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Metabolic dysfunction-associated steatotic liver disease (MASLD) is now the most
common chronic liver condition worldwide, closely linked to obesity, insulin
resistance, and metabolic syndrome. It spans a spectrum from simple steatosis to
metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, and
hepatocellular carcinoma. This review examines the core metabolic disruptions—
particularly in lipid, glucose, bile acid, amino acid, and iron metabolism—that drive
MASLD pathogenesis. It also explores how genetic variants such as PNPLA3,
TM6SF2, GCKR, HSD17B13, and MBOAT7 contribute to disease susceptibility and
variability in clinical outcomes. The interaction between genetic background and
metabolic stress is central to the heterogeneity seen in disease progression and
treatment response. We further discuss persistent clinical challenges and
summarize recent advances in drugs, natural compounds, and microbiota-based
strategies. Finally, we highlight the promise of multi-omics approaches to better
stratify patients and personalize management. A clearer understanding of the
molecular and clinical complexity of MASLD will be key to developing more
effective and individualized strategies for diagnosis and treatment.

MASLD, metabolic dysregulation, genetic polymorphisms, clinical management,
precision medicine

1 Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a spectrum
of hepatic steatosis occurring in the absence of significant alcohol consumption or secondary
causes of liver injury (1). Compared with the previous terminology, the current designation of
MASLD is considered more appropriate, as it better emphasizes the central role of metabolic
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dysfunction in disease onset and progression (2, 3). A recent meta-
analysis involving over 78 million participants from 38 countries
estimated the global prevalence of MASLD at 30.2%, with higher rates
in South America (34.0%) and Asia (30.9%) (4). Such a vast affected
population underscores the urgent need for improved diagnostic and
therapeutic strategies. As prevalence continues to rise globally,
attention has shifted from its hepatic manifestations to its broader
systemic impact. Beyond hepatic complications such as metabolic
dysfunction-associated steatohepatitis (MASH), cirrhosis, and
hepatocellular carcinoma (HCC), MASLD is now recognized as a
multisystem disease (5). It is closely associated with a range of
extrahepatic manifestations, including type 2 diabetes,
cardiovascular disease, chronic kidney disease, and certain cancers
(6, 7). These systemic consequences significantly contribute to the
overall morbidity and mortality associated with MASLD.

In addition to lifestyle and metabolic contributors, accumulating
evidence points to prenatal determinants as early-life factors
influencing MASLD susceptibility (8). Maternal obesity,
overnutrition, and metabolic disorders during pregnancy have been
associated with increased hepatic steatosis in offspring, potentially via
epigenetic programming of hepatic lipid metabolism and adipogenesis
(9-11). These findings highlight a critical developmental window for
future prevention and risk modification strategies.

The pathophysiology of MASLD involves complex interactions
between metabolic dysregulation and genetic susceptibility. The key
metabolic disturbances span lipid metabolism, glucose homeostasis,
bile acid cycling, and iron handling (12-15), while common genetic
variants in patatin-like phospholipase domain-containing protein 3
(PNPLA3), transmembrane 6 superfamily member 2 (TM6SEF2),
glucokinase regulatory protein (GCKR), hydroxysteroid 17-beta
dehydrogenase 13 (HSD17B13), and membrane-bound O-
acyltransferase domain-containing 7 (MBOAT?7) significantly
influence disease progression (16-19). This metabolic-genetic
interplay creates substantial clinical heterogeneity, complicating
the development of precision treatment approaches.

Persistent diagnostic and therapeutic challenges further hinder
clinical management. Reliance on invasive liver biopsies persists due
to limitations in non-invasive alternatives, while the absence of
approved pharmacotherapeutics underscores unmet clinical needs
(20). This review synthesizes current understanding of MASLD’s
metabolic and genetic underpinnings, examines critical barriers to
clinical management, and explores multi-omics strategies for
advancing precision medicine in this complex disorder.

2 Metabolic dysregulation

MASLD arises from a multifaceted disruption of metabolic
homeostasis involving several interrelated biochemical networks.
Perturbations in lipid handling, glucose utilization, bile acid
circulation, amino acid turnover, and iron metabolism collectively
shape the metabolic landscape that underlies disease onset and
progression. These metabolic imbalances not only contribute
individually but also interact synergistically, amplifying hepatic
dysfunction and fostering disease heterogeneity (Figure 1).
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2.1 Aberrant lipid metabolism

Among the various metabolic abnormalities, disordered lipid
metabolism is widely regarded as a central driver of hepatic
steatosis. Hepatic lipid overload stems from an imbalance
between fatty acid influx, endogenous lipid synthesis,
mitochondrial oxidation, and lipid export via very low-density
lipoprotein (VLDL) secretion (21). In MASLD pathophysiology,
hepatocyte lipid accumulation originates from three sources: dietary
lipids, adipose-derived free fatty acids (FFAs), and enhanced de
novo lipogenesis (DNL) (22). In the context of insulin resistance,
enhanced lipolytic activity in peripheral adipose tissue leads to
elevated plasma FFA levels, which are rapidly delivered to the liver
through the portal circulation (23). Simultaneously, high-fat dietary
patterns further augment lipid input. Hepatic DNL becomes
hyperactive under these metabolic conditions, primarily driven by
transcriptional activation of lipogenic regulators such as sterol
regulatory element-binding protein-lc (SREBP-1c) and
carbohydrate responsive element binding protein (ChREBP).
These factors stimulate the expression of enzymes including fatty
acid synthase (FASN) and acetyl-CoA carboxylase (ACC), leading
to increased triglyceride production (24, 25). Carbohydrate
metabolism intersects with lipogenesis via glucose-activated
ChREBP and UDP-glucose-mediated SREBP-1c regulation,
creating a metabolic crossroad between lipid synthesis and
glycogen storage (26, 27). Chronic caloric excess disrupts this
balance, overwhelming hepatocellular lipid-handling capacity.

