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approaches: discovery of ELN,
MXD1, and FGF21 as key genes
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Background: Adipose tissue plays a critical role in aging and age-related
diseases. However, the specific molecular and cellular alterations associated
with aging in adipose tissue remain incompletely understood.

Methods: Aging-related differentially expressed genes (DEARGs) were identified
by intersecting differentially expressed genes (DEGs) in adipose tissue, age-
related genes (ARGs), and human genes linked to aging. Functional enrichment
analysis was conducted to explore the potential roles of these DEARGs. Protein-
protein interaction (PPI) networks were analyzed using STRING, and hub DEARGs
were identified via least absolute shrinkage and selection operator (LASSO)
analysis. Oil Red O staining was used to confirm adi-pocyte differentiation, and
D-galactose treatment induced cellular senescence. Validation of hub DEARG
expression was conducted in an independent dataset and confirmed using
quantitative polymerase chain reaction (qQPCR) both in vitro and in vivo.
Results: Forty-nine DEARGs were identified, with functional enrichment analyses
revealing significant roles in glucose homeostasis and key aging pathways,
including the FoxO and JAK-STAT signaling pathways, Thl7 cell dif-
ferentiation, growth hormone signaling, the adiponectin pathway, and AMPK
pathway. Five hub genes (PCK1, ELN, MXD1, STAT3, and FGF21) were selected
through interaction network anal-ysis and LASSO regression. Expression levels of
three DEARGs (ELN, MXD1, and FGF21) were validated by gPCR and an
independent dataset.
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Conclusions: This study identified three DEARGs (ELN, MXD1, and FGF21) as
potential biomarkers of adipose tissue aging, suggesting their role in organismal
aging and age-related disease pathways.

aging, biomarker, adipose tissue, bioinformatics, machine learning

1 Introduction

Lipids play vital roles in living organisms, serving not only as
key components of cell membranes but also in energy storage and
signaling pathways that regulate cellular functions. Disruptions in
lipid metabolism have been implicated in numerous diseases,
including atherosclerosis, cancer, non-alcoholic steatohepatitis,
and chronic kidney disease (1-4). Beyond disease, lipid
metabolism has also been identified as a crucial regulator of aging
and lifespan, with alterations in lipid pathways contributing to the
aging process (5, 6).

The exact mechanisms by which lipid composition and
metabolism change with aging—and whether modulating these
changes can extend lifespan—remain areas of active investigation.

Among various tissues, adipose tissue has garnered particular
interest due to its distinct and complex responses to age-related
changes. Studies have shown that adipose tissue is not merely a
passive energy reservoir; rather, it plays an active role in systemic
aging. For example, age-associated activation of immune cells, a
hallmark of aging, is especially pronounced in white adipose tissue
and can be detected early in the aging process. Progenitor cells
within adipose tissue also display heightened sensitivity to the aging
microenvironment, as demonstrated by parabiosis experiments,
highlighting adipose tissue’s potential role in modulating age-
related physiological changes (7).

Adipose tissue may mediate systemic aging effects through
several mechanisms. Adipocytes, as potent endocrine cells, secrete
numerous bioactive peptides, known as adipokines, along with
extracellular vesicles that influence nearby tissues and distant
organs (8, 9). These secreted factors can affect metabolic and
inflammatory responses, thereby impacting aging and longevity.
Recent studies have identified diverse adipocyte subtypes with
distinct secretomes, suggesting that the effects of adipose tissue on
aging may vary across different fat depots and influence local tissues
in unique ways (10-12). Furthermore, adipose tissue serves as a
niche for pluripotent progenitor cells that support tissue
development and regeneration, potentially affecting tissue
homeostasis throughout life (13, 14).

