normal lipid metabolism in different models.

TyG Numbers
Event
(%)

Model 1 Model 2 Model 3 Model 4

HR
(95% CI)

P
value

HR
(95% CI)

P
value

HR
(95% CI)

P
value

HR
(95% CI)

P
value

TyG 60,103 732 (1.2) 25.07 (19.94–31.53) <0.001 12.37 (9.81–15.59) <0.001 10.13 (7.97–12.88) <0.001 10.10 (7.94–12.84) <0.001

TyG quartiles

Quartile 1 15,021 33 (0.2) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

Quartile 2 15,024 78 (0.5) 2.66 (1.77–4.00) <0.001 2.07 (1.37–3.11) <0.001 2.01 (1.33–3.02) 0.001 2.01 (1.34–3.03) 0.001

Quartile 3 15,029 147 (1.0) 5.40 (3.70–7.88) <0.001 3.32 (2.27–4.86) <0.001 3.08 (2.10–4.52) <0.001 3.07 (2.09–4.51) <0.001

Quartile 4 15,029 474 (3.2) 19.76 (13.88–28.13) <0.001 9.47 (6.62–13.56) <0.001 8.00 (5.54–11.56) <0.001 7.98 (5.52–11.52) <0.001

P for trend <0.001 <0.001 <0.001 <0.001
front
DBP, diastolic blood pressure; SBP, systolic blood pressure; BMI, body mass index; FPG, fasting plasma glucose; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; ALT, alanine
aminotransferase; LDL-C, low-density lipoprotein cholesterol; AST, aspartate aminotransferase; BUN, blood urea nitrogen; Scr, creatinine; TG, triglyceride; TyG, triglyceride-glucose index; 95%
CI, 95% confidence interval; HR, hazard ratio; Ref, reference.
Model 1: Not adjusted for any confounders.
Model 2: Adjusted for age, sex.
Model 3: Adjusted for age, sex, SBP, DBP, TC, BMI, LDL, HDL, ALT, AST, BUN, Scr.
Model 4: Adjusted for Model 3+family history of diabetes, smoking status, drinking status.
FIGURE 3

Forest plot of subgroup analysis of the association between TyG and the risk of diabetes among normolipidemic individuals. The model incorporated
adjustments for age, sex, BMI, SBP, DBP, TC, LDL, HDL, ALT, AST, BUN, Scr, smoking status, drinking status, and family history of diabetes, except
when family history of diabetes was the stratification variable.
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However, the effect strength was even greater in the normoglycemia

group, highlighting its particular value in identifying high-risk

individuals at a very early stage (HR: 2.99 vs. 4.81).
Curve fitting and inflection point analysis

Given the statistically significant variations in the association

between the TyG index and diabetes incidence across different age

subgroups, we conducted further investigations using curve fitting

analysis. Threshold effect analysis was employed to identify the TyG

index’s turning points in various age groups. The curve fitting results

revealed a pronounced J-shaped relationship between the TyG index

and diabetes risk (P for nonlinearity <0.001; Figure 4). As shown in

Table 3, a significant association between the TyG index and diabetes

risk was observed when values were below 8.53. Strikingly, exceeding

this threshold was associated with a dramatic 51.84-fold increase in

diabetes risk (HR: 51.84, 95% CI: 24.83–108.24). In younger individuals

(< 50 years old), no significant diabetes risk was detected when the TyG

index remained below 8.20, but surpassing this level led to a sharp

increase in risk (HR: 50.08, 95% CI: 20.91–119.96). In older adults (≥

50 years old), even TyG levels below the inflection point (8.74) carried a

measurable risk (HR: 4.89, 95% CI: 3.41–7.01), which escalated

substantially when the threshold was exceeded (HR: 143.92, 95% CI:

29.04–713.27). The likelihood ratio test confirmed that the two-phase

regression model provided significantly better fit (P < 0.001).
Association between TyG and diabetes
events in different age groups

