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Melatonin modulates the

gene expression of WEE1

kinase and clock genes: a
crosstalk between the molecular
clocks of the placenta?

Carlos Venegas®, Kevins Jara-Medina®, Nicole Cueto?,
Gerardo Cabello-Guzman?, Constanza Lagunas?, Luis Lillo*
and Francisco J. Valenzuela-Melgarejo™

tLaboratory of Molecular Cell Biology, Department of Basic Sciences, Universidad del Bio-Bio,
Chilldn, Chile, 2Department of Basic Sciences, Universidad del Bio-Bio, Chillan, Chile

Background: The circadian system organizes during 24 hours the temporal
variations in biological processes such as the cell cycle, metabolism, and
hormone production. This occurs by a transcriptional/translational feedback
loop of core clock genes, namely, BMALL, PER1-3, and CRY1-2. The CLOCK-
BMAL1 complex regulates clock-controlled genes like WEE1 kinase, a key
modulator of mitotic entry and placental cell proliferation.

Objective: We aimed to identify temporally regulated gene expression patterns in
the human placenta using bioinformatics analysis of available microarrays in
Gene Expression Omnibus (GEO) datasets and to validate selected findings in
cultured placental explants.

Methods: Temporal microarray data from the GEO were analyzed to identify
circadian and cell cycle-related genes. Selected targets were validated in vitro
using explant cultures of human placenta sampled every 4 hours for 36 hours,
with or without 10 nM melatonin.

Results: We observed rhythmic expression of BMAL1, PER1, PER2, and WEEL in
human placental explants, consistent with the temporal patterns detected in
silico. Melatonin treatment suppressed the circadian oscillation of BMALI1, PER2,
and WEEL. Interestingly, the placenta produced melatonin steadily over 36 hours,
and exogenous melatonin did not alter this production.
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1 Introduction

The coordinated function of the circadian system and the cell
cycle is critical for cell development, homeostasis (1-3), and tissue
regeneration (1, 4-7). The disruption of circadian rhythms elevates
the cancer risk (8) due to the impaired expression of the target genes
from the cell cycle, i.e., cyclins, proto-oncogenes, and tumor
suppressor genes (7, 9-15).

The central clock of the circadian system resides in the
suprachiasmatic nucleus (SCN) (16-21), which synchronizes the
peripheral oscillators through neural and humoral pathways. The
primary humoral signal used by the body is the pineal hormone
melatonin, a hormone synthesized during dark hours and playing a
central role as a systemic timekeeping (22-30).

At the molecular level, circadian oscillations depend on a
transcriptional/translational feedback loop involving a group of
clock genes, namely, BMALI (also known as ARNTL), CLOCK,
PERI-3, and CRYI-2 (31, 32). The CLOCK/BMALI1 heterodimeric
complex initiates the circadian transcription by binding to
conserved promoter sequences, namely, E-box (CACGTG) from
clock genes PERI-3 and CRY1-2 (31), thereby giving the circadian
output signals to clock-controlled genes. One such target is the
kinase WEE1, which can inhibit Cdc2-cyclin B complexes, delaying
G2/M transition and modulating cell proliferation in a time-
dependent manner (1, 7).

Like the circadian system, the cell cycle is a finely timed and
temporal process capable of generating a coordinated series of cell
divisions, regulated by cyclin-dependent protein kinases (Cdk)
essential for the stage transition (33-35). WEEI is of particular
interest because its promoter contains E-box motifs responsive to
CLOCK/BMALLI, positioning it at the interface between circadian
clock and cell cycle regulation (1, 7, 36-39).

The placenta is an endocrine tissue with a circadian production
of hormones essential for pregnancy maintenance (40-43). The
disruption of these temporal events has been linked to altered
trophoblast proliferation, differentiation, and invasion (44, 45).
All those temporal events are hallmarks of placental pathologies
during pregnancy (31) and placental tumors (46-49).