Despite the known significance of adipose tissue in aging, a
systematic profiling of the molecular changes associated with adipose
tissue aging remains limited. To address this gap, our study utilized
adipose tissue-specific gene expression profiles, integrating findings
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from aging-related databases with bioinformatics analyses and
experimental validation, to identify biomarkers linked to adipose
tissue senescence. By identifying these biomarkers, we aim to
enhance understanding of adipose tissue aging and provide
insights that may inform future therapeutic strategies targeting
age-associated diseases.

2 Results

2.1 ldentification and functional
enrichment of DEARGs for adipose tissue

aging

A total of 49 DEARGs were identified by comparing DEGs in
adipose tissue, ARGs, and human genes associated with aging
(Figure la). The expression patterns of these 49 DEARGs in 12-
month-old and 2-month-old mice were visualized using a heatmap
(Figure 1b). Functional enrichment analysis was performed on
these DEARGs to explore their biological roles (Supplementary
Table S1).

For biological processes (BP), significant overlaps were found in
glucose homeostasis, response to peptide hormones, thermal
stimulus response, and peptide response (Figure 1c). In terms of
molecular functions (MF), notable overlaps were observed in beta-
catenin binding, DNA-chromatin binding, binding to unfolded
protein domains, and protein chaperone folding (Figure 1d).
Cellular components (CC) revealed overlap in the RNA
polymerase II transcription repressor complex, euchromatin, TOR
complex, and transcription regulatory complexes (Figure le).
Disease Ontology (DO) analysis indicated overlaps with
endometrial cancer, endometrioid carcinoma, hyperalimentation,
and obesity (Figure 1f). KEGG pathway analysis suggested that
pathways such as the longevity-regulating pathway, FoxO
signaling pathway, JAK-STAT signaling pathway, Th17 cell
differentiation, growth hormone synthesis/secretion/action,
adiponectin signaling pathway, and AMPK signaling pathway may
be involved in adipocyte changes during aging (Figure 1g).
DisGeNET enrichment analysis indicated overlaps with sleep
apnea, cachexia, diabetic peripheral neuropathy, diabetic
neuropathies, estrogen receptor-negative breast cancer, iron
overload, and sarcopenia (Figure 1h).
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Discovering and enhancing the roles of differentially expressed adipocyte-related genes in the aging process: (a) Using a Venn diagram to identify
DEARGs; (b) Heat map showing differences in DEARGs between the young and aged mice; (c) GO biological processes analysis for DEARGs;

(d) Performing GO molecular function analysis on differentially expressed autophagy-related genes; (e) GO cellular component analysis for DEARGs;
(f) Disease Ontology (DO) enrichment analysis for DEARGs; (g) Performing KEGG pathway analysis for DEARGs; (h) Conducting DisGeNET

enrichment analysis for DEARGs.

2.2 ldentification of hub DEARGs with the
LASSO algorithm

To identify hub DEARGs involved in adipose tissue aging, the
49 DEARGS were analyzed using the STRING database to construct
a protein-protein interaction (PPI) network with 49 nodes and 295
edges (Figure 2a, Supplementary Table S2). Feature selection using
LASSO regression identified five hub DEARGs—PCK1, ELN,
MXD1, STAT3, and FGF21—which showed significant non-zero
regression coefficients with an optimal lambda value of 0.095
(Figures 2b, ¢).

Further co-expression analysis was performed using the
GeneMANIA database, revealing an intricate PPI network with
various interaction types, including 1.04% common protein
domains, 1.57% colocalization, 1.81% genetic interactions, 2.07%
pathways, 8.09% additional elements, 17.96% co-expression,
22.45% anticipated interactions, and 45.00% direct interactions
(Figure 2d). These genes were found to play key roles in energy
metabolism, extracellular structure organization, fibroblast growth
factor responses, short-chain fatty acid metabolism, protein
oxidation, growth factor binding, and triglyceride metabolism,
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suggesting their significant involvement in the aging of

adipose tissue.

