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Background: Although the triglyceride-glucose (TyG) index-diabetes association
has been widely studied, its relationship in normolipidemic populations remains
poorly understood.

Methods: A retrospective cohort of 60,103 normolipidemic Chinese adults was
included from routine health screening programs conducted across 32
healthcare institutions in China. Data collection included demographic
characteristics, anthropometric measurements, serum biochemical parameters,
smoking and alcohol consumption history, and family history of diabetes. We
employed multivariable Cox regression, restricted cubic spline analysis, threshold
effect analysis, stratified analysis, and interaction tests to comprehensively assess
the association between the TyG index and incident diabetes.

Results: Multivariable-adjusted Cox regression revealed a robust positive
association between the TyG index and incident diabetes in normolipidemic
subjects (HR: 10.10, 95% ClI: 7.94-12.84, P < 0.001). Restricted cubic spline
analysis detected a nonlinear relationship, with a critical threshold at TyG > 8.53,
beyond which diabetes risk increased exponentially (HR: 51.84, 95% Cl: 24.83—
108.24, P < 0.001). Despite consistent findings across subgroups, a significant
interaction with age was detected (P for interaction < 0.05).

Conclusions: In normolipidemic individuals, the TyG index demonstrated a
nonlinear positive association with diabetes risk, particularly above 8.53. It can
serve as an early warning signal for diabetes risk in normolipidemic individuals,
facilitating personalized prevention strategies for diabetes prevention
and control.
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Introduction

Diabetes mellitus is a highly prevalent chronic metabolic disorder
worldwide. It is projected that by 2040, the global diabetic population
will reach 642 million, with 60% of cases occurring in Asia (1, 2). The
situation is particularly severe in Southeast Asia, where the mortality
rate among its 82 million diabetic patients is as high as 14% (3).
Epidemiological data reveal a dual high-prevalence trend in both
developed countries and developing countries. China, the country
with the largest diabetic population globally, reported an adult
prevalence rate of 11.2% in 2020 (4). Beyond dysregulated glucose
metabolism, diabetes leads to multisystem complications, including
cardiovascular diseases, diabetic nephropathy, and retinopathy,
which significantly impair patients’ quality of life, reduce life
expectancy, and impose a substantial burden on healthcare systems.
In 2021, China ranked second globally in diabetes-related healthcare
expenditures, underscoring the urgency of disease prevention and
control (5). Notably, diabetes is highly preventable. Studies have
demonstrated that lifestyle modifications, such as balanced nutrition,
regular physical activity, and early screening interventions, can
effectively reduce diabetes risk and slow disease progression (6).

The development of diabetes mellitus results from a complex
interplay of multiple pathological factors, among which impaired
insulin sensitivity and defective pancreatic B-cell function serve as
the central pathogenic mechanisms (7). Additional contributing factors
include genetic predisposition, chronic inflammation, oxidative stress,
and gut microbiota dysbiosis (8). Notably, insulin resistance typically
precedes B-cell dysfunction and persists throughout the disease course,
currently recognized as the primary and most critical initiating factor in
diabetes pathogenesis. Dyslipidemia represents a well-established risk
factor, with hypertriglyceridemia and reduced high-density lipoprotein
cholesterol (HDL-C) levels serving as characteristic markers of insulin
resistance (9). Mechanistically, elevated triglycerides exacerbate insulin
resistance by activating inflammatory signaling pathways and
inhibiting insulin receptor substrate phosphorylation (10). While the
detrimental effects of dyslipidemia on metabolic and cardiovascular
diseases are well-documented, the diabetes risk factors in
normolipidemic individuals remain less clearly defined. Even within
normal lipid ranges, these individuals may harbor other underlying
metabolic disturbances - including insulin resistance, chronic low-
grade inflammation, and oxidative stress - that potentially elevate
diabetes risk. This highlights the importance of evaluating diabetes
susceptibility in normolipidemic populations, particularly regarding
insulin resistance assessment. The hyperinsulinemic-euglycemic clamp
remains the gold standard for insulin resistance measurement.
However, its widespread clinical application is limited by substantial
costs, time-consuming procedures, and requirements for specialized
equipment and technical expertise, currently restricting its use
primarily to research settings (11).

The triglyceride-glucose (TyG) index, calculated from fasting
plasma glucose (FPG) and triglyceride (TG) levels, has emerged as a
simple, cost-effective, and reliable surrogate marker for insulin
resistance (12). Growing evidence has highlighted its research
value in metabolic and cardiovascular diseases in recent years (11,
13-16). Notably, multiple studies have demonstrated that the TyG
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index outperforms established diabetes risk predictors, including
the homeostasis model assessment of insulin resistance, oral glucose
tolerance test, and triglyceride to high-density lipoprotein
cholesterol ratio, in predicting type 2 diabetes mellitus (17-19).
Substantial evidence also indicates a strong association between the
TyG index and diabetes risk, suggesting its potential as an early
warning indicator for diabetes development (20, 21). However,
most existing studies have focused on general populations or
high-risk individuals with dyslipidemia (22, 23). Whether the
TyG index maintains its predictive value for diabetes risk in
normolipidemic populations remains unclear and warrants
further investigation.

Our study aims to examine the relationship between the TyG
index and diabetes incidence in individuals with normal lipid
profiles, thereby evaluating its clinical utility in this specific
population. The results could support the development of more
effective screening and prevention protocols for diabetes in
individuals with apparently normal lipid profiles.

Method
Data source

The data for our study were obtained from the Dryad Digital
Repository (https://datadryad.org), a specialized platform for
medical and health science research data. Dryad database
maintains strict adherence to ethical guidelines and privacy
protection principles throughout its data storage and sharing
processes. The dataset utilized in our study has been fully
anonymized, with all personally identifiable information removed
to ensure participant confidentiality. As such, this secondary
analysis of de-identified data did not require additional informed
consent from participants, in accordance with standard research
ethics protocols for publicly available, non-identifiable datasets. The
open-access nature of these data supports their legitimate use by
researchers for secondary analytical purposes.

Study population

In our study, we analyzed medical examination data provided
by the Rich Healthcare Group, which included adults aged 20 years
and older who underwent a minimum of two health check-ups
between 2010 and 2016 at 32 sites across 11 cities in China. The
initial exclusion criteria, as outlined by Chen et al. (24), were as
follows (1): absence of data on body weight, height, or sex (n =
103,947) (2); absence of FPG data (n = 31,370) (3); extreme body
mass index (BMI) values, defined as < 15 kg/m? or > 55 kg/m” (n =
152) (4); individuals with an inter-visit interval of less than 2 years
(n = 324,233) (5); a baseline diagnosis of diabetes (n = 7,112) (6);
undetermined diabetes status (n = 6,630). Following these
exclusions, the initial cohort consisted of 211,833 participants.
From this cohort, we further excluded individuals with (1):
missing lipid profile data, specifically HDL-C (n = 94,562),
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low-density lipoprotein cholesterol (LDL-C) (n = 93,421), TG (n =
4,887), and total cholesterol (TC) (n = 4,854) (2); dyslipidemia (n =
56,945); and (3) baseline TG equal to zero (n = 23) or missing
follow-up FPG data (n = 3). After implementing all exclusion
criteria, our final analytical sample comprised 60,103
participants (Figure 1).

Missing value handling

The dataset exhibited variable-specific missing data patterns,
with missingness proportions as follows: smoking status and
alcohol consumption shared identical missing rates (73.47%, n =
44,157 each), followed by aspartate aminotransferase (AST; 56.85%,
n = 34,169). Other variables showed minimal missingness: alanine
aminotransferase (ALT; 0.40%, n = 242), blood urea nitrogen
(BUN; 2.23%, n = 1,343), serum creatinine (Scr; 1.35%, n = 814),
and blood pressure measures (systolic and diastolic both 0.01%, n =
6 each). The pattern and proportion of missing data for all variables
are presented in Supplementary Table 1.

