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Multi-dimensional roles of
sodium-glucose cotransporter 2
inhibitors: beyond hypoglycemic
and cardiorenal protection
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1Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China, 2National
Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Department
of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University,
Changsha, Hunan, China, 3Clinical Molecular Immunology Center, School of Medicine, Yangtze
University, Jingzhou, Hubei, China
Sodium glucose cotransporter-2 inhibitors (SGLT2i) have been found to have a

range of benefits, including improving obesity and insulin resistance,

hyperuricemia, hypertension, hyperlipidemia, and other metabolic disorders.

Initially used for the hypoglycemic effects, they are now found to benefit

atherosclerotic cardiovascular disease and chronic kidney disease. Additionally,

SGLT2i has been found to have multiple functions, such as improving liver

metabolism, affecting brain function, protecting islet b cell function, anti-

tumor, and affecting immune system function. This review provides an

overview of the protective effects of SGLT2i on different organs and tissues, as

well as the potential mechanisms underlying the functional improvement

induced by SGLT2i in recent years.
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1 Introduction

SGLT2i are commonly used as hypoglycemic drugs in clinical settings. They work by

promoting the excretion of glucose in the urine, thereby reducing glucose level in the blood.

Recent studies have demonstrated that SGLT2i possesses multiple functions except

hypoglycemic effects, such as lowering uric acid, blood pressure, blood lipids, and

weight. Furthermore, SGLT2i can delay the progression of chronic kidney disease,

reduce the risk of cardiovascular events, and lower all-cause mortality (1). These effects

have also been observed in non-diabetic patients (2).

Although the targets of SGLT2i are limited compared to other drugs, its effects are

systemic and can impact multiple organs. While SGLT2 is predominantly found in the

kidney’s proximal tubule, studies have also found expression in the intestinal mucosa and

brain, with rare expression in other tissues or organs (3). This analysis seeks to consolidate

the function of SGLT2i across various organs and elucidate their underlying mechanisms,
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establishing a groundwork for future fundamental and applied

studies on SGLT2i. To craft this review, we embarked on an

extensive literature trawl through PubMed, Embase, and Web of

Science, culling through articles up to May of 2025. Our search was

spearheaded by a blend of key terms, such as “SGLT2 inhibitors,”

“sodium-glucose cotransporter-2,” and terms like “cardiorenal

protection,” “NAFLD,” “neuroprotection,” “pancreatic b-cells,”
“cancer,” and “immune response.” We used a mix of controlled

vocabularies (like MeSH/Emtree) and free-text keywords, cleverly

weaving in Boolean operators to tie them together. This strategy was

like casting a wide net, ensuring that we had a comprehensive and

scientifically robust grasp of the relevant studies.
2 Pharmacological features and
clinical overview of SGLT2i

SGLT2i form a category of oral, small-molecule hypoglycemic

drugs that target SGLT2 in the kidney’s tubules, which in turn cuts

down on glucose reabsorption and encourages its elimination

through urine. Furthermore, these compounds spark a little

natriuresis and osmotic diuresis, leading to a synergistic impact

that’s akin to shifting metabolic fuel and fine-tuning blood flow—a

combo that has a host of health benefits, such as lowering blood

sugar, trimming the waistline, reducing blood pressure, and

lowering uric acid levels (4, 5).

What they all have in common pharmacologically is that they’re

super selective for SGLT2 rather than its lessor relative, SGLT2i

offer convenient once-daily oral administration. They are absorbed

reliably and rarely cause hypoglycemia when used alone. These

drugs are primarily metabolized through glucuronidation and have

minimal interaction with cytochrome P450 enzymes, reducing the

risk of drug interactions (6). Furthermore, their glucose-lowering

effectiveness is closely tied to kidney function; as kidney function

decreases, their blood sugar-lowering effect diminishes, though

their heart and kidney protection benefits are partly maintained (7).

These inhibitors aren’t just about dropping sugar levels; they’re

like a Swiss Army knife for health, thanks to their multi-faceted

action. They quell inflammation and oxidative stress, boost fat-

burning and ketone production, and kickstart the body’s self-

cleaning process, autophagy (2). This versatility is what gives

them their broad-spectrum protection across different organs.
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To further exemplify these pharmacological attributes, the key

features of representative agents are summarized in Table 1.
3 Multidimensional roles of SGLT2
inhibitorssglt2

