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The adaptation of the uterine circulation during pregnancy is fundamental to
ensure an adequate supply of oxygen and nutrients to the fetus, and this process
is largely orchestrated by placental hormones/metabolites. In this review, we
comprehensively examine the role of placental hormones, growth factors, and
proteins in mediating vascular remodeling, vasodilation, and angiogenesis within
the uterine circulation under both physiological and pathological conditions. Key
molecules such as estrogens, progesterone, relaxin, VEGF, PIGF, and PTHrP,
among others, promote structural and functional adaptations of uterine arteries,
reduce vascular resistance, and enhance uteroplacental blood flow. Additionally,
we discuss the impact of placental dysfunction on the development of
pregnancy-related disorders such as preeclampsia, intrauterine growth
restriction, gestational diabetes mellitus, and placenta accreta spectrum
conditions that share common features of impaired uterine vascular
remodeling and altered placental secretome. Furthermore, we explore
innovative therapeutic strategies that aim to restore placental and vascular
function, including gene therapy, mesenchymal stem cell-based approaches,
and targeted nanomedicine. Finally, we highlight the emerging role of placental
biomarkers for early diagnosis and risk stratification of vascular complications in
pregnancy. Understanding the intricate interplay between placental secretions
and the maternal vasculature is critical to advancing the prevention, diagnosis,
and treatment of pregnancy complications, ultimately improving maternal and
fetal health outcomes.
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1 Introduction

Pregnancy requires the adaptation of the maternal uterine
vascular system and the development of the placenta to establish
the feto-maternal circulation. Within the maternal vascular system,
the most prominent adaptation is the remodeling of the spiral
uterine arteries (UAs) by trophoblast cells invasion to initiate the
placentation process (1). As a result, the spiral UAs enlarge their
opening diameters by 5- to 10-fold compared to the non-pregnant
state and are transformed into low-resistance conduits that deliver
blood at low pressure to the intervillous space (2). The changes in
UAs structure include expansion of volume and the outgrowth of
newly formed vessels, which are necessary to expand the vascular
surface area and create a suitable environment for fetal growth.
These morphological adaptations of the uterine circulation are
accompanied by physiological changes in uterine vascular
reactivity. Indeed, pregnancy is characterized by enhanced
vasodilation and a blunted vasoconstrictive response to
accommodate the increased utero-placental blood flow (UPBF).
These adaptations are accomplished through several mechanisms,
including the proliferative and vasodilatory effects of increased
levels of circulating growth factors, as well as the effects of pro-
and anti-inflammatory cytokines and hormones secreted by the
placenta into the maternal bloodstream. Studies have demonstrated
the involvement of these placental hormones and metabolites in
regulating uterine circulation through pathways specific to
endothelium and vascular smooth muscle cells (VSMCs).
Alterations in endothelial nitric oxide synthase (eNOS) expression
and activity, nitric oxide production (NO), and expression of
enzymes involved in prostacyclin (PGI,) production contribute to
the uterine artery endothelium-specific responses mediated by these
bioactive molecules.

Therefore, the hormones and metabolites secreted by the
placenta are crucial for the adaptations of uterine circulation, and
hence for the development and survival of the fetus.

Abbreviations: ADAM-12, A-disintegrin and metalloprotease-12; CRH,
Corticotropin-releasing hormone; ¢cGMP, Cyclic guanosine monophosphate;
CTBs, Cytotrophoblasts; ECs, Endothelial cells; ER-o,, ER -, Estrogen
receptor-o, -B; EVTs, Extravillous trophoblasts; GPER, G-protein coupled
estrogen receptor; GH, Gestational hypertension; GDM, Gestational diabetes
mellitus; hCG, Human chorionic gonadotropin; IGFs, Insulin growth factors;
TUGR, Intrauterine growth restriction; LNPs, Lipid nanoparticles; MUA, Main
uterine artery; MMPs, Metalloproteinases; NPY, Neuropeptide Y; NO, Nitric
oxide; PTHrP, Parathyroid hormone-related protein; PIGF, Placental growth
factor; PGH, Placental growth hormone; PL, Placental lactogen; PP13, Placental
protein 13; PE, Preeclampsia; PAPP-A, Pregnancy-Associated Plasma Protein A;
PSGs, Pregnancy-specific B-glycoproteins; PGI, Prostaglandin I,; RUA, Radial
uterine artery; SGA, Small for gestational age; VSMCs, Vascular smooth muscle
cells; sEng, Soluble endoglin; sFlt-1, Soluble fms-like tyrosine kinase; UVECs,
Umbilical vein endothelial cells; UAA, Uterine arcuate artery; UAECs, Uterine
arterial endothelial cells; UA, Uterine artery; UBF, Uterine blood flow; UMVECs,
Uterine microvascular endothelial cells; UPBF, Uteroplacental blood flow; UV,
Uterine vein; VEGF, Vascular endothelial growth factor.
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The placenta is a temporary endocrine organ that develops
immediately after implantation during pregnancy. The placenta
becomes fully functional by the 11" week of gestation, and it
regulates the bidirectional exchange of nutrients, oxygen and
waste products between the fetal and maternal circulation.
Despite accounting for less than 1% of maternal body weight, the
placenta consumes approximately 40% of the oxygen supplied by
the uterus at term (3), providing evidence for its high biosynthetic
activity. The placenta secretes into the maternal circulation several
hormones and metabolites, including estrogens, progesterone and
relaxin, which are critical for the remodeling and the vasodilation of
the uterine vasculature necessary to sustain the 40-fold increase
in UPBF.

Therefore, placental insufficiency compromises feto-maternal
circulation and has been frequently associated with pregnancy
complications including preeclampsia (PE), intrauterine growth
restriction (IUGR), gestational diabetes mellitus (GDM) and
placenta accreta spectrum (PAS) disorders. These complications
not only affect pregnancy outcomes but also have long-term
consequences on offspring health. Thus, there is a need to
maintain tight regulation of hormones/metabolites secreted by the
placenta during pregnancy.

Throughout this review, the role of the placenta in mediating
uterine vascular adaptations to pregnancy will be discussed in
normal and complicated pregnancies such as PE, IUGR, GDM
and PAS. Thus, understanding how hormones and proteins
secreted by the placenta affect the uterine circulation in both
physiological and pathological pregnancies is of interest for
improving maternal and fetal outcomes.

2 Physiological regulation of uterine
circulation by placental hormones and
growth factors

The placenta exhibits massive endocrine activity. The
coordinated action of hormones, proteins and growth factors
synthesized by the placenta is essential in regulating UA
expansion and reducing vascular resistance, supporting the
increased UPBF required for fetal development (Figure 1).

The following section summarizes studies conducted on
animals, humans, as well as cell culture, evaluating the role of
hormones, growth factors and protein synthesized by the placenta,
to elucidate their effects and mechanisms of action in processes
underlying uterine vascular remodeling during pregnancy (Table 1).

2.1 Estrogens

The placenta becomes the primary source of estrogen after week
9 of human pregnancy, when levels of estradiol increase by 50-fold
during pregnancy (4). In vitro studies have demonstrated that
estradiol-17B induces proliferation, migration and adhesion of
endothelial cells (ECs) (5-8), critical processes underlying uterine
angiogenesis and facilitating the increase in UPBF for a healthy
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FIGURE 1

Mechanisms by which placental factors modulate uterine vascular adaptations to pregnancy. The figure illustrates the main placental factors and
signaling pathways mediating vasodilation, angiogenesis and uterine vascular remodeling during pregnancy. The coordinated actions, transforming
the UA into dilated vessel with low vascular resistance, thus sustaining the increase in UPBF and supporting a proper fetal growth.

pregnancy establishment. These effects have been observed in both
human umbilical vein endothelial cells (HUVECs) and uterine
arterial endothelial cells (UAECs) (5-8). In addition, estrogens
contribute to uterine vascular remodeling by enhancing the
transcriptional activity of serum and glucocorticoid-inducible
kinase-1, which in turn modulates matrix metalloproteinases-2
(MMP-2) and E-cadherin expression in human villous samples (9).

Animal studies further demonstrate the role of estrogens in
promoting vascular remodeling and hemodynamic adaptation.
During early primate pregnancy, estrogens promote trophoblast
cell proliferation, differentiation, viability, and invasion of the spiral
UA (10). In pregnant rats, estradiol was shown to activate
extracellular MMPs inducer, which in turn increased the
expression and activity of MMP-2 and MMP-9 in uterus and
aorta of late-pregnant rats vs virgin and mid-pregnant rats,
supporting its role in vascular remodeling (11). However, in
baboons, as gestation advances, the rise of estrogenssuppresses
trophoblast uterine invasion (10) by inhibiting vascular
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endothelial growth factor (VEGF) expression and increasing
soluble fms-like tyrosine kinase-1(sFlt-1) levels (12).

Furthermore, several studies have shown that estrogens
vasodilate UA (13-16), favoring the augmentation in UPBF
during pregnancy. In pregnant ewes, systemic infusion of
estradiol-17f induced a 5-fold increase in UPBF, mainly mediated
by large-conductance Ca’"-activated K* channel (BK_,) and NO
(17). In rats, estrogens were shown to act through the G protein-
coupled estrogen receptor (GPER) (18, 19), promoting
endothelium-dependent vasodilation via the NO-cyclic guanosine
monophosphate (NO-cGMP) signaling pathway (20). GPER-
mediated vasodilation also involves L-type Ca** channels and
ERK1/2 activation in VSMCs (16).