Studies in trophoblast cells, previously stimulated by serum shock,
have shown the circadian expression of the clock gene PER2 (50, 51)
and the ex vivo expression of CLOCK, BMALI, and PERI-2 (52-55).
Moreover, maternal melatonin can cross the placental barrier,
exhibiting a diurnal rhythm during pregnancy, suggesting that it can
give a chronobiotic signal to the placenta (31, 56-60). Interestingly,
shift work modifies the temporal production of melatonin, which
increases cancer incidence, suggesting an association between
melatonin secretion, oncogenesis, and cell proliferation (61-66).

Recent transcriptomic datasets available in the Gene Expression
Omnibus (GEO) provide the opportunity to explore temporal data
of differentially expressed genes (DEGs) in the placenta, showing
potential targets critical for placental physiology. DEG analysis can
provide insight into the crosstalk between the circadian system and
the cell cycle. We found common pathways modified by time hours
and further investigated using placental culture and quantitative
PCR. In this context, we speculated that the human placenta clocks
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can be modified by melatonin supplementation. These can
determine the circadian output of critical signals to clock-
controlled genes like the cell cycle regulator WEEL.

The placenta expresses melatonin-synthesizing enzymes such as
AANAT and ASMT, as well as melatonin receptors, and maternal
melatonin can cross the placental barrier (57, 67, 68). These findings
provide a biological rationale for testing the effects of exogenous
melatonin on placental circadian gene expression.

2 Materials and methods
2.1 Data source and bioinformatics analysis

The bioinformatics analysis was designed to identify time-dependent
placental DEGs enriched for circadian and cell cycle pathways across
independent GEO datasets. We analyzed datasets from the Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) similar to
what was reported previously (69, 70) for the terms “placenta and
clock”, “placenta and circadian”, and “trophoblast and culture” (n =
139). We excluded platform data without temporal samples or
incomplete incoming data. “GSE86171”, “GSE60433”, and
“GSE40182” include temporal samples between 0 and 48 hours
that were visualized using GEO Profiles graphics and the parameter
Benjamin and Hochberg false discovery rate methodology with
significance thresholds set at log2 fold change (logFC) =1 and
adjusted p-value <0.05. We utilized the Kyoto Encyclopedia of
Genes and Genomes (KEGG) for the functional analysis of cell cycle
and circadian rhythms. In the present study, we collected,
combined, and identified the gene expression profile using a
Venn diagram. p < 0.05 was considered a significant difference by
employing DAVID Bioinformatics 6.8, released Oct. 2016. The GO

» o«

terms were “circadian rhythms”, “circadian regulation of gene
expression”, “regulation of circadian rhythm”, “entrainment of

the circadian clock by photoperiod”, and “cell cycle”.

2.2 Human placental tissue collection and
culture

Term placentas from uncomplicated vaginal deliveries were
obtained at approximately 07:00 hours at Herminda Martin
Hospital (Chillan, Chile) after written informed consent was
provided. The Ethics Committee approved the protocols of the
Hospital and the University of the Bio Bio. Placentas were
maintained at 4°C and processed at 07:00 hours. The tissue was
washed three times with ice-cold phosphate-buffered saline (PBS) to
eliminate red blood cells and trimmed to obtain a fetal portion of
the placenta (chorion). Fifty-four explants of approximately 2 mm
(L) x 2 mm (W) x 2 mm (H) and a mass of 45 + 0.841 mg (wet
mass) were used, according to the protocol of Cemerikic et al. (71).

Explants were cultured individually following previously
described protocols (71-73). They were preincubated in M-199
medium (pH 7.2) and maintained in a humidified environment at
37°C and 5% CO, for 4 hours. Then, they were transferred to fresh
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medium either alone (control) or supplemented with 10 nM
melatonin (treatment group). The concentration of 10 nM
melatonin was selected as a physiologically relevant dose, within
the range used in previous studies on peripheral tissues (e.g., 10-100
nM) (74-79). This lower concentration was chosen to avoid
potential pharmacological effects while maintaining biological
activity. A sampling of three explants and the supernatant was
conducted every 4 hours. All explants were weighed and stored with
1 mL TRIzol reagent (Invitrogen, Invitrogen Corporation, Carlsbad,
California, USA). Explants and supernatant were stored frozen at
-20°C.