3.1 Liver

Nonalcoholic fatty liver disease (NAFLD) is a common

condition among people who are obese, especially those dealing

with type 2 diabetes (T2DM). If left unchecked, NAFLD can

progress to a more severe form known as nonalcoholic

steatohepatitis (NASH), which may eventually lead to serious

liver complications like fibrosis and cirrhosis. Numerous clinical

studies have reported that SGLT2i can aid in improving NAFLD

progression (8–10). According to an open-label randomized

controlled trial, 24 weeks of dapagliflozin treatment decreased

hepatic steatosis by 8%. a15% decrease in liver fibrosis score and

a 25% decline in liver enzyme levels (9). The E-LIFT study

discovered that empagliflozin could decrease liver fat content and

enhance alanine aminotransferase (ALT) levels in patients with

T2DM and NAFLD (10). These suggest that SGLT2i may be

effective in improving liver health. Some experts believe that

SGLT2i can delay the onset of NAFLD by promoting weight loss

and decreasing glycemia (11). However, the EMPA-REG

OUTCOME trial demonstrated empagliflozin’s efficacy in

lowering ALT, regardless of alterations in HbA1c or body weight

(12). Additionally, the analysis of the E-LIFT study found that the

loss of liver fat was not related to HbA1c improvement or weight

loss (10). Therefore, SGLT2i may have other mechanisms to

influence the occurrence and progression of NAFLD.

3.1.1 Hepatic fat metabolism altered and
deposition reduced

SGLT2i can cause a partial loss of glucose from the body,

affecting energy metabolism patterns in various tissues, including

the liver. SGLT2i can reduce the insulin/glucagon ratio (2) and

increase insulin sensitivity, altering lipid metabolism (13, 14).

Hüttl M et al. conducted a study using a In a non-overweight,

pre-diabetic rat study, we examined how the drug empagliflozin

affects liver metabolism. The findings indicated that empagliflozin
TABLE 1 Key SGLT2 inhibitors and their pharmacokinetic profiles.

Drug
SGLT2:SGLT1
selectivity

Half-life
(t1/2)

Major metabolism/
elimination

Approved
indications

Key notes References

Empagliflozin ~2500:1 ~12 h
UGT2B7/1A3/2B17; renal/
fecal

T2DM, HF, CKD
Robust CV/renal benefit (EMPA-
REG OUTCOME)

(111–113)

Dapagliflozin ~1200:1 ~12–13 h
UGT1A9 → 3-O-
glucuronide

T2DM, HF, CKD
CV benefit (DAPA-HF); ongoing
NAFLD studies

(111, 114, 115)

Canagliflozin ~160–200:1 ~10–13 h
UGT1A9/UGT2B4; minor
CYP

T2DM
CV/renal benefit (CANVAS);
partial SGLT1 inhibition

(111, 116, 117)

Phlorizin
Non-selective (SGLT1/
2)

Short Hydrolyzed to phloretin None Tool compound, not clinically used (118)
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therapy decreased both neutral triglycerides and lipotoxic

diglycerides within the liver while increasing the transcription of

fatty acid synthase (Fas) (15). Fas is the key enzyme of fatty acid

synthesis in the liver and the determinant of the maximum ability of

the liver to synthesize fatty acids. According to Teruo Jojima et al.,

canagliflozin significantly reduces the expression of the Fas gene,

which is involved in lipogenesis, and the improvement of

canagliflozin on NASH may be related to the reduction of fatty

acid production (16). Additionally, research indicates that

Daxigliflozin enhances the production of acyl-CoA oxidase-1

(ACOX1), the key regulatory enzyme involved in lipid

catabolism.This up-regulation leads to an increase in fatty acid b-
oxidation, which reduces fat deposition (17). In TallyHo mice on a

high-milk-fat diet, EMPA normalized key liver metabolites,

including orotate (pyrimidine synthesis) and dihydrofolate

(folate/methionine pathways), and normalized dysregulated

acylcarnitines in females. These metabolic benefits were absent

under low-fat diet conditions, suggesting that SGLT2i-induced

protection is particularly effective during states of metabolic

stress. EMPA also reversed the elevation of circulating amino

acids induced by lipotoxic diet and improved ketone body

metabolism, underscoring its systemic regulatory potential (18).

3.1.2 Inflammation and oxidative stress decreased
In the onset and worsening of NAFLD, chronic inflammation

and oxidative damage are key drivers. When fat tissue becomes

inflamed and the body resists insulin, it sets off a chain reaction that

floods the liver with excessive fatty acids and sugar, leading to

endoplasmic reticulum stress, which activates the inflammasome

and leads to hepatocyte death. As hepatocellular injury signals

continue to activate inflammatory cells, liver fibrosis can occur.

Recent studies indicate that administering empagliflozin to obese

diabetic rats can lead to decreased interleukin 6 (IL-6) expression

while inducing a decrease in the expression of adipokine chemokines

and chemokine receptors (19). Empagliflozin combined with

dulaglutide can reduce the pro-inflammatory activation of the

immune system in the liver, manifesting as a decrease in regulatory

T cells (Treg), pro-inflammatorymacrophages, and Kupffer cells (20).