In human myometrial arteries, vasodilation in response to 17f3-
estradiol is mediated by the greater expression of estrogen
receptors-o, and -B (ER-a,, -B) (15).

The effects of estrogens on uterine circulation during pregnancy
have been extensively reviewed elsewhere (18, 21).
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TABLE 1 Effects of placental factors in mediating vascular adaptations to pregnancy.

10.3389/fendo.2025.1637570

Molecules Samples Species Effects Reference
Hormones
UAECs ewe angiogenesis (6)
MUA rat vasodilation (13)
UAECs ewe vasodilation? (294)
UA ewe vasodilation? (17)
E,P and metabolites
UA rat vasodilation (14)
CTBs human vascular remodeling )
Placental basal plate baboon vascular remodeling (12)
Uterus rat vascular remodeling (11)
Pl 1 ]
acenta .artery human vasodilation (15)
E . . Myometrial UA
strogenic agonist
RUA rat vasodilation (16)
UA ovine vasodilation (25)
Uterus rat vascular remodeling (11)
Progesterone
UA ovine vasodilation 27)
UA ovine vasodilation (28)
UA; myometrium rat vasodilation (35)
SMC mice vascular remodeling (32)
. UA rat vascular remodeling (34)
Relaxin
UA mice vascular remodeling (33)
Endometrial stromal cells human anglogenesm;. (30)
vascular remodeling
UA rat vasodilation (66)
PTHrP Placental artery human vasodilation (68)
Placental artery human vasodilation (67)
IGF-2 UMVECs human angiogenesis (73)
MUA goats < UBF 1)
Serum/
UBF? 93
PL morphometric analysis ewe { ©3)
CAM membrane; angiogenesis (94)
BBCE cells slog
HTR8/SVneo;
CBTs; human vascular remodeling (103)
chorionic villous explants
CTBs rat vascular remodeling (104)
leptin CTBs human vascular remodeling (105)
proliferation
UAECs ewe ) . (106)
(angiogenesis)
UVECs; human, angiogenesis (107)
aortic ECs porcine 8108
(Continued)
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TABLE 1 Continued

Molecules Samples Species Effects Reference
Hormones
Placental villi human vasodilation (110)
CRH UA rat vasodilation (111)
EVTs human vascular remodeling (112)
UA guinea pig | vasoconstriction (114)
NPY
placenta human angiogenesis? vasodilation? (117)
HTR8/SVneo; .
EVTs human vascular remodeling (123)
HT sEVTs; )
. R'8/S\./neo Vs human vascular remodeling (124)
. chorionic villous explants
Activin A
HTR8/SVneo;EVTs; vascular
L human X K . (125)
chorionic villous explants remodeling angiogenesis
HTR8/SVneo human vascular remodeling (126)
UVECs; Human: mice vascular remodeling (130)
C57BL/6 ans vasodilation ()
PSG-
1/9 UVECs human vasodilation (131)
HTR-8/SVneo human angiogenesis (132)
PGH EVCs human vascular remodeling (95)
Proteins
UMVECs human angiogenesis (80)
CTBs human vascular remodeling (82)
CG
Corpus luteum human angiogenesis (81)
RUA rat vasodilation (83)
UA human vasodilation (90)
uv rat vasodilation (89)
PP13 UAA rat vasodilation (87)
uv rat vascular remodeling (86)
Endometrial tissue human vascular remodeling (85)

AC, adenylyl cyclase; AKT, protein kinase B; ALK-4, activin receptor-like kinase 4; BBCE, bovine brain capillary endothelial cells; BKca, big conductance calcium-activated potassium channel;
Ca®*, calcium ion; CAM membrane, chorioallantoic membrane; CEACAM-1, carcinoembryonic antigen-related cell adhesion molecule 1; cGMP, cyclic guanosine monophosphate; COX-1, -2,
cyclooxygenase-1 and -2; CRHR-1, corticotropin-releasing hormone receptor 1; CTBs, cytotrophoblasts; ECs, endothelial cells; EDHF, endothelium-derived hyperpolarizing factor; eNOS,
endothelial nitric oxide synthase; ER-a, -, estrogen receptor alpha and beta; ERK-1, -2, extracellular signal-regulated kinases 1 and 2; EVTs, extravillous trophoblasts; HTR8/SVneo, human
trophoblast cell line 8/SV40 large T antigen; IGF-2, insulin-like growth factor 2; JAK-2, Janus kinase 2; K,, voltage-gated potassium channels; LH-R, luteinizing hormone receptor; M6PR,
mannose-6-phosphate receptor; MAPK, mitogen-activated protein kinase; MMP-2, matrix metalloproteinase-2; MMPs, matrix metalloproteinases; MUA, main uterine artery; NO, nitric oxide;
PGH-R, prostaglandin H receptor; phospho-STAT3, phosphorylated signal transducer and activator of transcription 3; PI3K, phosphoinositide 3-kinase; cPLA,, phospholipase A,; PGIS,
prostacyclin synthetase; PKC, protein kinase C; RUAs, radial uterine arteries; RXFP-1, relaxin family peptide receptor 1; sGC, soluble guanylyl cyclase; SGK-1, serum and glucocorticoid-regulated
kinase 1; SKca, small conductance calcium-activated potassium channel; SMAD, small mothers against decapentaplegic; SMC, smooth muscle cell; Stat-5, signal transducer and activator of
transcription 5; TGFB-1, transforming growth factor beta 1; UAA, uterine arcuate artery; UAECs, uterine artery endothelial cells; UA, uterine artery; UMVECs, umbilical microvascular vein
endothelial cells; UV, umbilical vein; VEGF, vascular endothelial growth factor; Y2R, neuropeptide Y receptor 2; ZONEs, zones of necrosis. 1 = increase; | = decrease; <> = no effect;? =
indirect effect.

2.2 Progesterone

Progesterone is a steroid hormone whose levels during
pregnancy are almost 10 times higher than during the luteal
phase of the menstrual cycle (22). Around the 10" week of
gestation, the placenta takes over progesterone production from
the corpus luteum, maintaining serum concentrations of at least 10
ng/ml, which are essential for sustaining a healthy pregnancy (23).

Frontiers in Endocrinology

Progesterone contributes to thickening and expanding the
endometrial lining, thereby enlarging the surface area available
for implantation of the fertilized egg (24). It also facilitates
trophoblastic invasion of the spiral UA, thereby promoting
growth and remodeling of the uterine vasculature and increasing
UPBF. Moreover, progesterone induces uterine vessel vasodilation
by acting on both ECs and VSMCs. In ECs, it upregulates the
expression and activity of eNOS (25) as well as cyclooxygenase-1
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and -2 (COX-1, COX-2) (26), increasing the production of NO and
PGI, respectively (27). In VSMCs, progesterone downregulates the
protein kinase C pathway (PKC), further contributing to vessel
vasodilation (28).

Furthermore, progesterone, along with estrogen, promotes
vascular remodeling by enhancing MMPs expression and activity
(11). However, the eftect of progesterone in regulating UPBF during
pregnancy appears controversial (25); therefore, further studies are
needed to elucidate its effects and the molecular mechanisms
through which progesterone modulates the uterine vascular
function during pregnancy.

2.3 Relaxin

Relaxin is produced mainly by the corpus luteum and, during
pregnancy, also by the placenta. Relaxin reaches a peak of about 1
ng/ml by the end of the first trimester, then its levels gradually
decline and plateau at ~0.6 ng/ml (29). Relaxin contributes to the
growth and softening of the cervix, facilitating rapid labor, and it
also contributes to uterine vasodilation and increases compliance,
favoring the augmentation in UPBF (29). In vitro studies have
demonstrated that relaxin stimulates angiogenesis. Experiments on
human endometrial stromal cells showed that relaxin treatment
induces a variety of angiogenesis-related genes, including VEGF-A
(30). Moreover, relaxin has been shown to induce VEGF and basic
fibroblast growth factor (31) expression in ischemic wound sites,
supporting its pro-angiogenic activity.

Animal studies have provided strong evidence for relaxin role in
vascular remodeling and uterine compliance. Kaftanovskaya et al.,
have demonstrated that relaxin-receptor-deficient mice had
reduced lengths of the pubic symphysis and increased collagen
density in reproductive tissues (32). Similarly, in pregnant relaxin-
mutant mice, UA exhibited increased elastin expression and
decreased levels of MMPs and adhesion molecules. Interestingly,
5 days of exogenous relaxin treatment reversed arterial stiffness and
improved fetal weight in relaxin-deficient mice (33). Consistent
with these findings, neutralization of relaxin in late pregnancy using
the monoclonal antibody-1 (MCA-1) has been shown to increase
uterine artery stiffness (34). Moreover, relaxin induced vasodilation
in UA isolated from pregnant rats, with a greater effect during mid-
compared to late pregnancy through the NO-sGC pathway (35).
Recent evidence suggests that the vasodilatory responses of relaxin
are mediated by its major receptor, the relaxin/insulin-like family
peptide 1 receptor (RXFP1), which is most highly expressed in the
UA during early pregnancy (34). Newly emerging data support that
relaxin binds to RXFP1 activates Gai/o protein, coupling to
phosphatidylinositol-3 kinase/Akt (protein kinase B)-dependent
phosphorylation and activation of eNOS (36). Nonetheless,
relaxin inhibits spontaneous myometrial contractile activity in
mid-gestation, while it has no effect at term (35).

