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Life Sciences, University of Siena, Siena, Italy, 3Department of Obstetrics, Gynecology and Reproductive
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The adaptation of the uterine circulation during pregnancy is fundamental to

ensure an adequate supply of oxygen and nutrients to the fetus, and this process

is largely orchestrated by placental hormones/metabolites. In this review, we

comprehensively examine the role of placental hormones, growth factors, and

proteins in mediating vascular remodeling, vasodilation, and angiogenesis within

the uterine circulation under both physiological and pathological conditions. Key

molecules such as estrogens, progesterone, relaxin, VEGF, PlGF, and PTHrP,

among others, promote structural and functional adaptations of uterine arteries,

reduce vascular resistance, and enhance uteroplacental blood flow. Additionally,

we discuss the impact of placental dysfunction on the development of

pregnancy-related disorders such as preeclampsia, intrauterine growth

restriction, gestational diabetes mellitus, and placenta accreta spectrum

conditions that share common features of impaired uterine vascular

remodeling and altered placental secretome. Furthermore, we explore

innovative therapeutic strategies that aim to restore placental and vascular

function, including gene therapy, mesenchymal stem cell-based approaches,

and targeted nanomedicine. Finally, we highlight the emerging role of placental

biomarkers for early diagnosis and risk stratification of vascular complications in

pregnancy. Understanding the intricate interplay between placental secretions

and the maternal vasculature is critical to advancing the prevention, diagnosis,

and treatment of pregnancy complications, ultimately improving maternal and

fetal health outcomes.
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1 Introduction

Pregnancy requires the adaptation of the maternal uterine

vascular system and the development of the placenta to establish

the feto-maternal circulation. Within the maternal vascular system,

the most prominent adaptation is the remodeling of the spiral

uterine arteries (UAs) by trophoblast cells invasion to initiate the

placentation process (1). As a result, the spiral UAs enlarge their

opening diameters by 5- to 10-fold compared to the non-pregnant

state and are transformed into low-resistance conduits that deliver

blood at low pressure to the intervillous space (2). The changes in

UAs structure include expansion of volume and the outgrowth of

newly formed vessels, which are necessary to expand the vascular

surface area and create a suitable environment for fetal growth.

These morphological adaptations of the uterine circulation are

accompanied by physiological changes in uterine vascular

reactivity. Indeed, pregnancy is characterized by enhanced

vasodilation and a blunted vasoconstrictive response to

accommodate the increased utero-placental blood flow (UPBF).

These adaptations are accomplished through several mechanisms,

including the proliferative and vasodilatory effects of increased

levels of circulating growth factors, as well as the effects of pro-

and anti-inflammatory cytokines and hormones secreted by the

placenta into the maternal bloodstream. Studies have demonstrated

the involvement of these placental hormones and metabolites in

regulating uterine circulation through pathways specific to

endothelium and vascular smooth muscle cells (VSMCs).

Alterations in endothelial nitric oxide synthase (eNOS) expression

and activity, nitric oxide production (NO), and expression of

enzymes involved in prostacyclin (PGI2) production contribute to

the uterine artery endothelium-specific responses mediated by these

bioactive molecules.

Therefore, the hormones and metabolites secreted by the

placenta are crucial for the adaptations of uterine circulation, and

hence for the development and survival of the fetus.
Abbreviations: ADAM-12, A-disintegrin and metalloprotease-12; CRH,

Corticotropin-releasing hormone; cGMP, Cyclic guanosine monophosphate;

CTBs, Cytotrophoblasts; ECs, Endothelial cells; ER-a, ER –b, Estrogen

receptor-a, -b; EVTs, Extravillous trophoblasts; GPER, G-protein coupled

estrogen receptor; GH, Gestational hypertension; GDM, Gestational diabetes

mellitus; hCG, Human chorionic gonadotropin; IGFs, Insulin growth factors;

IUGR, Intrauterine growth restriction; LNPs, Lipid nanoparticles; MUA, Main

uterine artery; MMPs, Metalloproteinases; NPY, Neuropeptide Y; NO, Nitric

oxide; PTHrP, Parathyroid hormone-related protein; PlGF, Placental growth

factor; PGH, Placental growth hormone; PL, Placental lactogen; PP13, Placental

protein 13; PE, Preeclampsia; PAPP-A, Pregnancy-Associated Plasma Protein A;