2.3 Extraction of total RNA and reverse
transcription (RT-PCR)

Explants of the human placenta were extracted in two stages: i) by
the TRIzol method modified following the manufacturer’s instructions
(80) (phase separation, precipitation, and washing RNA) to the ethanol
phase and later and ii) extraction using Kit SV Total RNA Isolation
System modified following the instructions of the manufacturer
(Promega Corporation, Madison, Wisconsin, USA) (purification of
RNA). The absorbance was measured at 260 and 280 nm using a
spectrophotometer to determine the concentration of RNA. Reverse
transcription of 20 ng of extracted RNA was performed using the
Improm Kit II Reverse Transcription System (Promega, Promega
Corporation, Madison, Wisconsin, USA) in a final volume of 20 pL.
The reverse transcription was at 70 °C for 5 minutes, 4°C for 5 minutes,
25°C for 5 minutes, 42°C for 60 minutes, and 70°C for 15 minutes.

2.4 Quantitative real-time PCR

The relative expression of the mRNAs of clock genes BMALI,
PERI-2, and WEEI was measured in samples of total cDNA. The
PCR was performed in a final volume of 10 pL containing 0.33 uL of
primers, forward and reverse primers of the genes studied, 3.8 pL of
nuclease-free H,O, and 5.5 pL of Master Mix II SYBR Brilliant
Green (Agilent Technologies, Santa Clara, California, USA).
The following primers were used: BMALI, forward, 5'-
CTGCATCCTAAAGATATTGCCAAAG-3’, and reverse, 5'-
GTCGTGCTCCAGAACATAATCG-3'; PERI, forward, 5'-GGGCAA
GGACTCAGAAAGAA-3', and reverse, 5~ AGGCTCCATTGCTG
GTAGAA-3'; PER2, forward, 5-TGGATGAAAGGGCGGTCCCT-3',
and reverse, 5-ACTGCAGGATCTTTTTGTGGA-3"; WEEI, forward,
5'-CGCGATGAGCTTCCTGAGCCG-3', and reverse, 5-CAGCG
CACCGGCGAGAAAGAG-3'; cyclophilin, forward, CTCCTTTGAGC
TGTTTGCAG-3', and reverse, 5'-CACCACATGCTTGCCATCC-3'.
For expression from quantitative real-time PCR (qPCR) data, all
expression was normalized with cyclophilin for calculating relative

gene expression by double delta Ct (AACt) and transformed to 2744,
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2.5 Melatonin measurement

The supernatant was cleaned with activated charcoal and
measured by spectroscopic imaging using Fourier transform
infrared (FTIR) spectroscopy associated with Attenuated Total
Reflectance (ATR) (ATR-FTIR). Spectral measurements of the
melatonin standard curve at 0.3-3,000 nM (Sigma-Aldrich, St.
Louis, Missouri, USA.) were conducted, and supernatant samples
were measured in triplicate using ATR-FTIR. The sample spectrum
of 10 uL was recorded at room temperature in the region 1,000-
4,000 cm™! directly on a JASCO FT/IR-4100 Fourier transform
infrared spectrophotometer with a 4.0 cm™" resolution. A linear
relationship was found for melatonin measurement at 1,492 cm L
The melatonin content was calculated following the methodology
described by Filali et al. (81). The inter-assay and intra-assay
coefficients of variation were less than 18%. Endogenous
melatonin was quantified in explants maintained without
supplementation. Exogenous melatonin levels were evaluated in
explants supplemented with 10 nM melatonin. Paired untreated
controls and the standard curve were used to differentiate between
the hormone secreted by the tissue and the exogenous melatonin
added to the medium.

2.6 Statistical data analysis

Data were expressed as mean + SEM and analyzed using
repeated-measures ANOVA, followed by Newman-Keuls post-hoc
test, or Student’s t-test as appropriate. Rhythmicity in gene
expression was evaluated using non-linear regression of the sine-
wave function expressed as Y = Baseline + Amplitude * Sine
(Frequency X + Phase shift). All data were normalized between 0
and 1; the data were analyzed using the GraphPad Prism 5 software,
and p < 0.05 was considered statistically significant.