Human studies suggest a potential role of relaxin in regulating
uteroplacental vascular function. A positive correlation between
serum relaxin levels and UA resistance index at 10-12 weeks of
gestation has been observed, suggesting that relaxin contributes to
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the regulation of the uteroplacental vasculature. Moreover,
suppression of circulating relaxin throughout mid-pregnancy
abolished the cardiovascular adaptations required to sustain a
healthy pregnancy (37). Thus, the sensitivity of the uterus to
relaxin is subjected to modulation through pregnancy, suggesting
that relaxin sustains an adequate UPBF during mid-gestation, while
facilitating labor at term, allowing for vasoconstriction.

In summary, while animal studies show promising roles in
vascular remodeling and compliance, human studies are limited
and mostly observational, lacking mechanistic insights into RXFP1
signaling in the uterine vasculature during normal and
pathological pregnancies

2.4 Vascular endothelial growth factor

In addition to steroid hormones, the placenta secretes a wide range
of angiogenic factors, including VEGF, placental growth factor (PIGF)
and sFlt-1, which collectively contribute to the regulation of the uterine
circulation. In healthy pregnancies, maternal plasma VEGF
concentrations are markedly elevated compared to non-pregnant
baselines. It rises during the first trimester, peaks at 10-14 weeks,
remains elevated up to the 20™ week of pregnancy, then declines in the
third trimester (38, 39). During the first trimester of pregnancy, VEGF
levels increase 4-5 fold (163.2 + 81.6 pg/mL) compared to the non-
pregnant state (18.5 + 16.8 pg/mL) (40). VEGF contributes to maternal
adaptations to pregnancy by increasing vascular permeability,
stimulating angiogenesis and inducing vasodilation of the
uterine circulation.

The expression of VEGF mRNA in both the uterine endometrium
(41) and placenta (42) indicates its active role at the feto-maternal
interface, where tightly regulated modulation of vascular permeability
and angiogenesis is crucial for the establishment of a successful
uteroplacental circulation. VEGF-mediated vascular permeability has
been demonstrated in the uterine vasculature and is further enhanced
by pregnancy (43, 44). The increase in permeability facilitates the
extravasation of plasma proteins into surrounding tissue, facilitating
ECs migration and thus the angiogenic process (45). In addition, VEGF
induces the expression of serine proteases urokinase, tissue-type
plasminogen activators, PA inhibitor 1 (46) and MMPs interstitial
collagenase (47), consistent with a pro-degradative environment, which
facilitates migration and sprouting of ECs during angiogenesis.
Notably, VEGF angiogenic properties are enhanced during
pregnancy (48). VEGF role in mediating vasodilation has also been
shown in vitro. Indeed, VEGF promotes NO production in cultured
UAECs (48) and stimulates PGI, synthesis in a time- and
concentration-dependent manner in UVECs via activation of
cytosolic phospholipase A,/p42/p44 MAP kinases pathways (49).

The critical role of VEGF in angiogenesis is supported by
evidence from genetically modified pregnant mice lacking VEGF
gene or deficient in VEGF receptors, both of which result in
impaired vascular development and pregnancy loss (50, 51).
VEGF promotes NO production in vivo, in the UA of pregnant
ovine (52), while reducing UA contractility and increasing UPBF
(52-54) short- and long-term. Consistent with these findings,
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VEGF induced vasodilation of uterine arcuate artery (UAA) of both
non-pregnant and pregnant rats, acting through an endothelium-
dependent mechanism (55).

2.5 Placental growth factors

PIGF belongs to the VEGF growth factor family, and it binds
specifically to VEGFR-1 (56). Plasma PIGF concentrations increase
from week 11 to 12 onward to peak at week 30 in healthy pregnancy
(57), coinciding with implantation and early vascular development.
PIGF is expressed in villous trophoblasts and vascular endothelium
in human placenta at term (58), and the correlation between PIGF
expression and placental perfusion suggests that PIGF may
contribute to ensuring adequate vascular development and
function of the placenta early in gestation (59). PIGF contributes
to uteroplacental circulation establishment by supporting
angiogenesis, immune modulation and trophoblast invasion. Its
role in vascular remodeling is supported by a study demonstrating a
reduced uterine natural killer population in PIGF null mice (60).
This sub-population of natural killer cells is the major participant in
the early vascular changes in the pregnant endometrium. Thus,
demonstrating that PIGF-mediated remodeling of the UA at the
feto-maternal interface is necessary to sustain an adequate UPBF.
Supporting this finding, an increased level of PIGF correlates with
improved placental perfusion (59). In addition, PIGF potentiates the
angiogenic response to VEGF on microvascular ECs (61), thereby
promoting the angiogenic process at the feto-maternal interface.
PIGF regulates the UPBF, inducing vasodilation, as demonstrated in
placental arteries (62) and uterine circulation of rats and humans
(63). The mechanism of PIGF-mediated vasodilation has been
associated with signaling through VEGFR-1 and NO involvement,
according to the vascular bed (63).

2.6 Additional placental hormones and
proteins involved in vasodilation, vascular
remodeling and angiogenesis of the
uterine circulation during pregnancy

In addition to the well-known sex hormones and growth factors
discussed above, whose role in pregnancy-associated uterine
vascular remodeling has been widely demonstrated and
established, several studies have suggested other placental
hormones, proteins and growth factors as critical contributors to
a successful uterine vascular remodeling.

2.6.1 Parathyroid hormone-related protein

PTHrP is expressed in the placenta and fetal tissues, and its
expression increases as gestation progresses (64, 65). It plays a
crucial role in placental calcium transport, a function important in
maintaining fetal calcium homeostasis. Furthermore, PTHrP
regulates uterine vascular tone during pregnancy, inducing
vasodilation in the UA of both non-pregnant and pregnant rats
(66) and human feto-placental vasculature (67, 68). This
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vasodilatory effect is mediated through the PTHI receptor
(PTHIR) and involves NO and prostacyclin production, leading
to relaxation of VSMCs (66, 69). PTHrP increases the expression of
COX-2 and the production of 8-iso-prostaglandin F20., which in
turn can regulate the expression of PTHIR, suggesting a feedback
mechanism in VSMCs (70). Alterations in PTHrP expression have
been associated with pregnancy complications. For instance,
decreased levels of PTHrP have been observed in the placentas of
spontaneously hypertensive rats, and they have been shown to
correlate with TUGR (71). In conclusion, PTHrP is a
multifunctional protein that, through its vasodilatory effects,
regulation of vascular tone, and facilitation of calcium transport,
ensures adequate UPBF and supports fetal development. However,
despite these findings, the precise molecular mechanisms by which
PTHrP regulates uterine vascular remodeling remain poorly
defined, further human studies evaluating PTHrP levels in
pregnancy complication are still lacking. Future research should
also clarify whether PTHrP modulation could offer therapeutic
benefits in pregnancy disorders.

2.6.2 Insulin growth factor

Insulin growth factor 2 (IGF-2) is abundantly expressed in
trophoblast cells and fetal tissue (72). Studies on human uterine
microvascular endothelial cells (UMVECs) have demonstrated that
IGF-2 promotes ECs migration through the mannose 6-phosphate
receptor (73). In addition, IGF-2 has been shown to promote
endothelial proliferation and cell survival in placental villous
explants, indicating a broader function in placental angiogenesis.
The importance of IGF-2 in fetal development is further
underscored by studies in mice, where IGF-2 deficiency resulted
in growth restriction (74), indirectly supporting its action on UPBF.
Thus, IGF-2 contributes to the vascular adaptation to pregnancy
mainly by promoting angiogenesis.

Although the role of IGF-2 in placental angiogenesis and fetal
growth has been documented gaps remain in understanding its
effects on the maternal uterine circulation in the context of vascular
tone and UPBF regulation. Further, the molecular pathways
through which IGF-2 might influence NO production or
expression, as well as PGI, are largely unexplored. Future studies
should clarify these mechanisms particularly through in vivo
models and functional assessment of uterine circulation to better
define IGF-2 contribution to maternal vascular adaptation
during pregnancy.

2.6.3 Pregnancy-associated plasma protein A

PAPP-A is a proteinase highly expressed during pregnancy
(75). PAPP-A enhances IGF bioavailability (76), which in turn
promotes trophoblast invasion and angiogenesis, leading to a
proper vascular remodeling required for adequate uteroplacental
perfusion and fetal development. Low maternal serum PAPP-A has
been associated with high UA resistance index (77), suggesting
PAPP-A involvement in the regulation of UBPF.

Although PAPP-A is associated with improved IGF
bioavailability and favorable pregnancy outcomes, come mainly
from observational rather than direct mechanistic findings. The
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mechanisms by which PAPP-A modulates UA vasodilation and
vasoconstriction events during pregnancy, as well as the
downstream effects of altered PAPP-A expression on uterine
microvascular networks beyond the spiral UA remain
poorly defined.

2.6.4 Human chorionic gonadotropin

hCG is a glycoprotein hormone produced predominantly by
placental syncytiotrophoblast. hCG receptors have been identified
on uterine ECs (78, 79), and hCG promotes angiogenesis by
stimulating ECs migration and capillary sprouting (80). Evidence
from luteal tissue also supports its pro-angiogenic properties,
increasing proliferation of ECs and expansion of both endothelial
and pericyte compartments, thus contributing to vascular
stabilization during pregnancy (81). Additionally, hCG increases
migration, proliferation and invasion of trophoblast cells into the
maternal decidua and the subsequent remodeling of spiral UA into
low-resistance, high-capacitance vessels, essential for adequate
placental perfusion (82). Moreover, hCG induces vasodilation of
UA through the NO pathway, reducing vascular resistance and
enhancing UPBF (83).