RCS analysis (Figure 4) identified TyG = 8.53 as a statistically

significant inflection point in the TyG-diabetes association (P for

nonlinearity < 0.001). As showed in Table 4, when implementing this
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inflection point-derived TyG cutoff (≥ 8.53 vs < 8.53), the

multiplicative interaction term reached statistical significance (P for

interaction < 0.001). Age-stratified analyses revealed pronounced risk

differentials: younger adults (< 50 years old) with TyG ≥ 8.53 had a

5.66-fold increased diabetes risk (HR: 6.66, 95% CI: 4.95–8.96)

relative to the reference group, a 24.57-fold risk elevation in older

adults (≥ 50 years old) with similarly elevated TyG levels compared to

the group of younger adults (< 50 years old) with TyG < 8.53. The

additive interaction measures demonstrated substantial effect

modification, with a RERI of 11.98 (HR: 11.98, 95% CI: 7.60–

16.36) and AP of 0.47 (HR: 0.47, 95% CI:0.38–0.56), suggesting

that 47% of the excess diabetes risk resulted from the interaction

between TyG and age.
Discussion

Our large-scale retrospective cohort study provides novel

ev idence regarding the TyG-diabetes assoc ia t ion in

normolipidemic populations. The analysis revealed a significant

nonlinear positive correlation between TyG index and diabetes

incidence, with particularly steep risk escalation observed at TyG

levels exceeding 8.53 (HR: 51.84, 95%CI: 24.83–108.24). This

association remained robust across all examined subgroups

stratified by age, sex, BMI, blood pressure status, and family

history of diabetes. Notably, we identified a significant positive

interaction between advanced age and a high TyG index. The

combination of both factors led to a dramatic rise in disease risk

(HR = 25.57), an effect that was significantly greater than the

additive effect of each individual factor. In assessing diabetes risk,

it is essential to integrate both the TyG index and age, particularly

regarding individuals aged 50 or above with elevated TyG levels,

who should be classified into the highest-risk category and receive

intensive intervention strategies.
FIGURE 4

Analysis of the dose-response relationship between TyG and diabetes risk in people with normal lipid levels. (A) General population (B) Population <50
years old (C) Population ≥ 50 years old. The solid lines represent the multivariate-adjusted hazard ratios, while the dashed lines depict the 95%
confidence intervals derived from restricted cubic spline regression. The horizontal dotted line indicates an hazard ratio of 1.0, serving as the reference
point. The reference point for the TyG index was set at the median level within each respective population subgroup. The distribution of TyG population
levels is depicted in the blue part of the bar chart. Cox regression analyses were adjusted for potential confounders, including age, sex, BMI, SBP, DBP,
TC, LDL, HDL, ALT, AST, BUN, Scr, smoking status, and family history of diabetes. Extreme values of TyG (lowest 0.25%) were excluded from the analysis.
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Previous studies have extensively investigated the TyG-diabetes

association but reported inconsistent findings. A systematic review and

meta-analysis identified TyG index as a potential predictor for

gestational diabetes mellitus in Asian women (33). Zhang et al.

demonstrated a linear positive relationship between TyG index and

GDM risk among Chinese singleton pregnancies (34). In American

populations, studies revealed a nonlinear positive association, with

significantly elevated diabetes risk when TyG exceeded 8.00 in men or

9.00 in women (21). Japanese research showed a U-shaped relationship

between TyG and diabetes risk in normoglycemic individuals (35).The

same conclusion was also found in the non-alcoholic fatty liver

population (36). A dose-response meta-analysis of 14 cohort studies

found progressively steeper risk escalation when TyG surpassed 8.6
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(37), consistent with findings from a 15-year Chinese prospective study

(inflection point = 8.51) (38). A study by Shan Yingqi et al. involving

the general Chinese population aged 45 and above reported a TyG

index inflection point at 8.516. The HR was 1.927 (95% CI: 1.31–2.83)