2.3 Datasets and qPCR Validation of hub
DEARGs for adipose tissue aging

To validate the expression of the identified hub DEARGs—
PCKI, ELN, MXDI, STAT3, and FGF21—in human adipose tissue,
data from the Integrating Platform of ADEIP were analyzed. The
results showed that ELN, MXD1, and FGF21 exhibited upregulated
expression in the adipose tissue of older individuals (Figure 3a).

In vitro, differentiated adipocytes were confirmed by Oil Red O
staining (Figure 3d). To establish an in vitro model of cellular aging,
adipocytes were treated with D-galactose (Figure 3¢). H&E staining
(Figure 3h) and immunofluorescence (Figure 3i) of white adipose
tissue (WAT) from young and old mice further supported
these findings.

The expression of the hub DEARGs was also validated by qPCR
in the D-galactose-induced aging model and in WAT isolated from
2-month-old and 12-month-old mice. The mRNA levels of ELN,
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Discovering key DEARGs associated with the aging process of adipocytes: (a) PPl network of DEARGs; (b, c) Based on the LASSO regression model,
five genes with non-zero coefficients were chosen using the optimal lambda; (d) The GeneMANIA database displays DEGs and the networks of

genes they co-express with.

MXD1, and FGF21 were significantly higher in older adipocytes
compared to younger controls (Figure 3b). This validation
confirmed that ELN, MXD1, and FGF21 are upregulated during
adipose tissue aging, supporting their potential as biomarkers for
aging in adipose tissue (Figure 3c).

3 Discussion

Cellular senescence was initially described as the gradual decline
in the replicative ability of primary fibroblasts in vitro, leading to
irreversible cell cycle arrest (15). Replicative senescence is triggered
by telomere shortening, a form of DNA damage that can also result
from oxidative stress, radiotherapy, chemotherapy, and oncogenic
signals (16, 17). During in vitro studies, DNA damage-induced
mitotic arrest initiates a secretory response characterized by the
release of numerous cytokines, collectively known as the
senescence-associated secretory phenotype (SASP).

A robust link between energy balance and aging has been
observed across diverse organisms, from single-celled eukaryotes
to humans. Cellular lipid metabolism, largely driven by
mitochondrial B-oxidation, is a primary energy source that also
generates oxidative stress and reduces glucose uptake (18, 19).
Disruptions in -oxidation can result in the accumulation of toxic
byproducts, contributing to cellular senescence. Adipose tissue,
integral to lipid distribution and storage, plays a crucial role in
energy homeostasis, cellular stress response, and aging across
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species. Single-cell transcriptomic studies have indicated that
adipose tissue may be one of the first organs to exhibit age-
related changes, potentially influencing the aging of other tissues.
This theory is supported by the universal presence of age-related
shifts in adipose tissue composition—such as the loss of
subcutaneous white adipose tissue (SWAT) and increased fat in
bone marrow—across species.

SWAT, located beneath the skin’s dermis, specializes in energy
storage and release as triglycerides and fatty acids via lipid droplets
within white adipocytes. These lipid droplets can occupy over 90%
of cellular volume, effectively isolating stored lipids. During fasting,
triglycerides are hydrolyzed to release fatty acids into the
bloodstream, fueling systemic energy needs (19). The lipid storage
function of sSWAT is facilitated by large lipid droplets; however,
dysfunction in SWAT can lead to ectopic fat deposition, resulting in
conditions such as lipotoxicity and insulin resistance (20).

Aging primarily affects white adipose tissue (WAT) by
promoting hypertrophy in intra-abdominal fat and reducing
sWAT, which diminishes its lipid storage capacity (21). While
hypertrophy increases lipid storage, larger adipocytes are more
insulin-resistant and exhibit higher basal lipolysis (22). This
compromised lipid accumulation function in sSWAT increases the
metabolic burden on other tissues, disrupting redox balance and
contributing to cellular senescence.