Inflammation can damage cell structure, resulting in electron leaks

within the mitochondria that can generate excessive superoxide. In

animal models, Ipragliflozin treatment enhances liver levels of

superoxide dismutase and catalase expression.These enzymes can

degrade most reactive oxygen species and reduce oxidative stress

levels in the liver (21). Research has shown that empagliflozin

stimulates CAMKK2, a calcium/calmodulin-dependent kinase,

which in turn up-regulates the expression of anti-superoxide

dismutase, thereby reducing oxidative stress and lipotoxicity (22).A

recent study using db/db mice and diet-induced NAFLD models

revealed that dapagliflozin and canagliflozin not only reduced hepatic

steatosis and fibrosis but also modulated the hepatic immune

microenvironment. SGLT2i therapy diminished liver tissue levels of

M1 macrophage inflammation indicators and enhanced levels of

M2 macrophage anti-inflammatory markers. In vitro, SGLT2i

promoted M1-to-M2 macrophage polarization through metabolic

reprogramming, primarily by inhibiting PFKFB3, a key glycolytic
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enzyme. Co-culture experiments further confirmed that macrophage-

mediated crosstalk suppressed hepatocyte lipogenesis (23).

3.1.3 Autophagy activated and cellular
senescence inhibited

Compared to patients with isolated steatosis or normal livers,

patients with NASH exhibit a decrease in autophagy in liver cells.

Recent studies have demonstrated that impaired mitophagy may

contribute to liver injury during NAFLD and result in the formation

of giant mitochondria (24). Inhibition of autophagy leads to

elevated levels of TG and LDL cholesterol, causing abnormal lipid

deposition in hepatocytes and further progression of NAFLD (25).

Research indicates a rise in the mRNA and protein levels linked to

autophagy in mice following 5 weeks of empagliflozin therapy,

apoptosis resistance markers were markedly elevated in the

empagliflozin group versus controls (26). Research revealed that

empagliflozin boosted autophagy in liver macrophages via the

AMPK-mTOR signaling pathway in diabetic mice suffering from

NAFLD. This mechanism effectively curbed inflammation driven

by the IL-17/IL-23 axis, ultimately alleviating hepatic injury (27).

Recent years have seen a marked increase in focus on the

connection between hepatocyte senescence and NAFLD/NASH.

Studies have found that liver cells in NAFLD patients exhibit

signs of aging, such as shortened telomeres, increased expression

of aging markers, and altered DNA methylation patterns.

Additionally, aging liver cells secrete inflammatory factors and

chemokines that accelerate the aging process in neighboring cells

(28). One study showed that topagliflozin could reduce the

expression of cyclin-dependent kinase inhibitor p21 in a mouse

model, inhibiting liver cell senescence in diabetes and obesity and

delaying the advancement of NASH (29) However, research on

SGLT2i’s role in slowing NAFLD progression through cellular

senescence inhibition remains scarce, requiring further validation.
3.2 Brain

The SGLT family, the most common glucose transport receptors

other than glucose transporters (GLUTs), is widely distributed in the

brain. All isoforms excluding SGLT5 are present in the brain (30). A

study examining the protein composition of tiny blood vessels

extracted from rat brain tissue showed that SGLT2 proteins were

present in both nerve cell bodies and their branching extensions

across various areas of the brain. What’s more, researchers using RT-

PCR techniques also identified SGLT2 expression in the human

cerebellum (31). D SGLT2 receptors in the CNS have been noted, but

the impact of SGLT2i on the brain remains underrecognized.

3.2.1 Neuroprotective effects of SGLT2i
The study demonstrates that a history of hyperglycemia or

diabetes worsens cerebral ischemia in patients (32). Yamazaki et al.

administered phlorizin via intraperitoneal injection in a murine focal

cerebral ischemia model. They observed that this treatment improved

cerebral infarction and reduced neuron damage. Furthermore, their

findings proved that phlorizin directly inhibits SGLT receptors in the
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brain, thereby offering protection against cerebral ischemia,

independent of any improvements in peripheral blood glucose

levels (33). Empagliflozin has been shown to significantly impact

on reducing cerebral tissue damage after cerebral ischemia/

reperfusion (I/R) injury, attributing to its ability to inhibit oxidative

stress, inflammation, and down-regulate apoptosis markers (34).

Recent studies indicate that empagliflozin’s neuroprotective effects

likely stem from its dual action of suppressing neuronal caspase-3

protein levels while boosting both hypoxia-induced factor-1a (HIF-

1a) and its downstream target, vascular endothelial growth factor

(VEGF). This two-pronged mechanism appears to play a key role in

shielding neural tissue from damage (35).

3.2.2 SGLT2i influences neurophysiology
Sodium ions are transported across the cell membrane

alongside glucose through the SGLT receptor, resulting in

depolarization of the cell membrane potential and increased

excitability (36). SGLT2i can prevent this effect. Additionally,

SGLT2i alters energy metabolism, shifting substrate utilization

from carbohydrates to fatty acid oxidation and increasing ketone

body production (37, 38). Ketone bodies play a role in inhibiting

abnormal neuronal firing by interacting with cellular excitatory-

inhibitory processes (39). The use of a ketogenic diet for epilepsy

can be traced back to 500 BC (40). The clinical observation revealed

that the ketogenic diet led to a 50% reduction in the number of

relapses in patients with refractory epilepsy within 3 months (41).