Critically, MASLD progression reflects not triglyceride
accumulation per se, but rather cytotoxic lipid species buildup.
Saturated fatty acids, ceramides, and free cholesterol induce
organelle stress through endoplasmic reticulum dysfunction,
mitochondrial damage, and lysosomal permeabilization (28).
These insults converge on cell death pathways—apoptosis,
necroptosis, pyroptosis—that drive steatohepatitis development
(29). Among these toxic lipids, ceramides (Cer) play a pivotal role
by activating protein kinase C (PKC) and c-Jun N-terminal kinase
(JNK) pathways, thereby impairing insulin signaling and inducing
hepatocyte apoptosis (30-32). Cer accumulation further
exacerbates mitochondrial dysfunction and reactive oxygen
species (ROS) production, which activate inflammatory signaling
and aggravate hepatic injury (33). In addition, excessive free
cholesterol accumulation in hepatocytes can provoke ER stress
and mitochondrial impairment, leading to activation of the
NLRP3 inflammasome, release of pro-inflammatory cytokines,
and polarization of Kupffer cells toward a pro-inflammatory
phenotype (34-37). These stress and immune responses, initiated
by lipid metabolic dysregulation, synergistically drive the transition
from simple steatosis to non-alcoholic steatohepatitis (MASH).

2.2 Insulin resistance and glucose
metabolic dysregulation

Insulin resistance (IR) is a pivotal pathological mechanism
underlying the onset and progression of MASLD. It induces
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FIGURE 1

Schematic overview of the major metabolic pathways driving the progression of MASLD to MASH. Excess lipid intake enhances DNL, FFA
accumulation, and ceramide synthesis, activating PKC/JNK signaling and insulin resistance. Disturbed glucose metabolism promotes AGEs-RAGE/
NF-xB signaling, inflammation, and fibrosis. Altered bile acid metabolism with increased toxic bile acids and impaired FXR/TGRS5 signaling
exacerbates oxidative stress, macrophage activation, and hepatocellular injury. Dysregulated amino acid metabolism, including elevated BCAA/AAA
and homocysteine, drives mTORC1 activation, mitochondrial overload, and ROS production. Iron overload due to hepcidin—ferroportin imbalance

amplifies oxidative damage via the Fenton reaction. Together, these metabol
inflammation, promoting hepatocyte injury, fibrosis, and disease progression.

systemic metabolic disturbances primarily through dysregulated
interactions among adipose tissue, liver, and skeletal muscle (38).
In adipose tissue, IR results in aberrant activation of hormone-
sensitive lipase (HSL), leading to enhanced lipolysis and increased
release of FFAs into the circulation, which are subsequently taken
up by the liver (39). This process significantly contributes to hepatic
lipid overload and metabolic derangement. Simultaneously,
elevated levels of pro-inflammatory adipokines (e.g., TNF-o, IL-6)
and decreased adiponectin further impair AMP-activated protein
kinase (AMPK)-mediated fatty acid oxidation, exacerbating lipid
accumulation within hepatocytes (40).

In the liver, IR presents as “selective hepatic insulin resistance”:
insulin’s ability to suppress gluconeogenesis is diminished, resulting
in fasting hyperglycemia, whereas its stimulatory effect on DNL
remains intact or even enhanced (41). This paradox is largely
mediated by persistent activation of the mTORCI1/SREBP-1c axis
under hyperinsulinemic conditions, which drives fatty acid
synthesis and triglyceride accumulation, thereby promoting
hepatic steatosis and fibrosis (42). In addition, lipid intermediates
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ic insults converge on excessive ROS generation and chronic

such as diacylglycerol (DAG) activate protein kinase Ce (PKCe),
impairing insulin signaling and perpetuating a vicious cycle of
lipotoxicity and insulin resistance (43).

In skeletal muscle, IR impairs glucose clearance due to defective
GLUTH4 translocation, which forces the liver to compensate by
redirecting excess glucose into lipogenesis via ChREBP-dependent
metabolic reprogramming—constituting a “glucose-to-lipid”
maladaptive feedback loop (44, 45). Chronic hyperglycemia
further exacerbates hepatocellular injury through multiple
mechanisms: excessive glucose activates the polyol pathway,
depleting NADPH and inducing oxidative stress, while advanced
glycation end-products (AGEs) trigger inflammatory cascades via
the RAGE/NF-xB axis, thereby accelerating hepatic fibrogenesis
(46-48).