In this study, we identified 49 DEARGS by overlapping DEGs in
adipose tissue with known aging-related genes (ARGs) and human
aging genes. Functional KEGG enrichment analysis suggested these
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FIGURE 3

Validation of hub DEARGs using qPCR and datasets: (a) Validation of hub DEARGs dataset through the Integration Platform of ADEIP; (b) Validation
of central DEARGs in white adipose tissue from young and old mice using qPCR; (c) gPCR validation of hub DEARGs in adipocyte; (d) Representative
images of Oil red O staining of adipocyte. Scale bar 50 um; (e) SA-B-gal staining of adipocytes. Scale bar 50 um; (f) Representative H&E stained
images of white adipose tissue sections from young and old mice (20x magnification, scale bars 50 um) (Images representative of 3 separate
experiments); (g) Quantification of (d—f); (h, i) Immunofluorescence examination of PLIN1 (red), UCP1 (green), and DAPI (blue) in WAT from young
and old mice. Scale bar 50 um. Mean values + SEM are provided in the data presentation. Analysis was conducted using a two-tailed Student’s t-test.
** means p<0.01, *** means p<0.001.
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DEARGs may regulate aging pathways, including FoxO signaling,
JAK-STAT signaling, Th17 cell differentiation, growth hormone
synthesis/secretion, adiponectin signaling, and AMPK signaling.
Thus, these DEARGs likely play a role in adipose tissue aging.

To further narrow down DEARGs of particular relevance to
adipose tissue, we applied the LASSO algorithm, which identified
five hub genes: PCKI, ELN, MXDI, STAT3, and FGF21.
Subsequent validation through ADEIP and qPCR confirmed that
ELN, MXD1, and FGF21 were associated with age-related changes
in adipose tissue. Each of these genes has been previously implicated
in aging processes, supporting their potential role as markers for
adipose tissue aging.

ELN (encoding tropoelastin) is essential for elastic fiber
production, which supports tissue elasticity. Age-related declines
in elastic fibers and the accumulation of bioactive elastokines,
products of elastin degradation, are linked to aging. Reduced ELN
expression may lead to premature tissue aging and structural
deterioration, affecting tissue functionality and contributing to
various connective tissue disorders (23-25).

MXD1 (also known as Madl) is a transcriptional repressor
involved in regulating cellular processes such as transformation,
differentiation, proliferation, and apoptosis (26-28). Reduced
MXD1 levels have been associated with increased cell survival
and invasiveness in cancers, including pancreatic, breast, and
gastric cancers (29-31). Conversely, elevated MXD1 levels can
inhibit cancer cell growth (32, 33), further highlighting its role in
cell cycle regulation and potential relevance to aging.

Circulating FGF21 is a hormone whose circulating levels
increase with age in both rodents and humans (34-36). Studies in
animal models have shown that elevated FGF21 levels are associated
with longevity. FGF21 mitigates inflammation by promoting the
M1-to-M2 macrophage transition, thereby protecting tissues from
age-related damage, such as liver fibrosis and chronic kidney disease
associated with obesity (37-39). Recognized for its longevity-
promoting and anti-inflammatory effects (37, 40-43), FGF21
emerges as a critical regulator of aging processes.

By overexpressing or knocking down ELN, MXD1 or FGF21 at
the cellular level respectively, and detecting the expression of key
molecules in senescence-related signaling pathways such as FoxO
and JAK-STAT, the specific mechanisms of these genes in the
process of cellular senescence were further revealed.