3 Results

3.1 Identification and functional
classification of differentially expressed
genes

To explore whether circadian and cell cycle pathways were
consistently represented in placental gene expression, we first
analyzed publicly available transcriptomic datasets (GEO). We first
asked whether time of day-dependent transcriptional changes in
placental tissue preferentially involve circadian and cell cycle
pathways across independent datasets. The expression profiling
dataset of mRNA (GEO database) gives the tools for bioinformatics
analysis of molecular pathways modified by time hours in the placenta.
We performed the identification of DEGs via GO term enrichment and
functional classification using DAVID. We selected the GO
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classification related to the circadian system and cell cycle. We used

» <«

terms such as “cell cycle”, “circadian rhythms”, “circadian regulation of

gene expression”, “regulation of circadian rhythm”, and “entrainment
of the circadian clock by photoperiod”. We detected three complete
microarray experiments for analysis: “GSE86171”, “GSE60433”, and
“GSE40182”. The periods studied in the microarrays were 0, 3, 12, 24,
and 48 hours.

Functional annotation using DAVID identified 391 common
DEGs (60.9%) during all time hours studied. Functional enrichment
analysis (DAVID/KEGG) of the 391 common DEGs revealed
significant overrepresentation of the “circadian rhythm” and “cell
cycle” pathways (adjusted p < 0.05). Additional enriched terms
included apoptosis and DNA repair, consistent with the central role
of circadian regulation in cell proliferation and survival. Figure 1
shows the Venn diagram demonstrating the intersections of genes
at different times of the day. Approximately 643, 283, and 1,179
common genes changed their expression level over all the time
hours studied. Volcano plots for each dataset (Figures 2A-C)
display the distribution of DEGs over time, and the pattern is
visualized at every time studied in “GSE86171”, “GSE60433”, and
“GSE40182”. Similarly, the data of clock genes and regulators of the
cell cycle for log2(fold change) and —logl0(p-value) are shown in
Table 1 for every time hour. The relative expression values suggest
the time variation of clock gene expression in the placenta for at
least 24 hours, with a peak for PER2 and CRY1 during the first half
of the day. BMALI shows a peak early in the morning, and the cell
cycle genes TP53, CIPC, and WEEI show a peak during the interval
between early in the morning and noon, suggesting a temporal
variation of genes of circadian and cell cycle clocks.

3.2 In vitro expression of clock gene and
the WEE1 gene in human placental
explants

We next examined whether placental explants maintained
circadian oscillations of core clock genes and the cell cycle

GSE86171: limma, Padj<0.05

GSE60433: limma, Padj<0.05

10.3389/fendo.2025.1640635

regulator WEEI in culture. To validate the in silico observations
associated with temporal variations observed in the microarray of
the placenta, we cultured human placental explants and measured
gene expression every 4 hours for 36 hours. We observed that the
BMALIL, PERI, PER2, and WEEI genes maintain their mRNA
expression in the culture of the human placenta for at least 36
hours (Figure 3).

As shown in Figure 3A, clock gene BMALI expression increases
during daylight hours, showing a rise between 03:00 and 11:00
hours. Also, BMALI showed a local peak at 11:00 hours (range
03:00-11:00 hours is different from 15:00-23:00 hours of the second
day of culture; p < 0.05, one-way ANOVA and Newman-Keuls
post-test), whereas this expression showed a local minimum at
23:00 hours. The relative mRNA expression of PERI showed no
significant changes during the hours studied but exhibited a trend
toward higher expression in the evening (Figure 3B).

PER?2 expression changed during the hours of culture, showing
a peak expression at 19:00 hours on the first day (p < 0.05 ANOVA
and Newman-Keuls) and low expression levels in the following
hours studied (Figure 3C). Weel expression showed no significant
differences but trended upward during nighttime hours (Figure 3D).

The temporal data suggest an endogenous oscillation in BMALI
and PER2 occurring in antiphase with a ~12-hour interval,
indicative of a functional circadian clock in placental tissue.