At the metabolic level, hyperglycemia robustly promotes DNL
through the ChREBP-FASN/ACC pathway. Fructose metabolism,
owing to its “metabolic bypass” nature, circumvents key regulatory
steps in glycolysis and rapidly enters the tricarboxylic acid (TCA)
cycle, generating excess acetyl-CoA, which fuels lipogenesis and
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uric acid production while inducing ER stress and oxidative damage
(49-52). Additionally, acetyl-CoA derived from glucose metabolism
not only serves as a substrate for DNL but also epigenetically
modulates lipogenic genes such as stearoyl-CoA desaturase 1
(SCD1) and diacylglycerol acyltransferase 2 (DGAT2) via histone
acetylation, thereby establishing a long-lasting “metabolic memory”
that predisposes hepatocytes to persistent lipid accumulation
(53, 54).

Notably, hepatocellular lipotoxic mediators such as ceramides and
DAGs activate PKCe, leading to serine phosphorylation of insulin
receptor substrate (IRS), which disrupts PI3K/Akt signaling and
aggravates hepatic insulin resistance (43, 55). Concurrently, IR-
associated hyperinsulinemia enhances NADPH oxidase (NOX)
activity, triggering ROS generation that further suppresses insulin
signaling via the JNK/IKK[B pathway (56-58). Moreover, lipid
peroxidation products such as 4-hydroxynonenal (4-HNE) directly
impair mitochondrial function and modify key signaling proteins,
amplifying inflammatory and fibrotic responses that facilitate the
transition from simple steatosis to necroinflammatory injury and
hepatic fibrosis (59, 60).

2.3 Bile acid metabolism dysregulation

Bile acids (BAs) are bioactive molecules synthesized in the liver
from cholesterol and secreted into the intestine via the bile ducts,
where they facilitate the emulsification, digestion, and absorption of
dietary lipids (61). BA synthesis proceeds through two primary
pathways: the classical (or neutral) pathway, in which cholesterol
70i-hydroxylase (CYP7A1) serves as the rate-limiting enzyme, and
the alternative (or acidic) pathway, primarily mediated by sterol 27-
hydroxylase (CYP27A1) (62). Once synthesized, BAs activate the
farnesoid X receptor (FXR), which induces the expression of small
heterodimer partner (SHP), thereby suppressing the transcription
of CYP7A1 and CYP8BI, ultimately reducing BA synthesis through
negative feedback regulation (63). In addition to biosynthetic
control, FXR regulates BA transport by promoting hepatic BA
efflux and limiting intrahepatic BA accumulation, thus protecting
against cholestasis and hepatocellular injury (64). FXR also induces
intestinal fibroblast growth factor 15/19 (FGF15/19), which further
acts on the liver to inhibit BA synthesis and reinforce homeostatic
regulation (65, 66).

Following their secretion and intestinal metabolism, BAs
undergo reabsorption and enterohepatic circulation. A portion of
BAs enters systemic circulation, where they interact with nuclear
and membrane-bound receptors across multiple organs. This cross-
organ communication enables BAs to function not only as digestive
agents but also as metabolic signaling molecules that influence lipid
and glucose metabolism, energy homeostasis, and immune
responses (61).

In the context of MASLD, BA metabolic dysregulation has been
identified as a critical contributor to disease pathogenesis.
Alterations in BA composition and impaired FXR/TGR5 signaling
may disrupt hepatic lipid and glucose homeostasis, promote hepatic
fat accumulation, exacerbate inflammatory responses, and
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accelerate liver injury (67, 68). A study shows that several bile
acids are significantly elevated in patients with MASLD, suggesting
their potential utility as biomarkers for distinguishing MASH from
simple steatosis (69).

2.4 Amino acid metabolism dysregulation

An expanding body of research underscores the significant
contribution of amino acid metabolic disturbances to MASLD
pathogenesis (70-73). As the liver serves as a central hub for
amino acid synthesis, degradation, and interconversion,
perturbations in systemic amino acid profiles are frequently
observed in hepatic dysfunction (74). In MASLD, elevated
circulating concentrations of branched-chain amino acids
(BCAAs) and aromatic amino acids (AAAs) have been
consistently identified (72, 75, 76). These elevations correlate
strongly with insulin resistance and altered lipid handling,
thereby facilitating hepatic fat accumulation and exacerbating
inflammation (77). Beyond their metabolic roles, amino acid-
derived intermediates can generate reactive oxygen species and
impair mitochondrial function, further disrupting insulin signaling
and accelerating disease progression (78).

Among individual amino acids, glycine levels are frequently
depleted in MASLD. As a precursor for glutathione biosynthesis,
reduced glycine availability compromises antioxidant defenses.
Supplementation with glycine has demonstrated beneficial effects
on liver steatosis and inflammation in both preclinical models and
clinical trials (79). Disruptions in methionine metabolism are also
prominent in MASLD, often resulting in hyperhomocysteinemia
and diminished glutathione production—factors that collectively
enhance oxidative stress and hepatic lipid deposition (80). In
pediatric MASLD populations, metabolic alterations involving
methionine, tyrosine, and tryptophan pathways have been
observed, suggesting that such changes may manifest early in
disease evolution (81). Additionally, aberrant expression of
glutamine-metabolizing enzymes has been reported in MASLD
livers, potentially affecting redox regulation and modulating
immune responses (82).

2.5 Iron metabolism dysregulation

Iron, a vital micronutrient, participates in critical physiological
processes such as oxygen transport, mitochondrial respiration, and
DNA replication (83). Disruption of iron equilibrium can interfere
with cellular function and has been implicated in the pathophysiology
of diverse conditions, including anemia, neurodegenerative diseases,
and malignancies (84). Increasing evidence also supports a critical
role for iron metabolism dysregulation in the development and
progression of MASLD (85, 86).

