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The promoter T-413A variant
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Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West
China Second University Hospital, Sichuan University, Chengdu, Sichuan, China, 3Department of
Reproductive Medical Center, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan, China
Background: Oxidative stress and metabolic disorders significantly contribute to

the development of polycystic ovarian syndrome (PCOS). Heme oxygenase-1

(HMOX1) plays a key role in the degradation of heme and the regulation of

oxidative stress, ferroptosis, and glycolipid metabolism. This study explored the

relationship between HMOX1 promoter T-413A single nucleotide polymorphism

(SNP, rs2071746), (GT)n dinucleotide repeat variant (rs3074372), plasma HMOX1

levels, and the risk of PCOS in Chinese women.

Methods: This case-control study included 1092 women diagnosed with PCOS

and 805 controls. The (GT)n and rs2071746 polymorphisms were identified using

polymerase chain reaction amplification, followed by capillary electrophoresis or

restriction fragment length polymorphism. HMOX1 levels and clinical, metabolic,

hormonal, and oxidative stress indices were analyzed.

Results: The HOMX1 rs2071746T/A SNP was associated with an increased risk of

PCOS based on genotype, recessive, dominant, and allele genetic models

(P < 0.05). After adjusting for age, body mass index, and recruitment year of

participants, the dominant model (odds ratio [OR] = 1.272, 95% confidence

interval [CI]: 1.013–1.597, P = 0.039) and the TT genotype (OR = 1.395, 95% CI:

1.033–1.883, P = 0.030, with the AA genotype as the reference) remained a

significant predictor of PCOS in the logistic regression models. No significant

differences were observed in the (GT)n polymorphism of HMOX1 based on

different genetic models. However, the TT/SS combined genotype of HMOX1

rs2071746T/A and (GT)n polymorphisms was associated with an increased risk of

PCOS (OR = 1.442, 95% CI: 1.021–2.035, P = 0.037). Furthermore, elevated

HMOX1 levels were related to a slight but significant increase in the risk of PCOS,
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and the rs2071746T/A and (GT)n genetic variants significantly affected obesity,

oxidative stress, endocrine abnormalities, and metabolic disorders.

Conclusion: HMOX1 rs2071746T/A variant and elevated plasma HMOX1 levels

are associated with an increased risk of PCOS.
KEYWORDS

heme oxygenase-1, genetic polymorphism, polycystic ovarian syndrome, oxidative
stress, metabolism
1 Introduction

Polycystic ovarian syndrome (PCOS) is the leading endocrine-

metabolic disorder among women of reproductive age, with a

prevalence of 10–13% (1). Its clinical presentation is diverse and

may include reproductive, dermatological, metabolic, and

psychological symptoms such as irregular menstrual cycles,

infertility, acne, hirsutism, obesity, insulin resistance, dyslipidemia,

anxiety, depression, etc. (1, 2). PCOS can affect women throughout

their lives and potentially lead to long-term complications, including

type 2 diabetes (T2D), cardiocerebrovascular disease, and

endometrial cancer. The exact etiology of PCOS remains unknown,

making its treatment difficult (1, 3). Increasing evidence indicates that

its etiology is complex, involving interactions between multiple

predisposing genes, genetic epigenetics, and detrimental

environmental factors (2, 4–6).

Heme oxygenase (HMOX) is the rate-limiting enzyme that

catalyzes the breakdown of heme, resulting in the production of

biliverdin (BV), carbon monoxide (CO), and free iron (Fe2+) (7, 8).

BV is rapidly turned into bilirubin (BR) by BV reductase (8, 9).

Heme and free Fe2+ are toxic owing to their oxidative properties;

however, in the physiological state, free iron is swiftly sequestered

by ferritin, ensuring a harmonious balance within the body (8). CO,

BV, and BR possess vasodilator, antioxidant, and anti-inflammatory

properties, but excessive accumulation of these products can be

toxic (8, 10). The two main isomers of HMOX in humans, inducible
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HMOX1 (also known as HO-1) and constitutive HMOX2 (also

known as HO-2), have similar structures and catalytic functions but

are distributed in different tissues and exhibit distinct features (10).

Low HMOX1 expression was observed in most tissues under

normal conditions. However, its expression can be markedly

increased in response to different pathophysiological stress

conditions or stimulation factors (9, 11).