4 Limitations and future directions

While our study provided insights into DEARGs associated with
adipose tissue aging, it has limitations. Specifically, we used D-gal-
induced aging in cultured cells and WAT from aged mice rather
than clinical samples. Although this approach allowed for controlled
investigation, it may not fully replicate in vivo conditions. Although
the current model (C57BL/6 mice) can simulate a specific state of
aging, it cannot reproduce the three core characteristics of human
aging: decades of accumulated environmental exposure (chronic
low inflammation and epigenetic drift), multi-system network
decline (imbalance of neuro-endocrine-immune axis), and
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biological effects of psychosocial factors (chronic stress accelerates
telomere shortening). In future research, we will design a stratified
clinical translation pathway: Phase 1: Cross-sectional biomarker
validation (0-2 years). Study population: Community-dwelling
naturally aging populations, centenarians, and their direct
descendants. Core measures: Multimodal omics profiling and
clinical functional assessments (weakened index, cognitive scales).
Phase 2: Longitudinal intervention study (3-5 years). From Phase 1,
we will identify high-risk biomarker populations and conduct
randomized double-blind trials based on the target molecules
identified in this study, with the primary endpoint being
biomarker improvement rates. While the models presented in this
paper provide a controlled platform for mechanism exploration,
aging fundamentally represents a systemic collapse of biological
systems across temporal and spatial dimensions. Future research
must anchor laboratory findings to human physiological networks
through deep phenotyping analysis, with particular focus on three
key areas: inter-organ aging signal transmission (e.g., the muscle-
brain axis), microbiome-host co-aging dynamics, and the biological
embedding mechanisms of social determinants (SDoH). To
strengthen our findings, future studies will include clinical tissue
samples, providing direct relevance to human aging and potentially
broadening the applicability of our results. Current cross-sectional
study designs can only identify potential biomarkers at a single time
point in aged mice. Longitudinal studies are crucial for revealing the
expression changes of ELN, MXD1, and FGF21 during aging, which
also serve as key evidence for evaluating these biomarkers’
predictive potential in age-related diseases. We will conduct
longitudinal studies as a critical follow-up step to further expand
the research value of these preliminary findings. This approach aims
to enhance the robustness and translational potential of
our findings.

5 Conclusions

In summary, this study employed bioinformatics analysis to
identify three key genes—ELN, MXD1, and FGF21—associated
with the aging process in adipose tissue. These genes are likely to
play a central role in organismal aging and could contribute to the
development of age-related diseases. Through this analysis, we
provide valuable insights that enhance our understanding of
adipose tissue aging and offer potential targets for interventions
aimed at mitigating aging-related declines in adipose tissue
function. Future research based on these findings may further
clarify the roles of these genes in age-associated pathologies and
promote advancements in therapies targeting cellular aging.

6 Materials and methods

This study aimed to identify gene sets associated with adipose
tissue aging, focusing on age-related genes (ARGs) to uncover
potential biomarkers. The overall study workflow is illustrated
in Figure 4.
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The flowchart of adipocyte aging research using comprehensive bioinformatics methodsCreated with BioRender.com.

6.1 Data collection and preprocessing for
DEGs and ARGs identification in adipose
tissue

To explore aging-associated genes in adipose tissue, we sourced
4,314 ARGs from the GeneCards database, with each gene having a
relevance score greater than 5 (Supplementary Table S3).
Additionally, we obtained a set of 307 genes specifically associated
with human aging from the Human Aging Genomic Resources
(HAGR) database (https://genomics.senescence.info/; see
(Supplementary Table S4).

We retrieved the CRA015560 mRNA expression profiling
dataset from the Genome Sequence Archive (GSA) (https://
ngdc.cncb.ac.cn/gsa/) to analyze differentially expressed genes
(DEGs) between young and aged mice. Comparative analysis was
performed using the limma R package to identify significant gene
expression differences between the youthful and aged cohort. Genes
were considered differentially expressed if they met the criteria of
|fold-change (FC)| > 1.5 and p-value < 0.05.

6.2 Functional enrichment analysis of DEGs
and DEARGs

To investigate the biological significance of DEGs and
differentially expressed age-related genes (DEARGs) in adipose
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tissue aging, functional enrichment analysis was conducted. Gene
annotations were sourced from the Human Phenotype Ontology
(HPO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes
and Genomes (KEGG) within the Molecular Signatures Database
(MSigDB) and DAVID databases. Enrichment analyses for DEGs
were performed using the R package ClusterProfiler alongside
DAVID. Functional categories and pathways with a p-value <
0.05 were considered statistically significant.