Dapagliflozin significantly reduces seizure activity in the epileptic

rat model, which may be related to the reduction of neuronal

glucose metabolism and neuronal cell membrane excitability (36).

However, no study currently that compares the effectiveness of the

ketogenic diet and SGLT2i in reducing epileptic seizures. The

impact of SGLT2i on neuronal electrophysiology and its

associated mechanisms remain unclear.

3.2.3 SGLT2i and cognitive function in diabetes
SGLT2i has been shown to have several benefits, including

impaired cognitive dysfunction, reduced oxidative stress and

inflammation, and enhanced neuronal plasticity (42, 43). Clinical

studies have demonstrated that SGLT2i has the potential to improve

the Montreal Cognitive Assessment Scale (MoCA) score and

repetitive neuropsychological status test scores (44, 45). A

mechanism study showed that empagliflozin significantly

increased the concentration of brain-derived neurotrophic factor

and prevented cognitive impairment in obese diabetic mice (43).

Additionally, SGLT2i restores mTOR to an activated physiological

state, which helps prevent the onset or progression of

neurodegenerative diseases (46). Furthermore, apart from its

direct impact on the central nervous system, SGLT2i also exhibits

inhibitory effects on acetylcholinesterase, thereby protecting

cognitive function (47). Nevertheless, a limited number of clinical

trials explore the application of SGLT2i for managing diabetes-

related cognitive deficits. Additional studies are needed to

determine whether SGLT2i can meaningfully slow cognitive

deterioration in diabetic patients. A landmark study by Kim et al.,

drawing from nationwide population data, offers compelling
Frontiers in Endocrinology 04
insights into this question. The research examined more than

1.34 million Korean adults aged 40+ with T2DM, ultimately

analyzing a matched cohort of 359,000 patients to assess how

SGLT2i use impacts the likelihood of developing Alzheimer’s,

vascular dementia, and Parkinson’s. The findings revealed that

SGLT2i outperformed other oral diabetes medications, showing

substantially lower risks for these neurodegenerative conditions: a

19% decrease for Alzheimer’s (aHR 0.81, 95% CI 0.76–0.87), 31%

for vascular dementia (aHR 0.69, 95% CI 0.60–0.78), and 20% for

Parkinson’s (aHR 0.80, 95% CI 0.69–0.91). When looking at the

combined outcome of all-cause dementia and Parkinson’s, the

reduction reached 22% (aHR 0.78, 95% CI 0.73–0.83). Crucially,

these protective effects held strong even after accounting for

numerous variables—from gender and overall health status to

diabetes-related complications, coexisting conditions, lab results,

and other medications. Subgroup analyses further revealed that the

neuroprotective effects of SGLT2i were consistent across different

age groups, comorbidity burdens, and metabolic conditions,

suggesting that SGLT2i may exert its beneficial impact on the

central nervous system through multiple synergistic mechanisms,

thereby contributing to the prevention of neurodegenerative

diseases (48).

3.2.4 Improves brain insulin resistance
Insulin resistance serves as the key underlying mechanism in

T2DM, with cerebral insulin sensitivity acting as a major player in

maintaining metabolic balance throughout the body. When the

brain’s ability to respond to insulin becomes compromised, it

throws off the central control of metabolic processes, ultimately

influencing emotional state, mental sharpness, and behavioral

patterns (49). However, owing to the existence of the blood-brain

barrier, progress in researching therapeutic methods to improve

brain insulin resistance has been slow. Previous studies have

focused on nasal insulin delivery primarily (50). Interestingly,

SGLT2i is the first drug discovered to have the potential to

reverse brain insulin resistance. A randomized controlled study, it

was found that empagliflozin 25mg/d treatment for 8 weeks

significantly improved hypothalamic insulin resistance, thereby

reducing fasting blood sugar levels and liver fat content (51).
3.3 Protection of islet b cells function

The impairment and decline of pancreatic beta cell function are

central to the development of diabetes. Consequently, safeguarding

these insulin-producing cells is critical for effective diabetes

management. Extensive research has demonstrated that many

glucose-lowering medications exhibit protective effects capable of

supporting beta cell health (52–54).

3.3.1 improve insulin sensitivity
Research indicates an enhancement in insulin responsiveness

with the use of SGLT2i. Phase 3 clinical trial results of canagliflozin

demonstrate its ability to significantly increase the insulin secretion

index and improve insulin resistance (55). Similar improvements in
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insulin sensitivity have been observed with empagliflozin,

dapagliflozin, and other SGLT2i (56, 57). A key point to

remember is that SGLT2i don’t trigger insulin release directly.