However, the downstream intracellular signaling pathways
mediating hCG’s pro-angiogenic and vasodilatory actions—
beyond NO—are not comprehensively characterized. Longitudinal
studies examining hCG fluctuations and uterine hemodynamics
throughout pregnancy, along with experimental models
manipulating hCG levels, would help clarify its direct role in
uterine vascular adaptation and disease susceptibility.

2.6.5 Placental protein 13

PP13, also known as galectin-13, is a member of the galectin
family predominantly secreted from placental syncytiotrophoblasts.
In addition to its immunomodulatory function (84), PP13
contributes to the vascular remodeling of the spiral UA (85) and
uterine veins (UV) (86), ensuring adequate UPBF to the fetus. In
vivo studies have demonstrated that PP13 administration lowered
blood pressure and promoted placental and fetal growth (86). These
findings are further supported by ex vivo evidence demonstrating
PP13 vasodilation effects in UA from both rats (87-89) and humans
(90). The vasodilation action of PP13 is mediated, at least in part,
through the NO pathway. By promoting increased UPBF, PP13
supports fetal development and contributes to the maintenance of a
healthy pregnancy.

Although the contribution of PP13 in mediating the uterine
vascular adaptation to pregnancy has been widely demonstrated in
animal models or ex vivo, there is a lack of human in vivo data
confirming its role in UPBF regulation.

2.6.6 Placental lactogen and placental growth
hormone

PL and GH-V are members of the growth hormone/prolactin
family expressed in the human syncytiotrophoblast. Although a
direct association between PL and UPBF has not been definitively
established (91), maternal circulating levels of PL have been
positively associated with fetal weight (92). Consistent studies in
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animal models have demonstrated that PL deficiency resulted in
reduced fetal and placental weight (93), indirectly indicating a
potential contribution of PL to adequate UPBF necessary for
normal fetal growth. The full-length hormone PL stimulates
blood vessel formation in vivo at different stages of CAM
development (94), thus sustaining its potential pro-angiogenic
effect at the feto-maternal interface. However, the role of PL in
mediating the vascular adaptation to pregnancy remains
inconclusive and needs to be further elucidated.

GH-V is specifically expressed in the syncytiotrophoblast and
invasive EVTs of the human placenta (95). It has been shown to
promote EVTs invasive-phenotype in vitro (95), which is an
essential process for spiral UA remodeling. Further, its pro-
angiogenic effect has been proved in bovine brain capillary cells
(94). GH-V correlates with the increases in circulating IGF-1
observed during pregnancy (96) and it is associated with fetal
growth (97, 98). However, conflicting results exist on the
relationship between maternal GH-V/IGF-1 concentrations and
fetal growth during pregnancy (98).

In summary, while PL promote angiogenesis, GH enhances
EVT invasion and is associated with IGF-2 increases. However,
direct evidence linking PL and GH with uterine hemodynamics in
humans is missing. Further, data on receptors and downstream
pathways in ECs or VSMCs needs to be clarified.

2.6.7 Leptin

Leptin, a peptide hormone primarily secreted by adipocytes, is
also produced by the placenta, particularly by syncytiotrophoblasts
(99). Leptin treatment resolves the infertility in obese female mice
(100) and it is essential for implantation processes (101). Leptin is
likely to play a role in placental development, as its receptors have
been identified on placental cytotrophoblasts (CTBs) (102). In vitro
studies have demonstrated that leptin promotes CTB invasion (103)
through STAT3, PI3K, MAPK pathways (103) and partly by
modulating MMPs activity (104). Specifically, leptin increased the
secretion of MMP-2 and fetal fibronectin and enhanced the activity
of MMP-9 (105). Further, leptin treatment has been shown to
induce angiogenesis in UAECs (106), in UVECs and in porcine
aortic ECs (107). Although leptin has demonstrated vasodilation
effects in the human forearm (108), its direct vasoactive role in the
uterine circulation remains to be elucidated. Further, the balance
between the pro-angiogenic vs pro-inflammatory effects leptin-
mediated in the uterine vasculature is poorly understood, thus
further studies need to be addressed.

2.6.8 Corticotropin-releasing hormone

CRH is secreted by syncytiotrophoblast cells of the human
placenta into both the fetal and maternal circulation (109). It
regulates the hypothalamic-pituitary-adrenal axis and the
initiation of labor. Further, CRH acts as a vasodilator of the feto-
maternal circulation (110) and UA from pregnant rats via NO-
c¢GMP-EDHEF signaling (111). Hence, providing evidence that CRH
may act as a regulator of the UPBF. Furthermore, CRH has been
shown to attenuate the invasiveness of EVTs, thereby contributing
to ensuring controlled remodeling of spiral UA (112). The dual
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action of promoting vasodilation and regulating trophoblast
invasion demonstrates that CRH contributes to the remodeling of
the spiral UA. Most of the vasodilatory evidence is from animal
models; confirmation in human uterine arteries is limited, further,
the interaction with other placental hormones in regulating vascular
tone is poorly explored.

2.6.9 Neuropeptide Y

NPY is widely expressed in the central and peripheral nervous
systems, and it is also produced by placental and fetal membranes
(112). NPY regulates UPBF mainly by inducing vasoconstriction
through Y1 receptors located on VSMCs (113). However, UAs
isolated from pregnant animals showed a reduced sensitivity to
NPY (114), which suggests a finely tuned regulatory mechanism to
balance vascular tone and ensure adequate UPBF. In normal
placentas, Y2R- the NPY receptor involved in promoting
angiogenesis (115) and vasodilation (116)- is the most abundantly
expressed among the NPY receptors (117). These changes in
receptor expression patterns support a role for NPY in the
vascular adaptation of pregnancy. Nonetheless, the specific
contribution of NPY and Y2R in regulating UA vascular tone and
angiogenesis during pregnancy needs to be further investigated.

2.6.10 Inhibin A

Inhibin A is produced by placental syncytiotrophoblast during
pregnancy, and its circulating levels increase as pregnancy
progresses. While direct evidence of inhibin A role in uterine
vascular remodeling is limited, its elevated levels have been
associated with PE and TUGR (118), suggesting a potential role of
inhibin A in placental function and uterine perfusion during
pregnancy. To the best of our knowledge, no direct evidence
supports vasodilation or angiogenic properties of inhibin A on
the uterine circulation during pregnancy, although inhibin A
induces angiogenesis in pathological processes (119). Therefore,
given the similarities between tumors and the human placenta, the
pro-angiogenic properties of inhibin A on uterine circulation
during gestation remain to be elucidated.

2.6.11 Activin A

Activin A is a member of the transforming growth factor-beta
(TGEF-B) superfamily and the placenta is the major source of activin
A throughout pregnancy (120). The importance of activin A in
sustaining a physiologic pregnancy is suggested by the association
between its levels and pregnancy complications (121). Activin A
receptors are expressed on human trophoblast cells (122) and their
role in promoting trophoblast cells invasion, differentiation and
migration has been widely demonstrated in HTR8/SV neo cell
culture (123-126). Further, Activin A has been shown to enhance
VEGF expression, thereby promoting angiogenesis (126).
Interestingly, in UVECs activin A promotes the expression of
adhesion molecules (127), contributing to the maternal endothelial
dysfunction observed in women with PE (128). Although direct
evidence of a vasodilatory effect of activin A on UA is lacking, its
involvement in trophoblast-endothelial crosstalk suggests a role in
mediating the adaptations of the uterine circulation to pregnancy.
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2.6.12 Pregnancy-specific B-glycoproteins

PSGs are secreted mainly by trophoblast cells throughout
gestation (129). During pregnancy, members of the PSGs family
regulate the vascular function, promoting angiogenesis and
vasodilation. In vitro, treatment with PSG-1 enriched exosomes
promotes UVECs proliferation and migration, as well as NO release
(130). Consistent with these findings, Qin et al., have demonstrated
arole of PSG-9 in increasing NO production through the enhanced
expression levels of store-operated calcium entry channels proteins
(131). In addition, PSG-1 induces angiogenesis via TGFB-1 and
VEGF-A, thus contributing to the establishment of the feto-
maternal circulation during pregnancy (132). However, the direct
effects of PSGs on uterine artery reactivity and spiral artery
remodeling in vivo are largely unexplored. Moreover, the specific
contributions of different PSG isoforms beyond PSG-1 and PSG-9
to uterine vascular adaptation remain unclear. Further research is
needed to elucidate the receptor-mediated pathways involved and
to investigate whether PSGs exert differential effects in normal
versus pathological pregnancies.

3 Pathological conditions and
dysregulation of uterine circulation

Appropriately timed pregnancy-dependent changes in
vasculature are critical for healthy pregnancy outcomes. Thus,
alterations in the secretion of placental hormones and metabolites
compromise the physiological adaptation of the uterine circulation,
leading to reduced UPBF. Most of the pregnancy losses occur early
in gestation, when the placenta is established. These losses may be
associated with aberrations in remodeling of the uterine vasculature
and angiogenesis imbalance at the feto-maternal interface, resulting
in pregnancy complications such as PE, IUGR, GDM, and PAS as
discussed in the following section.