6.3 Identification of central biomarkers
using protein-protein interaction analysis

To identify key biomarkers within DEARGs, we performed a
PPI analysis using the STRING database, applying a confidence
score threshold of >0.4. The interaction network was visualized in
Cytoscape 3.8.1. We used the MCODE plugin within Cytoscape to
extract major functional modules, with selection parameters set to
K-Core = 2, Cut Grade = 2, Maximum Depth = 100, and Cut Node
Score = 0.3. Each gene node was evaluated using the Maximum
Clique Centrality (MCC) score within the cytoHubba plugin of
Cytoscape, and the top 10 genes with the highest MCC scores were
identified as key nodes. Further refinement of important
biomarkers was achieved through Cox regression analysis with
the least absolute shrinkage and selection operator (LASSO) for
gene selection. The optimal penalty parameter was chosen using
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triple cross-validation to minimize cross-validation error, as
implemented in the ‘glmnet’ R package. Additionally, we utilized
GeneMANIA (http://genemania.org/; last accessed on May 1, 2023)
to validate PPI networks of key biomarkers.

6.4 Validation of hub biomarkers using
age-dependent expression and immune
profiles across human tissues

We employed the Age-Dependent Expression and Immune
Profiles (ADEIP) database to validate hub biomarkers. ADEIP
provides gene expression and cell proportion data across different
age groups and genders (http://gb.whu.edu.cn/ADEIP/). Using this
resource, we examined the expression profiles of identified
biomarkers across age groups to confirm their relevance to aging.

6.5 Animal models

Animal experiments were conducted in accordance with the
ethical guidelines set by the Chongqing University Animal
Experiment Ethics Committee. C57BL/6 mice were obtained from
Gempharmatech Co., Ltd (Guangzhou, China). Mice were housed
in a temperature-controlled facility with a 12-hour light-dark cycle
and provided ad libitum access to food and water. Male mice of
specific ages were used for all experiments, with at least three
animals per group in each experiment. Mice were anesthetized by
continuous inhalation of isoflurane (3%). Euthanasia was
performed by exsanguination under anesthesia, followed by
cervical dislocation as a secondary euthanasia procedure.

6.6 Cell culture and treatment

The 3T3-L1 preadipocyte cell line was sourced from the Stem
Cell Bank of the Chinese Academy of Sciences. Cells were cultured
in Dulbecco’s Modified Eagle Medium (DMEM, Vivacell)
supplemented with 10% newborn calf serum (CS, Adamas Life,
C8231). Cells were grown until confluence, at which point
adipogenesis was induced. The differentiation process began with
pre-culturing cells in basic medium for 2 days, followed by
treatment with a differentiation medium containing 10 pg/mL
insulin, 0.25 pM dexamethasone, and 500 pM IBMX for 2 days.
Subsequently, cells were cultured in a growth medium containing
only insulin for an additional 2 days. Fully differentiated adipocytes
were cultured in DMEM supplemented with 10% fetal bovine
serum (FBS, Vivacell), with the medium changed every 2 days
until adipogenesis was complete. Differentiated adipocytes were
identified by their characteristic morphology of multivesicular
lipid droplets, which stained red with Oil Red O solution. To
induce cellular senescence, adipocytes were exposed to 40 g/L
D-(+)-galactose (Beyotime, ST1218) for 48 hours.
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6.7 Senescence-associated [3-galactosidase
activity

SA-B-gal activity was assessed using a senescence [3-
galactosidase staining kit (C0602, Beyotime, Shanghai, China),
following the manufacturer’s instructions. The percentage of SA-
B-gal-positive cells was quantified to assess the extent of
cellular senescence.