For continuous variables with more than 50% missing data,
such as AST, we employed tertile categorization, designating
missing values as “NA”. Similarly, categorical variables with over
50% missingness, including smoking and alcohol status, were
assigned “NA”. Continuous variables with less than 5%
missingness were subjected to multiple imputation using chained
equations (25). This stratified methodology was designed to

685,277 participants aged > 20 years received
a health check from 2010 to 2016

10.3389/fendo.2025.1645344

optimize analytical validity while maintaining the integrity of the
dataset, despite the presence of substantial incomplete observations.
The primary outcome analyses in our study were conducted using
the imputed dataset.

Data collection

The study protocol involved systematic acquisition of
demographic characteristics (age, sex), lifestyle parameters (tobacco
use, alcohol consumption patterns), and familial diabetes history
through standardized questionnaires. Certified personnel conducted
anthropometric assessments encompassing height, body mass, and
blood pressure measurements. During each clinical assessment,
fasting venous blood samples (minimum 10-hour fasting duration)
were obtained for comprehensive biochemical profiling, including
quantitative analysis of lipid profile (HDL-C, LDL-C, TC, TG), FPG,
renal function markers (BUN, Scr), liver enzymes (ALT, AST). The
observation period spanned from baseline evaluation to either study
termination or incident diabetes diagnosis.

Definition

The TyG is a marker based on FPG and TG levels, used to assess
insulin resistance. Its calculation formula is: TyG = In [FBG (mg/
dL) x TG (mg/dL)]

The original study included 211,833 participants

g (4) insufficient follow-up duration (n = 324,233)

Exclusion Criteria:

(1) <2 study visits

(2) missing FPG values (n =31,370)
(3) extreme BMI (n = 152)

(5) pre-existing diabetes (n=7,112)
(6) ambiguous diabetes classification (n = 6,630)
(7) incomplete baseline anthropometrics (n = 103,947)

Final study sample: 60,103

FIGURE 1
Flowchart outlining the structure of the study.
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Exclusion Criteria:

(1) missing lipid profile data:
HDL-C (n=94,562); LDL-C (n=93,421),
TG (n=4,887); TC (n=4,854),

(2) dyslipidemia (n=56,945)

(3) baseline TG equal to zero (n=23) or missing
follow-up FPG data (n = 3).
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Diabetes was defined as either FPG > 7.0 mmol/L or self-
reported diabetes (26).

Prediabetes was defined as FPG between 5.6 and 6.9 mmol/L
and no history of diabetes (26).

Hyperlipidemia is defined as an abnormal elevation of blood
lipids, including:

TC > 5.2 mmol/L, TG > 1.7 mmol/L, LDL-C > 3.12 mmol/L or
HDL-C < 1.03 mmol/L (27).

Normal blood pressure is defined as systolic blood pressure (SBP)
< 120 mmHg and diastolic blood pressure (DBP) < 80 mmHg (28).

Statistical analysis

Continuous variables were expressed as mean * standard
deviation or median (interquartile range) based on distributional
characteristics, while categorical variables were presented as
frequencies (percentages). Inter-group comparisons across TyG
index quartiles were performed using ANOVA or Kruskal-Wallis
tests for continuous measures and chi-square tests for categorical
variables. The standardized mean difference (SMD) was calculated
to quantify covariate balance between groups, with an absolute
SMD >0.1 indicating potential imbalance.

Survival analyses were conducted using Kaplan-Meier estimators
stratified by the TyG quartiles with log-rank tests. Multivariable Cox
proportional hazards models were constructed to evaluate independent
associations. Confounders were selected based on clinical judgment
and previous scientific literature (29, 30). We constructed a total of 4
models for the analysis: No covariates were adjusted for Model 1.
Model 2 adjusted for age and sex. Model 3 further accounted for BMI,
SBP, DBP, ALT, AST, BUN, and Scr base on model 2. Model 4
designated as the main model, included all previous adjustments and
additionally accounted for family history of diabetes, smoking status,
and alcohol consumption. Effect estimates were expressed as hazard
ratios (HR) with 95% confidence intervals (95% CI).

We categorized TyG into quartiles to assess the trend in its
association with the diabetes incidence. This approach allowed us to
verify the results obtained when considering TyG as a continuous
variable and to explore potential non-linear relationships. To
evaluate the robustness of our findings, we conducted sensitivity
analyses excluding participants with any history of tobacco use or
alcohol consumption. Additionally, we validated the stability of
imputed results using the original dataset. Finally, we performed
separate analyses among individuals with normoglycemia and those
with prediabetes at baseline to evaluate the association between the
TyG index and the risk of incident diabetes across different glycemic
statuses. Moreover, Subgroup analyses were conducted, evaluating
TyG-diabetes associations across clinically relevant partitions (age
[< 50/= 50 years old] (31), sex, BMI [< 24/> 24 kg/m?] (32), blood
pressure status, and family history of diabetes). Interaction effects
were quantified using multiplicative terms, with statistical
significance determined via Wald tests.

To further investigate the relationship between the TyG index
and diabetes risk, we utilized a restricted cubic spline (RCS) model
to generate smoothed curves that visualize the potential non-linear
dose-response association. In this model, TyG was treated as a
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continuous variable, utilizing four knots at the 5th, 35th, 65th, and
95th percentiles. Threshold effects were evaluated through two-
piecewise binary logistic regression model, with the statistical
significance of inflection points determined by likelihood ratio tests.

For subgroups exhibiting statistically significant interaction
effects, comprehensive assessments of effect modification were
conducted. We utilized a dual-stratification analytical framework
(1): Age stratification with a cutoff at 50 years old (2); Stratification
of the TyG index using thresholds determined through RCS analysis.
Utilizing this stratification framework, participants were categorized
into four mutually exclusive subgroups for interaction analysis (1):
Younger age (< 50 years old) with a low TyG index (below the RCS-
derived threshold) (2); Younger age (< 50 years old) with a high TyG
index (above the RCS-derived threshold) (3); Older age (> 50 years
old) with a low TyG index (4); Older age (= 50 years old) with a high
TyG index. We conducted a systematic evaluation of both
multiplicative and additive interactions to thoroughly investigate
the relationship between age and the TyG index. Multiplicative
interaction refers to whether the combined effect of two factors
exceeds the product of their individual effects, whereas additive
interaction evaluates whether their joint effect surpasses the sum of
their separate effects. To assess multiplicative interaction, we
incorporated a product term (age group x TyG category) into
multivariable logistic regression models. A statistically significant
product term (P < 0.05) signifies effect modification on the
multiplicative scale. Additive interaction was assessed utilizing two
well-established metrics: the relative excess risk due to interaction
(RERI) and the attributable proportion (AP), with statistical
significance evaluated through 95% CI. The RERI measures the
incremental disease risk attributable to the synergistic interaction
between TyG index and diabetes incidence, beyond the anticipated
additive effects of their individual contributions. The AP denotes the
proportion of disease incidence among individuals exposed to both
risk factors that is specifically attributable to their interaction,
expressed as a percentage of the overall risk.

Statistical software

All statistical analyses were executed using R Statistical Software
(Version 4.2.2, http://www.R-project.org, The R Foundation) and the
Free Statistics analysis platform (Version 2.1.1, Beijing, China,
http://www.clinicalscientists.cn/freestatistics). Free Statistics is a
software package that provides intuitive interfaces for common
analyses and data visualization, utilizing R as its underlying statistical
engine and employing a graphical user interface developed in Python. A
two-sided p-value of less than 0.05 was deemed statistically significant.

Results
Baseline demographic and clinical profiles

As shown in Table I, the longitudinal cohort (N = 60,103)
demonstrated 732 incident diabetes cases during a mean follow-up
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TABLE 1 Baseline characteristics of the participants stratified by TyG quartiles.