3.1PE

PE is defined as new-onset hypertension after 20 weeks of
pregnancy, with or without proteinuria and evidence of end-organ
damage. Clinically, PE is associated with several maternal and fetal
complications (133), and is generally classified in early-onset (<34
weeks of gestation), which tends to be more severe, and late-onset
(>34 weeks of gestation), which is usually milder. The placenta has a
crucial role in the pathophysiology of both early- and late-onset PE,
though the specific mechanisms differ. Early-onset PE is more
strongly associated with abnormal placentation, poor uterine
perfusion, and IUGR (134), whereas late-onset is primarily
attributed to predisposing maternal factors and placental
senescence (134).

It is generally accepted that PE originates from the abnormal
transformation of the spiral arteries underlying the placenta, due to
impaired invasion of the uterine wall by migrating trophoblast cells
(135, 136). In addition to incomplete or absent vascular remodeling,
signs of vascular damage, resembling atherosclerosis-like lesions,
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have been described in placental bed samples from women with PE
compared to women with healthy pregnancies (135). This
maladaptive phenotype leads to narrower maternal uterine vessels
and relative placental ischemia, ultimately reducing the UPBF as
demonstrated by Doppler ultrasound (137-139).

Numerous hormones and proteins of placental origin have been
investigated to elucidate the molecular mechanisms underlying the
aberrant uterine vascular phenotype observed in PE. It is well-
established that PE is associated with a decrease in pro-angiogenic
factors such as PIGF and VEGF, coupled with an increase in anti-
angiogenic factors such as sFlt-1 and sEng.

Supporting this notion, a reduction in circulating PIGF has been
associated with placental hypoperfusion in both human (140) and
animal models of PE (141). Placental hypoperfusion, indicative of
defective adaptations of the uterine circulation, may be partially
explained by a substantial elevation of sFlt-1 observed in PIGf”
mice (142). Notably, PIGF administration dampened sFlt-1
increase, restoring angiogenic signaling in a PE-like model (141).
The anti-angiogenic effects of sFlt-1 are further exacerbated by
sEng, which has been shown to induce a severe state of PE in
pregnant rats (143). The exacerbation of the PE-like symptoms is
further supported by in vitro evidence showing that, in UVEC, sEng
treatment contributes to endothelial dysfunction by inhibiting NO
production, reducing cell viability, impairing trophoblast
invasiveness, as well as suppressing MMPs expression (144).

Thus, PE is characterized by a shift toward an antiangiogenic
profile, which disrupts the normal vascular homeostasis, resulting
in endothelial cell dysfunction, including decreased NO production,
and release of procoagulant proteins. Hence, contributing to
hypertension and reduced UPBF.

3.2 IUGR

IUGR is defined as fetal weight estimated to be below the 10™
percentile for its gestational age. The most common cause of IUGR
is poor placental function and placental ischemia due to
deteriorated uteroplacental perfusion (145, 146). A strong
association between IUGR and PE has been consistently observed,
with IUGR frequently arising in pregnancies complicated by severe
PE (147). Histopathological observations revealed a significant
decrease in villous vascular density (148) and a maldevelopment
of the placental terminal villous tree in placentae from IUGR
pregnancies compared to those from normal pregnancies (149).
These findings suggest that the aberrant vascular formation is a
leading determinant in TUGR, explaining the sub-optimal UPBF.
From a molecular standpoint, the angiogenic profile of TUGR
placentas presents inconsistencies that may reflect compensatory
and pathogenic mechanisms. A study from Barut et al., reported
increased placental expression of VEGE-A, basic fibroblast growth
factor and eNOS, in placental samples from IUGR mothers
compared to control samples collected during the third trimester
(150). This result suggests a possibly compensatory upregulation
aimed at resolving placental hypoxia. However, Lyall et al. (151),
found a reduction in VEGF expression in placental villous tissue
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from pregnancies complicated by IUGR and PE, indicating that
angiogenic insufficiency may dominate in such pathological
contexts. Similarly, the expression of PIGF mRNA in placental
samples from IUGR pregnancies has been inconsistent, with
evidence demonstrating a decrease in PIGF expression only in
severe cases of IUGR (152). Study using an ovine model of TUGR
has demonstrated an increase in VEGF mRNA levels in the TUGR
group compared to the control in early gestation, possibly reflecting
early compensatory mechanisms. However, during mid-gestation,
the expression of VEGF receptors in fetal tissue was significantly
reduced, potentially limiting VEGF and PIGF signaling, thereby
impairing angiogenesis and placental vascular development (153).

This finding may reflect a progressive failure of the placenta to
sustain proangiogenic signaling under chronic stress, hence
affecting UPBF.

3.3 Gestational diabetes mellitus

GDM, defined as hyperglycemia first diagnosed during
pregnancy (154), affects up to 20% of pregnancies worldwide
(155), and it is frequently associated with uteroplacental
insufficiency, as well as increased risk of IUGR and PE (156, 157).

Morphological and structural abnormalities have been
documented in human GDM placentas (158, 159) as well as in
placentas from hyperglycemic animal model, resulting in TUGR
(160). Placentas from hyperglycemic-induced animal model exhibited
disrupted trophoblast invasion, inadequate spiral UA remodeling
(160), as well as dysregulation in PGI, levels (161, 162) and
decreased levels of VEGF and PIGF (163, 164).

Collectively, the molecular, structural and functional
abnormalities observed in GDM pregnancy suggest a defective
vascularization due to impaired placental development in GDM
pregnancy, affecting the uteroplacental circulation and thus
compromising the UPBF.

3.4 Placenta accreta spectrum

PAS encompasses a spectrum of conditions characterized by
abnormal placental adhesion to the uterine wall, which fails to
detach at birth (165). The vast majority of PAS cases are attributed
to scarring from cesarean births, which disrupts the endometrial-
myometrial interface and promotes aberrant implantation (166-168).
In PAS, EVTs excessively invade the myometrium (169), often within a
rigid, collagen-rich extracellular matrix (170), accompanied by
inflammation and hypoxia in uterus (171, 172). The absence of
proper decidualization and EVT invasiveness prevents the
remodeling of the uterine spiral artery in PAS (173), resulting in an
abnormal pulsatile and high-velocity blood flow at the feto-maternal
interface (174). Histopathologic analysis has revealed excessive
vascularity in scarred uterine tissue in PAS (173) (175) and a lack of
structural integrity of the vessel, potentially due to Von Willebrand
factor suppression as demonstrated in ECs of PAS epiplacental
artery (176).
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The excessive vascularization is supported by upregulation of
VEGF, angiopoietin-2 (177) and PIGF (178) in PAS lysates, and
reduced expression of antiangiogenic factors such as vascular
endothelial growth factor receptor-2 (VEGFR-2), endothelial cell
tyrosine kinase receptor (Tie-2), and sflt-1 in syncytiotrophoblast
cells from PAS placenta specimens (177). While evidence on VEGF
levels in PAS remains controversial (178), hormonal regulation of
angiogenic signaling may contribute to this imbalance. Indeed, the
relaxin gene is upregulated in the basal plate of PAS placentas,
together with RFXP1 in both the basal plate and villous
trophoblast (179).

Animal models have recapitulated this condition, including
placental dysplasia, incomplete remodeling of the spiral arteries,
deep trophoblast invasion at the feto-maternal interface and
reduced placental perfusion, as well as imbalances in angiogenic
and anti-angiogenic factors within the placenta and in peripheral
blood (180).

4 Therapeutic interventions

Understanding the molecular mechanisms by which placental
hormones and proteins regulate UA adaptations and functions
during pregnancy offers novel opportunities for therapeutic
strategies in the context of pregnancy diseases. The administration
of pregnancy-related hormones and proteins involved in uterine
vascular adaptations during healthy gestation may restore the
maternal vascular homeostasis in pathological conditions.
Remarkably, as naturally occurring molecules synthesized during
pregnancy, their administration is less likely to cause adverse effects
on maternal and fetal health during pregnancy. As previously
discussed, hormones and metabolites secreted by the placenta
exert pleiotropic actions during pregnancy, promoting the uterine
vascular adaptations to pregnancy. Thus, the preclinical evidence
makes them particularly attractive candidates for therapeutic use.

For example, relaxin infusion in women at >40 weeks of
gestation did not induce adverse side effects and demonstrated a
modest reduction in systolic blood pressure (181). However, relaxin
research has advanced to clinical trials primarily in the context of
acute heart failure patients, demonstrating good tolerability,
improved renal function, and enhanced systemic perfusion
following its infusion (182, 183).

Progesterone is another placental hormone with emerging
therapeutic potential. Evidence for progesterone beneficial effects
during pregnancy arises from the PROMISE trial (184) and the
PRISM trial (185), in which first trimester initiation of vaginal
progesterone prevented pregnancy loss, lowering the risk of PE and
the risk of pregnancy hypertensive disorders (186). Similarly, hCG
administration induces a significant improvement in the pregnancy
success rate in women with oligomenorrhea (187). Although there
were no adverse effects of administering hCG during pregnancy, the
evidence supporting its supplementation to prevent recurrent
miscarriage remains equivocal (188).