below this threshold and 1.45 (95% CI: 1.21–1.74) above it (39).These

findings align with those of Cao et al., who identified a similar inflection

point (TyG = 8.73) in their study of the Chinese general population,

with an HR of 1.95 (95% CI: 1.86–2.04) before the inflection point and

1.34 (95% CI: 1.27–1.42) thereafter (40).Among overweight/obese

individuals (BMI ≥ 24 kg/m²), Sun Yongbing et al. observed a sharp

increase in diabetes risk at TyG indices > 4.46, with older women (BMI

24–28 kg/m²) facing disproportionately higher risk at similar TyG

levels (41). A study of elderly Chinese adults (aged ≥ 75 years old) also

revealed a significant positive association between the TyG index and

diabetes risk (42). Most existing studies have primarily examined the

association between the TyG index and diabetes risk in general

populations or high-risk groups, including individuals with obesity,

hypertension, or advanced age. Emerging evidence suggests that even

in populations traditionally considered at low risk for diabetes—such as

non-obese young adults (aged < 50 years old)—the TyG index

demonstrates a significant nonlinear positive association with

diabetes incidence, with an inflection point at 7.3 (43). This finding

is corroborated by similar research conducted among non-obese

elderly populations (aged 40–69 years old) in South Korea, which

likewise revealed a positive association (18). Previous studies have also

shown that cumulative exposure to TyG index increases the risk of

diabetes (44). In conclusion, the TyG index demonstrates significant

potential as a predictive biomarker for diabetes risk. However, current

evidence reveals considerable heterogeneity across studies regarding the

TyG-T2DM association. Future research should focus on validating

these findings through standardized methodologies and elucidating the

precise mechanisms underlying this relationship.

Our study demonstrates a positive association between the TyG

index and diabetes risk in individuals with normal lipid metabolism, as

identified in a health examination cohort. The robustness of this

association was consistently observed across various subgroups

stratified by age, sex, BMI, blood pressure status, and family history of

diabetes through comprehensive sensitivity analyses. These findings not

only corroborate previous reports of the positive relationship between

TyG and diabetes risk in normolipidemic populations, but more
TABLE 4 Multiplicative and additive interactions between different TyG and age groups on the risk of diabetes.

Variable TyG status HR (95%CI) P for interaction
Additive interaction

RERI (95%CI) AP (95%CI)

Age <0.001 11.98 (7.60–16.36) 0.47 (0.38–0.56)

<50 Low 1.00 (Ref)

High 6.66 (4.95–8.96)

≥50 Low 7.93(6.17–10.21)

High 25.57 (19.77–33.06)
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-
density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; Scr, creatinine; TG, triglyceride; TyG, triglyceride-glucose index; 95%
CI, 95% confidence interval; HR, hazard ratio; RERI, relative excess risk due to interaction; AP, attributable proportion.
The analysis adjusted for sex, BMI, SBP, DBP, TC, LDL, HDL, ALT, AST, BUN, Scr, family history of diabetes, smoking status, drinking status.
TABLE 3 Threshold effect of TyG on the incidence of diabetes among
individuals with normal lipid metabolism.

The turning point for TyG HR (95%CI) P value

The general population

< 8.53 3.61 (2.39–5.43) < 0.001

≥ 8.53 51.84 (24.83–108.24) < 0.001

Likelihood Ratio test < 0.001

Age < 50 (years)

< 8.20 1.33 (0.43–4.09) 0.6182

≥ 8.20 50.08 (20.91–119.96) < 0.001

Likelihood Ratio test < 0.001

Age ≥ 50 (years)

< 8.74 4.89 (3.41–7.01) < 0.001

≥ 8.74 143.92 (29.04–713.27) < 0.001

Likelihood Ratio test < 0.001
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG,
fasting plasma glucose; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; BUN, blood urea nitrogen; Scr, creatinine; TG, triglyceride; 95% CI, 95%
confidence interval; HR, hazard ratio; TyG, triglyceride-glucose index.
The model adjusted for age, sex, SBP, DBP, BMI, TC, LDL, HDL, ALT, AST, BUN, Scr,
smoking status and family history of diabetes. Extreme values of TyG (lowest 0.25%) were
excluded from the analysis.
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importantly, reveal a significant modifying effect of age on this

association. Notably, the association between TyG index and diabetes

risk demonstrated significant age-dependent heterogeneity, with a

markedly stronger effect size in participants younger than 50 years old

old (HR: 11.68, 95% CI: 7.23–18.85) compared to older individuals (HR:

8.72, 95% CI: 6.59–11.55). Notably, our threshold analysis identified age-

specific optimal cutoff values for TyG index in diabetes risk stratification:

8.20 for individuals under 50 years old and 8.74 for those above 50 years

old. In the younger population (< 50 years old old), the TyG risk

threshold was lower (8.20), with diabetes risk increasing significantly

only when TyG exceeded this level. In contrast, the older group (≥ 50

years old old) exhibited a higher TyG inflection point (8.74). Notably,

this older cohort demonstrated measurable diabetes risk even at sub-

threshold TyG levels. Interestingly, within the TyG range of 8.20–8.74,

younger individuals experienced a more pronounced diabetes risk

elevation per unit increase in TyG compared to their older

counterparts. The observed age-dependent pattern demonstrates a

critical divergence: although aging persists as an independent diabetes

risk factor, the relative contribution of insulin resistance (quantified by

TyG index) becomes more pronounced in younger individuals (< 50

years old old), indicating potential differences in disease pathophysiology

between age cohorts. Traditionally, diabetes was considered a disease

predominantly affecting elderly populations. However, accumulating

epidemiological evidence indicates that the incidence of type 2

diabetes among young adults has increased several-fold in recent

decades (45). The modern lifestyle characterized by excessive

consumption of high-calorie diets, physical inactivity, and chronic

psychosocial stress from work and social pressures may contribute to

this concerning trend, even in individuals with apparently normal lipid

profiles. In older adults (≥ 50 years old old), diabetes risk escalates

progressively with rising TyG levels, showingmeasurable risk even below

the threshold. However, when TyG exceeds 8.74, the hazard ratio surges

dramatically to 143.92 - nearly threefold higher than in younger

populations (HR: 50.08). These findings carry important clinical

implications. For younger adults, TyG monitoring should focus on the

8.20 threshold for preventive intervention. Older populations require

vigilant metabolic surveillance even at sub-threshold TyG levels (8.74),

with aggressive management recommended when exceeding this cutoff.

The striking magnitude of risk differential (143.92 vs 50.08) underscores

the necessity of age-tailored approaches when implementing TyG-based

diabetes risk stratification in clinical practice. Further prospective cohort

studies with serial measurements are warranted to validate these cutoff

values and to elucidate the dynamic relationship between TyG index and

diabetes risk progression. Mechanistic studies are also needed to clarify

the pathophysiological basis underlying the observed age-dependent

differences in the TyG-diabetes association, particularly in younger

populations with normal lipid metabolism who are increasingly

recognized as an important target group for diabetes prevention.

Although our retrospective cohort study design cannot establish

causal relationships between the TyG index and diabetes incidence,

several well-established pathophysiological mechanisms may help

interpret our findings. Primarily, insulin resistance represents one of

the fundamental pathological mechanisms underlying type 2 diabetes

development (46). The TyG index serves as a reliable surrogate marker

of insulin resistance, reflecting its severity. Chronic insulin resistance
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induces progressive b-cell dysfunction, ultimately leading to impaired

insulin secretion, elevated blood glucose levels, and consequently

increased diabetes risk. From a pathophysiological perspective, insulin

resistance exerts multifaceted metabolic effects (1): it enhances lipolysis

in adipose tissue, resulting in elevated circulating lipid levels (2); it

impairs lipoprotein metabolism, delaying triglyceride clearance; and (3)

it reduces peripheral glucose uptake and utilization efficiency,

collectively contributing to systemic metabolic dysregulation. Notably,

the interplay between insulin resistance andmetabolic disturbances may

exacerbate diabetes risk through activation of inflammatory pathways.

This mechanistic link is supported by emerging evidence demonstrating

significant association between the TyG index and various

inflammatory biomarkers. Notably, a key outcome of compensatory

insulin resistance is hyperinsulinemia. Accumulating evidence indicates

that hyperinsulinemia is associated with a range of long-term

pathological changes, independent of blood glucose levels. These

include promoting atherosclerosis and increasing cardiovascular risk,

accelerating cellular senescence, enhancing susceptibility to certain

cancers, and contributing to neurodegenerative disorders such as

Alzheimer’s disease (47–50). Early identification of insulin resistance

is vital not only to prevent the onset of type 2 diabetes but also to address

the broader spectrum of metabolic and cardiovascular diseases

associated with this condition. By recognizing and managing insulin

resistance early, healthcare providers can implement targeted

interventions to reduce the risk of progression to more severe health

issues, thereby improving patient outcomes and reducing the burden of

chronic diseases.