10.3389/fendo.2025.1645344

Quartile 1 Quartile 2 Quartile 3 Quartile 4
TyG quartiles P-value
<778 >778,<809 >809,<841 >841
Participants (Numbers) 60,103 15,021 15,024 15,029 15,029
Age (Years) 41.0 = 11.9 37.7 £9.6 39.7 £ 11.1 41.8 +12.3 449 +13.2 < 0.001 0.342
Sex < 0.001 0.419
male 27,347 (45.5) 4,109 (27.4) 5,992 (39.9) 7,719 (51.4) 9,527 (63.4)
female 32,756 (54.5) 10,912 (72.6) 9,032 (60.1) 7,310 (48.6) 5,502 (36.6)
BMI (kg/mz) 224 + 3.1 21.1+25 219+28 226 +29 240+ 32 < 0.001 0.538
SBP (mmHg) 116.1 £ 15.6 111.3 £ 13.7 114.3 £ 14.8 117.2 £ 15.6 121.7 £ 16.4 < 0.001 0.376
DBP (mmHg) 722 +£10.4 69.3 £ 9.5 711 +£99 729 +10.2 755+ 10.8 < 0.001 0.333
FPG (mmol/L) 49 + 0.6 4.6 0.5 48 +05 49 £0.5 52+05 < 0.001 0.570
TC (mmol/L) 43 +05 41+05 43+05 43+05 44+ 05 < 0.001 0.309
TG (mmol/L) 09+03 0.5+0.1 0.7 £ 0.1 1.0 £ 0.1 14+£02 < 0.001 3.268
HDL-C (mmol/L) 14+£02 1.5+03 1.5+03 14+£02 13+£0.2 < 0.001 0.342
LDL-C (mmol/L) 24 +04 23+04 24 +04 24+04 25+04 < 0.001 0.305
BUN (mmol/L) 46+ 12 45+ 1.1 45+12 4.6 £1.2 47 +12 < 0.001 0.081
Scr (umol/L) 68.2 + 155 63.7 £ 13.8 66.8 + 14.8 69.6 + 154 72.8 £16.5 < 0.001 0.332
ALT (U/L) 15.6 (11.8, 22.4) 13.1 (10.5, 18.0) 14.5 (11.0, 20.4) 16.3 (12.0, 23.2) 19.3 (14.0, 28.0) < 0.001 0.237
AST (U/L) 21.0 (17.9,25.0) 200 (17.0, 23.0) 200 (17.2, 24.0) 21.0 (18.0, 25.0) 22.2 (19.0, 26.9) <0.001 0.147
Smoking status < 0.001 0.084
Current smoker 2,366 (3.9) 274 (1.8) 478 (3.2) 678 (4.5) 936 (6.2)
Ever smoker 564 (0.9) 69 (0.5) 124 (0.8) 158 (1.1) 213 (1.4)
Never smoker 13,016 (21.7) 3,182 (21.2) 3,309 (22.0) 3,324 (22.1) 3,201 (21.3)
Not recorded 44,157 (73.5) 11,496 (76.5) 11,113 (74.0) 10,869 (72.3) 10,679 (71.1)
Drinking status < 0.001 0.076
Current drinker 318 (0.5) 29 (0.2) 54 (0.4) 90 (0.6) 145 (1.0)
Ever drinker 2,438 (4.1) 347 (2.3) 535 (3.6) 698 (4.6) 858 (5.7)
Never drinker 13,190 (21.9) 3,149 (21.0) 3,322 (22.1) 3,372 (22.4) 3,347 (22.3)
Not recorded 44,157 (73.5) 11,496 (76.5) 11,113 (74.0) 10,869 (72.3) 10,679 (71.1)
Family history of diabetes 0.741 0.007
No 58,803 (97.8) 14,701 (97.9) 14,713 (97.9) 14,694 (97.8) 14,695 (97.8)
Yes 1,300 ( 2.2) 320 (2.1) 311 (2.1) 335 (2.2) 334 (2.2)
Diabetes < 0.001 0.130
No 59,371 (98.8) 14,988 (99.8) 14,946 (99.5) 14,882 (99.0) 14,555 (96.8)
Yes 732 (1.2) 33 (0.2) 78 (0.5) 147 (1.0) 474 (3.2)

Continuous variables were summarized using mean + standard deviations or median (quartile 1, quartile 3), while categorical variables were expressed as n (%). BMI, body mass index; SBP,
systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; Scr, creatinine; TG, triglyceride; TyG, triglyceride-glucose index; SMD,Standardized
Mean Difference. An absolute SMD value < 0.1 typically indicates a negligible difference between groups.
The data presented in this table are derived from complete-case analysis. Cases with missing values were excluded from the present analysis and were not displayed.
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duration of 3.06 years. Significant gradient patterns across TyG
quartiles were observed for all covariates (P < 0.001 for all except
family history of diabetes). Progressive elevation of age, BMI, blood
pressure parameters, and lipid profiles (TG, TC, LDL-C)
accompanied ascending TyG quartiles, while HDL-C exhibited an
inverse pattern. The sex distribution shifted from a predominance
of females (72.6%) in the first TyG quartile to a predominance of
males (63.4%) in the fourth quartile. Additionally, hepatic enzyme
levels and the proportions of current smokers and individuals
consuming alcohol increased proportionally across TyG quartiles.
Notably, the prevalence of diabetes rose from 0.2% in the first TyG
quartile to 3.2% in the fourth quartile, indicating a 16-fold increase.
Most variables demonstrating statistically significant differences in
Table 1 (excluding BUN, smoking or drinking status, and family
history of diabetes) exhibited SMD values exceeding 0.1, indicating
substantial baseline imbalances across TyG index quartile groups.

The association between TyG and diabetes
risk

The Kaplan-Meier survival analysis demonstrated a pronounced
divergence in diabetes incidence across TyG quartiles, with the highest-
risk cohort (quartile 4) exhibiting markedly reduced diabetes-free
survival (Log-rank test P < 0.001, Figure 2). As shown in Table 2,
multivariable Cox proportional hazards modeling revealed a strong
positive association between TyG index elevation and diabetes risk. Each

10.3389/fendo.2025.1645344

unit increment in TyG corresponded to a 10.10-fold escalation in
diabetes hazard (HR: 10.10, 95% CI: 7.94-12.84; P < 0.001),
maintaining statistical significance following comprehensive
adjustment for clinical covariates (Table 2, Model 4). Notably,
quartile-stratified analysis demonstrated a striking gradient effect.
Participants in the TyG quartile 4 manifested a 19.76-fold heightened
diabetes risk relative to the reference quartile 1 (HR: 19.76, 95% CL:
13.88-28.13; P < 0.001, Table 2, Model 1). This association retained both
statistical significance and clinical relevance following multivariable
adjustment, with quartile 4 subjects maintaining a 7.98-fold excess
risk (HR: 7.98, 95% CI: 5.52-11.52; P < 0.001, Table 2, Model 4).

Subgroup and sensitivity analyses

As shown in Figure 3, subgroup analyses revealed consistently
significant TyG-diabetes associations across all strata (P < 0.001),
although the strength of association varied by subgroup. Most notably,
age significantly modified this relationship (P for interaction = 0.01),
with adults < 50 years old exhibiting markedly higher risk (HR: 11.68,
95%Cl: 7.23-18.85) compared to their older counterparts (HR: 8.72, 95%
CI: 6.59-11.55). While females showed numerically greater risk estimates
than males (1343 vs. 8.66), this difference did not reach statistical
significance (P for interaction = 0.119). A similar non-significant trend
was observed in non-overweight participants, who demonstrated
marginally stronger associations compared to their overweight
counterparts (HR: 11.15 vs. 9.34; P for interaction = 0.079). In

TyG quartiles == Quartile 1 Quartile 2 == Quartile 3 == Quartile 4
100 === —
S
g‘ 90 1
5
©
Qo
e
o
s
a Log-rank test P < 0.001
701
2 3 4 5
Years of follow up
Number at risk
Quartile 1 15,021 7,841 3,901 776
Quartile 2 15,024 7,047 3,205 672
Quartile 3 15,029 6,706 2,761 620
Quartile 4 15,029 6,007 2,296 483

FIGURE 2

Kaplan-Meier curves for the probability of diabetes base on TyG quartiles among normolipidemic individuals.
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TABLE 2 The association between TyG and the risk of diabetes among individuals with normal lipid metabolism in different models.

