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Exploring the relationship of
triglyceride to high-density
lipoprotein cholesterol and the
triglyceride-glucose index with
white matter hyperintensities in
individuals with type 2 diabetes:
a cross-sectional analysis
Jun Pan, Juan Zheng, Hua Dong, Haili Zhang, Zhiwei Hu,
Zhangchao Tang and Hanwen Xu*

Department of Endocrinology, The First People’s Hospital of Jiashan, Jiashan Hospital Affiliated to
Jiaxing University, Jiaxing, Zhejiang, China
Background: Previous studies have shown that the triglyceride-glucose index

(TyG) is associated with white matter hyperintensities (WMH) in a healthy

population, acting as a marker of insulin resistance (IR). Triglyceride to high-

density lipoprotein cholesterol ratio (TG/HDL-c) has been also recognized as

marker for IR. However, the connection between TyG or TG/HDL-c and WMH in

type 2 diabetes mellitus (T2DM) patients is unclear. The aim of this study was to

examine the link between TG/HDL-c or TyG and WMH in patients with T2DM.

Methods: The study enrolled a total of 420 T2DM patients. The WMH in baseline

brain MRI scans was measured using the modified Fazekas scale. The relationship

between WMH risk and severity in relation to TG/HDL-c and TyG was assessed

through logistic and ordered logistic regression analyses. The variance inflation

factor was employed to examine variable collinearity. Potential non-linear

relationships between TG/HDL-c or TyG and the risk of WMH were examined

using restricted cubic splines.

Results: The median age of the study participants was 57.0 (18.0) years, 280

(66.7%) were men, and 263 (62.7%) were WMH-positive. The Fazekas score was

correlated with the TG/HDL-c (r=0.366, P = 0.035) and TyG(r = 0.088,

P = 0.025). Binary logistic regression analysis showed that TG/HDL-c

(OR = 1.252, 95% CI 1.074-1.459) and TyG (OR = 1.883, 95% CI 1.359-2.609)

were associated with the WMH. Multivariate adjusted restricted cubic spline plots

showed a linear relationship between TG/HDL-c or TyG (P < 0.05, P-

nonlinear > 0.05) and WMH. Multiple ordered logistic regression analyses

showed that TG/HDL-c(OR = 1.123, 95% CI 1.028-1.226) and TyG (OR = 1.606,

95% CI 1.237-2.085) were independently associated with the burden of WMH.

Subgroup analysis showed that TG/HDL-c were more substantially correlated

with theWMH inmale T2DM patients with a shorter duration of diabetes, younger

age, lower blood pressure levels, and poor glycemic control (p<0.05). A

comparable association of the TyG with WMH was also observed in

these subgroups.
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Conclusion: The TyG and TG/HDL-c were independently and significantly

associated with a higher prevalence and burden of WMH in patients with

T2DM, which emphasizes the potential usefulness of these markers in early

risk stratification.
KEYWORDS

type 2 diabetes mellitus, triglyceride glucose index, white matter hyperintensities,
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1 Introduction

White matter hyperintensity (WMH) is an essential marker on

radiographs for detecting small vessel disease in the brain (1). A

previous study has shown that moderate or severe WMH at baseline

is associated with an increased risk of dementia (117%), impairment

in cognitive abilities (129%), functional impairment (121%), any

recurrent stroke (65%), recurrent ischemic stroke (90%), all-cause

mortality (72%), and cardiovascular mortality (102%) (2). Earlier

research has indicated that WMH is associated with abnormalities

in the cerebral microvasculature, and insulin resistance (IR) may be

a crucial underlying mechanism for WMH.

Lipid and glucose metabolism disorders are commonly

observed in patients with IR which is characteristic of many

metabolic diseases, including hyperglycemia, hypertriglyceridemia

and low high-density lipoprotein (3, 4). However, quantifying IR

presents a significant challenge in clinical and research settings,

primarily because of the complicated nature of its underlying

processes and the absence of a universally accepted standard for

measurement. Although the hyperglycemic clamp technique is

acknowledged as the gold standard for evaluating insulin

resistance, it is inappropriate for routine clinical use due to its

invasiveness, technical complexity and the resources it requires (5).