3.3 Melatonin inhibits the expression of
clock genes and the WEEL gene

Given that the placenta expresses the capacity to synthesize
melatonin and receptors, we tested whether exogenous melatonin
modulates the oscillations of BMALI, PER2, and WEEI. The
exposure of placental explants to 10 nM melatonin suppressed the
rhythmic peaks of BMALI and PER2 expression observed in
untreated cultures. Although PERI and WEEI did not show
statistically significant changes, BMALI expression was reduced
between 07:00 and 19:00 hours under melatonin treatment

GSE40182: limma, Padj<0.05
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FIGURE 1

A Venn diagram of genes between Gene Expression Omnibus (GEO) and the time of day.
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Volcano plots of differentially expressed genes in the Gene Expression Omnibus (GEO) datasets during the hour of the day. (A) Data GSE86171: at O
vs. 3 hours, we detected 2,381 upregulated and 2,418 downregulated genes. At 3 vs. 15 hours, we detected 4,583 upregulated and 5,162
downregulated genes. At 15 vs. 39 hours, we detected 3,385 upregulated and 4,474 downregulated genes. At 39 vs. O hours, we detected 4,701
upregulated and 4,250 downregulated genes. (B) Data GSE60433: at O vs. 6 hours, we detected 4,523 upregulated and 4,344 downregulated genes.
At 6 vs. 12 hours, we detected 824 upregulated and 949 downregulated genes. At 12 vs. 24 hours, we detected 1,407 upregulated and 1,356
downregulated genes. At 24 vs. 0 hours, we detected 6,286 upregulated and 6,224 downregulated genes. (C) Data GSE40182: at O vs. 12 hours, we
detected 10,932 upregulated and 10,019 downregulated genes. At 12 vs. 24 hours, we detected 3,426 upregulated and 5,483 downregulated genes.
At 24 vs. 48 hours, we detected 3,215 upregulated and 3,875 downregulated genes. At 48 vs. O hours, we detected 10,017 upregulated and 8,755

downregulated genes.

(Figures 4A-D). These results suggest that exogenous melatonin can
reduce the amplitude of circadian gene expression in placental tissue.

3.4 Oscillatory ratios reveal phase
relationships between clock genes

To further capture phase relationships among clock genes, we
calculated BMAL1/PERI and BMALI1/PER?2 ratios across timepoints.
To further evaluate gene oscillations, we calculated the expression
ratios BMALI/PERI and BMALI/PER2 (Figure 5). The circadian
oscillation circuits are dependent on the transcriptional/translational
feedback loop of clock genes, which act as positive and negative
regulators, inducing/inhibiting their expression. BMALI/PERI ratios
showed non-significant variation but tended to peak at 15:00 and
23:00 hours on the second day of incubation (Figure 5A).

Frontiers in Endocrinology

Moreover, BMALI1/PER2 ratios exhibited significant oscillation,
peaking between 03:00 and 11:00 hours and declining between
15:00 and 23:00 hours (p < 0.05; Figure 5B), fitting a sine-wave
function (r* = 0.7368). In contrast, melatonin treatment inhibited
the BMALI/PER?2 peaks (Figures 5C, D).

These findings support the existence of an antiphase rhythm
between BMALI and PER2, a circadian pattern that is disrupted
by melatonin.

3.5 BMAL1/WEEZ1 ratio suggests a circadian
regulation of the cell cycle

To assess circadian gating of the cell cycle, we analyzed the ratio

of BMALI to WEEI expression across the culture period. The
BMALI/WEEI expression ratio revealed a peak at 03:00-11:00
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TABLE 1 Volcano data of differentially expressed genes in the circadian system and cell cycle GEO datasets.