Model 1 Model 2 Model 3 Model 4
TyG Numbers E\(';;'t HR HR HR HR
(95% Cl) (95% ClI) (95% ClI) (95% ClI)
TyG 60,103 732 (12) 2507 (1994-31.53)  <0.001 | 1237 (981-1559) = <0.001 | 10.13 (797-1288)  <0.001 | 1010 (7.94-12.84) = <0.001
TyG quartiles
Quartile 1 15,021 33 (0.2) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)
Quartile 2 15,024 78 (0.5)  2.66 (1.77-4.00)  <0.001 | 2.07 (1.37-3.11) | <0.001  2.01 (1.33-3.02) = 0.001 201 (1.34-303)  0.001
Quartile 3 15,029 147 (1.0) 540 (3.70-7.88)  <0.001 | 332 (2.27-486) = <0.001 | 3.08 (2.10-4.52) = <0.001 | 3.07 (2.09-451) = <0.001
Quartile 4 15,029 474 (32) 1976 (1388-28.13)  <0.001 | 947 (662-1356) = <0.001 | 800 (554-11.56) = <0.001 | 798 (552-11.52) = <0.001
P for trend <0.001 <0.001 <0.001 <0.001

DBP, diastolic blood pressure; SBP, systolic blood pressure; BMI, body mass index; FPG, fasting plasma glucose; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; ALT, alanine
aminotransferase; LDL-C, low-density lipoprotein cholesterol; AST, aspartate aminotransferase; BUN, blood urea nitrogen; Scr, creatinine; TG, triglyceride; TyG, triglyceride-glucose index; 95%
CI, 95% confidence interval; HR, hazard ratio; Ref, reference.

Model 1: Not adjusted for any confounders.

Model 2: Adjusted for age, sex.

Model 3: Adjusted for age, sex, SBP, DBP, TC, BMI, LDL, HDL, ALT, AST, BUN, Scr.

Model 4: Adjusted for Model 3+family history of diabetes, smoking status, drinking status.

contrast, hypertension status showed minimal differential effects  positive relationship between TyG and diabetes events remained stable.
(normotensive: 10.46 vs hypertensive: 10.19; P for interaction = 0.280),  As showed in Supplementary Table 2, the results remained consistent in
as did family history of diabetes (positive history: 9.04 vs negative: 10.27;  the analysis of the original data. In participants with baseline prediabetes,
P for interaction = 0.276). After excluding smokers or drinkers, the  the TyG index remained significantly associated with the risk of diabetes.

Subgroup Total Event (%) HR (95%Cl) P for interaction
Age (Years)

<50 47177 187 (0.4) 11.68 (7.23-18.85) —— 0.009
>50 12926 545 (4.2) 8.72 (6.59-11.55) .

Sex

Male 27347 503 (1.8) 8.66 (6.42-11.67) —@— 0.119
Female 32756 229 (0.7) 13.43 (8.72-20.68) —

BMI (kg/m?®)

<24 43151 253 (0.6) 11.15 (7.66-16.23) —— 0.079
=24 16952 479(2.8)  9.34 (6.80-12.83) —o—

Blood pressure
Normal 34814 189 (0.5) 10.46 (6.72-16.26) —— 0.28
Abnormal 25289 543 (2.1) 10.19 (7.61-13.65) ——

Family history of diabetes

No 58803 700(1.2)  10.27 (8.03-13.14) e 0.276

Yes 1300  32(2.5) 9.04 (2.38-34.34) ©
- [ T T T T 1
170 20 40 80 16.0 320

HR (95%Cl)

FIGURE 3

Forest plot of subgroup analysis of the association between TyG and the risk of diabetes among normolipidemic individuals. The model incorporated
adjustments for age, sex, BMI, SBP, DBP, TC, LDL, HDL, ALT, AST, BUN, Scr, smoking status, drinking status, and family history of diabetes, except
when family history of diabetes was the stratification variable.
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However, the effect strength was even greater in the normoglycemia
group, highlighting its particular value in identifying high-risk
individuals at a very early stage (HR: 2.99 vs. 4.81).

Curve fitting and inflection point analysis

Given the statistically significant variations in the association
between the TyG index and diabetes incidence across different age
subgroups, we conducted further investigations using curve fitting
analysis. Threshold effect analysis was employed to identify the TyG
index’s turning points in various age groups. The curve fitting results
revealed a pronounced J-shaped relationship between the TyG index
and diabetes risk (P for nonlinearity <0.001; Figure 4). As shown in
Table 3, a significant association between the TyG index and diabetes
risk was observed when values were below 8.53. Strikingly, exceeding
this threshold was associated with a dramatic 51.84-fold increase in
diabetes risk (HR: 51.84, 95% CI: 24.83-108.24). In younger individuals
(< 50 years old), no significant diabetes risk was detected when the TyG
index remained below 8.20, but surpassing this level led to a sharp
increase in risk (HR: 50.08, 95% CI: 20.91-119.96). In older adults (>
50 years old), even TyG levels below the inflection point (8.74) carried a
measurable risk (HR: 4.89, 95% CI: 3.41-7.01), which escalated
substantially when the threshold was exceeded (HR: 143.92, 95% CI:
29.04-713.27). The likelihood ratio test confirmed that the two-phase
regression model provided significantly better fit (P < 0.001).

Association between TyG and diabetes
events in different age groups

RCS analysis (Figure 4) identified TyG = 8.53 as a statistically
significant inflection point in the TyG-diabetes association (P for
nonlinearity < 0.001). As showed in Table 4, when implementing this

P for overall: <0.001
P for non-linearity: <0.001

5.01

[nd
9

Ref. point% 8.095

Hazard Ratio

Hazard Ratio
B

0.5]

0.2]

0.1

P for overall: <0.001
P for non-linearity: <0.001

Ref. point £ 8.042

10.3389/fendo.2025.1645344

inflection point-derived TyG cutoff (= 8.53 vs < 8.53), the
multiplicative interaction term reached statistical significance (P for
interaction < 0.001). Age-stratified analyses revealed pronounced risk
differentials: younger adults (< 50 years old) with TyG > 8.53 had a
5.66-fold increased diabetes risk (HR: 6.66, 95% CI: 4.95-8.96)
relative to the reference group, a 24.57-fold risk elevation in older
adults (> 50 years old) with similarly elevated TyG levels compared to
the group of younger adults (< 50 years old) with TyG < 8.53. The
additive interaction measures demonstrated substantial effect
modification, with a RERI of 11.98 (HR: 11.98, 95% CI: 7.60—
16.36) and AP of 0.47 (HR: 0.47, 95% CI:0.38-0.56), suggesting
that 47% of the excess diabetes risk resulted from the interaction
between TyG and age.

Discussion

Our large-scale retrospective cohort study provides novel
evidence regarding the TyG-diabetes association in
normolipidemic populations. The analysis revealed a significant
nonlinear positive correlation between TyG index and diabetes
incidence, with particularly steep risk escalation observed at TyG
levels exceeding 8.53 (HR: 51.84, 95%CI: 24.83-108.24). This
association remained robust across all examined subgroups
stratified by age, sex, BMI, blood pressure status, and family
history of diabetes. Notably, we identified a significant positive
interaction between advanced age and a high TyG index. The
combination of both factors led to a dramatic rise in disease risk
(HR = 25.57), an effect that was significantly greater than the
additive effect of each individual factor. In assessing diabetes risk,
it is essential to integrate both the TyG index and age, particularly
regarding individuals aged 50 or above with elevated TyG levels,
who should be classified into the highest-risk category and receive

intensive intervention strategies.

P for overall: <0.001
P for non-linearity: <0.001

5.01

Ref. point =8,285

7.0 75 8.0 9.0 75
TG

FIGURE 4

e

8.0

9.0 75 8.0 8.5 9.0
e

Analysis of the dose-response relationship between TyG and diabetes risk in people with normal lipid levels. (A) General population (B) Population <50
years old (C) Population > 50 years old. The solid lines represent the multivariate-adjusted hazard ratios, while the dashed lines depict the 95%
confidence intervals derived from restricted cubic spline regression. The horizontal dotted line indicates an hazard ratio of 1.0, serving as the reference
point. The reference point for the TyG index was set at the median level within each respective population subgroup. The distribution of TyG population
levels is depicted in the blue part of the bar chart. Cox regression analyses were adjusted for potential confounders, including age, sex, BMI, SBP, DBP,
TC, LDL, HDL, ALT, AST, BUN, Scr, smoking status, and family history of diabetes. Extreme values of TyG (lowest 0.25%) were excluded from the analysis.
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TABLE 3 Threshold effect of TyG on the incidence of diabetes among
individuals with normal lipid metabolism.