PSGs, Pregnancy-specific b-glycoproteins; PGI2, Prostaglandin I2; RUA, Radial

uterine artery; SGA, Small for gestational age; VSMCs, Vascular smooth muscle

cells; sEng, Soluble endoglin; sFlt-1, Soluble fms-like tyrosine kinase; UVECs,

Umbilical vein endothelial cells; UAA, Uterine arcuate artery; UAECs, Uterine

arterial endothelial cells; UA, Uterine artery; UBF, Uterine blood flow; UMVECs,

Uterine microvascular endothelial cells; UPBF, Uteroplacental blood flow; UV,

Uterine vein; VEGF, Vascular endothelial growth factor.
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The placenta is a temporary endocrine organ that develops

immediately after implantation during pregnancy. The placenta

becomes fully functional by the 11th week of gestation, and it

regulates the bidirectional exchange of nutrients, oxygen and

waste products between the fetal and maternal circulation.

Despite accounting for less than 1% of maternal body weight, the

placenta consumes approximately 40% of the oxygen supplied by

the uterus at term (3), providing evidence for its high biosynthetic

activity. The placenta secretes into the maternal circulation several

hormones and metabolites, including estrogens, progesterone and

relaxin, which are critical for the remodeling and the vasodilation of

the uterine vasculature necessary to sustain the 40-fold increase

in UPBF.

Therefore, placental insufficiency compromises feto-maternal

circulation and has been frequently associated with pregnancy

complications including preeclampsia (PE), intrauterine growth

restriction (IUGR), gestational diabetes mellitus (GDM) and

placenta accreta spectrum (PAS) disorders. These complications

not only affect pregnancy outcomes but also have long-term

consequences on offspring health. Thus, there is a need to

maintain tight regulation of hormones/metabolites secreted by the

placenta during pregnancy.

Throughout this review, the role of the placenta in mediating

uterine vascular adaptations to pregnancy will be discussed in

normal and complicated pregnancies such as PE, IUGR, GDM

and PAS. Thus, understanding how hormones and proteins

secreted by the placenta affect the uterine circulation in both

physiological and pathological pregnancies is of interest for

improving maternal and fetal outcomes.
2 Physiological regulation of uterine
circulation by placental hormones and
growth factors

The placenta exhibits massive endocrine activity. The

coordinated action of hormones, proteins and growth factors

synthesized by the placenta is essential in regulating UA

expansion and reducing vascular resistance, supporting the

increased UPBF required for fetal development (Figure 1).

The following section summarizes studies conducted on

animals, humans, as well as cell culture, evaluating the role of

hormones, growth factors and protein synthesized by the placenta,

to elucidate their effects and mechanisms of action in processes

underlying uterine vascular remodeling during pregnancy (Table 1).
2.1 Estrogens

The placenta becomes the primary source of estrogen after week

9 of human pregnancy, when levels of estradiol increase by 50-fold

during pregnancy (4). In vitro studies have demonstrated that

estradiol-17b induces proliferation, migration and adhesion of

endothelial cells (ECs) (5–8), critical processes underlying uterine

angiogenesis and facilitating the increase in UPBF for a healthy
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pregnancy establishment. These effects have been observed in both

human umbilical vein endothelial cells (HUVECs) and uterine

arterial endothelial cells (UAECs) (5–8). In addition, estrogens

contribute to uterine vascular remodeling by enhancing the

transcriptional activity of serum and glucocorticoid-inducible

kinase-1, which in turn modulates matrix metalloproteinases-2

(MMP-2) and E-cadherin expression in human villous samples (9).

Animal studies further demonstrate the role of estrogens in

promoting vascular remodeling and hemodynamic adaptation.