10.3389/fendo.2025.1640635

GEO 0-3 hours 3-15 hours 15-39 hours 39-0 hours
dataset log2(fold change) log2(fold change) log2(fold change) log2(fold change)
and —log10(p-value) and -logl0(p-value and -logl0(p-value) and —logl0(p-value)
Perl nd nd nd nd
Per2 —-0.492 2.623 0.767* 3.558*
Per3 nd n.d n.d nd
BMALI -0.88 2.479 0.990* 2.884*
BMAL2 n.d n.d —1.794* 6.259*
GSE86171 Clock nd n.d nd n.d
Cryl -1.942 9.112 1.673 8.208
Cry2 n.d n.d n.d n.d
TP53 0.498* 2.848* -1.099 6.48*
CIPC n.d n.d 0.95 5.198
WEEI nd nd n.d n.d
Perl 3.12 6.69 nd n.d
Per2 3.114* 6.844* -2.719* 6.002*
Per3 1.957 4331 —-1.868 3.939
BMALI 1.468 5.996 1.226 4.895
BMAL2 n.d n.d n.d n.d
GSE60433 Clock nd nd n.d n.d
Cryl 2.433 9.05 n.d n.d
Cry2 1.602 6.211 -1.115 4.262
TP53 n.d n.d n.d n.d
CIPC nd nd n.d nd
WEEI n.d n.d n.d n.d
Perl nd nd n.d n.d
Per2 0.219 1.833 nd nd
Per3 nd nd nd nd
BMALIL nd nd n.d n.d
BMAL2 —2.048* 16.226* nd nd
GSE40182 Clock 0.408* 4.975* —0.403* 3.20*
Cryl nd nd n.d n.d
Cry2 nd nd nd nd
TP53 —-0.336 2.587 nd nd
CIPC 0.938 7.955 nd nd
WEE1 0.552 1.95 nd nd

We used four timepoints for data analysis. Clock- and cell cycle-related DEGs selected from the set of 391 time-regulated genes identified across GEO datasets. Values show log2(fold change) and

—log10(p-value) at the indicated timepoint contrasts. These genes were prioritized to illustrate circadian—cell cycle crosstalk within the broader DEG set.

n.d, not detected; GEO, Gene Expression Omnibus; DEGs, differentially expressed genes.

(*) Mean of several data.
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Temporal expression of clock and cell cycle genes in human placental explants cultured for 36 hours. (A) BMALL mRNA expression showing significant
variation between 03:00-11:00 h and 15:00-23:00 h. (B) PER1 mRNA expression showing no significant oscillation but a trend toward higher levels in the
evening. (C) PER2 mRNA expression peaking at 19:00 h during the first day of culture (p < 0.05). (D) WEEL mRNA expression showing a mild, non-significant
increase during nighttime hours.Data are expressed as mean + SEM (n = 3 per timepoint). Statistical analysis by one-way ANOVA followed by Newman—

Keuls post hoc test; p < 0.05 considered significant

hours, followed by a decline during the night hours of the second
day of culture (p < 0.05; Figure 6A). This antiphase relationship
between BMALI and WEEI was lost in melatonin-treated explants
(Figure 6B). The pattern is consistent with the transcriptional
regulation of WEEI by the CLOCK/BMALI complex.

3.6 Sustained melatonin production in
placental explants

Finally, it was assessed whether placental explants produce melatonin
endogenously and whether supplementation alters secretion levels.
Endogenous melatonin was quantified in supernatants from untreated
cultures (Figure 7A), while apparent exogenous levels were assessed in
melatonin-supplemented cultures (Figure 7B). Values in treated
conditions were interpreted relative to the standard curve and to paired
untreated controls to distinguish secretion from supplemented hormone.

These findings confirm that the human placenta can produce
melatonin autonomously and suggest a regulatory feedback loop
between melatonin and the placental clock.
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4 Discussion

The placenta exhibits a circadian production of critical
hormones required for a healthy pregnancy (41-43, 68, 82, 83).
In agreement with these findings, Diallo et al. (68) demonstrated
that the human placenta displays circadian oscillations in its
metabolism and is capable of synthesizing the melatonin
hormone, suggesting the presence of a functional circadian clock
in the placenta. Importantly, impaired circadian rhythms in the
placental physiology due to the inhibition of melatonin production
(e.g., shiftwork and night-time light exposure) have been associated
with pregnancy complications and adverse outcomes (31, 84-89).
We selected a low nanomolar concentration (10 nM) of melatonin,
consistent with prior studies in several tissues, where nanomolar
doses are biologically active while avoiding potential
pharmacological effects (74-79). Using bioinformatics analyses,
we detected time-dependent variation in the expression of cell
cycle genes TP53, CIPC, and WEEI and clock genes PER2, PER3,
CRY1I, and BMALI. These results suggest that such genes may serve
as markers to study the intrinsic oscillatory capacity of placental
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tissue in vitro. To further explore this capacity, we performed
culture experiments with human placental explants. Also, we
provided complementary in silico and ex vivo evidence that
human placental tissue displays intrinsic circadian dynamics
involving BMALI, PER2, and WEEI and that melatonin reduces
the amplitude of these rhythms.