The turning point for TyG HR (95%Cl) P value
The general population
<853 3.61 (2.39-5.43) < 0.001
> 853 51.84 (24.83-108.24) < 0.001
Likelihood Ratio test < 0.001
Age < 50 (years)
<820 1.33 (0.43-4.09) 0.6182
> 820 50.08 (20.91-119.96) < 0.001
Likelihood Ratio test < 0.001
Age > 50 (years)
< 8.74 4.89 (3.41-7.01) <0.001
>8.74 143.92 (29.04-713.27) < 0.001
Likelihood Ratio test < 0.001

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG,
fasting plasma glucose; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; BUN, blood urea nitrogen; Scr, creatinine; TG, triglyceride; 95% CI, 95%
confidence interval; HR, hazard ratio; TyG, triglyceride-glucose index.

The model adjusted for age, sex, SBP, DBP, BMI, TC, LDL, HDL, ALT, AST, BUN, Scr,
smoking status and family history of diabetes. Extreme values of TyG (lowest 0.25%) were
excluded from the analysis.

Previous studies have extensively investigated the TyG-diabetes
association but reported inconsistent findings. A systematic review and
meta-analysis identified TyG index as a potential predictor for
gestational diabetes mellitus in Asian women (33). Zhang et al
demonstrated a linear positive relationship between TyG index and
GDM risk among Chinese singleton pregnancies (34). In American
populations, studies revealed a nonlinear positive association, with
significantly elevated diabetes risk when TyG exceeded 8.00 in men or
9.00 in women (21). Japanese research showed a U-shaped relationship
between TyG and diabetes risk in normoglycemic individuals (35).The
same conclusion was also found in the non-alcoholic fatty liver
population (36). A dose-response meta-analysis of 14 cohort studies
found progressively steeper risk escalation when TyG surpassed 8.6

10.3389/fendo.2025.1645344

(37), consistent with findings from a 15-year Chinese prospective study
(inflection point = 8.51) (38). A study by Shan Yinggqi et al. involving
the general Chinese population aged 45 and above reported a TyG
index inflection point at 8.516. The HR was 1.927 (95% CI: 1.31-2.83)
below this threshold and 1.45 (95% CI: 1.21-1.74) above it (39).These
findings align with those of Cao et al.,, who identified a similar inflection
point (TyG = 8.73) in their study of the Chinese general population,
with an HR of 1.95 (95% CI: 1.86-2.04) before the inflection point and
1.34 (95% CL: 1.27-1.42) thereafter (40).Among overweight/obese
individuals (BMI > 24 kg/m?), Sun Yongbing et al. observed a sharp
increase in diabetes risk at TyG indices > 4.46, with older women (BMI
24-28 kg/m®) facing disproportionately higher risk at similar TyG
levels (41). A study of elderly Chinese adults (aged > 75 years old) also
revealed a significant positive association between the TyG index and
diabetes risk (42). Most existing studies have primarily examined the
association between the TyG index and diabetes risk in general
populations or high-risk groups, including individuals with obesity,
hypertension, or advanced age. Emerging evidence suggests that even
in populations traditionally considered at low risk for diabetes—such as
non-obese young adults (aged < 50 years old)—the TyG index
demonstrates a significant nonlinear positive association with
diabetes incidence, with an inflection point at 7.3 (43). This finding
is corroborated by similar research conducted among non-obese
elderly populations (aged 40-69 years old) in South Korea, which
likewise revealed a positive association (18). Previous studies have also
shown that cumulative exposure to TyG index increases the risk of
diabetes (44). In conclusion, the TyG index demonstrates significant
potential as a predictive biomarker for diabetes risk. However, current
evidence reveals considerable heterogeneity across studies regarding the
TyG-T2DM association. Future research should focus on validating
these findings through standardized methodologies and elucidating the
precise mechanisms underlying this relationship.

Our study demonstrates a positive association between the TyG
index and diabetes risk in individuals with normal lipid metabolism, as
identified in a health examination cohort. The robustness of this
association was consistently observed across various subgroups
stratified by age, sex, BMI, blood pressure status, and family history of
diabetes through comprehensive sensitivity analyses. These findings not
only corroborate previous reports of the positive relationship between
TyG and diabetes risk in normolipidemic populations, but more

TABLE 4 Multiplicative and additive interactions between different TyG and age groups on the risk of diabetes.

Additive interaction

P for interaction

RERI (95% Cl) AP (95% ClI)

Variable TyG status HR (95% Cl)
Age
<50 Low 1.00 (Ref)
High 6.66 (4.95-8.96)
>50 Low 7.93(6.17-10.21)

<0.001 11.98 (7.60-16.36) 0.47 (0.38-0.56)

High 25.57 (19.77-33.06)

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-

density lipoprotein cholesterol; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea nitrogen; Scr, creatinine; TG, triglyceride; TyG, triglyceride-glucose index; 95%
CI, 95% confidence interval; HR, hazard ratio; RERI, relative excess risk due to interaction; AP, attributable proportion.
The analysis adjusted for sex, BMI, SBP, DBP, TC, LDL, HDL, ALT, AST, BUN, Scr, family history of diabetes, smoking status, drinking status.
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importantly, reveal a significant modifying effect of age on this
association. Notably, the association between TyG index and diabetes
risk demonstrated significant age-dependent heterogeneity, with a
markedly stronger effect size in participants younger than 50 years old
old (HR: 11.68, 95% CI: 7.23-18.85) compared to older individuals (HR:
8.72,95% CI: 6.59-11.55). Notably, our threshold analysis identified age-
specific optimal cutoff values for TyG index in diabetes risk stratification:
8.20 for individuals under 50 years old and 8.74 for those above 50 years
old. In the younger population (< 50 years old old), the TyG risk
threshold was lower (8.20), with diabetes risk increasing significantly
only when TyG exceeded this level. In contrast, the older group (= 50
years old old) exhibited a higher TyG inflection point (8.74). Notably,
this older cohort demonstrated measurable diabetes risk even at sub-
threshold TyG levels. Interestingly, within the TyG range of 8.20-8.74,
younger individuals experienced a more pronounced diabetes risk
elevation per unit increase in TyG compared to their older
counterparts. The observed age-dependent pattern demonstrates a
critical divergence: although aging persists as an independent diabetes
risk factor, the relative contribution of insulin resistance (quantified by
TyG index) becomes more pronounced in younger individuals (< 50
years old old), indicating potential differences in disease pathophysiology
between age cohorts. Traditionally, diabetes was considered a disease
predominantly affecting elderly populations. However, accumulating
epidemiological evidence indicates that the incidence of type 2
diabetes among young adults has increased several-fold in recent
decades (45). The modern lifestyle characterized by excessive
consumption of high-calorie diets, physical inactivity, and chronic
psychosocial stress from work and social pressures may contribute to
this concerning trend, even in individuals with apparently normal lipid
profiles. In older adults (= 50 years old old), diabetes risk escalates
progressively with rising TyG levels, showing measurable risk even below
the threshold. However, when TyG exceeds 8.74, the hazard ratio surges
dramatically to 143.92 - nearly threefold higher than in younger
populations (HR: 50.08). These findings carry important clinical
implications. For younger adults, TyG monitoring should focus on the
8.20 threshold for preventive intervention. Older populations require
vigilant metabolic surveillance even at sub-threshold TyG levels (8.74),
with aggressive management recommended when exceeding this cutoff.
The striking magnitude of risk differential (143.92 vs 50.08) underscores
the necessity of age-tailored approaches when implementing TyG-based
diabetes risk stratification in clinical practice. Further prospective cohort
studies with serial measurements are warranted to validate these cutoff
values and to elucidate the dynamic relationship between TyG index and
diabetes risk progression. Mechanistic studies are also needed to clarify
the pathophysiological basis underlying the observed age-dependent
differences in the TyG-diabetes association, particularly in younger
populations with normal lipid metabolism who are increasingly
recognized as an important target group for diabetes prevention.
Although our retrospective cohort study design cannot establish
causal relationships between the TyG index and diabetes incidence,
several well-established pathophysiological mechanisms may help
interpret our findings. Primarily, insulin resistance represents one of
the fundamental pathological mechanisms underlying type 2 diabetes
development (46). The TyG index serves as a reliable surrogate marker
of insulin resistance, reflecting its severity. Chronic insulin resistance
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induces progressive B-cell dysfunction, ultimately leading to impaired
insulin secretion, elevated blood glucose levels, and consequently
increased diabetes risk. From a pathophysiological perspective, insulin
resistance exerts multifaceted metabolic effects (1): it enhances lipolysis
in adipose tissue, resulting in elevated circulating lipid levels (2); it
impairs lipoprotein metabolism, delaying triglyceride clearance; and (3)
it reduces peripheral glucose uptake and utilization efficiency,
collectively contributing to systemic metabolic dysregulation. Notably,
the interplay between insulin resistance and metabolic disturbances may
exacerbate diabetes risk through activation of inflammatory pathways.
This mechanistic link is supported by emerging evidence demonstrating
significant association between the TyG index and various
inflammatory biomarkers. Notably, a key outcome of compensatory
insulin resistance is hyperinsulinemia. Accumulating evidence indicates
that hyperinsulinemia is associated with a range of long-term
pathological changes, independent of blood glucose levels. These
include promoting atherosclerosis and increasing cardiovascular risk,
accelerating cellular senescence, enhancing susceptibility to certain
cancers, and contributing to neurodegenerative disorders such as
Alzheimer’s disease (47-50). Early identification of insulin resistance
is vital not only to prevent the onset of type 2 diabetes but also to address
the broader spectrum of metabolic and cardiovascular diseases
associated with this condition. By recognizing and managing insulin
resistance early, healthcare providers can implement targeted
interventions to reduce the risk of progression to more severe health
issues, thereby improving patient outcomes and reducing the burden of
chronic diseases.