Instead, they work by promoting glucose elimination through

urine, which helps alleviate the harmful impact of elevated blood

sugar and lessens the strain on pancreaticbcells (58). Additionally,
SGLT2i can enhance the glucose utilization rate of peripheral tissues

by improving hypothalamic insulin resistance (51). Jahn et al. found

that 12 weeks of empagliflozin improved insulin’s vascular effects, as

evidenced by improved endothelial function, reduced arterial blood

pressure, and increased microvascular perfusion in skeletal and

cardiac muscle. These findings support the systemic extension of

SGLT2i’s effects on insulin sensitivity from a hemodynamic

perspective. This suggests that SGLT2i not only alleviate b-cell
stress by lowering blood glucose levels, but also enhance overall

insulin efficacy through improvements in vascular function, tissue

perfusion, and hormonal signaling pathways (59).

3.3.2 Increase the number of islet b cells
Beyond preserving the functionality of pancreaticbcells, SGLT2i

have demonstrated the ability to boostbcell mass in preclinical

studies. Research by Wei R and colleagues revealed that diabetic

mice treated with dapagliflozin for six weeks exhibited significant

expansion of pancreatic islets andbcell volume. Subsequent

investigations suggested this growth likely stems from multiple

mechanisms: stimulatingbcell replication, convertingacells
intobcells, and facilitating the differentiation of ductal cells into

functionalbcells (60). Tanday N et al. conducted a study using

lineage tracing technology and found that dapagliflozin

intervention effectively reduces the proportion of dedifferentiated

islet b cells in mice, leading to a decrease in cell loss (61). SGLT2i

has also been observed to protect the remaining islet b cells by

inhibiting the infiltration of inflammatory cells in the islet tissue and

preventing apoptosis (62, 63).

3.3.3 Promotes glucagon-like peptide-1 secretion
GLP-1, a hormone predominantly synthesized in the gut, serves

a dual role in pancreatic function. Beyond triggering insulin release

from beta cells, it actively supports their growth while

simultaneously mitigating cellular damage caused by oxidative

stress (64). Animal studies indicate that dapagliflozin enhances

GLP-1 secretion by upregulating essential enzymes for its

production (60). Clinical studies have also demonstrated that

SGLT2i can elevate plasma GLP-1 levels (65, 66). Since SGLT2 is

hardly expressed in islet a cells, whether SGLT2i affects GLP-1

content through islet a cells is still controversial. Recent evidence

suggests that SGLT2i with low SGLT2/SGLT1 selectivity increases

circulating GLP-1 levels, possibly through inhibition of intestinal

SGLT1 production (67). Another study discovered that islet a cells

could express SGLT1 receptors, and the administration of

dapagliflozin can enhance its expression level. This indicates that

dapagliflozin may increase the secretion of GLP-1 by significantly

up-regulating the expression of SGLT1 through an SGLT1-

dependent mechanism (68). By evaluating the response of insulin

and C-peptide to GLP-1 after 8 weeks of dapagliflozin intervention,
Frontiers in Endocrinology 05
it was found that dapagliflozin can increase the sensitivity of islet b
cells to GLP-1 in patients with T2DM (69).
3.4 Anti-tumor effects

In addition to its clinically proven antidiabetic effects, SGLT2i

has also demonstrated therapeutic potential against various solid

malignancies (70, 71). Both in vivo and in vitro studies demonstrate

canagliflozin’s suppression of prostate proliferation (72), pancreatic

(73), lung (74), and hepatocellular carcinomas (71). Additionally,

dapagliflozin suppresses kidney cancer cell growth (75).

3.4.1 Inhibition directly
Studies have found that SGLT2 is highly expressed in pancreatic

cancer (43), prostate cancer (73), breast cancer (76), and highly

differentiated lung adenocarcinoma (74). SGLT2i target the SGLT2

receptor in cancer cells, effectively halting glucose absorption, which

in turn slashes tumor expansion and longevity. One research paper

revealed that these inhibitors stifle the spread of breast cancer cells

by bringing the cell cycle to a halt in the G1/G0 phase, thanks to

AMPK activation, and by prompting cell death, or apoptosis (76).

Similarly, Leona Yamamoto et al. obtained similar results in lung

cancer cell lines, where Canagliflozin inhibited the proliferation of

lung cancer cells dose-dependently (77). SGLT2i lower glucose

absorption in cancer cells, alter the tumor’s cellular surroundings,

and impact the energy processes within tumor cells, ultimately

leading to a delay in tumor growth. While SGLT2i inhibits the

transport of glucose by the SGLT2 receptor, the transport of sodium

ions is also affected. Shiho Komatsu et al. found that Ipragliflozin

shuts down sodium absorption through the SGLT2 receptor and

induces hyperpolarization of cancer cell membranes, and at the

same time, causes mitochondrial membrane potential instability

sex, leading to host cell apoptosis and necrosis (78). A major

retrospective study in Hong Kong involving more than 60,000

participants used propensity score matching to compare

outcomes between patients on SGLT2i and those taking

dipeptidyl peptidase-4 inhibitors (DPP4i). The results showed

that SGLT2i use was linked to a substantially lower risk of

developing hepatocellular carcinoma (HCC) in individuals with

type 2 diabetes, with a hazard ratio (HR) of just 0.42. Notably, the

protective effect was even stronger among high-risk groups—such

as patients with cirrhosis, advanced fibrosis, or hepatitis B or C—

where the HR dropped to a striking 0.12. These findings highlight

the potential of SGLT2i as a promising therapeutic option for

preventing liver cancer in diabetic patients, particularly those with

pre-existing liver conditions (79).

