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The promoter T-413A variant
and elevated enzyme levels of
heme oxygenase-1 associated
with an increased risk of
polycystic ovarian syndrome
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Background: Oxidative stress and metabolic disorders significantly contribute to
the development of polycystic ovarian syndrome (PCOS). Heme oxygenase-1
(HMOX1) plays a key role in the degradation of heme and the regulation of
oxidative stress, ferroptosis, and glycolipid metabolism. This study explored the
relationship between HMOX1 promoter T-413A single nucleotide polymorphism
(SNP, rs2071746), (GT)n dinucleotide repeat variant (rs3074372), plasma HMOX1
levels, and the risk of PCOS in Chinese women.

Methods: This case-control study included 1092 women diagnosed with PCOS
and 805 controls. The (GT)n and rs2071746 polymorphisms were identified using
polymerase chain reaction amplification, followed by capillary electrophoresis or
restriction fragment length polymorphism. HMOX1 levels and clinical, metabolic,
hormonal, and oxidative stress indices were analyzed.

Results: The HOMX1 rs2071746T/A SNP was associated with an increased risk of
PCOS based on genotype, recessive, dominant, and allele genetic models
(P < 0.05). After adjusting for age, body mass index, and recruitment year of
participants, the dominant model (odds ratio [OR] = 1.272, 95% confidence
interval [Cl]: 1.013-1.597, P = 0.039) and the TT genotype (OR = 1.395, 95% ClI:
1.033-1.883, P = 0.030, with the AA genotype as the reference) remained a
significant predictor of PCOS in the logistic regression models. No significant
differences were observed in the (GT)n polymorphism of HMOX1 based on
different genetic models. However, the TT/SS combined genotype of HMOX1
rs2071746T/A and (GT)n polymorphisms was associated with an increased risk of
PCOS (OR = 1.442, 95% CI: 1.021-2.035, P = 0.037). Furthermore, elevated
HMOX1 levels were related to a slight but significant increase in the risk of PCOS,
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and the rs2071746T/A and (GT)n genetic variants significantly affected obesity,
oxidative stress, endocrine abnormalities, and metabolic disorders.

Conclusion: HMOX1 rs2071746T/A variant and elevated plasma HMOX1 levels
are associated with an increased risk of PCOS.

heme oxygenase-1, genetic polymorphism, polycystic ovarian syndrome, oxidative

stress, metabolism

1 Introduction

Polycystic ovarian syndrome (PCOS) is the leading endocrine-
metabolic disorder among women of reproductive age, with a
prevalence of 10-13% (1). Its clinical presentation is diverse and
may include reproductive, dermatological, metabolic, and
psychological symptoms such as irregular menstrual cycles,
infertility, acne, hirsutism, obesity, insulin resistance, dyslipidemia,
anxiety, depression, etc. (1, 2). PCOS can affect women throughout
their lives and potentially lead to long-term complications, including
type 2 diabetes (T2D), cardiocerebrovascular disease, and
endometrial cancer. The exact etiology of PCOS remains unknown,
making its treatment difficult (1, 3). Increasing evidence indicates that
its etiology is complex, involving interactions between multiple
predisposing genes, genetic epigenetics, and detrimental
environmental factors (2, 4-6).

Heme oxygenase (HMOX) is the rate-limiting enzyme that
catalyzes the breakdown of heme, resulting in the production of
biliverdin (BV), carbon monoxide (CO), and free iron (Fe**) (7, 8).
BV is rapidly turned into bilirubin (BR) by BV reductase (8, 9).
Heme and free Fe*" are toxic owing to their oxidative properties;
however, in the physiological state, free iron is swiftly sequestered
by ferritin, ensuring a harmonious balance within the body (8). CO,
BV, and BR possess vasodilator, antioxidant, and anti-inflammatory
properties, but excessive accumulation of these products can be
toxic (8, 10). The two main isomers of HMOX in humans, inducible

Abbreviations: ApoAl, apolipoprotein Al; ApoB, apolipoprotein B; BMI, body
mass index; BR, bilirubin; BV, biliverdin; CI, confidence interval; CO, carbon
monoxide; DBP, diastolic blood pressure; E,, estradiol; FAI, free androgen index;
F-G score, Ferriman-Gallwey score; FSH, follicle-stimulating hormone; Glu,
glucose; GSH, glutathione; HA, hyperandrogenism; HDL-C, high-density
lipoprotein cholesterol; HMOXI1, heme oxygenase-1; HMOX2, heme
oxygenase-2; HOMA-IR, the homeostatic model assessment of insulin
resistance; Ins, insulin; LDL-C, low-density lipoprotein cholesterol; LH,
luteinizing hormone; OA, oligo-ovulation or anovulation; OR, odds ratio; OSI,
oxidative stress index; PCOs, polycystic ovaries; PCOS; polycystic ovarian
syndrome; PCR, polymerase chain reaction; SBP, systolic blood pressure;
SHBG, sex hormone-binding globulin; SNP, single nucleotide polymorphism;
T2D, type 2 diabetes; T-AOC, total antioxidant capacity; TC, total cholesterol;
TG, triglycerides; TOS, total oxidant status; TT, total testosterone; WC,