As emerging biomarkers, the triglyceride-glucose index (TyG) and

triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-

c) are used as alternative measures for IR, with their clinical

relevance gaining traction in the Chinese population, which

comprises aspects related to fat and blood glucose. The

relationship between TyG and markers of adiposity, metabolism,

and atherosclerosis associated with IR demonstrated moderate

agreement with the hyperglycemic clamp (6). Furthermore, TyG

showed marginally improved performance compared to the

HOMA2-IR index. The TG/HDL-c is frequently utilized as a

substitute marker for assessing IR. In the general population,

there appears to be a direct link between the TG/HDL-c ratio and

IR (7, 8).

To the best of our knowledge, IR and dysfunction of islet b-cells
are the primary pathophysiological contributors to T2DM (9). As

reliable indicators of IR, numerous studies have shown a significant

link between TyG or TG/HDL-c and pre-diabetes/diabetes among

Chinese individuals (10–12). As type 2 diabetes mellitus (T2DM)
02
becomes more prevalent, the proportion ofWMH linked to diabetes

increases annually (13). WMH in patients with T2DM tend to be

more irregular in shape and to increase in volume, and T2DM

exacerbates changes in WMH shape and volume (14, 15).

Furthermore, brain diseases such as stroke, dementia, and

depression are increasingly being recognized as significant clinical

complications of T2DM. Previous research data show that T2DM is

associated with a 2.5-fold higher risk of ischemic stroke, a 1.5-fold

higher risk of hemorrhagic stroke, and a 1.5-fold higher risk of

dementia (13). These illnesses were also linked to WMH, and the

presence of diabetes alongs ide WMH might worsen

these conditions.

Since T2DM heightens the risk of WMH, it is necessary to

identify the high-risk group early (16). Retrospective studies have

shown that the TyG is correlated with a higher prevalence and

greater load of WMH in a populations without diabetes (17, 18). A

study using population-based MRI indicates that low levels of HDL-

c might be linked to WMH in elderly individuals residing in rural

China (19). And TG/HDL-c is connected to a higher occurrence

and greater impact of cerebral WMHs in CSVD, which highlights a

significant relationship between TG/HDL-c and WMHs (20). TyG

and TG/HDL-c are markers of IR, which may represent an

underlying mechanism of WMH. The TyG and the TG/HDL-c

are more accessible and cost-effective compared to HOMA-IR and

euglycemic-hyperinsulinemic clamp tests. The connection between

TyG or TG/HDL-c and WMH in T2DM patients, who are more

susceptible to WMH, is unclear. The purpose of this research was to

investigate how TyG and TG/HDL-c relate to the risk and severity

of WMH in T2DM patients.
2 Methods and materials

2.1 Study population

The sample size was determined assuming an expected

exposure rate of 50% in the control group and an odds ratio of

2.0, with a = 0.05, power = 0.8, one controls per case, the sample

should consist of 137 cases and 137 controls. Sample size estimation

was conducted using R website for epi package (https://

zstats.medsta.cn/samplesize/). In total, this study involved 420
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T2DM patients confirmed (Figure 1), including 263 positive

patients and negative 157 patients, which exceeded 137 per group.

All patients were performed by Brain MRI scans on a 1.5T MR

scanner (GE Signa VH/I, USA). Data that was missing, amounting

to less than 10%, has been deleted outright. The imaging sequences

included axial T1-weighted, T2-weighted, Fluid-Attenuated

Inversion Recovery, and diffusion-weighted imaging.

Requirements for inclusion: 1. Age must be 18 years or older; 2.

T2DM diagnosis according to the 2020 ADA Standards of Medical

Care; 3. Possession of complete clinical records.

Criteria for exclusion: 1. Acute diabetes-related issues, including

hyperosmolar hyperglycemia, acute infections, and ketoacidosis; 2.

Consumption of lipid-modifying drugs like statins, fibrates, or other

medications that might significantly alter lipid results; 3. Severe

dysfunction with the liver, kidneys, or other organs, severe

infections, malignant tumors, or other critical illnesses; 4. Lack of

general and pertinent clinical data; 5. Women who are pregnant or

breastfeeding; 6. Cerebrovascular abnormalities, intracranial

lesions, or other conditions affecting cerebral blood vessels that

may alter the interpretation of WMH.
2.2 Clinical evaluation

Participants’ demographic characteristics and medical histories

were reviewed, focusing on hypertension, age, gender, and the

duration of their diabetes. Blood glucose, blood pressure, and

serum lipid levels were evaluated on the second day of admission

from venous blood samples collected after fasting overnight. HbA1c

was assessed by employing high-performance l iquid

chromatography with the hemoglobin testing system from Bio-

Rad Laboratories, based in Hercules, CA, USA. Plasma glucose was

measured using glucose oxidase, while total cholesterol (TC), high-

density lipoprotein cholesterol (HDL-c), triglyceride (TG), and low-

density lipoprotein cholesterol (LDL-c) were assessed with the
Frontiers in Endocrinology 03
autoanalyzer (AU5800; Beckman coulter, CA, USA). All

assessments were performed in the same laboratory, and the TG/

HDL-c was calculated as TG (mmol/L) divided by HDL-c (mmol/L)