During early primate pregnancy, estrogens promote trophoblast

cell proliferation, differentiation, viability, and invasion of the spiral

UA (10). In pregnant rats, estradiol was shown to activate

extracellular MMPs inducer, which in turn increased the

expression and activity of MMP-2 and MMP-9 in uterus and

aorta of late-pregnant rats vs virgin and mid-pregnant rats,

supporting its role in vascular remodeling (11). However, in

baboons, as gestation advances, the rise of estrogenssuppresses

trophoblast uterine invasion (10) by inhibiting vascular
Frontiers in Endocrinology 03
endothelial growth factor (VEGF) expression and increasing

soluble fms-like tyrosine kinase-1(sFlt-1) levels (12).

Furthermore, several studies have shown that estrogens

vasodilate UA (13–16), favoring the augmentation in UPBF

during pregnancy. In pregnant ewes, systemic infusion of

estradiol-17b induced a 5-fold increase in UPBF, mainly mediated

by large-conductance Ca2+-activated K+ channel (BKca) and NO

(17). In rats, estrogens were shown to act through the G protein-

coupled estrogen receptor (GPER) (18, 19), promoting

endothelium-dependent vasodilation via the NO–cyclic guanosine

monophosphate (NO–cGMP) signaling pathway (20). GPER-

mediated vasodilation also involves L-type Ca2+ channels and

ERK1/2 activation in VSMCs (16).

In human myometrial arteries, vasodilation in response to 17b-
estradiol is mediated by the greater expression of estrogen

receptors-a, and -b (ER-a, -b) (15).
The effects of estrogens on uterine circulation during pregnancy

have been extensively reviewed elsewhere (18, 21).
FIGURE 1

Mechanisms by which placental factors modulate uterine vascular adaptations to pregnancy. The figure illustrates the main placental factors and
signaling pathways mediating vasodilation, angiogenesis and uterine vascular remodeling during pregnancy. The coordinated actions, transforming
the UA into dilated vessel with low vascular resistance, thus sustaining the increase in UPBF and supporting a proper fetal growth.
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TABLE 1 Effects of placental factors in mediating vascular adaptations to pregnancy.

Molecules Samples Species Effects Reference

Hormones

E2b and metabolites

UAECs ewe angiogenesis (6)

MUA rat vasodilation (13)

UAECs ewe vasodilation? (294)

UA ewe vasodilation? (17)

UA rat vasodilation (14)

CTBs human vascular remodeling (9)

Placental basal plate baboon vascular remodeling (12)

Uterus rat vascular remodeling (11)

Estrogenic agonist

Placental artery;
Myometrial UA

human vasodilation (15)

RUA rat vasodilation (16)

Progesterone

UA ovine vasodilation (25)

Uterus rat vascular remodeling (11)

UA ovine vasodilation (27)

UA ovine vasodilation (28)

Relaxin

UA; myometrium rat vasodilation (35)

SMC mice vascular remodeling (32)

UA rat vascular remodeling (34)

UA mice vascular remodeling (33)

Endometrial stromal cells human
angiogenesis;

vascular remodeling
(30)

PTHrP

UA rat vasodilation (66)

Placental artery human vasodilation (68)

Placental artery human vasodilation (67)

IGF-2 UMVECs human angiogenesis (73)

PL

MUA goats ↔ UBF (91)

Serum/
morphometric analysis

ewe ↓UBF? (93)

CAM membrane;
BBCE cells

angiogenesis (94)

leptin

HTR8/SVneo;
CBTs;

chorionic villous explants
human vascular remodeling (103)

CTBs rat vascular remodeling (104)

CTBs human vascular remodeling (105)

UAECs ewe
proliferation
(angiogenesis)

(106)

UVECs;
aortic ECs

human,
porcine

angiogenesis (107)

(Continued)
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2.2 Progesterone

Progesterone is a steroid hormone whose levels during

pregnancy are almost 10 times higher than during the luteal

phase of the menstrual cycle (22). Around the 10th week of

gestation, the placenta takes over progesterone production from

the corpus luteum, maintaining serum concentrations of at least 10

ng/ml, which are essential for sustaining a healthy pregnancy (23).
Frontiers in Endocrinology 05
Progesterone contributes to thickening and expanding the

endometrial lining, thereby enlarging the surface area available

for implantation of the fertilized egg (24). It also facilitates

trophoblastic invasion of the spiral UA, thereby promoting

growth and remodeling of the uterine vasculature and increasing

UPBF. Moreover, progesterone induces uterine vessel vasodilation

by acting on both ECs and VSMCs. In ECs, it upregulates the

expression and activity of eNOS (25) as well as cyclooxygenase-1
TABLE 1 Continued