waist circumference.
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HMOXI1 (also known as HO-1) and constitutive HMOX2 (also
known as HO-2), have similar structures and catalytic functions but
are distributed in different tissues and exhibit distinct features (10).
Low HMOXI1 expression was observed in most tissues under
normal conditions. However, its expression can be markedly
increased in response to different pathophysiological stress
conditions or stimulation factors (9, 11).

The HMOX]I is located on chromosome 22q13.1. Two genetic
polymorphisms in the promoter of HMOXI, the (GT)n
dinucleotide repeat variant (rs3074372) and rs2071746T/A
single nucleotide polymorphism (SNP) (rs2071746), can affect the
transcriptional activity of HMOX1 (11). These two polymorphisms
are closely linked to certain diseases, including sensitivity to several
cancers and coronary heart disease (11), cardiovascular events and
mortality in patients undergoing hemodialysis (12), T2D (13), pre-
eclampsia (14), chronic obstructive pulmonary disease (15), SARS-
CoV-2 viremia in COVID-19 infection (16), and risk of encephalitis
in HIV infection (17).

Oxidative stress and metabolic disorders significantly
contribute to the pathophysiology and progression of PCOS
(1, 18-21). Genetic variants of HMOX2 G554A and A-42G SNPs
are associated with endocrine abnormalities and glycolipid
metabolic irregularities in patients with PCOS (5). The levels of
HMOXI mRNA are higher in subcutaneous adipose tissue and
granulosa cells (22, 23), but the concentrations of serum HMOX1
are lower in women with PCOS than those among control women
(24). However, the association between HMOXI polymorphisms
and PCOS remains unclear. Therefore, we explored the relationship
between HMOXI (GT)n repeats and rs2071746T/A polymorphisms
and the risk of PCOS. Additionally, we analyzed how these genetic
variants affected plasma HMOXI levels and various clinical and
biochemical parameters in Southwest Chinese women.

2 Materials and methods
2.1 Study participants
This was a case-control study. All participants aged 17-40 years

provided written informed consent and were recruited from the
Reproductive Endocrinology Outpatient Department of the West
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China Second University Hospital between 2006 and 2024
(Figure 1). This study was approved by the Institutional Review
Board of West China Second University Hospital, Sichuan
University (2014-014 for P. Fan).

PCOS was diagnosed based on the revised 2003 Rotterdam
European Society of Human Reproduction and Embryology/
American Society for Reproductive Medicine consensus criteria,
which include irregular menstrual cycles, oligo-ovulation, or
anovulation (OA), biochemical and/or clinical hyperandrogenism
(HA), and polycystic ovaries (PCOs) (25). Detailed definitions of
HA, OA, and PCOs have been provided in previous articles (26-28).
PCOS was diagnosed if a woman met at least two of the three
criteria after ruling out other etiologies such as Cushing syndrome,
congenital adrenal hyperplasia, and androgen-secreting tumors
(1, 25). Both HA and OA are required in individuals aged < 20
years of age (1). Control women had regular menstrual cycles
between 21-35 days, normal ovarian morphology on
ultrasonography, and no biochemical or clinical signs of HA.

The participants were excluded if they had infections,
cardiovascular diseases, liver or kidney diseases, autoimmune
diseases, thyroid disorders, hypogonadism, hyperprolactinemia,
premature ovarian insufficiency, endometriosis, or other
malignancies. Additionally, the participants were excluded from the
analysis when comparing oxidative stress and metabolic and

10.3389/fendo.2025.1644373

hormonal parameters between groups/subgroups if they met any of
the following criteria: (i) use of hormonal therapy and/or medications
that influence glucose and lipid metabolism within 12 weeks before
the study; (ii) smoking; (iii) being pregnant or in the luteal phase of
their menstrual cycle; and/or (iv) having a fasting glucose (Glu) level
of >7.0 mmol/L and/or a 2-hour plasma glucose after the glucose
challenge (2-h Glu) level of 211.1 mmol/L in the control group.

Clinical indices, including waist circumference (WC), body
mass index (BMI), waist-to-hip ratio, diastolic blood pressure
(DBP), systolic blood pressure, severity of acne and hirsutism,
and ovarian volume were assessed as previously described (27-29).