Several limitations of this study warrant careful consideration. First,
as a retrospective observational cohort study, the identified associations
do not imply causality and may be influenced by unmeasured
confounding variables. Although we rigorously adjusted for all
available potential confounders in our multivariate models, residual
confounding remains possible. To assess the robustness of our findings,
comprehensive sensitivity analyses were performed; these evaluations
consistently confirmed the stability of the primary outcomes. Second,
the absence of key glycemic parameters, including postprandial glucose
levels and hemoglobin Alc measurements, represents an important
limitation. Our diabetes definition relied solely on fasting glucose levels
and self-reported diagnoses, which may have introduced ascertainment
bias and potentially led to underestimation of both diabetes incidence
and effect sizes. Third, the mean follow-up duration of 3.06 years may
have limited our study’s statistical power to detect diabetes events. This
relatively short observation period could have constrained our ability to
fully characterize the TyG-diabetes association. Fourth, the data for our
study were derived from a previous investigation, which provided only
the processed dataset. Consequently, we were unable to assess the
selection bias that may have been introduced during the exclusion of
participants from the original cohort (n = 685,277) to arrive at the
shared dataset (n = 211,833). Despite this limitation, our study retains
significant value, as it offers an in-depth longitudinal analysis of a well-
defined, large-scale healthy population—delivering unique insights into
the research question. Although restricted by the lack of access to the
primary data, we employed internal comparisons to evaluate potential
biases within the available data to the greatest extent possible. Sensitivity
analyses further demonstrated the robustness of our findings.
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Additionally, while our study benefited from a large sample size, the
generalizability of our findings may be limited to Chinese populations
with normal lipid metabolism. Caution should be exercised when
extrapolating these results to other demographic groups.

Conclusions

Our 60,103 longitudinal analysis demonstrates that even in
individuals with normal lipid metabolism, elevated levels of the TyG
index significantly increase the risk of diabetes. This association
exhibits a nonlinear dose-response relationship and is significantly
age-dependent, with young adults (< 50 years old old) showing a
markedly higher sensitivity to the diabetes risk associated with the
TyG index compared to older adults. These findings challenge
traditional screening approaches, indicating that a normal lipid
profile does not rule out the risk of diabetes, particularly in younger
individuals. Assessing the TyG index can enhance the detection rate
of early-stage diabetes in those with normal metabolic profiles and
underscores the importance of age-specific risk stratification.
Moreover, the stronger association observed in young adults
suggests different pathophysiological mechanisms or varying
exposure to modern lifestyle risk factors, necessitating targeted
preventive measures for this population.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Ethics statement

The studies involving humans were approved by Rich
Healthcare Group Review Board. The studies were conducted in
accordance with the local legislation and institutional requirements.
Informed consent was exempted as the analysis relied on de-
identified data, posing no risk to participant privacy.

Author contributions

WL: Methodology, Project administration, Validation, Supervision,
Writing - review & editing, Software, Data curation, Formal analysis,
Conceptualization. JW: Writing — review & editing, Methodology,
Supervision, Project administration, Conceptualization.
HC: Visualization, Conceptualization, Data curation, Methodology,
Software, Writing — original draft. QC: Validation, Methodology,
Conceptualization, Writing — original draft, Software. LX: Software,
Writing - review & editing, Validation. SL: Supervision, Writing —
review & editing, Software, Investigation, Validation. XC: Supervision,

Frontiers in Endocrinology

11

10.3389/fendo.2025.1645344

Data curation, Writing - review & editing, Investigation, Visualization.
XH: Supervision, Investigation, Visualization, Writing — review &
editing, Data curation.

Funding

The author(s) declare that no financial support was received for
the research, and/or publication of this article.

Acknowledgments

We would like to express our sincere gratitude to all
individuals who contributed to this study. We extend our
appreciation to the Free Statistics team in Beijing, China, for
their invaluable technical assistance and for providing practical
data analysis and visualization tools.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fendo.2025.
1645344 /full#supplementary-material

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fendo.2025.1645344/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2025.1645344/full#supplementary-material
https://doi.org/10.3389/fendo.2025.1645344
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Chen et al.

References

1. Liew JY, Vanoh D. Predictors affecting diabetes related distress among diabetes
patients. Malays ] Med Sci : MJMS. (2022) 29:94-101. doi: 10.21315/mjms2022.29.2.9

2. Dong N, Xu B, Shi H, Lu Y. miR-124 regulates amadori-glycated albumin-
induced retinal microglial activation and inflammation by targeting Racl. Invest
Ophthalmol Visual Sci. (2016) 57:2522-32. doi: 10.1167/iovs.15-18224

3. Ling W, Huang Y, Huang Y-M, Fan R-R, Sui Y, Zhao H-L. Global trend of
diabetes mortality attributed to vascular complications, 2000-2016. Cardiovasc
Diabetol. (2020) 19:182. doi: 10.1186/s12933-020-01159-5

4. Li T, Hu L, Yin X-L, Zou Y, Fu H-Y, Li H-L. Prevalence and risk factors of
osteoporosis in patients with type 2 diabetes mellitus in nanchang (China): a
retrospective cohort study. Diabetes Metab Syndr Obes: Targets Ther. (2022)
15:3039-48. doi: 10.2147/DMS0.5372348

5. Zhao R, Zhao N, Wang S, Zhang X, Ding B, Li Y, et al. Assessment of type 2
diabetes mellitus patients’ behavioral characteristics associated with integrated
treatment and prevention services in community health centers in China. Front
Public Health. (2023) 10:1084946. doi: 10.3389/fpubh.2022.1084946

6. Bergman M, Dorcely B. Remission of prediabetes via lifestyle intervention. Lancet
Diabetes Endocrinol. (2023) 11:784-5. doi: 10.1016/52213-8587(23)00258-9

7. Li Z, Pan X, Cai Y-D. Identification of type 2 diabetes biomarkers from mixed
single-cell sequencing data with feature selection methods. Front Bioeng Biotechnol.
(2022) 10:890901. doi: 10.3389/fbioe.2022.890901

8. Nelios G, Santarmaki V, Pavlatou C, Dimitrellou D, Kourkoutas Y. New wild-type
lacticaseibacillus rhamnosus strains as candidates to manage type 1 diabetes.
Microorganisms. (2022) 10:272. doi: 10.3390/microorganisms10020272

9. Flores-Guerrero JL, Been RA, Shalaurova I, Connelly MA, van Dijk PR, Dullaart
RPF. Triglyceride/HDL cholesterol ratio and lipoprotein insulin resistance score:
associations with subclinical atherosclerosis and incident cardiovascular disease. Clin
Chim Acta. (2024) 553:117737. doi: 10.1016/j.cca.2023.117737