Molecules Samples Species Effects Reference

Hormones

CRH

Placental villi human vasodilation (110)

UA rat vasodilation (111)

EVTs human vascular remodeling (112)

NPY
UA guinea pig ↓ vasoconstriction (114)

placenta human angiogenesis? vasodilation? (117)

Activin A

HTR8/SVneo;
EVTs

human vascular remodeling (123)

HTR8/SVneo;EVTs;
chorionic villous explants

human vascular remodeling (124)

HTR8/SVneo;EVTs;
chorionic villous explants

human
vascular

remodeling angiogenesis
(125)

HTR8/SVneo human vascular remodeling (126)

PSG-
1/9

UVECs;
C57BL/6

Human; mice
vascular remodeling
vasodilation ()?

(130)

UVECs human vasodilation (131)

HTR-8/SVneo human angiogenesis (132)

PGH EVCs human vascular remodeling (95)

Proteins

CG

UMVECs human angiogenesis (80)

CTBs human vascular remodeling (82)

Corpus luteum human angiogenesis (81)

RUA rat vasodilation (83)

PP13

UA human vasodilation (90)

UV rat vasodilation (89)

UAA rat vasodilation (87)

UV rat vascular remodeling (86)

Endometrial tissue human vascular remodeling (85)
AC, adenylyl cyclase; AKT, protein kinase B; ALK-4, activin receptor-like kinase 4; BBCE, bovine brain capillary endothelial cells; BKca, big conductance calcium-activated potassium channel;
Ca2+, calcium ion; CAM membrane, chorioallantoic membrane; CEACAM-1, carcinoembryonic antigen-related cell adhesion molecule 1; cGMP, cyclic guanosine monophosphate; COX-1, -2,
cyclooxygenase-1 and -2; CRHR-1, corticotropin-releasing hormone receptor 1; CTBs, cytotrophoblasts; ECs, endothelial cells; EDHF, endothelium-derived hyperpolarizing factor; eNOS,
endothelial nitric oxide synthase; ER-a, -b, estrogen receptor alpha and beta; ERK-1, -2, extracellular signal-regulated kinases 1 and 2; EVTs, extravillous trophoblasts; HTR8/SVneo, human
trophoblast cell line 8/SV40 large T antigen; IGF-2, insulin-like growth factor 2; JAK-2, Janus kinase 2; Kv, voltage-gated potassium channels; LH-R, luteinizing hormone receptor; M6PR,
mannose-6-phosphate receptor; MAPK, mitogen-activated protein kinase; MMP-2, matrix metalloproteinase-2; MMPs, matrix metalloproteinases; MUA, main uterine artery; NO, nitric oxide;
PGH-R, prostaglandin H receptor; phospho-STAT3, phosphorylated signal transducer and activator of transcription 3; PI3K, phosphoinositide 3-kinase; cPLA2, phospholipase A2; PGIS,
prostacyclin synthetase; PKC, protein kinase C; RUAs, radial uterine arteries; RXFP-1, relaxin family peptide receptor 1; sGC, soluble guanylyl cyclase; SGK-1, serum and glucocorticoid-regulated
kinase 1; SKca, small conductance calcium-activated potassium channel; SMAD, small mothers against decapentaplegic; SMC, smooth muscle cell; Stat-5, signal transducer and activator of
transcription 5; TGFB-1, transforming growth factor beta 1; UAA, uterine arcuate artery; UAECs, uterine artery endothelial cells; UA, uterine artery; UMVECs, umbilical microvascular vein
endothelial cells; UV, umbilical vein; VEGF, vascular endothelial growth factor; Y2R, neuropeptide Y receptor 2; ZONEs, zones of necrosis. ↑ = increase; ↓ = decrease; ↔ = no effect;? =
indirect effect.
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and -2 (COX-1, COX-2) (26), increasing the production of NO and

PGI2 respectively (27). In VSMCs, progesterone downregulates the

protein kinase C pathway (PKC), further contributing to vessel

vasodilation (28).