Blood samples were collected after fasting for 8-12 h. Blood
cells were stored at 4°C, and plasma and serum aliquots were
preserved at —80°C for later analysis. A 75g oral glucose tolerance
test was conducted immediately after fasting blood sampling.

2.2 DNA purification and genotype
measurements

Genomic DNA was purified from stored blood cells using a
previously described method (30). (GT)n repeats in HMOXI were
determined using polymerase chain reaction (PCR) amplification
and capillary electrophoresis. The forward primer with 6-
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carboxyfluorescein (FAM) was 5'-FAM-CCAGCTTTCTGGA
ACCTTCTG-3’, the reverse primer was 5-GAAACAAAG
TCTGGCCATAGGA-3" (31). Samples were amplified using a
touchdown PCR protocol (17). The products were then analyzed
using a 3730x] DNA Analyzer (Applied Biosystems, Foster City, CA,
USA) and GeneMapper 4.1 (Applied). Short repeats, with fewer than
27 GT repeats, were classified as S alleles, whereas long repeats, with at
least 27 GT repeats, were classified as L alleles (12). For genotyping the
rs2071746 SNP, we used PCR and restriction fragment length
polymorphism method with a mismatched primer set (the forward
primer: 5-GTTCCTGATGTTGCCCACCAAGC-3’; the reverse
primer: 5'-CTGCAGGCTCTGGGTGTGATTTTG-3"). The PCR
products of the rs2071746T/A SNP (151 bp) were then digested with
HindIII (New England Biolabs, Ipswich, MA, USA), resulting in 20 and
131 bp fragments with the T allele and a whole 151-bp product with the
A allele. The results were verified by repeating the genotyping of > 30%
of the randomly selected samples, yielding 100% concordance.

2.3 Analysis of HMOX1, oxidative stress,
hormonal, and metabolic indices

Plasma HMOXI1 concentrations were measured using ELISA
kits (Elabscience Biotechnology Co., Ltd., Wuhan, China).

Estradiol, TT, luteinizing hormone (LH), follicle-stimulating
hormone (FSH), sex hormone binding globulin (SHBG), plasma
insulin (Ins) and Glu levels, triglycerides (TG), total cholesterol
(TC), high-density lipoprotein cholesterol (HDL-C), low-density
lipoprotein cholesterol (LDL-C), apolipoprotein (apo) Al, and
apoB concentrations, total antioxidant capacity (T-AOC),
glutathione (GSH), total oxidant status (TOS), and oxidative
stress index (OSI) were also analyzed as previously described in
other studies (20, 21, 28). The homeostatic model assessment of
insulin resistance (HOMA-IR) and free androgen index (FAI) were
calculated as previously described (18, 28) using the following
formulas:

HOMA - IR = fasting Glu (mmol/L) x fasting Ins (uU/mL)/22.5

FAI = TT (nmol/L)/SHBG (nmol/L) x 100

10.3389/fendo.2025.1644373

2.4 Statistical analysis

Data are presented as mean + standard deviation. We used
analysis of variance or independent sample t-tests for normally
distributed variables and the Mann-Whitney U test for non-
normally distributed variables. Analysis of covariance was used to
evaluate differences in clinical and biochemical indices after
adjusting for variations in age, BMI, and participant recruitment
year. Chi-squared (y?) analysis was performed to evaluate
deviations in genotypic distribution from Hardy-Weinberg
equilibrium and to compare the frequencies of genotypes and
alleles between two groups. The Spearman’s correlation coefficient
was used to assess the relationship between HMOXI1 levels and
other parameters. Differences were considered statistically
significant if the P value was <0.05. Data were analyzed using the
Statistical Program for Social Sciences (SPSS) 21.0 (IBM SPSS
Statistics, IBM Corporation).

Power values were calculated according to the disease allele
frequency of the rs2071746T/A SNP in HMOX1 and the sample size
(prevalence = 0.12, significance level = 0.05) using the Genetic
Association Study Power Calculator (http://csg.sph.umich.edu/
abecasis/gas_power_calculator/index.html).

Using the online SNPStats (https://www.snpstats.net/
start.htm), we assessed the linkage disequilibrium between two
genetic polymorphic loci in view of the D’ parameter.

3 Results

3.1 Clinical and biochemical characteristics
of the participants

Owing to the significant discrepancies in BMI and age between
the PCOS and control groups (Table 1), and the relatively long
recruitment period of participants between 2006 and 2024 in this
study, we adjusted for these three confounding factors in our
subsequent analyses.