In culture, explants of the placenta can maintain the cellular
function between 24 and 72 hours, synthesizing critical factors such
as human placental lactogen (72, 90), human chorionic
gonadotropin (CG) (71), prorenin (91), angiogenin (92), placental
24,25(0OH),Dj5 (93), and NO (94), and also showing the capacity of
L-tryptophan transport and indoleamine 2,3-dioxygenase activity
(95). Similarly, in our explants of the human placenta, we detected
the expression of clock genes BMALI and PERI-2. We observed a
peak for BMALI between 03:00 and 11:00 hours, with a local peak at
11:00 hours on the second day of culture, like that observed in rat
liver (96), which was delayed 4 hours to the lungs and adrenal
glands of rats (97, 98), or 9 hours in the adrenal gland of monkeys
(17). The antiphase of approximately 12 hours observed for BMALI
and PER?2 is similar to that of trophoblasts synchronized by serum
shock (51). Alternatively, the circadian expression of the clock gene
PERI is not detected during culture. Despite the above, we
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speculated that the expression of PERI must be high during the
hours of the night and at the end of the day, different from what was
reported in rat liver (96) or vascular smooth muscle cells (99), where
maximum expression was observed during the night.

Our data suggest that the human placenta shows the same
expression pattern as the peripheral oscillator-like lung (97) and a
delay of 5-7 hours from the adrenal (17, 98). However, we observed
an advanced phase of approximately 4 hours from the rat’s liver
(96), and PER2 expression is similar to that of the mouse placenta ex
vivo. This pattern, after serum shock, is maintained in the culture of
trophoblast cells (51). These data show the oscillation of the clock
genes BMALI and PER2 in antiphase, which is related to the
detected expression ratios of the BMALI/PER2 genes, and suggest
that in the human placenta, there is an endogenous circadian clock
with an autonomous capacity to work.

We showed the effect of melatonin on clock gene expression in
the human placenta, similar to that reported over BMALI and PER2
in the pars tuberalis (100) and the adrenal gland (17, 101). Thus, our
results suggest that melatonin has early effects on the expression of
the clock genes as a chronobiotic agent, possibly via BMALI
inhibition and the posterior decrease of PERI and PER2
expression. Another limitation of this approximation is that only
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The ratio for expression of clock genes BMAL1, PER1-2, and WEE1, a cell cycle gene, in human placental explants cultured for 36 hours in medium
alone (A, B) or medium plus melatonin (C, D). Profiles are representative of three placentas and expressed as mean + SE from 2724“'. The dashed
line in panel B represents the theoretical sine-wave function determined by equation Y = Baseline + Amplitude * Sine (Frequency X + Phaseshift),
where Baseline = 0.39, Amplitude = 0.3, Frequency = 0.26, and Phaseshift = —0.8 for BMAL1/PER-2 (r* = 0.7368). The data were normalized,
considering the highest individual value within the experiment as 1 and the lowest value as 0. The bars on the X-axis indicate the hours of light
(white), the hours of darkness (black), and relative hours of light (gray, A, B). * Different from other hours, one-way ANOVA, n = 3.
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The ratio for expression of BMALI/WEE1 in medium alone (A) or medium alone plus melatonin (B) in human placental explants cultured for 36 hours.
The dashed line in panel A represents the theoretical sine-wave function determined by equation Y = Baseline + Amplitude * Sine (Frequency X +
Phaseshift), where Baseline = 0.26, Amplitude = 0.22, Frequency = 0.25, and Phaseshift = —0.08 for BMALI/WEEI (r* = 0.5304). Profiles are
representative of three placentas and expressed as mean + SE from 2724Ct The data were normalized, considering the highest individual value within
the experiment as 1 and the lowest value as 0. The bars on the X-axis indicate the hours of light (white), the hours of darkness (black), and the
relative hours of light (gray, in panel B). * Different from other hours, one-way ANOVA, n = 3.
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Melatonin production in medium alone (A) or medium alone plus melatonin (B) in human placental explants cultured for 36 hours. The average of
each bar represents the average measurement of the melatonin concentrations obtained from the supernatant of each explant. The bar at the upper
side of the graph indicates the hours of light (white), the hours of darkness (black), and relative hours of light (gray, in panel B). * Different from other

hours, t-test, n = 3. N.S., non-significant difference

a single concentration of melatonin (10 nM) was tested. Although
this dose was selected based on its reported physiological relevance
in placental and adrenal models, further dose-response studies will
be necessary to fully establish the modulatory role of melatonin on
placental circadian gene expression.