6.8 Oil red O staining

Oil Red O staining was performed using a modified Oil Red O
staining kit (Beyotime, C0158), according to the manufacturer’s
instructions. After staining, cells were subjected to microscopic
analysis to assess lipid accumulation.

6.9 RNA isolation and gPCR

Total RNA was extracted from mouse white adipose tissue
(WAT) and cultured cells. For tissue RNA extraction,
approximately 50 mg of WAT was placed in tissue grinding tubes
with zirconium beads and 500 uL TRIzol reagent (Invitrogen,
15596026CN). Tissues were homogenized using a Servicebio
homogenizer with two 30-second pulses at 6 m/s, separated by a
15-second pause. For cell RNA isolation, the NemSpin Cell/Tissue
Total RNA Kit (NCM Biotech, M5105) was used. RNA
concentration and quality were assessed with a Thermo
Scientific' "
microgram of RNA was reverse transcribed into complementary
DNA (cDNA) using the ABScript Neo RT Master Mix (ABclonal,
RK20433), along with the gDNA Remover Kit. Quantitative PCR
(qPCR) was performed using a Bio-Rad""" CFX96 Touch Real-Time
PCR Detection System with 2X Universal SYBR Green Fast qPCR
Mix (ABclonal, RK21203) and gene-specific primers
(Supplementary Table S5). The AA-CT method was applied to
analyze gene expression, with Actin as the internal control.

NanoDropTM One spectrophotometer. One

6.10 Histological analysis

Slides were prepared according to a previous report (44).

Hematoxylin and Eosin (H&E) Staining: Tissue sections were
rehydrated through a graded alcohol series (xylene for 3 minutes,
100% alcohol for 1 minute twice, 95% alcohol for 1 minute twice,
and water for 1 minute), followed by staining with H&E. The slides
were dehydrated in reverse order, mounted with Cytoseal 60, and
analyzed using an Olympus VS200 inverted microscope.

Immunofluorescence Staining: Slides were rehydrated according
to the following protocol: xylene (20 min x 3 times); 100% reagent
alcohol (5 min x 2 times); 95% reagent alcohol (5 min x 1 time);
85% reagent alcohol (5 min x 1 time); 75% reagent alcohol
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(5 min x 1 time); 50% reagent alcohol (5 min x 1 time); PBS (5 min x
1 time). Sodium citrate solution (BOSTER, AR0024) was utilized for
antigen retrieval. The slides were rinsed three times with 1x PBS.
Slides were incubated with the primary antibody in 1X TBS
containing 5% goat serum at 4°C overnight after being blocked for
30 minutes with 5% goat serum in 1X TBS. Primary antibodies
included Rabbit anti-Perilipin A (1/200; HUABIO ET1703-38) and
Mouse anti-Ucpl (1/200; Santa Cruz sc-518024). Invitrogen
secondary antibodies were diluted to 1/500 and then incubated for
1 hour at room temperature. The following secondary antibodies
were used: 555 Goat anti-Rabbit or 488 Goat anti-Mouse. The slides
were cleaned and dyed using DAPI (Servicebio G1012) for 10
minutes, followed by application of mounting solution (Solarbio
$2100). Fluorescent images were recorded using the Olympus
VS200 inverted microscopy system.

6.11 Quantification and statistical analysis

Statistical significance was assessed using a two-tailed Student’s
t-test to compare two groups, and one-way ANOVA was used for
multiple group comparisons. Data are expressed as means + SEM.
P-values less than 0.05 were considered statistically significant. For
microscopy images, three randomly selected fields from at least
three mice per cohort were analyzed using NIH Fiji Image]
software. H&E, Oil Red O, SA-B-gal, and immunofluorescence
images were captured from a minimum of three to four replicates
per group. RNA-seq data were analyzed for statistical significance,
heat map generation, and KEGG pathway analysis using RStudio.
Graphical representation and statistical analysis were performed
using GraphPad Prism 7-9, and initial data collection was
performed using Microsoft Excel.
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