The HMOX1 is located on chromosome 22q13.1. Two genetic

polymorphisms in the promoter of HMOX1, the (GT)n

dinucleotide repeat variant (rs3074372) and rs2071746T/A

single nucleotide polymorphism (SNP) (rs2071746), can affect the

transcriptional activity of HMOX1 (11). These two polymorphisms

are closely linked to certain diseases, including sensitivity to several

cancers and coronary heart disease (11), cardiovascular events and

mortality in patients undergoing hemodialysis (12), T2D (13), pre-

eclampsia (14), chronic obstructive pulmonary disease (15), SARS-

CoV-2 viremia in COVID-19 infection (16), and risk of encephalitis

in HIV infection (17).

Oxidative stress and metabolic disorders significantly

contribute to the pathophysiology and progression of PCOS

(1, 18–21). Genetic variants of HMOX2 G554A and A-42G SNPs

are associated with endocrine abnormalities and glycolipid

metabolic irregularities in patients with PCOS (5). The levels of

HMOX1 mRNA are higher in subcutaneous adipose tissue and

granulosa cells (22, 23), but the concentrations of serum HMOX1

are lower in women with PCOS than those among control women

(24). However, the association between HMOX1 polymorphisms

and PCOS remains unclear. Therefore, we explored the relationship

betweenHMOX1 (GT)n repeats and rs2071746T/A polymorphisms

and the risk of PCOS. Additionally, we analyzed how these genetic

variants affected plasma HMOX1 levels and various clinical and

biochemical parameters in Southwest Chinese women.
2 Materials and methods

2.1 Study participants

This was a case-control study. All participants aged 17–40 years

provided written informed consent and were recruited from the

Reproductive Endocrinology Outpatient Department of the West
frontiersin.org
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China Second University Hospital between 2006 and 2024

(Figure 1). This study was approved by the Institutional Review

Board of West China Second University Hospital, Sichuan

University (2014–014 for P. Fan).

PCOS was diagnosed based on the revised 2003 Rotterdam

European Society of Human Reproduction and Embryology/

American Society for Reproductive Medicine consensus criteria,

which include irregular menstrual cycles, oligo-ovulation, or

anovulation (OA), biochemical and/or clinical hyperandrogenism

(HA), and polycystic ovaries (PCOs) (25). Detailed definitions of

HA, OA, and PCOs have been provided in previous articles (26–28).

PCOS was diagnosed if a woman met at least two of the three

criteria after ruling out other etiologies such as Cushing syndrome,

congenital adrenal hyperplasia, and androgen-secreting tumors

(1, 25). Both HA and OA are required in individuals aged < 20

years of age (1). Control women had regular menstrual cycles

between 21–35 days, normal ovarian morphology on

ultrasonography, and no biochemical or clinical signs of HA.

The participants were excluded if they had infections,

cardiovascular diseases, liver or kidney diseases, autoimmune

diseases, thyroid disorders, hypogonadism, hyperprolactinemia,

premature ovarian insufficiency, endometriosis, or other

malignancies. Additionally, the participants were excluded from the

analysis when comparing oxidative stress and metabolic and
Frontiers in Endocrinology 03
hormonal parameters between groups/subgroups if they met any of

the following criteria: (i) use of hormonal therapy and/or medications

that influence glucose and lipid metabolism within 12 weeks before

the study; (ii) smoking; (iii) being pregnant or in the luteal phase of

their menstrual cycle; and/or (iv) having a fasting glucose (Glu) level

of ≥7.0 mmol/L and/or a 2-hour plasma glucose after the glucose

challenge (2-h Glu) level of ≥11.1 mmol/L in the control group.

Clinical indices, including waist circumference (WC), body

mass index (BMI), waist-to-hip ratio, diastolic blood pressure

(DBP), systolic blood pressure, severity of acne and hirsutism,

and ovarian volume were assessed as previously described (27–29).

Blood samples were collected after fasting for 8–12 h. Blood

cells were stored at 4°C, and plasma and serum aliquots were

preserved at −80°C for later analysis. A 75g oral glucose tolerance

test was conducted immediately after fasting blood sampling.
2.2 DNA purification and genotype
measurements

Genomic DNA was purified from stored blood cells using a

previously described method (30). (GT)n repeats in HMOX1 were

determined using polymerase chain reaction (PCR) amplification

and capillary electrophoresis. The forward primer with 6-
FIGURE 1

The process of recruitment and selction of the case and control group.
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carboxyfluorescein (FAM) was 5′-FAM-CCAGCTTTCTGGA