Approximately one-third of MASLD patients exhibit elevated
serum ferritin levels, normal or mildly increased transferrin
saturation, and mild hepatic iron deposition—a constellation
referred to as “dysmetabolic iron overload syndrome (DIOS)
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(87). Excessive hepatic iron accumulation promotes the generation
of hydroxyl radicals via the Fenton reaction, triggering lipid
peroxidation, mitochondrial dysfunction, and apoptosis (88).
These events exacerbate hepatic inflammation and fibrosis,
ultimately accelerating the transition from simple steatosis
to MASH.

Moreover, iron overload has been closely linked to insulin
resistance, potentially by impairing insulin signaling and reducing
insulin sensitivity, thereby facilitating hepatic fat accumulation (89).
In individuals with MASLD, pro-inflammatory cytokines—
particularly tumor necrosis factor-o. (TNF-o)—can induce
hepatic overexpression of the iron-regulatory hormone hepcidin.
Elevated hepcidin suppresses ferroportin, the principal iron
exporter, thereby promoting iron retention within hepatocytes
and Kupffer cells. This accumulation enhances oxidative stress
and pro-inflammatory signaling, exacerbating liver injury and
fibrosis (90).

2.6 Metabolic-genetic crosstalk

MASLD results from the interplay between systemic metabolic
stressors and genetic predisposition, forming a complex disease
network. Metabolic disturbances—such as insulin resistance,
lipotoxicity, and bile acid dysregulation—initiate and perpetuate
hepatic injury, while genetic variants influence individual
susceptibility, disease progression, and therapeutic response.

For instance, the PNPLA3 1148M variant impairs lipid droplet
remodeling, promotes free cholesterol accumulation, and induces
mitochondrial dysfunction in hepatic stellate cells (LX-2), thereby
activating them and contributing to liver fibrosis (91, 92). The
TM6SF2 E167K mutation reduces VLDL secretion, heightening
hepatocellular lipid stress (93). In glucose metabolism, GCKR
P446L enhances DNL in hyperinsulinemic states, especially under
high-glucose dietary conditions (94). MBOAT7 loss impairs
phospholipid remodeling, exacerbating lipid accumulation and
inflammatory signaling under hyperinsulinemic or lipotoxic

10.3389/fendo.2025.1639064

conditions, thereby promoting fibrosis (95, 96). In contrast, loss-
of-function variants in HSD17B13 can attenuate hepatocellular
injury and inflammatory responses under metabolic stresses such
as lipotoxicity and oxidative stress, thereby conferring protection
against MASH and fibrosis (19, 97).

These examples highlight that genetic risk is context-dependent,
with phenotypic expression shaped by the metabolic milieu.
Conversely, metabolic interventions may yield variable outcomes
depending on genetic background. This metabolic-genetic crosstalk
explains the clinical heterogeneity of MASLD and supports a shift
toward genotype-informed, metabolism-guided precision medicine.
Furthermore, gene-environment interactions play a pivotal role in
modulating MASLD severity. Dietary composition (e.g., high sugar
or saturated fat intake), physical inactivity, and even prenatal
exposures may amplify or attenuate the phenotypic effects of
genetic variants such as PNPLA3 I1148M or TM6SF2 E167K.
Understanding these interactions is crucial for translating genetic
insights into effective lifestyle or pharmacological interventions.

3 Genetic polymorphisms

Genetic variation critically modulates MASLD susceptibility
and progression (98, 99). Key single nucleotide polymorphisms
(SNPs) in PNPLA3, TM6SF2, GCKR, HSD17B13, and MBOAT7
emerge as central regulators of hepatic lipid dynamics and
fibrogenesis (100). Deciphering their molecular impacts provides
critical insights for personalized therapeutic development. The
genetic polymorphisms of MASLD are shown in Table 1. These
associations have been validated across diverse ethnic groups using
genome-wide association studies (GWAS) and candidate gene
analyses. Sample sizes vary widely across studies—from a few
hundred individuals to meta-analyses involving over one million
participants. Techniques such as next-generation sequencing
(NGS), TagMan genotyping, and array-based GWAS platforms
have been employed to establish robust links between these
polymorphisms and MASLD phenotypes.

TABLE 1 Genetic polymorphisms in MASLD: functional impacts and clinical associations.

Gene Variant Key Mechanism Clinical Impact
« Loss of lipolytic activity — lipid droplet retention (102) o 2.5x higher MASH risk (G allele) (105)
PNPLA3 rs738409 (1148M) | « Impaired ABCG1-mediated cholesterol efflux in HSCs — mitochondrial « 5x increased HCC risk (GG vs. CC) (106)
dysfunction (104) « Synergy with SAMMS50 SNPs (109)
TM6SE2 rs58542926 » Reduced VLDL secretion — hepatic TG accumulation (114) « Increased fibrosis/HCC risk (115-117)
(E167K) « Synergy with PNPLA3/MBOAT?7 variants (103) « Paradoxical | CVD risk (118)
rs1260326 o . X « Elevated hepatic fat (121)
. K inh il ke/l 4
GCKR (P446L) Reduced GK inhibition — T glucose uptake/lipogenesis (94) « Interaction with PNPLA3 — MASH
o Altered hepatic lipid metabolism (122-126) .
rs780094 progression (127)
72613567
HSD17B13 Z"SF>TA) o Loss-of-function — | retinol metabolism (131) o | MASLD/HCC risk (129-131)
« 1 Fibrosis risk in Han Chinese (133) o Attenuates PNPLA3 effects (97, 136)
rs6834314
o Al PI li TLR activati 138, 142 « T MASH/Ail is (141
MBOAT? 1s641738 (C>T) tered PI remodeling — activation ( ) 1 SH/fibrosis (141)

e | ANGPTL3 — fibrosis/ASCVD link (143)
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« No pediatric association (144)
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3.1 PNPLA3