Furthermore, progesterone, along with estrogen, promotes

vascular remodeling by enhancing MMPs expression and activity

(11). However, the effect of progesterone in regulating UPBF during

pregnancy appears controversial (25); therefore, further studies are

needed to elucidate its effects and the molecular mechanisms

through which progesterone modulates the uterine vascular

function during pregnancy.
2.3 Relaxin

Relaxin is produced mainly by the corpus luteum and, during

pregnancy, also by the placenta. Relaxin reaches a peak of about 1

ng/ml by the end of the first trimester, then its levels gradually

decline and plateau at ~0.6 ng/ml (29). Relaxin contributes to the

growth and softening of the cervix, facilitating rapid labor, and it

also contributes to uterine vasodilation and increases compliance,

favoring the augmentation in UPBF (29). In vitro studies have

demonstrated that relaxin stimulates angiogenesis. Experiments on

human endometrial stromal cells showed that relaxin treatment

induces a variety of angiogenesis-related genes, including VEGF-A

(30). Moreover, relaxin has been shown to induce VEGF and basic

fibroblast growth factor (31) expression in ischemic wound sites,

supporting its pro-angiogenic activity.

Animal studies have provided strong evidence for relaxin role in

vascular remodeling and uterine compliance. Kaftanovskaya et al.,

have demonstrated that relaxin-receptor-deficient mice had

reduced lengths of the pubic symphysis and increased collagen

density in reproductive tissues (32). Similarly, in pregnant relaxin-

mutant mice, UA exhibited increased elastin expression and

decreased levels of MMPs and adhesion molecules. Interestingly,

5 days of exogenous relaxin treatment reversed arterial stiffness and

improved fetal weight in relaxin-deficient mice (33). Consistent

with these findings, neutralization of relaxin in late pregnancy using

the monoclonal antibody-1 (MCA-1) has been shown to increase

uterine artery stiffness (34). Moreover, relaxin induced vasodilation

in UA isolated from pregnant rats, with a greater effect during mid-

compared to late pregnancy through the NO-sGC pathway (35).

Recent evidence suggests that the vasodilatory responses of relaxin

are mediated by its major receptor, the relaxin/insulin-like family

peptide 1 receptor (RXFP1), which is most highly expressed in the

UA during early pregnancy (34). Newly emerging data support that

relaxin binds to RXFP1 activates Gai/o protein, coupling to

phosphatidylinositol-3 kinase/Akt (protein kinase B)-dependent

phosphorylation and activation of eNOS (36). Nonetheless,

relaxin inhibits spontaneous myometrial contractile activity in

mid-gestation, while it has no effect at term (35).

Human studies suggest a potential role of relaxin in regulating

uteroplacental vascular function. A positive correlation between

serum relaxin levels and UA resistance index at 10–12 weeks of

gestation has been observed, suggesting that relaxin contributes to
Frontiers in Endocrinology 06
the regulation of the uteroplacental vasculature. Moreover,

suppression of circulating relaxin throughout mid-pregnancy

abolished the cardiovascular adaptations required to sustain a

healthy pregnancy (37). Thus, the sensitivity of the uterus to

relaxin is subjected to modulation through pregnancy, suggesting

that relaxin sustains an adequate UPBF during mid-gestation, while

facilitating labor at term, allowing for vasoconstriction.

In summary, while animal studies show promising roles in

vascular remodeling and compliance, human studies are limited

and mostly observational, lacking mechanistic insights into RXFP1

signaling in the uterine vasculature during normal and

pathological pregnancies
2.4 Vascular endothelial growth factor

In addition to steroid hormones, the placenta secretes a wide range

of angiogenic factors, including VEGF, placental growth factor (PlGF)

and sFlt-1, which collectively contribute to the regulation of the uterine

circulation. In healthy pregnancies, maternal plasma VEGF

concentrations are markedly elevated compared to non-pregnant

baselines. It rises during the first trimester, peaks at 10–14 weeks,

remains elevated up to the 20th week of pregnancy, then declines in the

third trimester (38, 39). During the first trimester of pregnancy, VEGF

levels increase 4–5 fold (163.2 ± 81.6 pg/mL) compared to the non-

pregnant state (18.5 ± 16.8 pg/mL) (40). VEGF contributes to maternal

adaptations to pregnancy by increasing vascular permeability,

stimulating angiogenesis and inducing vasodilation of the

uterine circulation.