(21). The TyG = ln[1/2*TG(mg/dl) × fasting blood glucose (mg/dl)]

(22). TG:1 mmol/L(88.5 mg/dL), fasting blood glucose:1 mmol/L

(18.0 mg/dL).
2.3 WMH rating scale

WMH extent was assessed using FLAIR images, and the disease

was categorized into grades 0–3 with a modified Fazekas score (23).

The Fazekas score was independently evaluated by a physician who

had received training and certification from a senior neuroradiology

expert and was unaware of any clinical or laboratory data. Another

senior neurologist, who was independent and highly experienced,

assessed the scoring results. The agreement between the two

Fazekas scores was determined by the weighted kappa coefficient

(0.99). The Fazekas grading system classifies WMH as follows:

Fazekas grade 0 indicates the absence of WMH. Fazekas grade 1 is

characterized by WMH presenting as caps and/or a thin lining

around the lateral ventricles, and/or punctate foci within the deep

grey matter. Fazekas grade 2 is defined by WMH forming a smooth

halo around the ventricles and exhibiting either larger or beginning

confluent foci in the deep white matter. Finally, Fazekas grade 3 is

identified by irregular periventricular signals extending into the

deep white matter and/or confluent WMH foci within the deep

white matter. The participants were categorized into those with

WMH (Fazekas grade ≥1) and no-WMH group.
2.4 Statistical analysis

SPSS 25.0 (IBM Corp, Armonk, NY, USA) was employed for

statistical analysis. Continuous variables were expressed as medians
FIGURE 1

Study recruitment profile.
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and interquartile ranges (IQR), and categorical variables were

expressed as proportions. The Mann–Whitney U test was

employed in our study to compare continuous variables, and

Pearson’s c2 test was used for categorical variables. In order to

analyze the data, we conducted both logistic regression and ordered

logistic regression analyses utilizing four distinct patterns. Pattern 1

was unadjusted; Pattern 2 was adjusted for age and sex; Pattern 3

was further adjusted for the variables in Pattern 2, in addition to

hypertension, duration of diabetes, and fasting blood glucose levels;

and Pattern 4 included adjustments for the variables in Pattern 3,

with the addition of glycated hemoglobin, systolic blood pressure,

and diastolic blood pressure. To evaluate the collinearity

assumption, variance inflation factors (VIFs) were calculated, with

a VIF below 5 suggesting no significant collinearity. The calibration

of our model was evaluated by Hosmer–Lemeshow test (HL test)

and test of parallel lines. The association between TyG or TG/HDL-

c and WMH risk was illustrated using a restricted cubic spline

regression line, performed with R software (version 3.6.3, RMS

package, knot=4)). The odds ratio (OR) and the 95% confidence

interval (CI) were computed, considering a P value <0.05 as

statistically significant.
3 Results

3.1 Features of the study group

Between January 2022 and December 2023, 651 participants

were screened. Participants with poor-quality of magnetic

resonance imaging of the head (n = 15), acute diabetes-related

issues (n = 41) or acute stroke (n = 20), incomplete demographic

and clinical information (n=42), using drugs that could influence

blood lipid levels (n=103) and cerebral vascular abnormalities

(n=10) were excluded. The study included 420 individuals. The

median age for the population was 57.0(18.0) years, and 280

(66.7%) of the individuals were male. There were 157 patients

with noWMH (Fazekas score = 0), 263 patients with positiveWMH

(Fazekas score≥1) among whom 209 (49.8%) participants were

Fazekas grade = 1, 39 (9.3%) participants were Fazekas grade = 2, 15

(3.6%) participants were Fazekas grade = 3. (Table 1).
3.2 Correlations between clinical
characteristics and the Fazekas score

Spearman’s correlation analysis was employed to analyze the

connection between the Fazekas score and the TyG or TG/HDL-c.