Hence, hormones and proteins secreted by the placenta are
naturally occurring molecules that normally circulate in the
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maternal bloodstream during pregnancy. Although the number of
pregnancy-specific clinical trials remains limited, the existing
evidence from preclinical and clinical studies indicates a favorable
safety profile and mechanistic plausibility for their use during
pregnancy. Thus, their administration to women with
complicated pregnancy would be expected to ameliorate the
maternal vascular dysfunction observed in some pregnancy-
related disorders, enabling the activation of several beneficial
pathways through the administration of one therapeutic.
However, future clinical trials specifically designed to evaluate
efficacy, timing of administration, and optimal dosing in women
with pregnancy diseases characterized by placental dysfunction will
be crucial for improving our understanding of innovative
therapeutic interventions.

4.1 Placental-target drug delivery systems

The ability of most drugs to reach therapeutic concentrations is
limited by the placenta, which acts as a selective barrier between
fetal and maternal circulation. To face these challenges, a range of
methods for placental-targeted drug delivery have been developed.
These include stem cell-based therapies, lipid nanoparticles
therapies, and gene therapies.

4.1.1 Stem cell-based therapies

Stem cells are undifferentiated cells, capable of self-renewal and
of differentiating into several specialized cells (189). These cells have
been isolated from embryonic tissues, placenta, and amniotic fluid
(190). Stem cell-based therapies using mesenchymal stromal cells
have been shown to hold potential in promoting vascular health
(191). In vitro, transplantation of mesenchymal stem cells
genetically modified to express the heme-oxygenase 1 gene
promoted placental vascularization and restored angiogenic
balance (192). Accordingly, in a PE-like animal model,
transplantation of mesenchymal stem cells modified to express
the heme-oxygenase 1 gene alleviates PE symptoms, promoting
angiogenesis and improving placental perfusion (193). More
recently, exosomes derived from human umbilical cord
mesenchymal stem cells have been shown to induce similar
therapeutic effects as mesenchymal cells themselves. For instance,
in animal models of PE, exosome-derived mesenchymal cells
decreased blood pressure and proteinuria (194-196), and
decreased the death rate of the fetuses (195) as well as the fetal
birth weight (196). Furthermore, human umbilical cord
mesenchymal stem cells-derived exosomes have been shown to
rescue sFlt-1-induced HUVECs dysfunction in vitro (196).

4.1.2 Lipid nanoparticles therapies

The lipid nanoparticles (LNPs) are nanostructured lipid carriers
that encapsulate nucleic acids for efficient intracellular delivery
(197). LNPs can be classified into liposomes, solid lipid
nanoparticles and nanostructured lipid carriers. Drug-loaded
LNPs have been successfully employed in the treatment of both
acute and chronic disorders (198). However, the use of LNPs-based
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therapies during pregnancy requires careful consideration, as it
introduces unique challenges to drug delivery. A recent study
demonstrates that the structural composition and delivery route
of LNPs during pregnancy critically influence mRNA delivery
efficiency, maternal immune activation and fetal outcomes (199).
Thus, there is a need to design pregnancy-adapted LNPs for safe
and effective placental-targeted therapies. For example, LNPs
encapsulating VEGF-mRNA triggered vasodilation in the
placentas of pregnant mice (200), resolved maternal hypertension
and partially restored placental vasculature, the local and systemic
immune response, and serum levels of sFlt-1 (201). Similarly, LNPs
delivering PIGF mRNA to the placenta in pregnant mice achieved
efficient protein expression without maternal or fetal toxicity,
further supporting their potential therapeutic action in treating
placental-related dysfunction (202).

4.1.3 Gene therapy

Gene therapies typically require a vector to introduce gene
material into target cells. The vector can be either viral or non-viral,
and both have proven effective for transporting therapeutic agents
directly to specific organs and cells, including the placenta. Major
viral vectors used for gene therapies are adenovirus, lentivirus and
adeno-associated virus, which differ in efficiency, duration of gene
expression and immunogenicity. For example, in pregnant mice,
the use of RGD fiber-mutant adenoviral vectors enhanced placental
tropism and gene transfer efficiency by 10- to 100-fold compared to
conventional vectors and sustained transgene expression for at least
7 days (203). Notably, RGD fiber-mutant adenovirus vectors did
not induce placental dysfunction or fetal loss (203), suggesting a
favorable safety profile for RGD fiber-mutant adenoviral vectors
during pregnancy. Intra-arterial administration of adenoviral
vectors encoding the VEGF gene has been associated with
enhanced fetal growth (204, 205) and increased UPBF (52) in
animal models.

Among non-viral vectors, nanostructured delivery systems
complexed with the IGF-1 gene have shown promising results in
pregnancy models. In vivo studies in pregnant mice demonstrated
that this vector effectively delivered the gene in the placenta and
alleviated IUGR (206). Similarly, in guinea pigs, IGF-1 gene delivery
promoted vascular remodeling, enhancing the expression of growth
factors (207) and increasing the fetal capillary volume density along
with fetal glucose transport (208). Accordingly, in ex vivo human
placental explants, perfusion with the IGF-1 vector increased
human IGF1 expression in villous fragments and enhanced
translocation of glucose transporters (209).

In addition to gene transfection approaches, gene silencing
strategies using small interfering RNAs represent other
possibilities in the treatment of pregnancy-related disorders. In
this regard, the use of siRNA for sFlt-1 has been shown to lower
maternal blood pressure and to reduce proteinuria in an animal
model of PE (210, 211). Thus, comprehensively, these approaches
may have the potential to improve the hemodynamic disturbance
observed in pregnancy complications such as PE and TUGR.
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5 Predictive biomarkers and
diagnostics

A wide range of serum biomarkers have been investigated as
potential markers for early screening of pregnancy complications
(see Tables 2-5).

5.1 Biomarkers for diagnosing PE

5.1.1 Hormonal and protein biomarkers

PAPP-A levels <10™ percentile in the first trimester are
associated with an increased risk of PE (209, 212). Its predictive
value improves when combined with other markers, such as B-hCG
(213-215) and UA pulsatility index (216).

In the early second trimester of pregnancy (16-18 weeks of
gestation), elevated B-hCG levels have been associated with PE and
particularly severe PE (217). However, other studies demonstrate
inconsistent findings (216, 218). A recent meta-analysis confirmed
increased levels of serum B-hCG in the early second trimester, but
not during the first trimester, in pregnancies later complicated by
PE compared to healthy pregnancies (219).

Another biomarker used to predict PE is A-Disintegrin and
Metalloprotease-12 (ADAM-12) decreased levels, in association
with PAPP-A, correlate with the severity of IUGR (220), though
findings are inconsistent for ADAM-12 association with PE and
related disorders (221). Conflicting evidence, such as increased
ADAM-12 levels reported in PE and HELLP syndrome (222),
underscores the need for further validation.

Research has also been conducted on the use of PP13 in the
prediction of PE. Low first-trimester levels are associated with PE
risk (223-225), while increased amounts of PP13 carried via the
placental-associated extracellular vesicles have been reported in late
gestation (226). Combined with PAPP-A and the free leptin index,
PP13 can reach a detection rate of 40% at a 10% false positive rate
(227). Inhibin A levels are elevated during both the first trimester
(228) and the second trimester (229) in pregnancies complicated by
PE, and its levels correlate with the incidence and severity of PE
(229). However, to increase its predictive value, the level of inhibin-
A is used in combination with other biomarkers such as PAPP-A
(228), endoglin and PIGF (230). Additional hormones have also
been explored for PE screening. For example, relaxin levels decrease
during the first trimester of pregnancy and have been associated
with late-onset PE (231), though relaxin levels may not reflect
disease severity (232).

Similarly, decreased serum levels of PTHrP (233) E2 and
progesterone (234) are lower in preeclamptic pregnancies
compared to healthy pregnancies.

A reduction in PL levels has also been associated with PE onset,
making it a reliable marker of placental function in the second half
of pregnancy (235).

Conversely, leptin concentration is significantly increased in PE,
both early and late in gestation (236, 237).
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TABLE 2 Biomarkers associated with PE categorized by trimester of pregnancy at screening.

PE
mean
(phenotype)

GW Control
(at sampling) mean

Biomarker (units)

10.3389/fendo.2025.1637570

Reference

First trimester

PAPP-A

(MoM) protein - 0.53 <0.53 (212)
o)
PAPP-A )
(MoM) protein 11-13 1.00 0.84 (242)
. 121(mild)
PAPP-A (ng/mL) protein 12-14 129 717 (severe) (228)
B-hCG (MoM) glycoprotein hormone 11-13 1.00 0.92 (242)
. 0.89 (mild)
PP13 (MoM t 8-13 1.00 223
(MoM) protein 0.65 (severe) @223)
PP13 (MoM) protein 6-10 - 0.28 (252)
PP13 (pg/mL) protein 9-12 132.5 27.2 (251)
PP13 (pg/mL) protein 9-12 2253 +67.3 157.9 £+ 455 (224)
PP13 (pg/mL) protein 10-13 54.8 35.8 (severe) (227)
341(mild)
Inhibin A L tei 12-14 277 228
nhibin A (pg/mL) protein 378 (severe) (228)
Inhibin A (pg/mL) protein 11-13 231.13 286.64 (242)
activin A (ng/mL) protein 11-13 2.16 2.52 (242)
Second trimester
. 661(mild)
PAPP-A L 18-2! 21 22
(ng/mL) protein 8-20 6 596 (severe) (228)
27,519.61 + 7,483.04
B-hCG . (mild)
- .03 = .
(IU/mL) glycoprotein hormone 16-18 19165.03 + 8044.7 3642027 + 6.703.07 (217)
(severe)
B-hCG (MoM) glycoprotein hormone 22-24 0.923 0.933 (216)
213 (mild)
Inhibin A L i 18-2! 1 228
nhibin A (pg/mL) protein 8-20 95 340 (severe) (228)
Inhibin A (MoM) protein 16-20 <125 >1.25 (229)
Inhibin A (MoM) protein 15-22 0.94 1.45 (230)
Relaxin 2 (MoM) hormone 15-22 1.019 1.116 (230)
Leptin (ng/mL) hormone 9-26 20.9 30.5 (236)
Endoglin (MoM) membrane glycoprotein 15-22 1.00 1.278 (230)
PIGF
(pg/mL) growth factor 15-19 1224 + 81 61.3 + 28.1 (245)
PIGF
(pg/mL) growth factor 14-23 146 86 (246)
sFlt-1 .
(pg/mL) protein 14-23 2,353 3,861 (246)
PIGF/sFlt-1 growth factor/protein ratio 14-23 1.2 1.6 (246)
EGF
(V/GL) growth factor 15-19 6.03 + 4.64 2.57 + 1.45 (245)
pg/m.
(Continued)
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TABLE 2 Continued