Table 1 shows that the PCOS group had significantly higher
acne grade scores, F-G scores, average ovarian volumes, DBP, WC,
waist-to-hip ratio, TT, LH, LH/FSH ratio, FAI, fasting Ins, HOMA-
IR, 2-h Glu and 2-hour insulin after the glucose challenge (2-h Ins),

TABLE 1 Clinical and biochemical parameters in women with PCOS and controls.

Controls (n = 805) PCOS (n = 1092) P P?
Age (years) 28.25 + 4.10 25.10 + 4.15 <0.001
BMI (kg/mz) 21.15 + 2.81 23.04 + 4.14 <0.001
WC (cm) 73.64 + 8.08 79.15 + 11.07 <0.001 <0.001
Waist-to-hip ratio 0.81 + 0.60 0.85 + 0.07 <0.001 <0.001
F-G score 024 +0.72 1.74 + 2.03 <0.001 <0.001
Acne grade score 0.13 £ 0.34 0.67 + 0.90 <0.001 <0.001
(Continued)
Frontiers in Endocrinology 04 frontiersin.org
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TABLE 1 Continued

10.3389/fendo.2025.1644373

Controls (n = 805) PCOS (n = 1092) P P?
SBP (mmHg) 112.38 + 11.15 114.16 + 10.61 0.001 0.315
DBP (mmHg) 7333 + 8.58 7543 + 8.75 <0.001 0.003
Mean ovarian volume (mL) 7.36 +2.90 9.92 + 4.04 <0.001 <0.001
Hormonal levels*
E, (pmol/L) 313.87 + 324.44 275.17 + 273.34 0.035 0.657
TT (nmol/L) 145 + 0.52 226 + 0.80 <0.001 <0.001
SHBG (nmol/L) 5532 + 27.19 32.63 +19.03 <0.001 <0.001
FAI 3.14 + 1.89 9.53 + 6.87 <0.001 <0.001
LH (IU/L) 7.05 + 6.24 13.15 + 8.05 <0.001 <0.001
FSH (IU/L) 6.55 + 2.63 6.05 + 2.10 0.001 0.015
LH/FSH 1.16 + 1.13 224 +1.23 <0.001 <0.001
Metabolic profile*
Fasting Ins (pmol/L) 60.37 + 35.46 98.46 + 72.40 <0.001 <0.001
2-h Ins (pmol/L) 365.80 + 270.73 715.01 + 566.96 <0.001 <0.001
Fasting Glu (mmol/L) 523 +0.47 534 +0.84 0.003 0.861
2-h Glu (mmol/L) 5.98 + 1.27 7.21 + 246 <0.001 <0.001
HOMA-IR 221 +1.30 3.79 £ 3.01 <0.001 <0.001
TG (mmol/L) 1.00 + 0.54 141+ 1.14 <0.001 <0.001
TC (mmol/L) 425+ 0.72 4.43 + 0.80 <0.001 <0.001
HDL-C (mmol/L) 1.51 +0.33 137 + 0.34 <0.001 0.002
LDL-C (mmol/L) 2.35 + 0.64 2.60 + 0.77 <0.001 <0.001
TG/HDL-C 0.73 + 0.61 1.19 + 1.37 <0.001 <0.001
ApoALl (g/L) 1.46 + 0.21 1.42 +0.21 0.001 0.752
ApoB (g/L) 0.75 + 0.17 0.83 % 0.20 <0.001 <0.001
Oxidative stress parameters*
TOS (nmol H,0, Equiv./mL) 1141 + 534 15.25 + 10.31 <0.001 <0.001
T-AOC (U/mL/min) 14.51 + 2.60 15.92 + 3.51 <0.001 <0.001
OSI 0.79 + 0.41 0.99 + 0.76 <0.001 <0.001
GSH (nmol/mL) 1.11 £ 0.25 1.18 £ 0.25 <0.001 0.005
TOS/GSH 10.50 + 5.76 12.71 + 9.33 <0.001 <0.001
HMOXI (ug/L) 4.51 +2.41 5.02 + 4.61 0.018 0.011

Values are presented as average + standard deviation.

apoAl, apolipoprotein Al; apoB, apolipoprotein B; BMI, body mass index; DBP, diastolic blood pressure; E,, estradiol; FAI, free androgen index; F-G score, Ferriman-Gallwey score; FSH,
follicle-stimulating hormone; Glu, glucose; GSH, glutathione; HDL-C, high-density lipoprotein cholesterol; HMOXI, heme oxygenase-1; HOMA-IR, the homeostatic model assessment of insulin
resistance; Ins, insulin; LDL-C, low-density lipoprotein cholesterol; LH, luteinizing hormone; OSI, oxidative stress index; SBP, systolic blood pressure; SHBG, sex hormone-binding globulin; T-
AOC, total antioxidant capacity; TC, total cholesterol; TG, triglycerides; TOS, total oxidant status; TT, total testosterone; WC, waist circumference. 2-h Ins and 2-h Glu, 2-hour plasma insulin and
glucose after the glucose challenge.