According to Table 2, there was a considerable positive correlation

between the severity of WMH and factors such as Age, Duration of

diabetes, TyG, FBG, SBP, and TG/HDL-c (P < 0.05). The severity of

WMH was negatively correlated with DBP (P < 0.05). Therefore,

when we adjusted for the effects of crucial influences that could

confound outcomes, the TyG and TG/HDL-c were independently

and significantly associated with burden of WMH. Logistic

regression analysis also suggested the same results (Table 3).
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3.3 Associations of the TG/HDL-c and TyG
with the risk of WMH

Table 4 illustrates the connection between the TG/HDL-c or

TyG and the occurrence of WMH using logistic regression patterns.

Following further adjustment for confounding variables in pattern

4, there was still a correlation between TG/HDL-c and WMH (OR

1.252, 95% CI 1.074-1.459, P = 0.004). In the fully adjusted pattern

4, a meaningful link between the TyG index and the prevalence of

WMH was also noted (OR 1.883, 95% CI 1.359-2.609, P < 0.001).

Similarly, after controlling important factors, the application of

restricted cubic spline regression revealed that the TG/HDL-c was

correlated with an increased risk of WMH. The relationship

exhibited a significant deviation from linearity(P < 0.05, p-
TABLE 1 The demographic and clinical characteristics of all participants.

Characteristics (N = 420)

Male, n (%) 280 (66.7)

Age (year) 57.0 (18.0)

Height (cm) 167.0 (12.0)

Weight (kg) 71.0 (16.0)

BMI (kg/m2) 24.9 (4.0)

SBP (mmHg) 135.0 (25.0)

DBP (mmHg) 81.0 (14.0)

Duration of diabetes (years) 5.1 (8.0)

FINS (mIU/ml) 4.1 (5.9)

FCP (nmol/L) 1.3 (1.0)

TG (mmol/L) 1.5 (1.0)

HDL-c (mmol/L) 1.1 (0.3)

TC (mmol/L) 4.4 (2.0)

LDL-c (mmol/L) 2.6 (1.0)

NHDL (mmol/L) 3.4 (2.0)

FBG (mmol/L) 6.4 (1.5)

Hypertension, n (%) 204 (48.6)

TyG index 8.2 (1.0)

TG/HDL-c 1.5 (1.0)

HbA1c (%) 9.4 (3.0)

Fazekas grade of WMH

0 (n, %) 157 (37.3)

1 (n, %) 209 (49.8)

2 (n, %) 39 (9.3)

3 (n, %) 15 (3.6)
Information is provided as median (IQR) or as a number (percentage).
BMI (body mass index), SBP (systolic blood pressure), DBP (diastolic blood pressure), FINS
(fasting insulin), FCP (fasting c-peptide), TG (triglycerides), HDL-c (high-density lipoprotein
cholesterol), TC (total cholesterol), LDL-c (low-density lipoprotein cholesterol),NHDL
(nonhigh-density lipoprotein cholesterol), FBG (fast blood glucose).
frontiersin.org

https://doi.org/10.3389/fendo.2025.1639083
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Pan et al. 10.3389/fendo.2025.1639083
nonlinearity = 0.832, Figure 2). Additionally, a noteworthy linear

association was identified between the TyG and the risk of WMH (P

< 0.05, p-nonlinearity = 0.452, Figure 2). The analysis for

collinearity diagnostics revealed that the VIFs of the risk factors

were less than 5, indicating no strong multicollinearity among the

variables. The HL test showed that our predicted and observed

values are close (P > 0.05). Residual analysis indicated that the

fundamental assumptions of the model are satisfied.
3.4 Stratified analysis for associations of
the TG/HDL-c and the TyG with the risk of
WMH

The relationship was analyzed in a stratified way according to

potential modifiers (Table 5). For female T2DM participants aged

60 or older, with HbA1c less than 7%, and SBP of 130 mmHg or

more, and a diabetes history of more than 5 years, there were no

significant associations between TG/HDL-c and WMH risk, which

might be attributed to the very small sample size. A similar

relationship between TyG and WMH risk was also noted in these

subgroups. The stratified analysis did not reveal any interactions.
Frontiers in Endocrinology 05
3.5 Relationships of the TG/HDL-c and TyG
with the severity of WMH

Table 3 presents the connection between the TG/HDL-c or TyG

index and the severity of WMH using ordered regression models.