Several limitations of this study warrant careful consideration. First,

as a retrospective observational cohort study, the identified associations

do not imply causality and may be influenced by unmeasured

confounding variables. Although we rigorously adjusted for all

available potential confounders in our multivariate models, residual

confounding remains possible. To assess the robustness of our findings,

comprehensive sensitivity analyses were performed; these evaluations

consistently confirmed the stability of the primary outcomes. Second,

the absence of key glycemic parameters, including postprandial glucose

levels and hemoglobin A1c measurements, represents an important

limitation. Our diabetes definition relied solely on fasting glucose levels

and self-reported diagnoses, which may have introduced ascertainment

bias and potentially led to underestimation of both diabetes incidence

and effect sizes. Third, the mean follow-up duration of 3.06 years may

have limited our study’s statistical power to detect diabetes events. This

relatively short observation period could have constrained our ability to

fully characterize the TyG-diabetes association. Fourth, the data for our

study were derived from a previous investigation, which provided only

the processed dataset. Consequently, we were unable to assess the

selection bias that may have been introduced during the exclusion of

participants from the original cohort (n = 685,277) to arrive at the

shared dataset (n = 211,833). Despite this limitation, our study retains

significant value, as it offers an in-depth longitudinal analysis of a well-

defined, large-scale healthy population—delivering unique insights into

the research question. Although restricted by the lack of access to the

primary data, we employed internal comparisons to evaluate potential

biases within the available data to the greatest extent possible. Sensitivity

analyses further demonstrated the robustness of our findings.
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Additionally, while our study benefited from a large sample size, the

generalizability of our findings may be limited to Chinese populations

with normal lipid metabolism. Caution should be exercised when

extrapolating these results to other demographic groups.
Conclusions

Our 60,103 longitudinal analysis demonstrates that even in

individuals with normal lipid metabolism, elevated levels of the TyG

index significantly increase the risk of diabetes. This association

exhibits a nonlinear dose-response relationship and is significantly

age-dependent, with young adults (< 50 years old old) showing a

markedly higher sensitivity to the diabetes risk associated with the

TyG index compared to older adults. These findings challenge

traditional screening approaches, indicating that a normal lipid

profile does not rule out the risk of diabetes, particularly in younger

individuals. Assessing the TyG index can enhance the detection rate

of early-stage diabetes in those with normal metabolic profiles and

underscores the importance of age-specific risk stratification.

Moreover, the stronger association observed in young adults

suggests different pathophysiological mechanisms or varying

exposure to modern lifestyle risk factors, necessitating targeted

preventive measures for this population.
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age-related differences of metabolic parameters in impaired glucose metabolism and
type 2 diabetes compared to normal glucose tolerance. Diabetes Res Clin Pract. (2018)
146:67–75. doi: 10.1016/j.diabres.2018.09.019

32. He W, Li Q, Yang M, Jiao J, Ma X, Zhou Y, et al. Lower BMI cutoffs to define
overweight and obesity in China. Obes (silver Spring Md). (2015) 23:684–91.
doi: 10.1002/oby.20995

33. Song T, Su G, Chi Y, Wu T, Xu Y, Chen C. Triglyceride–glucose index predicts
the risk of gestational diabetes mellitus: a systematic review and meta-analysis. Gynecol
Endocrinol. (2022) 38:10–5. doi: 10.1080/09513590.2021.1940932

34. Zhang J, Fang X, Song Z, Guo X, Lin D, Jiang F, et al. Positive association of
triglyceride glucose index and gestational diabetes mellitus: a retrospective cohort study.
Front Endocrinol (Lausanne). (2025) 15:1475212. doi: 10.3389/fendo.2024.1475212

35. Xuan X, Hamaguchi M, Cao Q, Okamura T, Hashimoto Y, Obora A, et al. U-
shaped association between the triglyceride-glucose index and the risk of incident
diabetes in people with normal glycemic level: a population-base longitudinal cohort
study. Clin Nutr (edinb Scotl). (2021) 40:1555–61. doi: 10.1016/j.clnu.2021.02.037