P Continuous variables were compared between the two groups using the independent samples t-test (normally distributed) or the Mann-Whitney U test (non-normally distributed).

P* Comparisons of the parameters were corrected for differences in age, BMI, and recruitment year of participants between the two groups using analysis of covariance.

*Controls (n = 516), PCOS (n = 726).

LDL-C, TC, TG, TG/HDL-C ratio, apoB, TOS, T-AOC, GSH, OSI, We further compared the plasma HMOX1 levels in lean (BMI <
TOS/GSH ratio, and plasma HMOX1 levels, but lower serum FSH, 23 kg/m?®) and overweight/obese (BMI > 23 kg/m’ and/or waist
SHBG, and HDL-C concentrations than the control group  circumference > 80 cm) subgroups after adjusting for age, BMI, and
(P < 0.05). recruitment period of participants. The results showed that the
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HMOX]1 levels were higher in the lean PCOS subgroup (n = 339)
than in the lean control subgroup (n = 382) (5.00 + 5.00 vs. 4.48 +
2.36 ug/L, P = 0.034), but no statistical significance in the overweight/
obese PCOS subgroup (n = 387) than in the overweight/obese control
subgroup (n = 134) (5.04 £ 4.29 vs. 4.48 + 2.15 ug/L, P = 0.115).

3.2 Correlation of HMOX1 levels with
clinical and biochemical indicators and risk
of PCOS

The Spearman’s correlation analysis showed that plasma
HMOXI1 levels were positively correlated with 2-h Glu, WC,
fasting Ins, HOMA-IR, TG/HDL-C ratio, BMI, 2-h Ins, TC,
fasting Glu, FAL, T-AOC, apoB, and WHR in patients with PCOS
(r = 0.138, 0.132, 0.132, 0.129, 0.127, 0.118, 0.105, 0.093, 0.092,
0.087, 0.085, 0.080, and 0.079, respectively; P < 0.05). Although
statistically significant, the correlations between HMOXI1 and
PCOS traits were quantitatively modest.

Binary logistic regression analysis demonstrated that elevated
HMOX1 levels were associated with an increased risk of PCOS after
correcting for differences in participant recruitment year, age, and
BMI (odds ratio [OR] = 1.053, 95% confidence interval [CI]: 1.008-
1.100, P = 0.019).

3.3 Distributions of HOMX1 rs2071746T/A
and (GT)n genotypes and alleles

Table 2 summarizes the genetic models for the rs2071746T/A
and (GT)n repeat polymorphisms in HOMXI. The distribution of
genotypes for both polymorphisms was consistent with Hardy-
Weinberg equilibrium in women with and without PCOS (P > 0.05).

The frequencies of the TT genotype and T allele in the HOMX1
rs2071746T/A SNP were significantly higher in the PCOS group
than those in the control group. The OR indicated that this
difference was statistically significant for the dominant model, the
recessive model, and the TT vs. AA genotype model, and the allele
model (all P < 0.05). After adjusting for age, BMI, and recruitment
year of participants, the dominant genetic model remained
statistically significant in the binary logistic regression model
(OR = 1.272, 95% CIL: 1.013-1.597, P = 0.039) and the TT
genotype remained a significant predictor for PCOS in a
multinomial logistic regression model, with the AA genotype as
the reference (OR = 1.395, 95% CI: 1.033-1.883, P = 0.030). The
genetic association power is 0.984 for rs2071746T/A SNP. No
statistically significant differences were observed between the two
groups for the (GT)n repeat polymorphism of HMOXI when
analyzed using different genetic models (P > 0.05; Table 2).

The combined genotypes of HMOXI rs2071746T/A and (GT)n
polymorphisms exhibited a significant difference in frequency between
patients with PCOS and controls (P = 0.031; Supplementary Table 1).
The TT/SS was a risk factor for PCOS (OR = 1.442, 95% CI: 1.021-
2.035, P = 0.037) in a multinomial logistic regression model using the
AA/LL combined genotype as the reference, with participant
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recruitment year, age, and BMI as covariates. Moderate linkage
disequilibrium was observed between the rs2071746T/A and (GT)n
polymorphisms (D’= 0.8517, r* = 0.5539).

3.4 Effects of genotypes on clinical and
biochemical indicators

We analyzed the effect of HMOXI rs2071746T/A and (GT)n
genetic variants on plasma HMOXI1 levels and clinical and
biochemical parameters in women with and without PCOS.