Following additional adjustments for confounders, TG/HDL-c was

still significantly associated with WMH (OR 1.123, 95% CI 1.028-

1.226, P = 0.010). The TyG was significantly and positively related

with WMH in a fully adjusted model (OR 1.606, 95% CI 1.237-

2.085, P < 0.001). Stronger connections were found between the

TyG and WMH compared to the TG/HDL-c. The VIFs indicating

no strong multicollinearity among the variables. The test of parallel

lines indicated that the proportional odds assumption was met (c² =
24.109, df = 18, P = 0.151). Residual analysis indicates that the

fundamental assumptions of the model are satisfied.
3.6 Stratified analysis for associations of
the TG/HDL-c and the TyG with the
severity of WMH

Additionally, stratified analysis of the relationship between the

TG/HDL-c or the TyG index and the burden of WMH was

performed according to the potential modifiers. In females aged

60 years, with HbA1c below 7%, and SBP of at least 130 mmHg,

who have had diabetes for over 5 years, there was no significant link

between TG/HDL-c and WMH severity. A similar relationship

between TyG and WMH was also noted in these subgroups

(Table 6). The stratified analysis did not reveal any interactions.
4 Discussion

T2DM is acknowledged as a major concern in public health,

impacting both people’s lives and healthcare expenditures

significantly. People suffering from T2DM face a notably

increased chance of experiencing high signal intensity in WMH,

which is a cerebral microvascular condition connected to dementia,

cognitive issues, and stroke (2). Our research showed a significant

positive correlation between TG/HDL-c or TyG and the heightened

risk or severity of WMH in individuals with T2DM. The observed
TABLE 3 The odds ratios and 95% confidence intervals for TG/HDL-c
and TyG in relation to WMH severity.

TG/HDL-c TyG

OR (95% CI) P OR (95% CI) P

Pattern 1 1.121 (1.029, 1.220) 0.009 1.400 (1.135, 1.728) 0.002

Pattern 2 1.188 (1.091, 1.294) <0.001 1.958 (1.537, 2.494) <0.001

Pattern 3 1.130 (1.036, 1.234) 0.006 1.654 (1.278, 2.140) <0.001

Pattern 4 1.123 (1.028, 1.226) 0.010 1.606 (1.237, 2.085) <0.001
The odds ratios (OR) and 95% confidence intervals (CI) were derived using ordered logistic
regression. Model adjustments consistent with Table 4.
TABLE 4 Odds ratios and 95% confidence intervals for the TG/HDL-c
and TyG associated with the risk of WMH.

TG/HDL-c TyG

OR (95% CI) P value OR (95% CI) P value

Pattern 1 1.121(1.004,1.252) 0.043 1.544(1.208,1.972) 0.001

Pattern 2 1.356(1.164,1.579) <0.001 2.235(1.655,3.018) <0.001

Pattern 3 1.260(1.084,1.464) 0.003 1.941(1.409,2.673) <0.001

Pattern 4 1.252(1.074,1.459) 0.004 1.883(1.359,2.609) <0.001
fro
The odds ratios (OR) and 95% confidence intervals (CI) were derived using logistic regression.
Pattern 1 was unadjusted; Pattern 2 accounted for age and sex; Pattern 3 included adjustments
for hypertension, duration of diabetes duration, and FBG along with Pattern 2; Pattern 4
included adjustments for glycated hemoglobin, SBP and DBP with Pattern 3.
TABLE 2 Correlation between clinical markers and the Fazekas score.

Variables R value P value

Age 0.544 <0.001

TyG 0.088 0.025

FBG 0.137 <0.001

SBP 0.200 <0.001

DBP -0.082 0.037

TG/HDL-c 0.366 0.035

HbA1c 0.003 0.941

Duration of diabetes 0.225 <0.001
The p-value was determined through Spearman correlation analysis, where the r value
indicates Spearman's correlation coefficient. P-value < 0.05 suggests a statistically
significant difference.
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associations remained significant after adjusting for important

confounding factors. However, the study employed a cross-sectional

design, indicating that causal inferences should be approached with

caution. Future longitudinal studies are planned to validate these

findings and explore the underlying biological mechanisms.