The PNPLA3 rs738409 C>G variant (resulting in an isoleucine-
to-methionine substitution at position 148, i.e., 1148M) constitutes
the strongest genetic risk determinant for MASLD (101). This
substitution abolishes enzymatic activity, impairing lipid droplet
hydrolysis and promoting intracellular retention of triglycerides
and unesterified cholesterol (102). The pathogenic variant
accumulates on lipid droplets, forming dysfunctional aggregates
that prevent lipid release—a direct mechanistic link to hepatic
steatosis (103).

Beyond steatosis, the 1148M variant also impairs cholesterol
handling in hepatic stellate cells (HSCs), specifically by reducing
ABCGI-mediated cholesterol efflux. The resulting intracellular
cholesterol buildup triggers mitochondrial dysfunction—
evidenced by diminished ATP synthesis, elevated ROS, and
compromised mitochondrial membrane potential—which
collectively activate HSCs and promote fibrogenesis (104).
Epidemiological analyses have linked the I148M variant to a
significantly elevated risk of advanced liver disease. Carriers of the
G allele exhibit an approximately 2.5-fold higher likelihood of
developing MASH (105). Moreover, patients with the GG
genotype show approximately five-fold increased HCC risk
relative to CC individuals (106).

Importantly, the pathological influence of the PNPLA3 1148M
variant extends beyond MASLD, suggesting broader implications
across metabolic and fibrotic liver conditions. In patients with
chronic hepatitis C, this polymorphism has also been associated
with more severe steatosis and fibrosis, indicating its broader
relevance across liver diseases (107, 108). Additionally, the
combined polymorphisms in PNPLA3 and SAMMS50—specifically
four SNPs—have been linked to an increased risk of MASLD and
elevated serum aspartate aminotransferase (AST)/alanine
aminotransferase (ALT) levels, suggesting more severe hepatic
injury (109). SAMMS50 encodes a mitochondrial sorting and
assembly machinery protein essential for maintaining
mitochondrial structure and respiratory function (110). Variants
in SAMMS50 may disrupt mitochondrial integrity and enhance
oxidative stress, thereby exacerbating hepatic steatosis and
inflammation in synergy with PNPLA3 mutations. Collectively,
the PNPLA3 1148M variant represents not only a major genetic
driver of MASLD and its complications but also a potential
biomarker for fibrosis and HCC risk, as well as a promising target
for precision therapeutics (111, 112).

3.2 TM6SF2

TM6SF2 gene, located on chromosome 19p13.3, encodes a
protein involved in hepatic lipid metabolism and has been strongly
implicated in MASLD pathogenesis (113). A notable SNP,
1rs58542926, results in a glutamate-to-lysine substitution at position
167 (E167K) and is recognized as an independent risk factor for
hepatic steatosis. This variant impairs the function of TM6SF2,
reducing the efficiency of very low-density lipoprotein VLDL
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lipidation and secretion, which in turn causes triglyceride buildup
within hepatocytes and promotes fatty liver developmen (114).

Carriers of the E167K variant not only face an elevated risk of
MASLD but are also more prone to developing liver fibrosis and
HCC (115-117). Additionally, emerging evidence suggests that
TM6SF2 interacts synergistically with other genetic variants,
including those in PNPLA3 and MBOAT?7, further aggravating
hepatic lipid accumulation, inflammation, and fibrotic
progression (103).

Curiously, despite its association with liver disease, the E167K
variant correlates with lower circulating triglyceride levels and a
reduced risk of cardiovascular disease (CVD) (118). This paradox
points to a potential metabolic trade-off, wherein hepatic fat
retention occurs alongside decreased systemic lipid availability,
possibly conferring some cardiovascular benefit. Nonetheless, the
broader metabolic implications of this relationship remain
incompletely understood and merit further investigation.

3.3 GCKR

GCKR gene encodes a critical regulator of glucose metabolism in
hepatic and pancreatic tissues. By reversibly binding glucokinase
(GK), GCKR modulates GK’s localization and enzymatic activity,
serving as both a metabolic sensor and a safeguard against excessive
glucose flux (94). Through this mechanism, GCKR contributes to the
balance between glucose utilization and lipid synthesis, and its
dysfunction can predispose the liver to metabolic stress and steatosis.

Genetic variants in GCKR have garnered attention due to their
associations with diverse metabolic traits, including elevated fasting
triglycerides, altered insulin sensitivity, and increased risk of MASLD
(119-121). Among the most studied are rs1260326, which leads to a
proline-to-leucine substitution at position 446 (P446L), and rs780094.
Both variants have been robustly linked to hepatic fat accumulation
and MASLD susceptibility (122). Functionally, the P446L variant
reduces GCKR’s inhibitory effect on GK, enhancing hepatic glucose
uptake and subsequent lipogenesis (94, 123). This, in turn, activates
gluconeogenesis and de novo lipogenesis pathways, thereby promoting
intracellular lipid accumulation and hepatic steatosis.