Supplementary Table 2 shows that patients with the AT
genotype of HMOXI rs2071746T/A SNP had a greater TOS/GSH
ratio than those with the TT genotype (P = 0.028). The controls
with the TT genotype exhibited a lower acne grade score than those
with the AA genotype (P = 0.043) and lower HDL-C levels
(P = 0.038) than those with the AT genotype; whereas the
controls with the AT genotype exhibited lower GSH levels
(P = 0.022) than those with the AA genotype.

The same parameters were analyzed for different genotypes of
HMOX1 (GT)n repeat polymorphism (Supplementary Table 3).
Patients with the LL genotype displayed a lower waist-to-hip ratio
and TT levels (P < 0.05) than those with the SS genotype. The
controls with the LL genotype exhibited a lower BMI than those with
the SS and SL genotypes (P < 0.05). The controls with the SL genotype
showed higher FAI (P = 0.019) than those with the SS genotype.

No statistically significant differences in plasma HMOX1 levels
were observed between the different genotypes of HMOXI
rs2071746T/A and (GT)n genetic variants in the control and
PCOS groups (P > 0.05; Supplementary Tables 2, 3).

4 Discussion

For the first time, we demonstrated that the TT genotype and T
allele of the rs2071746T/A SNP are associated with an increased risk
of PCOS in Chinese women. We also proved that the TT/SS
combined genotype of the rs2071746T/A and (GT)n repeat
variants is a risk factor for PCOS. Furthermore, we found that
plasma HMOXI levels were significantly higher in patients with
PCOS than those in the control women, and elevated HMOX1 levels
were related to a slight but significant increase in the risk of PCOS,
suggesting that patients with PCOS have a compensatory increase in
HMOXI1 levels. HMOX1 rs2071746T/A and (GT)n repeat
polymorphisms significantly affected BMI, waist-to-hip ratio, TT,
FAI, acne grade score, HDL-C, GSH, and TOS/GSH ratio, but not
plasma HMOX1 levels among the PCOS and/or control participants,
supporting that the two variants may be involved in obesity,
endocrine abnormalities, oxidative stress, and metabolic disorders.

Oxidative stress, metabolic disorders, and iron homeostasis
imbalance play significant roles in the occurrence and progression
of PCOS (18-21, 32). HMOX catalyzes the degradation of heme and
is crucial for controlling the dynamic equilibrium of heme and its
products (BV, BR, CO, and Fe**) (7, 8). In addition to the recovery
of Fe’* from heme, HMOX participates in the regulation of multiple
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TABLE 2 Association of HMOX1 T-413A (rs2071746) and (GT)n repeat polymorphisms with the risk of PCOS using different genetic models.

Unadjusted Adjusted
Controls (n = 805) PCOS (n = 1092)
OR (95% Cl) OR (95% Cl)
T-413A (rs2071746)
Genotype
AA 173 (21.5%) 193 (17.7%)
AT 426 (52.9%) 556 (50.9%) 1.170 (0.919-1.489) 0.201 1.140 (0.872-1.493) 0.342
TT 206 (25.6%) 343 (31.4%) 1.493 (1.141-1.952) 0.003 1.395 (1.033-1.883) 0.030
Puwe 0.233 0.456
Recessive
TT + AT 632 (78.5%) 899 (82.3%)
AA 173 (21.5%) 193 (17.7%) 1.257 (1.014-1.603) 0.037 1.212 (0.936-1.570) 0.144
Dominant
TT 206 (25.6%) 343 (31.4%)
AA + AT 599 (74.4%) 749 (68.6%) 1.332 (1.086-1.632) 0.006 1.272 (1.013-1.597) 0.039
Allele
A 772 (48.0%) 942 (43.1%)
T 838 (52.0%) 1242 (56.9%) 1.215 (1.067-1.382) 0.003 / /
(GT)n repeat
Genotype
LL 224 (27.8%) 298 (27.3%)
SL 422 (52.4%) 542 (49.6%) 0.965 (0.779-1.197) 0.748 0.935 (0.736-1.189) 0.584
SS 159 (19.8%) 252 (23.1%) 1.191 (0.915-1.551) 0.193 1.134 (0.844-1.522) 0.404
Pywe 0.292 0.983
Recessive
LL +SL 646 (80.2%) 840 (76.9%)
SS 159 (19.8%) 252 (23.1%) 1.219 (0.975-1.524) 0.082 0.842 (0.655-1.081) 0.178
Dominant
LL 224 (27.8%) 298 (27.3%)
SS + SL 581 (72.2%) 794 (72.7%) 0.973 (0.794-1.193) 0.796 1.041 (0.827-1.309) 0.733
Allele
L 870 (54.0%) 1138 (52.1%)
S 740 (46.0%) 1046 (47.9%) 1.081 (0.950-0.239) 0.239 / /

Data are presented as number (%). Genetic models (genotype, recessive, dominant, and allele models).