The definitive cause of WMH is not well understood, but there is

mounting evidence that insulin resistance is a critical underlying

mechanism (24, 25). Patients with IR, apart from those with T2DM,

are likely to develop hypertension and atherosclerosis (26). These are all

risk factors associated with WMH. As a substitute marker for IR, the
Frontiers in Endocrinology 06
TyG index has been proposed recently and shows a good correlation

with IR (27). We revealed that TyG is closely related to the risk and

severity of WMH, which is consistent with the studies in a populations

without diabetes (17, 18). Additionally, for those with T2DM, TG/HDL-

c acts as a simple and reliable indicator of IR and is connected to a

higher occurrence and impact of WMH. This finding is consistent with

past research that highlights a significant relationship between TG/

HDL-c and cerebral WMHs in CSVD (20). And after adjusting for

confounding factors, our model has showed that TyG’s performance

was slightly improved over TG/HDL-c in terms of OR values. TyG
FIGURE 2

The association between TG/HDL-c (A) or TyG (B) and risk of WMH. Adjusted for variables such as age, sex, diabetes duration, hypertension,
duration of diabetes duration, FBG, glycated hemoglobin, SBP and DBP. The dotted line indicates odds ratio, while the shadow indicates 95% CI.
TABLE 5 Subgroup studies on the association of TG/HDL-c or TyG with the risk of WMH.

Subgroups N
TG/HDL-c TyG

OR (95% CI) P OR (95% CI) P

Sex

Male 280 1.238 (1.048, 1.462) 0.012 1.815 (1.256, 2.625) 0.002

Female 140 1.196 (0.819, 1.746) 0.353 1.927 (0.947, 3.921) 0.070

Age, years

<60 239 1.407 (1.154, 1.715) <0.001 2.390 (1.599, 3.574) <0.001

≥60 181 1.023 (0.838, 1.248) 0.825 1.140 (0.632, 2.057) 0.663

HbA1c, %

<7 52 1.701 (0.930, 3.109) 0.084 1.910 (1.341, 2.721) <0.001

≥7 368 1.240 (1.054, 1.458) 0.009 1.902 (1.343, 2.694) <0.001

Duration of diabetes, years

<5 181 1.475 (1.138, 1.911) 0.003 2.578 (1.527, 4.352) <0.001

≥5 239 1.094 (0.913, 1.311) 0.332 1.433 (0.918, 2.238) 0.113

SBP, mmHg

<130 159 1.459 (1.078, 1.976) 0.014 2.281 (1.317, 3.952) 0.003

≥130 261 1.157 (0.966, 1.385) 0.112 1.604 (1.047, 2.455) 0.030
Considering age, sex, hypertension, the duration of diabetes, FBG, glycated hemoglobin, SBP and DBP. Using multivariable logistic regression models, the OR and 95% CI were assessed.
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showed slightly better performance as indicators of IR compared to TG/

HDL-c, aligning with findings from earlier research (28). However,

further research is still needed.

There are several possible mechanisms that IR could account for

the mechanism ofWMH. One possible explanation could be related to

the dysfunction of the blood-brain barrier (BBB). A characteristic of

IR is the malfunctioning of the endothelium (29), featuring reduced

nitric oxide bioavailability and increased endothelin-1 release, which

may trigger endoplasmic reticulum stress, oxidative stress,

mitochondrial dysfunction, and the activation of pro-inflammatory

cytokines, resulting in the breakdown and functional suppression of

the BBB (30, 31). The leakage of toxic substances into perivascular

tissue due to BBB dysfunction can interfere with waste clearance by

the glymphatic system, potentially causing the development and

progression of WMH (32). Another mechanism that might be

involved is the reduction of cerebral blood flow (CBF). IR can

reduce nitric oxide levels and boost endothelin-1 release, leading to

vasoconstriction and decreased blood flow to the brain (29). It has also

been reported that reduced CBF might cause chronic hypoxia-

ischemia in the brain, which is connected to the development of

WMH and an increase in regional WMH volume (33).

Besides, arterial stiffness should be considered. Insulin

resistance has been associated with arterial stiffness in a range of

medical conditions according to earlier findings (34). As a newly

described marker of cerebral vascular stiffness, global cerebral pulse

wave velocity has been shown to correlate with WMH volume,

suggesting that arteriosclerosis is associated with WMH (35). The

stiffening of blood vessels leads to fluid accumulation in

perivascular spaces and hampers interstitial flushing, playing a
Frontiers in Endocrinology 07
role in WMH. The associations between IR and cerebrovascular

diseases, as well as the related risk factors, are relatively definite.

Identifying high-risk WMH patients early can assist clinicians in

quickly adopting rational strategies for treatment and prevention to

slow down WMH progression.