3.4.2 Other mechanisms
In addition to directly inhibiting the SGLT2 receptor expressed

on tumor cells, studies have found that SGLT2i can also indirectly

inhibit tumors through other mechanisms. Cancer cells can increase

the body’s local glucose transport to the tumor to meet their energy

needs while increasing the body’s insulin resistance. The use of

hypoglycemic drugs can reduce insulin resistance and lower blood
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sugar levels, which in turn inhibits tumor proliferation and growth

(80). New research has revealed that dapagliflozin effectively curbs

tumor progression in obese mice with cancer. The study, led by Ali

R. Nasiri and colleagues, found that this anticancer mechanism

didn’t stem from heightened ketosis or direct interference with

cancer cell proliferation. Rather, the drug’s efficacy came from

correcting excessive insulin levels, achieved by reducing glucose

absorption and metabolism within tumors (81). A recent

investigation led by David Papadopoli and his team revealed that

canagliflozin’s ability to prevent cell growth is linked to its impact

on glutamine metabolism, a process that remains unaffected by

glucose availability or the amount of SGLT2 being expressed (82).

Additionally, advanced metabolomic and proteomic analyses

demonstrated that canagliflozin suppresses the growth of

hepatocellular carcinoma by disrupting key metabolic pathways—

specifically, electron transport chain activity, fatty acid breakdown,

and DNA/RNA production. The findings suggest this drug targets

cancer cell proliferation through multiple interconnected biological

mechanisms (83). Jingyi Luo et al. discovered that canagliflozin can

reduce the metastasis, angiogenesis, and metabolism of

hepatocellular carcinoma under hypoxic conditions. This decrease

is realized by preventing the formation of HIF-1a protein in

reprogramming contexts, potentially by modulating the AKT/

mTOR signaling pathway (84, 85).

It’s important to recognize that existing research indicates only

select SGLT2i show promise against particular cancer types. More

extensive studies are required to fully understand how different

SGLT2i combat tumors and their precise mechanisms across

various cancers. Beyond efficacy, we must also examine the safety

profile and practical application of integrating these drugs into

cancer therapies, while thoroughly assessing their clinical benefits.
3.5 Effects on the immune system

SGLT2 is known to be almost absent in immune cells (3). Thus

far, the influence of SGLT2i on immune system components has

been insufficiently recognized. However, recent studies have

increasingly discovered the involvement of immune cells in the

various mechanisms through which SGLT2i protects the heart,

kidney, and liver (86), although the exact mechanism is still

unclear. The following outlines the potential ways in which

SGLT2i may influence immune cells.

3.5.1 Affect immune inflammation
Inflammatory factors are released by immune cells under

inflammatory conditions. Many diseases, such as rheumatoid

arthritis, atherosclerosis, and diabetes, are associated with chronic

inflammation (87, 88). Chen Xu et al. found that canagliflozin has a

robust anti-inflammatory effect on human immune cells, leading to

reduced production and release of IL-1, IL-6, and tumor necrosis

factor-a, which may be related to canagliflozin’s inhibition of

intracellular glycolysis and autophagy (89). An intervention study

conducted in Iran observed that Empagliflozin not only reduced the

production of pro-inflammatory factors by helper T cells but also
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hindered their proliferative ability (90). A recent study found that

canagliflozin can directly inhibit the transcription of NLR family

pyrin domain-containing protein 3 (NLRP3) inflammasome-

related proteins by inhibiting the NFkB signaling pathway and

can also up-regulate autophagy to affect inflammation directly (91).

Clinical evidence further supports the anti-inflammatory effects of

SGLT2i. A study in patients with severe heart failure showed that

those treated with SGLT2i exhibited significantly reduced

expression of pro-inflammatory genes and decreased immune cell

infiltration in epicardial adipose tissue (EAT). Metabolomic

analysis revealed an enrichment of ether lipids containing oleic

acid in the EAT of the treated group, suggesting a reduced tendency

toward ferroptosis, which may contribute to alleviating oxidative

stress. Overall, SGLT2i exert their immunomodulatory and organ-

protective effects in chronic inflammatory diseases through multiple

mechanisms, including inhibition of the NF-kB signaling pathway,

regulation of immune cell function, suppression of pro-

inflammatory cytokine release, improvement of adipose tissue

metabolism, and attenuation of ferroptosis (92).