GW
(at sampling)

Biomarker (units)

10.3389/fendo.2025.1637570

PE

Control
mean Reference

mean

(phenotype)

Third trimester

1276 (mild)
PAPP-A L tei 26-28 1392 228
(ng/mL) protein 1170 (severe) (228)

PP13 pg/mL protein >24 964 1598 (226)

o . 430 (mild)

Inhibin A (pg/mL) protein 26-28 346 1250 (severe) (228)
. 0.24 £ 0.03 (mild)

1 L h 20-41 142 + 0. 232
Relaxin (ng/mL) ormone 0 0. 0.05 023 £ 0.01 (severe) (232)
PTHrP (pg/mL) protein 21-28 452.7 + 9.04 355 + 3.38 (233)
Leptin (ng/mL) hormone 37-39 10.8 + 5.3 26.6 +10.9 (237)

31-35 195 + 44 1020 + 304
CRH (pmol/l) hormone (239)
36-38 669 + 87 1390 + 257
NPY (pmol/m) neuropeptide - 23.20 40.90 (240)
NPY (ng/mL) neuropeptide 37-42) 0.5 + 0.02 0.5 +0.03 (117)
NPY2R .
. neuropeptide receptor 37-42 4.5 £ 1.375 1.2+ 0.440 (117)
(gene expression)
activin A (mIU/L) protein 8-38 4.34 not different (241)
Igf-1 (ng/mL) growth factor 29-42 113.5 £ 16.6 87.7 +17.5 (243)
PIGF
growth factor 30-33 37+16 29+ 14 (244)
(log)
sHlt-1 rotein 26-40 17315 9581 (247)
(pg/mL) P ’
sFlt-1/PIGF protein/growth factor ratio 26-40 3.96 158 (247)

GW, gestational week.

CRH levels increase in late pregnancy in women with PE
(238, 239), with a sensitivity of 92.5% and specificity of 82.5% as
a single predictive marker for PE (238).

Elevated serum NPY levels have also been reported in PE during
the third trimester (240). Interestingly, another study found a
decrease in NPY2 receptor rather than NPY expression in late
pregnancy (117).

Finally, the role of activin A remains unclear. Although no
significant difference between PE and healthy pregnancy has been
demonstrated in its levels through gestation (241), a slight increase
in the first trimester was observed in another study; however, the
association remains too weak to support its use in PE
screening (242).

5.1.2 Growth factors biomarkers

A recent study found that the levels of IGF-1 and its receptor in
the serum and in placental tissue were significantly lower in the
preeclamptic group compared to a control group. IGF-1 exhibited a
sensitivity of 86% and a specificity of 100% for diagnosing PE, while
serum IGF-1R showed a sensitivity and a specificity of 77% for
diagnosing PE (243). Angiogenic factors have emerged as a useful
tool for the identification of patients at risk for pregnancy

Frontiers in Endocrinology

complications. The lowering of PIGF alone (244) or in association
with VEGF (245), as well as in association with sFlt-1 (246), has
been associated with PE. In addition, increased sFlt-1, sFlt-1/PIGF
ratio, and a decline in PIGF levels have also been associated with PE
(247). Further, PIGF in association with PAPP-A may predict early
onset PE during the third trimester (228).

5.2 Biomarkers for diagnosing IUGR

Hormonal and protein biomarkers - Low levels of PAPP-A
during the first trimester have been consistently associated with
TUGR (248, 249). The predictive value improves when PAPP-A is
combined with UA Doppler pulsatility index (249).

While some studies found no significant association between [3-
hCG and the occurrence of IUGR (249), a meta-analysis reported
increased levels of B-hCG during the second trimester in pregnancy
complicated by IUGR (250).

PP13 has shown potential as a predictive biomarker for IUGR,
particularly when assessed during the second trimester, where PP13
levels are significantly. However, its predictive accuracy is higher for
PE than for IUGR (251). Nonetheless, maternal serum PP13 in the
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TABLE 3 Biomarkers associated with IUGR categorized by trimester of pregnancy at screening.

. . GW Control
Biomarker (units) . Reference
(at sampling) mean
First trimester
PAPP-A R
(MoM) protein 11-14 - <0.4 (248)
PAPP-A X
(difference in median) protein 11-14 1 0.64 (295)
PAPP-A R
(MoM) protein 11-13 1.15 + 0.59 0.79 + 0.38 (249)
B-hCG )
(MoM) glycoprotein hormone 11-13 1.36 + 0.85 1.52 + 0.94 (249)
PPL3 protein 9-12 132.5 86.6 (251)
(pg/mL) ’ : :
PP13 .
(MoM) protein 6-10 - 0.44 (252)
0.
Third trimester
Leptin (ng/mL) hormone 33-41 37.17 + 28.07 52.73 + 30.49 (255)
CRH
(pg/mL) hormone 33 137.0 £ 11.3 232.0 £ 435 (256)
CRH hormone 29-34 - 40 (257)
(fold change)
Q)
PAPP-A R
(fold change) protein 29-34 - 5 (257)
Inhibin A X
(pg/mL) protein 20-40 0.55 + 0.21 0.76 + 0.27 (258)
PSG-1 R
(fold change) protein 29-34 - 5 (259)
PIGF
G rowth factor 26-31 0.43 0.26 (260)
(MoM) &
0.
PIGF
(me<(13ian) growth factor 35-40 13.8 12.14 (264)
sFlt-1 (MoM) protein 26-31 1.74 4.62 (260)
tei wth
sFIt-1/PIGF (MoM) protein/groy 26-31 5.88 38.76 (260)
factor ratio
sEng protein 20-37 53 259 (263)
(ng/ml) : ) .
sEng .
(ng/ml) protein 36-39 10.6 £ 3.7 122 £ 43 (266)
VEGF
(me d?an) growth factor 35-40 12.98 10.81 (264)
Flt-1 .
(median) protein 35-40 15.5 14.9 (264)

GW, gestational week.

first trimester may predict the risk of developing IUGR, PE, or PE
complicated by IUGR (252). However, PP13 role in predicting
TUGR remains contradictory (253).

A positive correlation between maternal PL levels and estimated
fetal weight has been reported in a cross-sectional study, suggesting
its potential utility in monitoring fetal growth (235, 254).
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Importantly, PL reduction has been significantly associated not
only with the onset of PE, but also with asymmetrical TUGR,
supporting its role as a marker of placental dysfunction (235).
Elevated maternal serum leptin concentrations at delivery have
been documented in pregnancies complicated by IUGR compared
to normal pregnancies (255). Similarly, elevated CRH levels in the
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TABLE 4 Biomarkers associated with GDM categorized by trimester of pregnancy at screening.

: ; : Control GDM
Biomarker (units) Type GW (at sampling) Reference
mean mean
First trimester
Relaxin 2
(ng/mL) hormone 12 0.47 0.83 (268)
PAPP-A )
(MoM) protein <14 0.99 0.97 (273)
PAPP-A i
(MoM) protein 11-13 12+0.7 0.8 +0.5 (274)
-HCG
EMOM) glycoprotein hormone <14 1.02 1.05 (273)
B-HCG )
(MoM) glycoprotein hormone 11-13 12+05 1405 (274)
PIGF
(1 GlO) growth factor 11-14 1.68 1.76 (280)
og
PIGF
(MSM) growth factor 8-14 1.03 + 0.48 1.05 + 0.38 (281)
Second trimester
B-HCG .
(MoM) glycoprotein hormone 12 1.03 £0.50 0.96 +0.48 (272)
PAPP-A i
(MoM) protein 12 1.09 +0.50 1.00 £0.51 (272)
(;1:);;) protein 16-20 1.16 1.47 (275)
sFlt-1 i
(MoM) protein 16-20 1.04 0.66 (275)
VEGF-A
(pg/mL) growth factor 23-29 146.60 + 12.03 296.92 + 17.37 (265)
Endoglin .
(pg/mL) protein 23-29 1444.78 + 82.30 1814.06 + 141.10 (265)
Third trimester
Relaxin 2
(pg/mL) hormone 439 667.5 (269)
Leptin
(ng/mL) hormone 28 182+ 1.5 249 + 1.6 (277)
Leptin
(ng/mL) hormone 24-28 24.10 30.60 (278)
ng/m.