10. Suren Garg S, Kushwaha K, Dubey R, Gupta J. Association between obesity,
inflammation and insulin resistance: insights into signaling pathways and therapeutic
interventions. Diabetes Res Clin Pract. (2023) 200:110691. doi: 10.1016/
j.diabres.2023.110691

11. Szosland K, Lewinski A. In quest for method of insulin resistance assessment in
everyday clinical practice—insulin resistance indices. Diabetes Metab Syndr: Clin Res
Rev. (2016) 10:5120-5. doi: 10.1016/j.dsx.2015.10.007

12. Mohd Nor NS, Lee S, Bacha F, Tfayli H, Arslanian S. Triglyceride glucose index
as a surrogate measure of insulin sensitivity in obese adolescents with normoglycemia,
prediabetes, and type 2 diabetes mellitus: comparison with the hyperinsulinemic-
euglycemic clamp. Pediatr Diabetes. (2016) 17:458-65. doi: 10.1111/pedi.12303

13. Cui G, Qi Y, Song J, Shang X, Han T, Han N, et al. Comparison of triglyceride
glucose index and modified triglyceride glucose indices in prediction of cardiovascular
diseases in middle aged and older chinese adults. Cardiovasc Diabetol. (2024) 23:185.
doi: 10.1186/512933-024-02278-2

14. Lee JH, Heo S-J, Kwon Y-]J. Sex-specific comparison between triglyceride glucose
index and modified triglyceride glucose indices to predict new-onset hypertension in
middle-aged and older adults. ] Am Heart Assoc. (2023) 12:€030022. doi: 10.1161/
JAHA.123.030022

15. Garcia-Poblet M, Nso-Roca AP, Martinez-Sanz JM, Sospedra I. Triglyceride-
glucose index in adolescents with type 1 diabetes mellitus. Diabetes Res Clin Pract.
(2025) 221:112048. doi: 10.1016/j.diabres.2025.112048

16. Jiang Y, Lai X. Association between the triglyceride glucose index, triglyceride-
glucose body mass index and diabetic kidney disease in adults with newly diagnosed
type 2 diabetes. Front Med. (2024) 11:1328601. doi: 10.3389/fmed.2024.1328601

17. Park HM, Lee HS, Lee Y-J, Lee J-H. The triglyceride-glucose index is a more
powerful surrogate marker for predicting the prevalence and incidence of type 2
diabetes mellitus than the homeostatic model assessment of insulin resistance. Diabetes
Res Clin Pract. (2021) 180:109042. doi: 10.1016/j.diabres.2021.109042

18. Park B, Lee HS, Lee Y-J. Triglyceride glucose (TyG) index as a predictor of
incident type 2 diabetes among nonobese adults: a 12-year longitudinal study of the
korean genome and epidemiology study cohort. Transl Res. (2021) 228:42-51.
doi: 10.1016/j.trs.2020.08.003

19. Lee MJ, Bae JH, Khang AR, Yi D, Yun MS, Kang YH. Triglyceride-glucose index
predicts type 2 diabetes mellitus more effectively than oral glucose tolerance test-
derived insulin sensitivity and secretion markers. Diabetes Res Clin Pract. (2024)
210:111640. doi: 10.1016/j.diabres.2024.111640

20. Qiao Q, Liang K, Wang C, Wang L, Yan F, Chen L, Hou X. J-shaped association
of the triglyceride glucose-body mass index with new-onset diabetes. Sci Rep. (2024)
14:13882. doi: 10.1038/s41598-024-64784-0

21. Zhang L, Zeng L. Non-linear association of triglyceride-glucose index with
prevalence of prediabetes and diabetes: a cross-sectional study. Front Endocrinol.
(2023) 14:1295641. doi: 10.3389/fend0.2023.1295641

22. He L, Zheng W, Li Z, Chen L, Kong W, Zeng T. J-shape relationship between
normal fasting plasma glucose and risk of type 2 diabetes in the general population:

Frontiers in Endocrinology

12

10.3389/fendo.2025.1645344

results from two cohort studies. J Transl Med. (2023) 21:175. doi: 10.1186/s12967-023-
04006-9

23. Chen G-Y, LiL, Dai F, Li X-J, Xu X-X, Fan J-G. Prevalence of and risk factors for
type 2 diabetes mellitus in hyperlipidemia in China. Med Sci Monitor: Int Med ] Exp
Clin Res. (2015) 21:2476-84. doi: 10.12659/MSM.894246

24. ChenY, Zhang X-P, Yuan ], Cai B, Wang X-L, Wu X-L, et al. Association of body
mass index and age with incident diabetes in Chinese adults: a population-based cohort
study. BMJ Open. (2018) 8:¢021768. doi: 10.1136/bmjopen-2018-021768

25. Harel O, Mitchell EM, Perkins NJ, Cole SR, Tchetgen Tchetgen EJ, Sun B, et al.
Multiple imputation for incomplete data in epidemiologic studies. Am ] Epidemiol.
(2018) 187:576-84. doi: 10.1093/aje/kwx349

26. American Diabetes Association Professional Practice Committee. Classification
and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care.
(2022) 45:S17-38. doi: 10.2337/dc22-5002

27. Zhu W, Shi P, FuJ, Liang A, Zheng T, Wu X, et al. Development and application
of a novel model to predict the risk of non-alcoholic fatty liver disease among lean pre-
diabetics with normal blood lipid levels. Lipids Health Dis. (2022) 21:149. doi: 10.1186/
$12944-022-01752-5

28. Liu Y, Zhang J-H, Gao X-B, Wu X-], Yu J, Chen J-F, et al. Correlation between
blood pressure changes and AMS, sleeping quality and exercise upon high-altitude
exposure in young chinese men. Mil Med Res. (2014) 1:19. doi: 10.1186/2054-9369-1-19

29. Lu S, Huang X, Chen Y, Lin Y, Zou ], Chen Y, et al. The de ritis ratio mediates the
association between creatinine-to-body weight ratio and normoglycemic conversion in
chinese health examinees. Sci Rep. (2025) 15:5994. doi: 10.1038/s41598-025-90501-6

30. Chen X, Liu D, He W, Hu H, Wang W. Predictive performance of triglyceride
glucose index (TyG index) to identify glucose status conversion: a 5-year longitudinal
cohort study in Chinese pre-diabetes people. ] Transl Med. (2023) 21:624. doi: 10.1186/
$12967-023-04402-1

31. Tura A, Pacini G, Moro E, Vrbikova J, Bendlova B, Kautzky-Willer A. Sex- and
age-related differences of metabolic parameters in impaired glucose metabolism and
type 2 diabetes compared to normal glucose tolerance. Diabetes Res Clin Pract. (2018)
146:67-75. doi: 10.1016/j.diabres.2018.09.019

32. He W, Li Q, Yang M, Jiao J, Ma X, Zhou Y, et al. Lower BMI cutoffs to define
overweight and obesity in China. Obes (silver Spring Md). (2015) 23:684-91.
doi: 10.1002/0by.20995

33. Song T, Su G, Chi Y, Wu T, Xu Y, Chen C. Triglyceride-glucose index predicts
the risk of gestational diabetes mellitus: a systematic review and meta-analysis. Gynecol
Endocrinol. (2022) 38:10-5. doi: 10.1080/09513590.2021.1940932

34. Zhang J, Fang X, Song Z, Guo X, Lin D, Jiang F, et al. Positive association of
triglyceride glucose index and gestational diabetes mellitus: a retrospective cohort study.
Front Endocrinol (Lausanne). (2025) 15:1475212. doi: 10.3389/fendo.2024.1475212

35. Xuan X, Hamaguchi M, Cao Q, Okamura T, Hashimoto Y, Obora A, et al. U-
shaped association between the triglyceride-glucose index and the risk of incident
diabetes in people with normal glycemic level: a population-base longitudinal cohort
study. Clin Nutr (edinb Scotl). (2021) 40:1555-61. doi: 10.1016/j.cInu.2021.02.037