ACCTTCTG-3′, the reverse primer was 5′-GAAACAAAG

TCTGGCCATAGGA-3′ (31). Samples were amplified using a

touchdown PCR protocol (17). The products were then analyzed

using a 3730xl DNA Analyzer (Applied Biosystems, Foster City, CA,

USA) and GeneMapper 4.1 (Applied). Short repeats, with fewer than

27 GT repeats, were classified as S alleles, whereas long repeats, with at

least 27 GT repeats, were classified as L alleles (12). For genotyping the

rs2071746 SNP, we used PCR and restriction fragment length

polymorphism method with a mismatched primer set (the forward

primer: 5′-GTTCCTGATGTTGCCCACCAAGC-3′; the reverse

primer: 5′-CTGCAGGCTCTGGGTGTGATTTTG-3′). The PCR

products of the rs2071746T/A SNP (151 bp) were then digested with

HindIII (New England Biolabs, Ipswich, MA, USA), resulting in 20 and

131 bp fragments with the T allele and a whole 151-bp product with the

A allele. The results were verified by repeating the genotyping of > 30%

of the randomly selected samples, yielding 100% concordance.
2.3 Analysis of HMOX1, oxidative stress,
hormonal, and metabolic indices

Plasma HMOX1 concentrations were measured using ELISA

kits (Elabscience Biotechnology Co., Ltd., Wuhan, China).

Estradiol, TT, luteinizing hormone (LH), follicle-stimulating

hormone (FSH), sex hormone binding globulin (SHBG), plasma

insulin (Ins) and Glu levels, triglycerides (TG), total cholesterol

(TC), high-density lipoprotein cholesterol (HDL-C), low-density

lipoprotein cholesterol (LDL-C), apolipoprotein (apo) A1, and

apoB concentrations, total antioxidant capacity (T-AOC),

glutathione (GSH), total oxidant status (TOS), and oxidative

stress index (OSI) were also analyzed as previously described in

other studies (20, 21, 28). The homeostatic model assessment of

insulin resistance (HOMA-IR) and free androgen index (FAI) were

calculated as previously described (18, 28) using the following

formulas:

HOMA − IR  =  fasting Glu (mmol=L) �  fasting Ins (mU=mL)=22:5

FAI  =  TT  (nmol=L)=SHBG (nmol=L) �  100
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2.4 Statistical analysis

Data are presented as mean ± standard deviation. We used

analysis of variance or independent sample t-tests for normally

distributed variables and the Mann–Whitney U test for non-

normally distributed variables. Analysis of covariance was used to

evaluate differences in clinical and biochemical indices after

adjusting for variations in age, BMI, and participant recruitment

year. Chi-squared (c²) analysis was performed to evaluate

deviations in genotypic distribution from Hardy–Weinberg

equilibrium and to compare the frequencies of genotypes and

alleles between two groups. The Spearman’s correlation coefficient

was used to assess the relationship between HMOX1 levels and

other parameters. Differences were considered statistically

significant if the P value was <0.05. Data were analyzed using the

Statistical Program for Social Sciences (SPSS) 21.0 (IBM SPSS

Statistics, IBM Corporation).

Power values were calculated according to the disease allele

frequency of the rs2071746T/A SNP inHMOX1 and the sample size

(prevalence = 0.12, significance level = 0.05) using the Genetic

Association Study Power Calculator (http://csg.sph.umich.edu/

abecasis/gas_power_calculator/index.html).

Using the online SNPStats (https://www.snpstats.net/

start.htm), we assessed the linkage disequilibrium between two

genetic polymorphic loci in view of the D’ parameter.
3 Results

3.1 Clinical and biochemical characteristics
of the participants

Owing to the significant discrepancies in BMI and age between

the PCOS and control groups (Table 1), and the relatively long

recruitment period of participants between 2006 and 2024 in this

study, we adjusted for these three confounding factors in our

subsequent analyses.

Table 1 shows that the PCOS group had significantly higher

acne grade scores, F-G scores, average ovarian volumes, DBP, WC,

waist-to-hip ratio, TT, LH, LH/FSH ratio, FAI, fasting Ins, HOMA-

IR, 2-h Glu and 2-hour insulin after the glucose challenge (2-h Ins),
TABLE 1 Clinical and biochemical parameters in women with PCOS and controls.