The circadian clock regulates the osteogenic potential by
inhibiting BMAL1 expression (102), and the impaired expression

of BMALI and PERI-2 causes tumor growth in mouse embryonic
tissue (103). Alternatively, the knockdown of the clock gene BMALI
in carcinoma cells induces tumor growth when cells are injected
subcutaneously, which may be mediated by the inhibition of
apoptosis and reduction in the time that the cells remain in the
G2/M phase (39). These antecedents suggest that the circadian
system is closely related to the cell cycle in several peripheral tissues.
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FIGURE 8

The placenta shows a circadian expression of clock genes, which can regulate the temporal gating of the cell cycle via modulation of mRNA
expression of WEE1 and inactivation of transition G2—M by phosphorylation of p34(CDC2) (CDK1)-cyclin B and p34(CDC2)-cyclin B kinase complex.
The disruption of the circadian system of the placenta can modify critical processes, such as cell proliferation, differentiation, and invasiveness from
trophoblast cells. Additionally, the placenta has the endogenous ability to produce melatonin, and it may play a homeostatic and antioxidant role in

the placenta
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The BMALI/WEEI ratio suggests that the circadian expression
of WEEI increases at 03:00 hours, similar to a negative regulator of
clock genes. The antiphase expression of BMALI and WEEI
detected here has been reported previously in the liver, with a
peak for WEEI expression during the day/night transition and a
peak for BMALI during the night/day transition (96). Our results
showed an antiphase of expression in the placenta for
approximately 8 hours, suggesting the interplay of both clocks.

A limitation of our study is that clock gene expression was
evaluated in whole placental explants rather than in isolated cells.
While this approach allowed us to identify rhythmicity at the tissue
level, it does not exclude the possibility that specific placental cell
types, such as cytotrophoblasts or syncytiotrophoblasts, may exhibit
distinct circadian dynamics. Future studies using isolated cell
populations will be required to define cell type-specific rhythms
and to clarify how melatonin modulates these cellular clocks.

Our data suggest that variations in the expression levels of the
clock genes BMALI, PERI-2, and the cell cycle gene WEEI would
correspond to a self-sustained placental capacity. The entry into
mitosis by human placenta cells would be regulated by the clock
genes, which would modulate WEEI expression levels by inhibiting
the cell cycle. Furthermore, we showed an agonist role of melatonin in
the cell cycle, decreasing the expression of clock genes BVIALI, PERI,
and PER2 and lowering the expression of WEEI. Similar to what was
previously reported by Lanoix et al, we detected melatonin
production in the human placenta (67). However, our results show
that this production is sustained for at least 36 hours, suggesting a
homeostatic role or protector against oxidative stress (31, 104) in the
placenta that requires further investigation. These results support the
existence of a circadian system-cell cycle interaction, modulated by
the melatonin hormone. A graphical summary of the proposed
mechanism is shown in Figure 8. This model may help explain
how chronodisruption or the disruption of melatonin secretion could
impact placental development and fetal health during pregnancy.

Our experimental limitation is that the explant culture-based
approach assessed gene expression at the tissue level and did not
directly measure functional cell cycle outcomes, such as those that
occur with measurements of proliferation indices, BrdU
incorporation, and flow cytometry. Future work should
incorporate these readouts and include validation in human
placental cell lines (e.g., BeWo and JEG-3) to define cell type-
specific responses and determine whether melatonin suppresses
clock gene expression at the cellular level. Another limitation is that
we did not directly evaluate cell cycle progression or proliferation
indices. This prevents us from linking the transcriptional changes of
WEEI and other genes to functional outcomes. Future work should
address this gap to strengthen the biological interpretation of
our findings.
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