The Rhineland Study has shown that the increase in WMH load

accelerates with age (36). Our findings, similar to Rhineland Study,

indicated that the age correlates with a higher risk and severity of

WMH. WMH showed a strong association with both concurrent

and historical elevated hypertension, with the greatest population

burden of severe WMH attributed to SBP (37). Our investigation

additionally demonstrates a strong affiliation between the SBP and

WMH. Interestingly, this research found that WMH severity had a

significant positive correlation with SBP, while showing a negative

correlation with DBP. The contradictory nature of these result

effectively illustrates the key role that large-artery atherosclerosis

plays in the development of cerebral small vessel disease. The

condition of arteriosclerosis results in higher SBP and pulse

pressure, along with a decrease in DBP (38). Findings from

studies on middle-aged and senior populations indicate that a

greater difference in pulse pressure is connected to more severe

WMH (39). This elevated pulse pressure influences cerebral

microcirculation, causing damage to vascular endothelial cells and

affecting the BBB (40). In individuals with atherosclerosis, the

WMH in the brain simultaneously experience the effects of

systolic hypertension and diastolic hypoperfusion ischemia, which

together accelerate the progression of WMH degeneration.

Research from the past has suggested that among participants

with diabetes, those with HbA1c ≥ 7.0% had an increased burden of
TABLE 6 Subgroup studies on how TG/HDL-c or TyG index relates to the severity of WMH.

Subgroups N
TG/HDL-c TyG index

OR (95% CI) P OR (95% CI) P

Sex

Male 280 1.140 (1.023, 1.269) 0.017 1.560 (1.139, 2.136) 0.006

Female 140 1.105 (0.923, 1.322) 0.276 1.756 (1.070, 2.880) 0.026

Age, years

<60 239 1.229 (1.077, 1.402) 0.002 2.092 (1.446, 3.022) <0.001

≥60 181 1.074 (0.943, 1.221) 0.284 1.252 (0.847, 1.850) 0.260

HbA1c,%

<7 52 1.343 (0.896, 2.014) 0.154 1.919 (0.800, 4.604) 0.144

≥7 368 1.121 (1.023, 1.229) 0.014 1.632 (1.235, 2.158) 0.001

Duration, years

<5 181 1.158 (1.029, 1.303) 0.015 1.891 (1.270, 2.818) 0.002

≥5 239 1.064 (0.925, 1.225) 0.385 1.354 (0.946, 1.935) 0.097

SBP,mmHg

<130 159 1.170 (1.030, 1.328) 0.016 2.036 (1.328, 3.124) 0.001

≥130 261 1.088 (0.957, 1.236) 0.197 1.332 (0.951, 1.866) 0.095
Considering age, sex, hypertension, the duration of diabetes, FBG, glycated hemoglobin, SBP and DBP. Using multivariable ordered logistic regression models, the OR and 95% CI were assessed.
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WMH compared with those with HbA1c < 7.0% (41). The findings

from our stratified analysis also support a stronger association

between TyG or TG/HDL-c and WMH in patients with HbA1c ≥

7.0%. Our findings indicate that TG/HDL-c or TyG has a stronger

link to WMH in men compared to women. This could be due to

variations in participant selection, and more studies are necessary to

assess the gender differences in the association.
5 Strengths and limitations

The key finding of this research is that it is the first to

demonstrate that novel IR could have a more substantial effect on

the risk of WMH in T2DM. The results illuminate the possible role

of lipid metabolism disorders in the emergence of WMH. The

findings of this study facilitate early risk assessment for individuals

with T2DM. However, our research and interpretations are subject

to several limitations. Firstly, this study did not assess the precise

volume of WMH utilizing the Software for Neuro-Image Processing

in Experimental Research (42). Furthermore, the participants in this

study were influenced by additional variables, including racial,

habitual lifestyle factors (such as smoking, alcohol drinking and

physical exercise) and clinical factors or medication use (such as

antihypertensives, antiplatelets and antihypertensive classes), which

might have a connection to WMH. And limitations in data

collection hindered us from acquiring MRI data from non-

diabetic patients, which was gathered from a single hospital and

might restrict the applicability of the study’s findings. It is not clear

if the sample accurately represents the wider diabetic population.
6 Conclusion

In summation, our study demonstrated that both the TG/HDL-c and

the TyG are independently correlatedwith the risk and extent ofWMH in

patients with T2DM. This observation contributes essential knowledge for

the early identification of risks and personalized medical care.
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