Controls (n = 805) PCOS (n = 1092) P Pa

Age (years) 28.25 ± 4.10 25.10 ± 4.15 <0.001

BMI (kg/m2) 21.15 ± 2.81 23.04 ± 4.14 <0.001

WC (cm) 73.64 ± 8.08 79.15 ± 11.07 <0.001 <0.001

Waist-to-hip ratio 0.81 ± 0.60 0.85 ± 0.07 <0.001 <0.001

F-G score 0.24 ± 0.72 1.74 ± 2.03 <0.001 <0.001

Acne grade score 0.13 ± 0.34 0.67 ± 0.90 <0.001 <0.001

(Continued)
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LDL-C, TC, TG, TG/HDL-C ratio, apoB, TOS, T-AOC, GSH, OSI,

TOS/GSH ratio, and plasma HMOX1 levels, but lower serum FSH,

SHBG, and HDL-C concentrations than the control group

(P < 0.05).
Frontiers in Endocrinology 05
We further compared the plasma HMOX1 levels in lean (BMI <

23 kg/m²) and overweight/obese (BMI ≥ 23 kg/m² and/or waist

circumference > 80 cm) subgroups after adjusting for age, BMI, and

recruitment period of participants. The results showed that the
TABLE 1 Continued

Controls (n = 805) PCOS (n = 1092) P Pa

SBP (mmHg) 112.38 ± 11.15 114.16 ± 10.61 0.001 0.315

DBP (mmHg) 73.33 ± 8.58 75.43 ± 8.75 <0.001 0.003

Mean ovarian volume (mL) 7.36 ± 2.90 9.92 ± 4.04 <0.001 <0.001

Hormonal levels*

E2 (pmol/L) 313.87 ± 324.44 275.17 ± 273.34 0.035 0.657

TT (nmol/L) 1.45 ± 0.52 2.26 ± 0.80 <0.001 <0.001

SHBG (nmol/L) 55.32 ± 27.19 32.63 ± 19.03 <0.001 <0.001

FAI 3.14 ± 1.89 9.53 ± 6.87 <0.001 <0.001

LH (IU/L) 7.05 ± 6.24 13.15 ± 8.05 <0.001 <0.001

FSH (IU/L) 6.55 ± 2.63 6.05 ± 2.10 0.001 0.015

LH/FSH 1.16 ± 1.13 2.24 ± 1.23 <0.001 <0.001

Metabolic profile*

Fasting Ins (pmol/L) 60.37 ± 35.46 98.46 ± 72.40 <0.001 <0.001

2-h Ins (pmol/L) 365.80 ± 270.73 715.01 ± 566.96 <0.001 <0.001

Fasting Glu (mmol/L) 5.23 ± 0.47 5.34 ± 0.84 0.003 0.861

2-h Glu (mmol/L) 5.98 ± 1.27 7.21 ± 2.46 <0.001 <0.001

HOMA-IR 2.21 ± 1.30 3.79 ± 3.01 <0.001 <0.001

TG (mmol/L) 1.00 ± 0.54 1.41 ± 1.14 <0.001 <0.001

TC (mmol/L) 4.25 ± 0.72 4.43 ± 0.80 <0.001 <0.001

HDL-C (mmol/L) 1.51 ± 0.33 1.37 ± 0.34 <0.001 0.002

LDL-C (mmol/L) 2.35 ± 0.64 2.60 ± 0.77 <0.001 <0.001

TG/HDL-C 0.73 ± 0.61 1.19 ± 1.37 <0.001 <0.001

ApoA1 (g/L) 1.46 ± 0.21 1.42 ± 0.21 0.001 0.752

ApoB (g/L) 0.75 ± 0.17 0.83 ± 0.20 <0.001 <0.001

Oxidative stress parameters*

TOS (nmol H2O2 Equiv./mL) 11.41 ± 5.34 15.25 ± 10.31 <0.001 <0.001

T-AOC (U/mL/min) 14.51 ± 2.60 15.92 ± 3.51 <0.001 <0.001

OSI 0.79 ± 0.41 0.99 ± 0.76 <0.001 <0.001

GSH (nmol/mL) 1.11 ± 0.25 1.18 ± 0.25 <0.001 0.005

TOS/GSH 10.50 ± 5.76 12.71 ± 9.33 <0.001 <0.001

HMOX1 (mg/L) 4.51 ± 2.41 5.02 ± 4.61 0.018 0.011
Values are presented as average ± standard deviation.
apoA1, apolipoprotein A1; apoB, apolipoprotein B; BMI, body mass index; DBP, diastolic blood pressure; E2, estradiol; FAI, free androgen index; F-G score, Ferriman–Gallwey score; FSH,
follicle-stimulating hormone; Glu, glucose; GSH, glutathione; HDL-C, high-density lipoprotein cholesterol; HMOX1, heme oxygenase-1; HOMA-IR, the homeostatic model assessment of insulin
resistance; Ins, insulin; LDL-C, low-density lipoprotein cholesterol; LH, luteinizing hormone; OSI, oxidative stress index; SBP, systolic blood pressure; SHBG, sex hormone-binding globulin; T-
AOC, total antioxidant capacity; TC, total cholesterol; TG, triglycerides; TOS, total oxidant status; TT, total testosterone; WC, waist circumference. 2-h Ins and 2-h Glu, 2-hour plasma insulin and
glucose after the glucose challenge.
P Continuous variables were compared between the two groups using the independent samples t-test (normally distributed) or the Mann-Whitney U test (non-normally distributed).
Pa Comparisons of the parameters were corrected for differences in age, BMI, and recruitment year of participants between the two groups using analysis of covariance.
*Controls (n = 516), PCOS (n = 726).
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HMOX1 levels were higher in the lean PCOS subgroup (n = 339)