36. Liang X, Lai K, Li X, Li Y, Xing Z, Gui S. Non-linear relationship between
triglyceride glucose index and new-onset diabetes among individuals with non-
alcoholic fatty liver disease: a cohort study. Lipids Health Dis. (2025) 24:94.
doi: 10.1186/s12944-025-02518-5

37. Pranata R, Huang I, Irvan N, Lim MA, Vania R. The association between
triglyceride-glucose index and the incidence of type 2 diabetes mellitus-a systematic
review and dose-response meta-analysis of cohort studies. Endocrine. (2021) 74:254–
62. doi: 10.1007/s12020-021-02780-4

38. Wang Z, Zhao L, He S. Triglyceride-glucose index as predictor for future type 2
diabetes mellitus in a chinese population in southwest China: a 15-year prospective
study. Endocrine. (2021) 72:124–31. doi: 10.1007/s12020-020-02589-7

39. Shan Y, Liu Q, Gao T. Triglyceride-glucose index in predicting the risk of new-
onset diabetes in the general population aged 45 years and older: a national prospective
cohort study. BMC Endocr Disord. (2025) 25:25. doi: 10.1186/s12902-025-01848-w

40. Cao C, Hu H, Xiao P, Zan Y, Chang X, Han Y, et al. Nonlinear relationship between
triglyceride-glucose index and the risk of prediabetes and diabetes: a secondary retrospective
cohort study. Front Endocrinol. (2024) 15:1416634. doi: 10.3389/fendo.2024.1416634

41. Gong R, Liu Y, Luo G, Liu W, Jin Z, Xu Z, et al. Associations of TG/HDL ratio
with the risk of prediabetes and diabetes in chinese adults: A chinese population cohort
study based on open data. Int J Endocrinol. (2021) 2021:9949579. doi: 10.1155/2021/
9949579

42. Fu X, Liu H, Liu J, Li N, Li L, Ke D, et al. Association between triglyceride–glucose
index and the risk of type 2 diabetes mellitus in an older chinese population aged over 75
years. Front Public Health. (2022) 9:796663. doi: 10.3389/fpubh.2021.796663

43. Han J, Dai W, Chen L, Huang Z, Li C, Wang K. Elevated triglyceride-glucose
index associated with increased risk of diabetes in non-obese young adults: a
longitudinal retrospective cohort study from multiple asian countries. Front
Endocrinol. (2024) 15:1427207. doi: 10.3389/fendo.2024.1427207
frontiersin.org

https://doi.org/10.21315/mjms2022.29.2.9
https://doi.org/10.1167/iovs.15-18224
https://doi.org/10.1186/s12933-020-01159-5
https://doi.org/10.2147/DMSO.S372348
https://doi.org/10.3389/fpubh.2022.1084946
https://doi.org/10.1016/S2213-8587(23)00258-9
https://doi.org/10.3389/fbioe.2022.890901
https://doi.org/10.3390/microorganisms10020272
https://doi.org/10.1016/j.cca.2023.117737
https://doi.org/10.1016/j.diabres.2023.110691
https://doi.org/10.1016/j.diabres.2023.110691
https://doi.org/10.1016/j.dsx.2015.10.007
https://doi.org/10.1111/pedi.12303
https://doi.org/10.1186/s12933-024-02278-z
https://doi.org/10.1161/JAHA.123.030022
https://doi.org/10.1161/JAHA.123.030022
https://doi.org/10.1016/j.diabres.2025.112048
https://doi.org/10.3389/fmed.2024.1328601
https://doi.org/10.1016/j.diabres.2021.109042
https://doi.org/10.1016/j.trsl.2020.08.003
https://doi.org/10.1016/j.diabres.2024.111640
https://doi.org/10.1038/s41598-024-64784-0
https://doi.org/10.3389/fendo.2023.1295641
https://doi.org/10.1186/s12967-023-04006-9
https://doi.org/10.1186/s12967-023-04006-9
https://doi.org/10.12659/MSM.894246
https://doi.org/10.1136/bmjopen-2018-021768
https://doi.org/10.1093/aje/kwx349
https://doi.org/10.2337/dc22-S002
https://doi.org/10.1186/s12944-022-01752-5
https://doi.org/10.1186/s12944-022-01752-5
https://doi.org/10.1186/2054-9369-1-19
https://doi.org/10.1038/s41598-025-90501-6
https://doi.org/10.1186/s12967-023-04402-1
https://doi.org/10.1186/s12967-023-04402-1
https://doi.org/10.1016/j.diabres.2018.09.019
https://doi.org/10.1002/oby.20995
https://doi.org/10.1080/09513590.2021.1940932
https://doi.org/10.3389/fendo.2024.1475212
https://doi.org/10.1016/j.clnu.2021.02.037
https://doi.org/10.1186/s12944-025-02518-5
https://doi.org/10.1007/s12020-021-02780-4
https://doi.org/10.1007/s12020-020-02589-7
https://doi.org/10.1186/s12902-025-01848-w
https://doi.org/10.3389/fendo.2024.1416634
https://doi.org/10.1155/2021/9949579
https://doi.org/10.1155/2021/9949579
https://doi.org/10.3389/fpubh.2021.796663
https://doi.org/10.3389/fendo.2024.1427207
https://doi.org/10.3389/fendo.2025.1645344
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chen et al. 10.3389/fendo.2025.1645344
44. Wang Y, Liu L, Yang P, Li Y, Zhou Y, Yang S, et al. Associations of
triglyceride-glucose index cumulative exposure and variability with the transitions
from normoglycaemia to prediabetes and prediabetes to diabetes: insights from a
cohort study. Diabetes Res Clin Pract . (2024) 217:111867. doi: 10.1016/
j.diabres.2024.111867