OR, odds ratio; CI, confidence interval; Py, P value of Hardy-Weinberg equilibrium.

The assessment of Hardy-Weinberg equilibrium, the comparisons of the frequencies between two groups, and the unadjusted OR (95% CI) using Chi-squared ()*) analysis. Adjusted OR (95%
CI) using the multivariable (for genotype model with the AA or LL genotype as the reference) or binary logistic regression analysis including age, BMI, and recruitment year of participants as

covariates.

signaling pathways via its products, BV, CO, and Fe?*, as well as its
substrate, heme (8). Under physiological conditions, low HMOX1
expression is found in most tissues, except in cells of the
reticuloendothelial system (8, 10). Unlike the constitutive isoform
HMOX2, which is barely regulated at the transcriptional and
translational levels (5, 8), HMOXI1 can be rapidly induced under
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various stress conditions (7, 8, 10, 11). BV and BR are important
endogenous antioxidants and cellular signaling molecules that play
significant roles in regulating immunity and glycolipid metabolism,
and CO is a gaseous mediator with vasodilatory, anti-inflammatory,
anti-proliferative, and anti-apoptotic properties, while heme and
free Fe’" can facilitate the production of reactive oxygen species
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(7, 8, 10). Therefore, besides its cytoprotective effects, HMOX1
induction may also be involved in the development of certain
diseases. Several studies have indicated that genetic
overexpression or chemical induction of HMOXI1 can protect
against hypertension, cardiovascular diseases, metabolic
conditions, and kidney diseases (33-35). Increased HMOXI1
activity may promote oxidative stress by increasing free
intracellular iron and accelerating the consumption of cytosolic
NADPH, thereby contributing to chronic inflammation,
ferroptosis, and cell injury (8). It has been reported that elevated
plasma HMOX1 levels in individuals with T2D are associated with a
higher disease risk (36). However, another study showed that low
serum HMOX]1 levels in non-obese women are an independent risk
factor for PCOS (24). In this study, we found that plasma HMOX1
levels were significantly higher in the PCOS group compared to the
control group, and the lean PCOS subgroup compared to the lean
control subgroup. Furthermore, elevated HMOXI1 levels were
related to an increased risk of PCOS. The possible reasons for the
inconsistent results of HMOXI1 levels in PCOS may be
discrepancies in the sample size and study population. Contrary
to the report of lower HMOXI1 concentrations in PCOS (24), our
finding of elevated HMOXI levels could represent a protective
compensatory response to various chronic unfavorable stimuli in
PCOS, aligning with the canonical role of HMOX1 as an oxidative
stress sensor.

Increased oxidative stress in PCOS, as shown in this study, can
enhance HMOX1 transcription by activating nuclear factor erythroid
2-related factor 2 transcription factor (11, 37). Patients with PCOS
have iron overload, abnormal heme metabolism, and chronic
inflammation due to chronic oligomenorrhea, excessive androgen,
and compensatory hyperinsulinemia (32, 38). High levels of heme
and activation of the inflammatory factor nuclear factor kappa B can
promote the expression of HMOXI (11, 33). The HMOX1 and its
downstream metabolites, including CO, BV, and BR, may play a
protective role through their antioxidant, anti-inflammatory, and
vasodilator functions (8, 10). However, the sustained induction of
HMOXI and the iron overload may paradoxically dysregulate
ferroptosis through iron-mediated production of peroxidized lipids,
potentially contributing to ovarian dysfunction. In addition to
transcriptional regulation, HMOXI1 activity is regulated by critical
protein-protein interactions (PPIs) and post-translational
modifications (39). PPIs affect the stability, oligomerization,
subcellular localization, and function of HMOX1 (39-42). The
post-translational modifications, such as phosphorylation,
acetylation, and ubiquitination, also play an important role in
regulating the level and activity of HMOX1 (43-45). In a word, the
possible reasons and mechanisms for elevated HMOXI levels are
complex in PCOS. Further studies are needed to explain this
phenomenon and its exact pathophysiological mechanisms.