than in the lean control subgroup (n = 382) (5.00 ± 5.00 vs. 4.48 ±

2.36 μg/L, P = 0.034), but no statistical significance in the overweight/

obese PCOS subgroup (n = 387) than in the overweight/obese control

subgroup (n = 134) (5.04 ± 4.29 vs. 4.48 ± 2.15 μg/L, P = 0.115).
3.2 Correlation of HMOX1 levels with
clinical and biochemical indicators and risk
of PCOS

The Spearman’s correlation analysis showed that plasma

HMOX1 levels were positively correlated with 2-h Glu, WC,

fasting Ins, HOMA-IR, TG/HDL-C ratio, BMI, 2-h Ins, TC,

fasting Glu, FAI, T-AOC, apoB, and WHR in patients with PCOS

(r = 0.138, 0.132, 0.132, 0.129, 0.127, 0.118, 0.105, 0.093, 0.092,

0.087, 0.085, 0.080, and 0.079, respectively; P < 0.05). Although

statistically significant, the correlations between HMOX1 and

PCOS traits were quantitatively modest.

Binary logistic regression analysis demonstrated that elevated

HMOX1 levels were associated with an increased risk of PCOS after

correcting for differences in participant recruitment year, age, and

BMI (odds ratio [OR] = 1.053, 95% confidence interval [CI]: 1.008–

1.100, P = 0.019).
3.3 Distributions of HOMX1 rs2071746T/A
and (GT)n genotypes and alleles

Table 2 summarizes the genetic models for the rs2071746T/A

and (GT)n repeat polymorphisms in HOMX1. The distribution of

genotypes for both polymorphisms was consistent with Hardy–

Weinberg equilibrium in women with and without PCOS (P > 0.05).

The frequencies of the TT genotype and T allele in the HOMX1

rs2071746T/A SNP were significantly higher in the PCOS group

than those in the control group. The OR indicated that this

difference was statistically significant for the dominant model, the

recessive model, and the TT vs. AA genotype model, and the allele

model (all P < 0.05). After adjusting for age, BMI, and recruitment

year of participants, the dominant genetic model remained

statistically significant in the binary logistic regression model

(OR = 1.272, 95% CI: 1.013–1.597, P = 0.039) and the TT

genotype remained a significant predictor for PCOS in a

multinomial logistic regression model, with the AA genotype as

the reference (OR = 1.395, 95% CI: 1.033–1.883, P = 0.030). The

genetic association power is 0.984 for rs2071746T/A SNP. No

statistically significant differences were observed between the two

groups for the (GT)n repeat polymorphism of HMOX1 when

analyzed using different genetic models (P > 0.05; Table 2).

The combined genotypes of HMOX1 rs2071746T/A and (GT)n

polymorphisms exhibited a significant difference in frequency between

patients with PCOS and controls (P = 0.031; Supplementary Table 1).

The TT/SS was a risk factor for PCOS (OR = 1.442, 95% CI: 1.021–

2.035, P = 0.037) in a multinomial logistic regression model using the

AA/LL combined genotype as the reference, with participant
Frontiers in Endocrinology 06
recruitment year, age, and BMI as covariates. Moderate linkage

disequilibrium was observed between the rs2071746T/A and (GT)n

polymorphisms (D’= 0.8517, r2 = 0.5539).
3.4 Effects of genotypes on clinical and
biochemical indicators

We analyzed the effect of HMOX1 rs2071746T/A and (GT)n

genetic variants on plasma HMOX1 levels and clinical and

biochemical parameters in women with and without PCOS.

Supplementary Table 2 shows that patients with the AT

genotype of HMOX1 rs2071746T/A SNP had a greater TOS/GSH

ratio than those with the TT genotype (P = 0.028). The controls

with the TT genotype exhibited a lower acne grade score than those

with the AA genotype (P = 0.043) and lower HDL-C levels

(P = 0.038) than those with the AT genotype; whereas the

controls with the AT genotype exhibited lower GSH levels

(P = 0.022) than those with the AA genotype.