45. The Lancet N. Type 2 diabetes: the urgent need to protect young people. Lancet
(lond Engl). (2018) 392:2325. doi: 10.1016/S0140-6736(18)33015-0

46. Wang T, Lu J, Shi L, Chen G, Xu M, Xu Y, et al. Association of insulin resistance
and b-cell dysfunction with incident diabetes among adults in China: a nationwide,
population-based, prospective cohort study. Lancet Diabetes Endocrinol. (2020) 8:115–24.
doi: 10.1016/S2213-8587(19)30425-5
Frontiers in Endocrinology 13
47. Yang W, Cai X, Hu J, Wen W, Mulalibieke H, Yao X, et al. The metabolic score
for insulin resistance (METS-IR) predicts cardiovascular disease and its subtypes in
patients with hypertension and obstructive sleep apnea. Clin Epidemiol. (2023) 15:177–
89. doi: 10.2147/CLEP.S395938

48. Bareja A, Lee DE, White JP. Maximizing longevity and healthspan: multiple
approaches all converging on autophagy. Front Cell Dev Biol. (2019) 7:183.
doi: 10.3389/fcell.2019.00183

49. Zwezdaryk K, Sullivan D, Saifudeen Z. The p53/adipose-tissue/cancer nexus.
Front Endocrinol (Lausanne). (2018) 9:457. doi: 10.3389/fendo.2018.00457

50. Barbagallo M, Dominguez LJ. Type 2 diabetes mellitus and alzheimer’s disease.
World J Diabetes. (2014) 5:889–93. doi: 10.4239/wjd.v5.i6.889
frontiersin.org

https://doi.org/10.1016/j.diabres.2024.111867
https://doi.org/10.1016/j.diabres.2024.111867
https://doi.org/10.1016/S0140-6736(18)33015-0
https://doi.org/10.1016/S2213-8587(19)30425-5
https://doi.org/10.2147/CLEP.S395938
https://doi.org/10.3389/fcell.2019.00183
https://doi.org/10.3389/fendo.2018.00457
https://doi.org/10.4239/wjd.v5.i6.889
https://doi.org/10.3389/fendo.2025.1645344
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Threshold effect and age interaction of TyG index on diabetes incidence in normolipidemic population: a multicenter cohort study
	Introduction
	Method
	Data source
	Study population
	Missing value handling
	Data collection
	Definition
	Statistical analysis
	Statistical software

	Results
	Baseline demographic and clinical profiles
	The association between TyG and diabetes risk
	Subgroup and sensitivity analyses
	Curve fitting and inflection point analysis
	Association between TyG and diabetes events in different age groups

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