Another notable variant, rs780094, although located in an
intronic region, modulates GCKR expression and has been linked
to altered hepatic lipid metabolism (124-126). Carriers of this
variant tend to exhibit elevated serum triglycerides and an
increased risk of hepatic fat accumulation.

Interestingly, a population-based study in Turkey demonstrated
that polymorphisms in both GCKR (rs1260326) and PNPLA3
(rs738409) are significantly associated with an elevated risk of
MASH (127). Among them, the rs738409 variant appears to exert
a stronger influence on disease progression.

3.4 HSD17B13

Hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) is a
lipid droplet-associated hepatic enzyme with retinol dehydrogenase
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activity, involved in the metabolism of retinol (128). Genetic
variants in HSD17B13, particularly the rs72613567 (T>TA) splice
site insertion, have been extensively investigated in relation to
MASLD (19). This variant results in a loss-of-function protein,
which may mitigate hepatic inflammation and fibrosis by
modulating retinoid metabolism, and has been associated with a
reduced risk of both MASLD and HCC (129-131).

Studies have shown that both the rs72613567 and rs6834314
variants are negatively associated with MASLD and MASH, and
correlate with a lower incidence of adverse hepatic outcomes in
multiethnic Asian cohorts (132). However, in the Han Chinese
population, the rs72613567:TA variant has been reported to be
associated with an increased risk of liver fibrosis, suggesting a
potential ethnic-specific effect (133). Moreover, a retrospective study
found that the rs72613567:TA variant does not confer protection in
advanced chronic liver disease and is associated with an increased risk
of decompensation and mortality (134). Intriguingly, this variant may
exert a protective effect against alcohol-induced liver damage,
particularly in specific populations such as Han Chinese (135).

The interaction between HSD17B13 and other MASLD-
associated genes, such as PNPLA3, has also attracted attention.
Evidence suggests that the rs72613567:TA variant may attenuate
the deleterious hepatic effects of the PNPLA3 1148M mutation, as
reflected by lower serum transaminase levels and reduced hepatic
inflammation (97). In a Japanese MASLD cohort, carriers of the
HSD17B13 rs6834314 G allele exhibited a diminished impact of the
PNPLA3 rs738409 GG genotype on the development of advanced
fibrosis, further supporting a modifying role of HSD17B13 in
genetic susceptibility to liver disease (136).

3.5 MBOAT7

MBOAT?7 gene encodes a critical acyltransferase involved in the
remodeling of phosphatidylinositol (PI), a key component of
membrane phospholipids (137). MBOAT? is highly expressed in
hepatocytes and plays an essential role in maintaining membrane
lipid composition and regulating intracellular signaling pathways
(138). A functional variant, rs641738 C>T, has been strongly
associated with MASLD susceptibility and progression in several
large GWAS (139, 140).

The T allele of rs641738 is associated with decreased MBOAT?7
expression, leading to reduced incorporation of arachidonic acid
into PI and altering hepatic membrane lipid compositionn (96,
138). This promotes hepatic lipid accumulation and increases the
risk of inflammation and fibrosis. A meta-analysis involving over
one million participants found that this variant is significantly
associated with increased liver fat content, elevated serum ALT
levels, and a higher prevalence of MASH and advanced fibrosis—
particularly among individuals of European descent (141).

In a multicenter liver biopsy cohort, the rs641738 T allele was
positively correlated with fibrosis severity but showed no significant
association with hepatic steatosis (104). In addition, loss of
MBOAT?7 function may activate the Toll-like receptor (TLR)
signaling pathway and enhance the pro-inflammatory response of
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hepatic macrophages, further exacerbating liver injury and
fibrogenesis (142). Among Han Chinese individuals, carriers of
the rs641738 T allele exhibit reduced serum levels of angiopoietin-
like protein 3 (ANGPTL3), which is associated with increased
fibrosis severity and may mechanistically link MASLD with
atherosclerotic cardiovascular disease (ASCVD) (143).

However, in contrast, another study reported no significant
association between rs641738 and MASLD risk in overweight or
obese children, suggesting that the genetic effects of MBOAT7 may
vary by age and ethnicity (144). Collectively, current evidence
supports a pivotal role for MBOAT?7 in the pathogenesis of
MASLD while underscoring the genetic heterogeneity of this
variant across diverse populations.

4 Clinical challenges: from diagnosis
to personalized treatment

Despite significant advances in understanding the
pathophysiology of MASLD, numerous challenges persist in
clinical practice (Table 2). From accurate diagnosis to
individualized treatment, each step is hindered by technical
limitations and implementation barriers, which impede early
disease identification and restrict effective risk stratification and
management of high-risk individuals.