The same parameters were analyzed for different genotypes of

HMOX1 (GT)n repeat polymorphism (Supplementary Table 3).

Patients with the LL genotype displayed a lower waist-to-hip ratio

and TT levels (P < 0.05) than those with the SS genotype. The

controls with the LL genotype exhibited a lower BMI than those with

the SS and SL genotypes (P < 0.05). The controls with the SL genotype

showed higher FAI (P = 0.019) than those with the SS genotype.

No statistically significant differences in plasma HMOX1 levels

were observed between the different genotypes of HMOX1

rs2071746T/A and (GT)n genetic variants in the control and

PCOS groups (P > 0.05; Supplementary Tables 2, 3).
4 Discussion

For the first time, we demonstrated that the TT genotype and T

allele of the rs2071746T/A SNP are associated with an increased risk

of PCOS in Chinese women. We also proved that the TT/SS

combined genotype of the rs2071746T/A and (GT)n repeat

variants is a risk factor for PCOS. Furthermore, we found that

plasma HMOX1 levels were significantly higher in patients with

PCOS than those in the control women, and elevated HMOX1 levels

were related to a slight but significant increase in the risk of PCOS,

suggesting that patients with PCOS have a compensatory increase in

HMOX1 levels. HMOX1 rs2071746T/A and (GT)n repeat

polymorphisms significantly affected BMI, waist-to-hip ratio, TT,

FAI, acne grade score, HDL-C, GSH, and TOS/GSH ratio, but not

plasma HMOX1 levels among the PCOS and/or control participants,

supporting that the two variants may be involved in obesity,

endocrine abnormalities, oxidative stress, and metabolic disorders.

Oxidative stress, metabolic disorders, and iron homeostasis

imbalance play significant roles in the occurrence and progression

of PCOS (18–21, 32). HMOX catalyzes the degradation of heme and

is crucial for controlling the dynamic equilibrium of heme and its

products (BV, BR, CO, and Fe2+) (7, 8). In addition to the recovery

of Fe2+ from heme, HMOX participates in the regulation of multiple
frontiersin.org

https://doi.org/10.3389/fendo.2025.1644373
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2025.1644373
signaling pathways via its products, BV, CO, and Fe2+, as well as its

substrate, heme (8). Under physiological conditions, low HMOX1

expression is found in most tissues, except in cells of the

reticuloendothelial system (8, 10). Unlike the constitutive isoform

HMOX2, which is barely regulated at the transcriptional and

translational levels (5, 8), HMOX1 can be rapidly induced under
Frontiers in Endocrinology 07
various stress conditions (7, 8, 10, 11). BV and BR are important

endogenous antioxidants and cellular signaling molecules that play

significant roles in regulating immunity and glycolipid metabolism,

and CO is a gaseous mediator with vasodilatory, anti-inflammatory,

anti-proliferative, and anti-apoptotic properties, while heme and

free Fe2+ can facilitate the production of reactive oxygen species
TABLE 2 Association of HMOX1 T-413A (rs2071746) and (GT)n repeat polymorphisms with the risk of PCOS using different genetic models.

Controls (n = 805) PCOS (n = 1092)
Unadjusted Adjusted

OR (95% CI) P OR (95% CI) P

T-413A (rs2071746)

Genotype

AA 173 (21.5%) 193 (17.7%)

AT 426 (52.9%) 556 (50.9%) 1.170 (0.919–1.489) 0.201 1.140 (0.872-1.493) 0.342

TT 206 (25.6%) 343 (31.4%) 1.493 (1.141–1.952) 0.003 1.395 (1.033-1.883) 0.030

PHWE 0.233 0.456

Recessive

TT + AT 632 (78.5%) 899 (82.3%)

AA 173 (21.5%) 193 (17.7%) 1.257 (1.014–1.603) 0.037 1.212 (0.936-1.570) 0.144

Dominant

TT 206 (25.6%) 343 (31.4%)

AA + AT 599 (74.4%) 749 (68.6%) 1.332 (1.086–1.632) 0.006 1.272 (1.013-1.597) 0.039

Allele

A 772 (48.0%) 942 (43.1%)

T 838 (52.0%) 1242 (56.9%) 1.215 (1.067–1.382) 0.003 / /

(GT)n repeat

Genotype

LL 224 (27.8%) 298 (27.3%)

SL 422 (52.4%) 542 (49.6%) 0.965 (0.779–1.197) 0.748 0.935 (0.736-1.189) 0.584

SS 159 (19.8%) 252 (23.1%) 1.191 (0.915–1.551) 0.193 1.134 (0.844-1.522) 0.404

PHWE 0.292 0.983

Recessive

LL + SL 646 (80.2%) 840 (76.9%)