3.5.2 Affect immune cell energy metabolism
The function of immune cells is closely related to their energy

metabolism. For instance, naive T cells primarily rely on aerobic

phosphorylation, while glycolysis becomes the main metabolic

pathway for activated T cells (93). Canagliflozin inhibits intracellular

glycolysis levels, promotes autophagy, and plays an anti-inflammatory

role in immune cells in mice and humans (89). The switch in the

energy metabolism of immune cells occurs as a result of antigenic

stimulation, which leads to metabolic reprogramming. In patients with

diabetes, high glucose toxicity, inflammation, and oxidative stress can

activate immune cells and alter immune metabolism (94). Results from

a cohort study found abnormally enhanced peripheral blood T cell

glucose uptake in patients with type 1 diabetes, which was correlated

with C-peptide and HbA1c levels (95). SGLT2i can potentially reduce

the abnormal activation of immune cells by improving glucotoxicity

and lipotoxicity, thereby altering the energy metabolism pattern of

immune cells (96). In immune thrombocytopenia, empagliflozin can

modify the energy metabolism of CD4+ T cells in peripheral blood,

shifting it from oxidative phosphorylation to glycolysis. The

mechanism behind this effect may be associated with the inhibition

of the mTOR signaling pathway by empagliflozin (97).

SGLT2i causes partial glucose loss, enhanced fatty acid oxidation,

and increased ketone body production (37). In addition to being

metabolites, ketone bodies can serve as energy substrates for specific

cells. This utilization of ketone bodies for energy supply is a

mechanism that protects cells (98). Karagiannis F et al. discovered

that severe patients infected with SARS-CoV-2 experienced a

decrease in the synthesis of b-hydroxybutyrate (BHB), an increase

in the level of glycolysis in T cells, and impairment in the immune

function of CD4+ T cells. Mechanism research revealed that BHB,

acting as a surrogate dye, enhances the production of energy-

donating amino acids (glutamate and aspartate) and glutathione

while promoting oxidative phosphorylation to restore cellular

function (99). Furthermore, it has been discovered that the

ketogenic diet impacts immune function. Ketone bodies can
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enhance T cell reactivity and cell lysis ability by activating

mitochondria l oxidat ive metabol ism-based metabol ic

reprogramming, additionally regulating cell differentiation and

increasing the generation of memory T cells (100). While there is

currently no evidence to suggest that SGLT2i can serve as a substitute

for the ketogenic diet, it is worth noting that it exhibits exceptional

safety and feasibility as a ketogenic diet mimic (101). A prospective

pilot study systematically evaluated the changes in mitochondrial

function of immune cells before and after 6 months of SGLT2i

treatment in kidney transplant recipients with T2DM, aiming to

explore its potential immunometabolic regulatory mechanisms. The

study revealed that SGLT2i significantly preserved mitochondrial

membrane potential in lymphocytes, reduced reactive oxygen species

(ROS) levels, and enhanced mitochondrial biogenesis. These

improvements were closely associated with reductions in body

weight and LDL-C levels. Under PHA-induced immune activation,

SGLT2i notably enhanced the metabolic adaptability of lymphocytes.

This study, for the first time in human transplant recipients,

demonstrated that SGLT2i may participate in immunometabolic

reprogramming by improving mitochondrial homeostasis and

oxidative stress in immune cells, thereby offering a potential

cellular and metabolic explanation for its cardio-renal protective

effects. These findings expand our understanding of the “beyond

glycemic control” benefits of SGLT2i and provide new insights into

its application as an immunometabolic intervention in chronic

diseases (102).
4 Key molecular pathways modulated
by SGLT2i

4.1 Anti-inflammatory pathways

SGLT2i reliably exhibit strong anti-inflammatory properties in

various disease contexts. One of their primary actions involves

blocking the NF-kB signaling cascade. By interrupting this

pathway, SGLT2i effectively curb the production of inflammatory

markers like TNF-a, IL-6, and IL-1b (103). Additionally, these drugs

directly interfere with the NLRP3 inflammasome—a key molecular

assembly responsible for processing IL-1b—through two distinct

mechanisms: decreasing mitochondrial oxidative stress and

enhancing the autophagy-driven removal of inflammasome

elements (86, 104). The resulting decline in inflammatory cytokines

helps alleviate persistent systemic inflammation, which plays a central

role in the development of cardiometabolic and renal disorders.
4.2 Metabolic adaptation and bioenergetic
regulation

SGLT2i fundamentally alter cellular energy dynamics by

mimicking a fasting state. These drugs trigger AMPK, the body’s

master metabolic regulator, which in turn suppresses the mTOR

pathway—a key promoter of cell growth and synthetic processes

(105). This metabolic switch through the AMPK/mTOR pathway
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not only stimulates cellular cleanup but also dials down

inflammation while boosting insulin responsiveness (106).