4.1 Diagnostic challenges

Liver biopsy remains the gold standard for diagnosing MASLD
and MASH due to its ability to directly assess steatosis, inflammation,
and fibrosis (145). However, its clinical application is limited by
invasiveness, risk of complications, sampling variability, and high
cost (146). Consequently, non-invasive diagnostic approaches have
gained traction. Imaging modalities such as MRI-proton density fat
fraction (MRI-PDFF) and transient elastography (FibroScan)
demonstrate good accuracy in evaluating hepatic steatosis and
fibrosis (147, 148). While MRI-PDFF is constrained by limited
accessibility and cost (149). FibroScan may yield less reliable results
in obese individuals or those with hepatic inflammation (150).
Serum-based scores including Fibrosis-4 (FIB-4) and the MASLD
Fibrosis Score (NFS) are commonly used to estimate fibrosis, but
their accuracy diminishes near threshold values, particularly in
elderly patients or those with metabolic syndrome, leading to a risk
of underdiagnosis (151-153). Emerging liquid biopsy tools, such as
circulating free DNA and microRNAs, offer promise as minimally
invasive biomarkers, yet remain in the exploratory stage due to
limited sensitivity, specificity, and validation in large cohorts (154).

4.2 Challenges in addressing heterogeneity
and stratification strategies

MASLD is a highly heterogeneous metabolic disorder, with a
wide spectrum of histopathological phenotypes ranging from
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TABLE 2 Clinical challenges in MASLD: from diagnosis to personalized treatment.

. L Ke
Category Main Issue Current Status and Limitations y
References
Liver Biopsy Gold standard; invasive, sampling variability (145, 146)
MRI-PDFF te but costly; FibroS, BMI-
4 . Imaging (MRI-PDEF, FibroScan) accurate but costly; Hbroscan (147-150)
Diagnostic dependent
Challenges
Serologic Scores (FIB-4, NFS, ELF) Limited accuracy near thresholds (151-153)
Liquid Biopsy (cfDNA, miRNAs) Investigational, needs validation (154)
. R Variants like PNPLA3, TM6SF2, and GCKR influence (98-100, 156,
Genetic Polymorphisms o
susceptibility and treatment response 157)
Heterogeneity & Lifestyle Intervention Variability Diet and .exercise are iirsi—linek but response varies; (158, 159)
Stratification some patients show minimal improvement
Metabolites (SCFAs, BAs, LPS late 1i thol
Gut Microbiota Influence 'e o 1 es ( K s s ) regu ate 1v?r pathology (160-165)
via gut-liver axis; lack of standardized stratifiers
Resmetirom approved in 2024 for non-cirrhotic MASH;
Approved Drug . (168, 169)
limited scope and long-term safety concerns
Aldafermin, ZSP1601, S litazar, etc. under trial;
Lack of Effective Pipeline Drugs atermin . X arog l azar, ete. under tria (170-176)
some show limited or inconsistent efficacy
Pharmacotherapy
Curcumin, quercetin, ginsenoside Rgl show multi-
Natural Compounds target effects; low oral bioavailability and limited clinical (178-186)

simple steatosis (SS) to MASH, cirrhosis, and HCC (155). This
heterogeneity manifests not only in the rate and severity of disease
progression but also in the variability of patient responses to
treatment. As such, a “one-size-fits-all” therapeutic approach is
insufficient to address the complexity of disease presentations in
clinical practice.

Genetic background plays a pivotal role in driving this
heterogeneity. As previously discussed, several genetic
polymorphisms—including PNPLA3, TM6SF2, GCKR, and others
—contribute to interindividual and interethnic differences in
disease susceptibility and treatment response. For instance,
patients carrying the PNPLA3 I148M variant exhibit greater
reductions in ALT levels following semaglutide therapy (156).
Similarly, rs738409 has been associated with variations in HbAlc
response to dulaglutide, with potential sex-specific effects (157).
These findings underscore the necessity of incorporating genetic
profiling into personalized treatment strategies for MASLD.

Lifestyle interventions—including low-carbohydrate diets,
Mediterranean-style diets, and structured physical activity—
remain the cornerstone of MASLD management. While these
approaches improve insulin sensitivity and reduce hepatic fat in
many patients, responses are variable (158). Notably, some
individuals fail to achieve significant reductions in hepatic
steatosis despite strict adherence to lifestyle modification,
suggesting that monotherapy may be insufficient in certain
subgroups (159).

In recent years, the gut microbiota has emerged as a key
contributor to MASLD heterogeneity. Significant interindividual
differences exist in microbial composition, metabolite profiles, and
microbiota-host interactions, all of which influence disease onset
and progression (160). Microbial metabolites—including short-
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chain fatty acids (SCFAs), BAs, amino acid-derived compounds,
trimethylamine-N-oxide (TMAO), and endogenous ethanol—
modulate hepatic lipid metabolism, inflammation, and fibrosis via
the gut-liver axis (161, 162). Disruption of the intestinal barrier can
facilitate lipopolysaccharide (LPS) translocation, triggering hepatic
inflammation and accelerating the transition from SS to MASH
(163). Moreover, specific microbial genera such as Bacteroides and
Prevotella produce SCFAs that regulate hepatic lipogenesis and
energy homeostasis (164). The gut microbiota also modulates bile
acid signaling through FXR and TGRS, thereby influencing hepatic
inflammatory and fibrotic responses (165).

Despite growing interest, microbiota-based stratification
strategies face several barriers, including the lack of highly specific
microbial biomarkers, significant interethnic and geographic
variation, and the complex nature of host-microbiota interactions
(166, 167). These limitations currently hinder the clinical
implementation of precision diagnostics and personalized
interventions based on gut microbial profiling in MASLD.