SS 159 (19.8%) 252 (23.1%) 1.219 (0.975-1.524) 0.082 0.842 (0.655-1.081) 0.178

Dominant

LL 224 (27.8%) 298 (27.3%)

SS + SL 581 (72.2%) 794 (72.7%) 0.973 (0.794-1.193) 0.796 1.041 (0.827-1.309) 0.733

Allele

L 870 (54.0%) 1138 (52.1%)

S 740 (46.0%) 1046 (47.9%) 1.081 (0.950-0.239) 0.239 / /
Data are presented as number (%). Genetic models (genotype, recessive, dominant, and allele models).
OR, odds ratio; CI, confidence interval; PHWE, P value of Hardy–Weinberg equilibrium.
The assessment of Hardy–Weinberg equilibrium, the comparisons of the frequencies between two groups, and the unadjusted OR (95% CI) using Chi-squared (c²) analysis. Adjusted OR (95%
CI) using the multivariable (for genotype model with the AA or LL genotype as the reference) or binary logistic regression analysis including age, BMI, and recruitment year of participants as
covariates.
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(7, 8, 10). Therefore, besides its cytoprotective effects, HMOX1

induction may also be involved in the development of certain

diseases . Several studies have indicated that genetic

overexpression or chemical induction of HMOX1 can protect

against hypertension, cardiovascular diseases, metabolic

conditions, and kidney diseases (33–35). Increased HMOX1

activity may promote oxidative stress by increasing free

intracellular iron and accelerating the consumption of cytosolic

NADPH, thereby contributing to chronic inflammation,

ferroptosis, and cell injury (8). It has been reported that elevated

plasma HMOX1 levels in individuals with T2D are associated with a

higher disease risk (36). However, another study showed that low

serum HMOX1 levels in non-obese women are an independent risk

factor for PCOS (24). In this study, we found that plasma HMOX1

levels were significantly higher in the PCOS group compared to the

control group, and the lean PCOS subgroup compared to the lean

control subgroup. Furthermore, elevated HMOX1 levels were

related to an increased risk of PCOS. The possible reasons for the

inconsistent results of HMOX1 levels in PCOS may be

discrepancies in the sample size and study population. Contrary

to the report of lower HMOX1 concentrations in PCOS (24), our

finding of elevated HMOX1 levels could represent a protective

compensatory response to various chronic unfavorable stimuli in

PCOS, aligning with the canonical role of HMOX1 as an oxidative

stress sensor.

Increased oxidative stress in PCOS, as shown in this study, can

enhance HMOX1 transcription by activating nuclear factor erythroid

2-related factor 2 transcription factor (11, 37). Patients with PCOS

have iron overload, abnormal heme metabolism, and chronic

inflammation due to chronic oligomenorrhea, excessive androgen,

and compensatory hyperinsulinemia (32, 38). High levels of heme

and activation of the inflammatory factor nuclear factor kappa B can

promote the expression of HMOX1 (11, 33). The HMOX1 and its

downstream metabolites, including CO, BV, and BR, may play a

protective role through their antioxidant, anti-inflammatory, and

vasodilator functions (8, 10). However, the sustained induction of

HMOX1 and the iron overload may paradoxically dysregulate

ferroptosis through iron-mediated production of peroxidized lipids,

potentially contributing to ovarian dysfunction. In addition to

transcriptional regulation, HMOX1 activity is regulated by critical

protein-protein interactions (PPIs) and post-translational

modifications (39). PPIs affect the stability, oligomerization,

subcellular localization, and function of HMOX1 (39–42). The

post-translational modifications, such as phosphorylation,

acetylation, and ubiquitination, also play an important role in

regulating the level and activity of HMOX1 (43–45). In a word, the

possible reasons and mechanisms for elevated HMOX1 levels are

complex in PCOS. Further studies are needed to explain this

phenomenon and its exact pathophysiological mechanisms.

Genetic variants in the promoter of HMOX1 may affect the

expression of HMOX1 (11), thereby affecting the incidence and

progression of diseases. The A allele of HMOX1 rs2071746T/A SNP

is associated with a higher transcription activity ofHMOX1 (11, 46).