GW, gestational week.

third trimester of pregnancy have been associated with a 3.6-fold
increase in TUGR risk (256). Molecular studies using in silico
approaches further support these findings, showing increased
RNA expression of PAPP-A2 and CRH in both maternal blood
and placental tissue from IUGR pregnancies (257).

Additionally, higher levels of inhibin A and B have been
observed in fetuses affected by IUGR compared to controls (258).
Lastly, lower levels of serum PSG-1 have been reported in the late
second trimester of IUGR pregnancies (259).

Growth factors biomarkers - During the third trimester,
pregnancies with IUGR showed significantly lower levels of free
and total PIGF (260). A meta-analysis revealed that pregnant
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women with JUGR and PE may have higher sFlt-1/PIGF ratio. A
sFlt-1/PIGF ratio >33 showed strong predictive capacity in FGR
(261). Nonetheless, similar to Flt-1/PIGF, sEng has high predictive
value for IUGR along with PE and HELLP (262). IUGR
pregnancies, along with PE, showed significantly elevated sEng
concentrations and a strong positive correlation with sFlt-1 (263).
Remarkably, placental transcript abundance for VEGF was
significantly lower in IUGR placentae compared to healthy
placentae (264). Additionally, increased sEng levels have been
consistently associated with GDM, PE, and IUGR across different
stages of gestation (265, 266). Despite these associations, a meta-
analysis by Conde-Agudelo et al., including 53 studies and 39,974
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TABLE 5 Biomarkers associated with PAS categorized by trimester of pregnancy at screening.

10.3389/fendo.2025.1637570

. . . PAS
Biomarker (units) Type GW (at sampling) SRl Reference
mean mean
First trimester
PAPP-A rotein 0.89 1.96 (284)
(MoM) prote . E
PAPP-A tei 11-13 5.34 3.63 (286)
(IU/L) pro eim - . X
-hCG
[(SIU/L) glycoprotein hormone 11-13 33.5 51.4 (286)
Second trimester
alpha-fetoprotein tei 16-19 1.08 117 (290)
(MOM) pro em ! .
alpha-fetoprotein tei 0.98 + 0.60 149 + 0.54 (291)
(MOM) pro em . * 0. . * 0.
B-hCG lycoprotein hormone 16-19 1.02 1.36 (290)
(MoM) giycop : :
Third trimester
PL
X hormone 28-32 90 615 (288)
(copies/mL)
PL hormone 1.00 2.78 (289)
(MoM)
-h
B},lgiG glycoprotein hormone 26-34 11.8+8.8 7.8+5.9 (287)
sFlt-1 (pg/mL) protein 33-39 25,779.2 9407.1 (292)

GW, gestational week.

women, concluded a minimal predictive accuracy of angiogenic
factors for IUGR (267).

Increased serum levels of PP13 in the early second trimester
were significantly associated with GDM, with a detection rate of
92.3% at 80% specificity (275). This preliminary study may support
PP13 as an early screening biomarker, though its implementation in
5.3 Biomarkers for d|ag nosing GDM clinical practice requires validation.

PL has also been implicated in GDM. A meta-analysis showed

5.3.1 Hormonal and protein biomarkers that in women with type 1 GDM, PL is decreased in early pregnancy

Plasma levels of relaxin-2 have been found to increase in both ~ and increased in late pregnancy (276), suggesting that PL dynamics
the first- (268) and third-trimester of pregnancy in women with ~ may reflect placental adaptation to altered glycemic states.
GDM (269). In addition, increased leptin levels were observed in the third
The association between B-HCG and GDM appears more trimester of pregnancies complicated by GDM compared to
controversial. One study reported that the incidence of GDM was ~ normoglycemic pregnancies (277, 278). Accordingly, a meta-
increased in women with elevated B-HCG levels during the second ~ analysis confirmed these data, revealing increased leptin
trimester of pregnancy (250, 270). In contrast, Liu et al., found that concentrations in GDM cases regardless of gestational age, with
increased B-HCG levels in early pregnancy were associated with a 10 trimester-dependent variation in its level (279).
lower risk of GDM (271), raising the possibility of a time course-
dependent profile in the predictive capacity. Supporting this  5.3.2 Growth factors biomarkers
complexity, a machine learning study demonstrated improved Similar, GDM has been associated with increased levels of sFlt-1
prediction accuracy for GDM when B-HCG was used in  (280). However, the predictive value of PIGF in GDM remains
combination with PAPP-A (272). uncertain (244, 281). Accordingly, increased levels of VEGF-A,
Although PAPP-A alone may not be a definitive predictive  endoglin, endothelin-1, and angiopoietin-2 have also been
marker for GDM (273, 274) low levels could support the documented in GDM placentas compared to controls (265). In a
recommendation for early screening as part of a broader longitudinal study, the sFlt-1 levels were higher in the first trimester
diagnostic approach. Low serum PAPP-A MoM levels are in GDM women as compared to non-GDM women. Placental PIGF

significantly associated with the development of GDM, and Flt-1 levels were lower in the GDM group, and they were
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negatively associated with placental dimensions, revealing that an
imbalance in these growth factors may affect placental development,
hence pregnancy outcomes in GDM (282). Additionally, increased
sEng levels have been consistently associated with GDM (283).

5.4 Biomarkers for diagnosing PAS

Hormonal and protein biomarkers - Increased levels of PAPP-A
during the first trimester of pregnancy have been observed in women
at higher risk of PAS (284, 285). In contrast, another study reported
that PAPP-A levels were lower in PAS cases, while B-hCG levels were
increased compared to the control group. Interestingly, combining
these biomarkers in predictive models substantially improved
diagnostic accuracy over single-marker use, with a sensitivity of
100% and specificity of 72% (286). Studies have also examined the
diagnostic value of hyperglycosylated human CG. One study found
that levels of this hormone were lower in PAS cases compared to
controls in both the second and third trimesters of pregnancy.
However, its diagnostic performance was limited, showing only a
modest sensitivity and specificity (287).

Another hormone of interest is PL. Research has shown that
during the third trimester, PL mRNA levels are increased in the
plasma of women with invasive placentation (288). These results are
in agreement with the study from Jing et al., which confirmed that
maternal plasma PL mRNA concentrations were significantly
increased in PAS cases compared to controls (289).

In addition to protein hormones, alpha-fetoprotein (AFP), a
glycoprotein produced by the fetal liver and transported to maternal
serum through the placenta or by diffusion across fetal membranes,
has also emerged as a potential biomarker for PAS. A retrospective
case-control study found increased levels of AFP in the PAS group
during the second trimester, with a sensitivity of 71% and a specificity
of 46% (290). Similar results were obtained in a subsequent study,
which demonstrated a positive association between elevated second-
trimester serum AFP and placenta accreta, suggesting its potential use
as a screening tool for pregnancy at high risk of PAS (291).

Growth factors biomarkers - PAS is characterized by an
excessive neovascularization, thus angiogenic factors have also
been studied as potential biomarkers. A study found significantly
increased maternal serum PIGF levels in PAS cases compared to the
healthy group during the third trimester, while no differences were
found in serum levels of VEGF (178). In the same study, PIGF is
elevated in maternal serum and the placental bed of patients with
PAS disorders compared to those without PAS (178).

In contrast, studies investigating sFlt-1 levels have yielded less
conclusive results. One study reported no association between third-
trimester sFlt-1 levels and PAS disorders (292). Another study suggested
that although sFlt-1 and PIGF expression slightly differ depending on
the depth of placental invasion, there is no direct correlation between
serum levels and PIGF and sFlt-1 expression in the placenta (293).

Although these biomarkers show potential for detecting adverse
pregnancy outcomes, large-scale studies are needed to conclude
whether they could be used in early screening for pregnancy
complications such as IUGR, PE, GDM, and PAS.
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6 Future research directions

There is still much to learn about how the placental hormones
and metabolites contribute to maintaining basal and activity-
dependent perfusion of the uterine circulation during pregnancy.
Therefore, it is critical for basic science and clinical studies to
elucidate the precise molecular mechanisms by which hormones,
growth factors, and proteins secreted by the placenta modulate
uterine vascular adaptation to pregnancy. A deeper understanding
of these pathways is essential to inform clinical strategies for early
diagnosis, risk stratification, and targeted therapy. Placental
hormones and metabolites represent promising therapeutic
targets for the prevention and treatment of pregnancy
complications, including PE and ITUGR. Integrative approaches
combining translational models, omics technologies, and
longitudinal clinical studies will be critical to unlocking their
potential and improving maternal and fetal outcomes.

7 Conclusion

The endocrine function of the placenta is central to the
hemodynamic adaptations of the uterine circulation during
pregnancy. The placental hormones and metabolites appear to have
a substantial effect on the uterine circulation, including altering ECs
vasodilator production, decreasing vascular resistance, and promoting
the remodeling of the UA. Placental hormones and metabolites also
promote the angiogenic process, ultimately contributing to the
increase in UPBF necessary to sustain normal fetal growth. Most of
these changes occur in the first trimester of pregnancy, a crucial
period where abnormalities in the secretion of placental hormones
and metabolites may reflect early signs of placental and uterine
vascular impairment. Understanding how the secretion of placental
hormones and metabolites is altered during gestation, both under
normal and pathological conditions, is important for the treatment
and prevention of pregnancy complications.
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