Genetic variants in the promoter of HMOXI may affect the
expression of HMOXI (11), thereby affecting the incidence and
progression of diseases. The A allele of HMOX1 rs2071746T/A SNP
is associated with a higher transcription activity of HMOXI (11, 46).
A meta-analysis revealed a lower susceptibility to coronary heart
disease in individuals carrying the A allele (11). The AA genotype
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increases the occurrence of hypertension in the Japanese women
(47), but decreases the risk of ischemic heart disease in the Japanese
population (48). The T allele of the rs2071746T/A variant is a risk
factor for the development of esophageal varices in patients with
cirrhosis (46), and the TT genotype is more likely to cause
proteinuria in Korean patients with T2D (49) and SARS-CoV-2
viremia in COVID-19 infection (16). Our findings indicated that
women with the TT genotype and T allele have a higher risk of
developing PCOS. Moreover, we found that this genetic
polymorphism may contribute to oxidative stress,
hyperandrogenism status, and metabolic disorders through
influencing TOS/GSH ratio, GSH and HDL-C levels, and acne
grade score in the study population. However, we did not observe
significant differences in plasma HMOXI1 levels according to
different genotypes of the rs2071746T/A SNP, suggesting that this
genetic variant may not be a key factor affecting HMOX1 expression
in the study population.

Of the polymorphisms observed in the HMOXI promoter region,
the (GT)n repeat variant has been extensively studied (11, 13). The
range of (GT)n repeat numbers is 10-50 (17), and the number of
repeat lengths shows a bimodal distribution, with peaks at (GT),; and
(GT)30 repeats in East Asian and Caucasian populations, and a
trimodal form, with crest values at (GT),3, (GT)3p, and (GT)39
among African-Americans (11). Generally, the short (S) allele is
defined as the number of (GT)n repeats < 25 or 27, and the long (L)
allele is defined as the number of (GT)n repeats > 25 or 27 in different
reports (11-13, 49). The S alleles are linked to increased
transcriptional activity compared with the L alleles (11, 13), and
individuals with the SS genotype of the (GT)n variant have higher
levels of HMOXI mRNA than those with the LL genotype (50).
Individuals with the S allele or SS genotype have a reduced risk of
coronary heart disease (11), T2D (13), rheumatoid arthritis (50), and
encephalitis in HIV infection (17), but an increased risk of melanoma
(51). Whereas individuals with the L allele or LL genotype have an
increased risk of hypertension (52), chronic obstructive pulmonary
disease (15), and preeclampsia (late-onset and non-severe form) (14).
Our study revealed no significant differences were observed between
the PCOS and control groups based on different genetic models.
However, this polymorphism may be involved in obesity and
endocrine disorders, probably by affecting waist-to-hip ratio, BMI,
TT levels, and FAI in the study population. Moreover, we did not
observe significant differences in plasma HMOXI levels according to
different genotypes of the (GT)n repeat variant.

Additionally, in this study, a moderate linkage disequilibrium was
observed between the rs2071746T/A and (GT)n repeat
polymorphisms. The TT/SS combined genotype of the two genetic
polymorphisms was a risk factor for PCOS. However, we did not
observe significant differences in the HMOXI1 levels according to the
different combined genotypes in the control and PCOS groups (P >
0.05, data not indicated). Several studies have shown that HMOX1
expression is also controlled by genetic polymorphisms (11). The
(GT)n and rs2071746T/A polymorphisms may be involved in
5-UTR alternative splicing of the HMOXI primary transcript,
which may affect translational efficiency and mRNA stability, and
thus regulate the translational process of HMOXI (53). Therefore, a
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more detailed and systematic investigation of the correlation between
genotype and gene expression, along with in vitro studies, is required
to clarify the potential mechanism.

The present study has some limitations. First, we did not
measure the levels of BV, BR, and iron, which are critical
downstream products of HMOXI1 enzymatic activity; this could
provide further evidence to reveal the relationships between
HMOXI genetic variants, HMOX1 levels, and PCOS and the
underlying mechanism. Second, we did not evaluate oxidative
stress and hormonal and metabolic indices because of
confounding factors in some participants, which could have had
an effect on the statistical effectiveness of these parameters. Third,
lifestyle factors (e.g., dietary patterns, physical activity levels) and
longitudinal treatment histories were not collected during
enrollment, preventing us from adjusting for differences in these
potential confounders in our analyses.

In conclusion, this study indicates that the HMOXI
rs2071746T/A SNP is associated with the risk of PCOS, and that
the T allele, TT genotype, and its coexistence with the SS genotype
of the (GT)n repeat variant are genetic risk factors for PCOS among
Chinese women. We further demonstrated that patients with PCOS
have higher plasma HMOXI1 concentrations and that elevated
HMOXTI1 levels are associated with an increased risk of PCOS. We
found that the HMOXI rs2071746T/A and (GT)n repeat
polymorphisms may contribute to obesity, oxidative stress,
endocrine abnormalities, and metabolic disorders. Our findings
suggest that induction of the heme-degrading enzyme HMOXI1
and its genetic polymorphisms in the promoter may be involved in
the pathophysiology of PCOS.
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