A meta-analysis revealed a lower susceptibility to coronary heart

disease in individuals carrying the A allele (11). The AA genotype
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increases the occurrence of hypertension in the Japanese women

(47), but decreases the risk of ischemic heart disease in the Japanese

population (48). The T allele of the rs2071746T/A variant is a risk

factor for the development of esophageal varices in patients with

cirrhosis (46), and the TT genotype is more likely to cause

proteinuria in Korean patients with T2D (49) and SARS-CoV-2

viremia in COVID-19 infection (16). Our findings indicated that

women with the TT genotype and T allele have a higher risk of

developing PCOS. Moreover, we found that this genetic

po lymorph i sm may cont r ibu t e to ox ida t i v e s t r e s s ,

hyperandrogenism status, and metabolic disorders through

influencing TOS/GSH ratio, GSH and HDL-C levels, and acne

grade score in the study population. However, we did not observe

significant differences in plasma HMOX1 levels according to

different genotypes of the rs2071746T/A SNP, suggesting that this

genetic variant may not be a key factor affecting HMOX1 expression

in the study population.

Of the polymorphisms observed in theHMOX1 promoter region,

the (GT)n repeat variant has been extensively studied (11, 13). The

range of (GT)n repeat numbers is 10–50 (17), and the number of

repeat lengths shows a bimodal distribution, with peaks at (GT)23 and

(GT)30 repeats in East Asian and Caucasian populations, and a

trimodal form, with crest values at (GT)23, (GT)30, and (GT)39
among African-Americans (11). Generally, the short (S) allele is

defined as the number of (GT)n repeats < 25 or 27, and the long (L)

allele is defined as the number of (GT)n repeats ≥ 25 or 27 in different

reports (11–13, 49). The S alleles are linked to increased

transcriptional activity compared with the L alleles (11, 13), and

individuals with the SS genotype of the (GT)n variant have higher

levels of HMOX1 mRNA than those with the LL genotype (50).

Individuals with the S allele or SS genotype have a reduced risk of

coronary heart disease (11), T2D (13), rheumatoid arthritis (50), and

encephalitis in HIV infection (17), but an increased risk of melanoma

(51). Whereas individuals with the L allele or LL genotype have an

increased risk of hypertension (52), chronic obstructive pulmonary

disease (15), and preeclampsia (late-onset and non-severe form) (14).

Our study revealed no significant differences were observed between

the PCOS and control groups based on different genetic models.

However, this polymorphism may be involved in obesity and

endocrine disorders, probably by affecting waist-to-hip ratio, BMI,

TT levels, and FAI in the study population. Moreover, we did not

observe significant differences in plasma HMOX1 levels according to

different genotypes of the (GT)n repeat variant.

Additionally, in this study, a moderate linkage disequilibriumwas

observed between the rs2071746T/A and (GT)n repeat

polymorphisms. The TT/SS combined genotype of the two genetic

polymorphisms was a risk factor for PCOS. However, we did not

observe significant differences in the HMOX1 levels according to the

different combined genotypes in the control and PCOS groups (P >

0.05, data not indicated). Several studies have shown that HMOX1

expression is also controlled by genetic polymorphisms (11). The

(GT)n and rs2071746T/A polymorphisms may be involved in

5’-UTR alternative splicing of the HMOX1 primary transcript,

which may affect translational efficiency and mRNA stability, and

thus regulate the translational process of HMOX1 (53). Therefore, a
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more detailed and systematic investigation of the correlation between

genotype and gene expression, along with in vitro studies, is required

to clarify the potential mechanism.

The present study has some limitations. First, we did not

measure the levels of BV, BR, and iron, which are critical

downstream products of HMOX1 enzymatic activity; this could

provide further evidence to reveal the relationships between

HMOX1 genetic variants, HMOX1 levels, and PCOS and the

underlying mechanism. Second, we did not evaluate oxidative

stress and hormonal and metabolic indices because of

confounding factors in some participants, which could have had

an effect on the statistical effectiveness of these parameters. Third,

lifestyle factors (e.g., dietary patterns, physical activity levels) and

longitudinal treatment histories were not collected during

enrollment, preventing us from adjusting for differences in these

potential confounders in our analyses.

In conclusion, this study indicates that the HMOX1

rs2071746T/A SNP is associated with the risk of PCOS, and that

the T allele, TT genotype, and its coexistence with the SS genotype

of the (GT)n repeat variant are genetic risk factors for PCOS among

Chinese women. We further demonstrated that patients with PCOS

have higher plasma HMOX1 concentrations and that elevated

HMOX1 levels are associated with an increased risk of PCOS. We

found that the HMOX1 rs2071746T/A and (GT)n repeat

polymorphisms may contribute to obesity, oxidative stress,

endocrine abnormalities, and metabolic disorders. Our findings

suggest that induction of the heme-degrading enzyme HMOX1

and its genetic polymorphisms in the promoter may be involved in

the pathophysiology of PCOS.
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