36. Liang X, Lai K, Li X, Li Y, Xing Z, Gui S. Non-linear relationship between
triglyceride glucose index and new-onset diabetes among individuals with non-
alcoholic fatty liver disease: a cohort study. Lipids Health Dis. (2025) 24:94.
doi: 10.1186/s12944-025-02518-5

37. Pranata R, Huang I, Irvan N, Lim MA, Vania R. The association between
triglyceride-glucose index and the incidence of type 2 diabetes mellitus-a systematic
review and dose-response meta-analysis of cohort studies. Endocrine. (2021) 74:254—
62. doi: 10.1007/s12020-021-02780-4

38. Wang Z, Zhao L, He S. Triglyceride-glucose index as predictor for future type 2
diabetes mellitus in a chinese population in southwest China: a 15-year prospective
study. Endocrine. (2021) 72:124-31. doi: 10.1007/s12020-020-02589-7

39. Shan Y, Liu Q, Gao T. Triglyceride-glucose index in predicting the risk of new-
onset diabetes in the general population aged 45 years and older: a national prospective
cohort study. BMC Endocr Disord. (2025) 25:25. doi: 10.1186/s12902-025-01848-w

40. Cao C, Hu H, Xiao P, Zan Y, Chang X, Han Y, et al. Nonlinear relationship between
triglyceride-glucose index and the risk of prediabetes and diabetes: a secondary retrospective
cohort study. Front Endocrinol. (2024) 15:1416634. doi: 10.3389/fendo.2024.1416634

41. Gong R, Liu Y, Luo G, Liu W, Jin Z, Xu Z, et al. Associations of TG/HDL ratio
with the risk of prediabetes and diabetes in chinese adults: A chinese population cohort
study based on open data. Int ] Endocrinol. (2021) 2021:9949579. doi: 10.1155/2021/
9949579

42. FuX, Liu H, Liu J, Li N, Li L, Ke D, et al. Association between triglyceride-glucose
index and the risk of type 2 diabetes mellitus in an older chinese population aged over 75
years. Front Public Health. (2022) 9:796663. doi: 10.3389/fpubh.2021.796663

43. Han J, Dai W, Chen L, Huang Z, Li C, Wang K. Elevated triglyceride-glucose
index associated with increased risk of diabetes in non-obese young adults: a

longitudinal retrospective cohort study from multiple asian countries. Front
Endocrinol. (2024) 15:1427207. doi: 10.3389/fendo.2024.1427207

frontiersin.org


https://doi.org/10.21315/mjms2022.29.2.9
https://doi.org/10.1167/iovs.15-18224
https://doi.org/10.1186/s12933-020-01159-5
https://doi.org/10.2147/DMSO.S372348
https://doi.org/10.3389/fpubh.2022.1084946
https://doi.org/10.1016/S2213-8587(23)00258-9
https://doi.org/10.3389/fbioe.2022.890901
https://doi.org/10.3390/microorganisms10020272
https://doi.org/10.1016/j.cca.2023.117737
https://doi.org/10.1016/j.diabres.2023.110691
https://doi.org/10.1016/j.diabres.2023.110691
https://doi.org/10.1016/j.dsx.2015.10.007
https://doi.org/10.1111/pedi.12303
https://doi.org/10.1186/s12933-024-02278-z
https://doi.org/10.1161/JAHA.123.030022
https://doi.org/10.1161/JAHA.123.030022
https://doi.org/10.1016/j.diabres.2025.112048
https://doi.org/10.3389/fmed.2024.1328601
https://doi.org/10.1016/j.diabres.2021.109042
https://doi.org/10.1016/j.trsl.2020.08.003
https://doi.org/10.1016/j.diabres.2024.111640
https://doi.org/10.1038/s41598-024-64784-0
https://doi.org/10.3389/fendo.2023.1295641
https://doi.org/10.1186/s12967-023-04006-9
https://doi.org/10.1186/s12967-023-04006-9
https://doi.org/10.12659/MSM.894246
https://doi.org/10.1136/bmjopen-2018-021768
https://doi.org/10.1093/aje/kwx349
https://doi.org/10.2337/dc22-S002
https://doi.org/10.1186/s12944-022-01752-5
https://doi.org/10.1186/s12944-022-01752-5
https://doi.org/10.1186/2054-9369-1-19
https://doi.org/10.1038/s41598-025-90501-6
https://doi.org/10.1186/s12967-023-04402-1
https://doi.org/10.1186/s12967-023-04402-1
https://doi.org/10.1016/j.diabres.2018.09.019
https://doi.org/10.1002/oby.20995
https://doi.org/10.1080/09513590.2021.1940932
https://doi.org/10.3389/fendo.2024.1475212
https://doi.org/10.1016/j.clnu.2021.02.037
https://doi.org/10.1186/s12944-025-02518-5
https://doi.org/10.1007/s12020-021-02780-4
https://doi.org/10.1007/s12020-020-02589-7
https://doi.org/10.1186/s12902-025-01848-w
https://doi.org/10.3389/fendo.2024.1416634
https://doi.org/10.1155/2021/9949579
https://doi.org/10.1155/2021/9949579
https://doi.org/10.3389/fpubh.2021.796663
https://doi.org/10.3389/fendo.2024.1427207
https://doi.org/10.3389/fendo.2025.1645344
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Chen et al.

44. Wang Y, Liu L, Yang P, Li Y, Zhou Y, Yang S, et al. Associations of
triglyceride-glucose index cumulative exposure and variability with the transitions
from normoglycaemia to prediabetes and prediabetes to diabetes: insights from a
cohort study. Diabetes Res Clin Pract. (2024) 217:111867. doi: 10.1016/
j.diabres.2024.111867

45. The Lancet N. Type 2 diabetes: the urgent need to protect young people. Lancet
(lond Engl). (2018) 392:2325. doi: 10.1016/S0140-6736(18)33015-0

46. Wang T, Lu J, Shi L, Chen G, Xu M, Xu Y, et al. Association of insulin resistance
and B-cell dysfunction with incident diabetes among adults in China: a nationwide,
population-based, prospective cohort study. Lancet Diabetes Endocrinol. (2020) 8:115-24.
doi: 10.1016/52213-8587(19)30425-5

Frontiers in Endocrinology

10.3389/fendo.2025.1645344

47. Yang W, Cai X, Hu J, Wen W, Mulalibieke H, Yao X, et al. The metabolic score
for insulin resistance (METS-IR) predicts cardiovascular disease and its subtypes in
patients with hypertension and obstructive sleep apnea. Clin Epidemiol. (2023) 15:177—
89. doi: 10.2147/CLEP.S395938

48. Bareja A, Lee DE, White JP. Maximizing longevity and healthspan: multiple
approaches all converging on autophagy. Front Cell Dev Biol. (2019) 7:183.
doi: 10.3389/fcell.2019.00183

49. Zwezdaryk K, Sullivan D, Saifudeen Z. The p53/adipose-tissue/cancer nexus.
Front Endocrinol (Lausanne). (2018) 9:457. doi: 10.3389/fendo.2018.00457

50. Barbagallo M, Dominguez LJ. Type 2 diabetes mellitus and alzheimer’s disease.
World ] Diabetes. (2014) 5:889-93. doi: 10.4239/wjd.v5.i6.889

13 frontiersin.org


https://doi.org/10.1016/j.diabres.2024.111867
https://doi.org/10.1016/j.diabres.2024.111867
https://doi.org/10.1016/S0140-6736(18)33015-0
https://doi.org/10.1016/S2213-8587(19)30425-5
https://doi.org/10.2147/CLEP.S395938
https://doi.org/10.3389/fcell.2019.00183
https://doi.org/10.3389/fendo.2018.00457
https://doi.org/10.4239/wjd.v5.i6.889
https://doi.org/10.3389/fendo.2025.1645344
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Threshold effect and age interaction of TyG index on diabetes incidence in normolipidemic population: a multicenter cohort study
	Introduction
	Method
	Data source
	Study population
	Missing value handling
	Data collection
	Definition
	Statistical analysis
	Statistical software

	Results
	Baseline demographic and clinical profiles
	The association between TyG and diabetes risk
	Subgroup and sensitivity analyses
	Curve fitting and inflection point analysis
	Association between TyG and diabetes events in different age groups

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