4.3 Lack of effective pharmacotherapy

In March 2024, the U.S. Food and Drug Administration (FDA)
granted accelerated approval to Resmetirom (brand name:
Rezdiffra) for the treatment of adults with non-cirrhotic MASH,
marking the first approved therapy for this indication and a
significant milestone in the treatment of MASLD (168). However,
its therapeutic scope is largely confined to patients with moderate to
advanced fibrosis. Effective treatments for early-stage MASLD,
decompensated cirrhosis, or patients with complex metabolic
comorbidities remain lacking. Furthermore, long-term safety data
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are still limited, with concerns about potential cardiovascular risks
and thyroid dysfunction requiring further investigation (169).

Beyond Resmetirom, several synthetic compounds are under
clinical development targeting key MASLD pathways. Aldafermin
(NGM282), an analog of fibroblast growth factor 19 (FGF19), has
shown anti-steatotic and anti-fibrotic effects in early trials, but failed
to produce significant dose-dependent improvements in fibrosis or
MASH resolution in the phase ITb ALPINE 2/3 study (170-172).
ZSP1601 (pan-phosphodiesterase inhibitor) reduced hepatic fat in
Phase I/TI, though long-term efficacy requires validation (173, 174).
Other agents, such as the peroxisome proliferator-activated receptor
(PPAR) agonist Saroglitazar, the apoptosis signal-regulating kinase
1 (ASK1) inhibitor Selonsertib, and the C-C chemokine receptor
types 2 and 5 (CCR2/CCR5) antagonist Cenicriviroc, have shown
limited or inconsistent efficacy in clinical trials, hindering broader
application (175-177).

Natural compounds have attracted growing interest due to their
multi-target mechanisms and lower toxicity profiles. Several
phytochemicals—including curcumin, quercetin, and ginsenoside
Rgl—have been shown to modulate lipid metabolism, reduce
oxidative stress, and suppress inflammation through diverse
molecular pathways (178-181). Curcumin inhibits the NF-xB
signaling pathway, reducing pro-inflammatory cytokine
expression, and has been shown in ApoE—/— mouse models to
improve intestinal barrier integrity, lower endotoxin levels, and
attenuate steatosis via the TLR4/NF-xB axis (182, 183). Quercetin
activates the AMPK pathway, promoting fatty acid B-oxidation and
reducing hepatic lipid accumulation (184). Moreover, natural
products may beneficially modulate gut microbiota and restore
gut-liver axis function, thereby contributing to systemic
improvements in MASLD pathology (185).

Despite these advantages, clinical translation of natural products
remains challenging, due primarily to poor oral bioavailability,
unstable pharmacokinetics, and limited high-quality clinical data
(186). Future studies should focus on enhancing delivery systems—
such as nanoparticle carriers and targeted release technologies—to
improve therapeutic efficacy and stability.

5 Future perspectives

As the complexity and heterogeneity of MASLD become
increasingly apparent, precision medicine is emerging as a
transformative approach to clinical management. The integration
of multi-omics technologies—including genomics (e.g., PNPLA3,
TM6SF2, HSD17B13), metabolomics (e.g., lipid and amino acid
profiles), and microbiomics (e.g., gut-liver axis dynamics)—has
enabled the construction of stratification frameworks that link
molecular mechanisms to clinical phenotypes. These data-driven
platforms lay the foundation for individualized risk prediction,
disease monitoring, and therapeutic intervention, supporting a
shift from uniform treatment paradigms to personalized care.

Building upon these insights, novel therapeutic strategies are being
developed that leverage pharmacogenomic information (e.g., PNPLA3
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1148M-guided therapy) and microbiome-based interventions. The
latter, by reshaping bile acid signaling, immune responses, and
metabolic pathways, holds promise in modulating key drivers of
MASLD progression. In parallel, the therapeutic landscape is
evolving toward integrated systems characterized by multi-target
synergy, precision delivery technologies, and digital monitoring
platforms—enabling dynamic regulation of disease trajectories and
therapeutic responses.

The recent FDA approval of Resmetirom represents a
therapeutic breakthrough in MASLD management, yet the
disease’s multifactorial nature demands innovative strategies
beyond single-target interventions. Critical areas for advancement
include: (1) designing combination regimens that concurrently
address lipid metabolism, inflammatory cascades, and fibrotic
pathways; (2) validating non-invasive biomarkers for real-time
disease monitoring; (3) developing integrative therapeutic
platforms combining pharmacological agents with nutraceuticals;
and (4) conducting multinational phase IV trials to establish
longitudinal safety and efficacy profiles.Together, these efforts aim
to bridge the gap between mechanistic discovery and clinical
translation, ultimately fostering a paradigm shift toward
predictive, preventive, and personalized hepatology.

6 Conclusion

MASLD is a multifactorial disease driven by a combination of
metabolic dysfunction and genetic predisposition. Its pathogenesis
involves lipid metabolic imbalance, insulin resistance, dysregulation
of bile acid and amino acid metabolism, iron overload, and key
genetic polymorphisms. Although advances have been made in
diagnostic technologies and targeted therapeutic development, early
detection and individualized treatment remain major clinical
challenges. Moving forward, a precision medicine framework that
integrates genomic, metabolic, and microbiome data will be
essential for establishing comprehensive, stratified intervention
models and achieving personalized management of MASLD—
from risk prediction to mechanism-based therapy.
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