What’s more, SGLT2i rev up peroxisome proliferator-activated

receptor alpha (PPARa), shifting the body’s energy preference

toward burning fats and producing ketones (107). This metabolic

pivot offers the heart and brain a cleaner, more efficient fuel source

—especially when they’re under duress—effectively upgrading the

body’s energy economy under stress (2).
4.3 Mitigating oxidative stress

Oxidative stress plays a pivotal role in cellular damage

associated with diabetes and aging. SGLT2i significantly bolster

the body’s antioxidant defenses by stimulating the nuclear factor

erythroid 2-related factor 2 (Nrf2) pathway (108). Once activated,

Nrf2 moves into the nucleus and binds to antioxidant response

elements (ARE), triggering the production of key antioxidant

enzymes like superoxide dismutase (SOD) and catalase (CAT)

(109). By ramping up these protective mechanisms, SGLT2i help

counteract harmful ROS, minimizing oxidative damage to vital

cellular components—lipids, proteins, and DNA—and ultimately

safeguarding cellular integrity (110).
4.4 Insulin signaling and survival pathways

Enhancements in insulin sensitivity throughout the body are

largely thanks to the improved signaling process involving IRS-1,

PI3K, and Akt (59). This trio plays a pivotal role in glucose

absorption, protein formation, and the sustenance of cellular life. By

easing glucotoxicity and inflammation, medications like SGLT2i can

prevent IRS-1 from getting phosphorylated at the serine site—a move

that’s a hallmark of insulin resistance (105). This in turn ensures the

restoration of effective insulin signaling. Furthermore, the activated Akt

route helps quash apoptosis and maintains the delicate balance

of metabolism.
4.5 Anti-tumor mechanisms

SGLT2i don’t just impact metabolism; they also pack a punch

against cancer through various mechanisms. By cutting off glucose

supplies, they stop the stabilization of HIF-1a, a key player in how

tumors cope with low oxygen levels. Lower HIF-1a levels then bring

down the production of its targets, such as VEGF, effectively shutting

down the growth of new blood vessels in tumors and preventing the

spread of cancer (71). Moreover, these inhibitors hit the brakes on the

Akt/mTOR pathway, which is crucial for cancer cells to multiply,

survive, and make proteins (76, 84). Certain SGLT2 inhibitors even

go the extra mile by directly blocking important enzymes like

PFKFB3, throwing a wrench into the aerobic glycolysis, or

Warburg effect, that many cancer cells rely on (23).

Table 2 outlines the principal molecular pathways influenced

by SGLT2i.
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5 Future perspectives and clinical
implications

Even with all the hype around SGLT2i and their potential

across various health areas, we’re not out of the woods yet. For

starters, a lot of the buzz is based on early lab work or smaller
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trials. We desperately need some big, robust randomized

controlled trials to really prove these drugs work and are safe

for all sorts of patients. Also, we’re still fuzzy on exactly how

SGLT2i tinker with things like immune function, brain

protection, and even how tumors behave. More digging is

definitely needed there. And let’s not forget the big question

mark hanging over what these drugs do in the long run to organs

other than the kidneys and heart, especially in people who don’t

have diabetes.

On the bright side, the fact that we’re using SGLT2i for more

than just blood sugar control shows they might be true multi-organ

protectors. Looking ahead, research should focus on combining

them with other treatments, like GLP-1 receptor agonists or drugs

that tweak the immune system. Figuring out which biomarkers can

help us pick the right patients and seeing if these drugs are actually

cost-effective in the real world are also key. Putting all this together

will be vital to really unlock the full potential of SGLT2i and give

patients the best possible results.
6 Summary

In addition to its hypoglycemic and cardiorenal protective

effects, SGLT2i also exhibits multiple mechanisms for organ

protection. A simplified graphic summary of the beneficial effects

and possible mechanisms of SGLT2i is provided in Figure 1. It can
TABLE 2 Key molecular pathways modulated by SGLT2i.

Pathway
Key

components
Biological
effect

References

Inflammation
NF-kB, NLRP3,
IL-6, TNF-a

Reduces cytokine
production,

attenuates chronic
inflammation

(86, 103, 104)

Energy
Sensing

AMPK, mTOR
Promotes catabolism,
inhibits anabolism,
induces autophagy

(105, 106)

Oxidative
Stress

Nrf2, SOD, CAT
Enhances antioxidant
defense, reduces ROS

damage
(108, 109)

Insulin
Signaling

IRS-1, PI3K, Akt
Improves insulin

sensitivity, promotes
cell survival

(59, 105)

Tumorigenesis
HIF-1a, VEGF,
Akt/mTOR,
PFKFB3

Inhibits angiogenesis,
metastasis, and

tumor metabolism
(23, 71, 76, 84)
FIGURE 1

Beneficial effects and possible mechanisms of SGLT2i on liver, brain, islet b cell, tumor and immune cell.
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delay the occurrence and development of NAFLD by altering liver

fat metabolism, reducing inflammation and oxidative stress,

activating autophagy, and inhibiting liver cell aging. SGLT2i has

also shown the ability to protect neuron function, influence

neurophysiological activity, and improve brain insulin resistance,

which is associated with cognitive function. Furthermore, studies

have found that SGLT2i can safeguard islet function, slow down

tumor growth, and impact immune inflammation and energy

metabolism of immune cells. In conclusion, despite the limited

distribution of SGLT2 receptors, the roles of SGLT2i are extensive

and varied, and its multi-organ protective mechanism holds

significant potential for clinical application.
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