The expression of VEGF mRNA in both the uterine endometrium

(41) and placenta (42) indicates its active role at the feto-maternal

interface, where tightly regulated modulation of vascular permeability

and angiogenesis is crucial for the establishment of a successful

uteroplacental circulation. VEGF-mediated vascular permeability has

been demonstrated in the uterine vasculature and is further enhanced

by pregnancy (43, 44). The increase in permeability facilitates the

extravasation of plasma proteins into surrounding tissue, facilitating

ECsmigration and thus the angiogenic process (45). In addition, VEGF

induces the expression of serine proteases urokinase, tissue-type

plasminogen activators, PA inhibitor 1 (46) and MMPs interstitial

collagenase (47), consistent with a pro-degradative environment, which

facilitates migration and sprouting of ECs during angiogenesis.

Notably, VEGF angiogenic properties are enhanced during

pregnancy (48). VEGF role in mediating vasodilation has also been

shown in vitro. Indeed, VEGF promotes NO production in cultured

UAECs (48) and stimulates PGI2 synthesis in a time- and

concentration-dependent manner in UVECs via activation of

cytosolic phospholipase A2/p42/p44 MAP kinases pathways (49).

The critical role of VEGF in angiogenesis is supported by

evidence from genetically modified pregnant mice lacking VEGF

gene or deficient in VEGF receptors, both of which result in

impaired vascular development and pregnancy loss (50, 51).

VEGF promotes NO production in vivo, in the UA of pregnant

ovine (52), while reducing UA contractility and increasing UPBF

(52–54) short- and long-term. Consistent with these findings,
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VEGF induced vasodilation of uterine arcuate artery (UAA) of both

non-pregnant and pregnant rats, acting through an endothelium-

dependent mechanism (55).
2.5 Placental growth factors

PlGF belongs to the VEGF growth factor family, and it binds

specifically to VEGFR-1 (56). Plasma PlGF concentrations increase

from week 11 to 12 onward to peak at week 30 in healthy pregnancy

(57), coinciding with implantation and early vascular development.

PlGF is expressed in villous trophoblasts and vascular endothelium

in human placenta at term (58), and the correlation between PlGF

expression and placental perfusion suggests that PlGF may

contribute to ensuring adequate vascular development and

function of the placenta early in gestation (59). PlGF contributes

to uteroplacental circulation establishment by supporting

angiogenesis, immune modulation and trophoblast invasion. Its

role in vascular remodeling is supported by a study demonstrating a

reduced uterine natural killer population in PlGF null mice (60).

This sub-population of natural killer cells is the major participant in

the early vascular changes in the pregnant endometrium. Thus,

demonstrating that PlGF-mediated remodeling of the UA at the

feto-maternal interface is necessary to sustain an adequate UPBF.

Supporting this finding, an increased level of PlGF correlates with

improved placental perfusion (59). In addition, PlGF potentiates the

angiogenic response to VEGF on microvascular ECs (61), thereby

promoting the angiogenic process at the feto-maternal interface.

PlGF regulates the UPBF, inducing vasodilation, as demonstrated in

placental arteries (62) and uterine circulation of rats and humans

(63). The mechanism of PlGF-mediated vasodilation has been

associated with signaling through VEGFR-1 and NO involvement,

according to the vascular bed (63).
2.6 Additional placental hormones and
proteins involved in vasodilation, vascular
remodeling and angiogenesis of the
uterine circulation during pregnancy

In addition to the well-known sex hormones and growth factors

discussed above, whose role in pregnancy-associated uterine

vascular remodeling has been widely demonstrated and

established, several studies have suggested other placental

hormones, proteins and growth factors as critical contributors to

a successful uterine vascular remodeling.
2.6.1 Parathyroid hormone-related protein
PTHrP is expressed in the placenta and fetal tissues, and its

expression increases as gestation progresses (64, 65). It plays a

crucial role in placental calcium transport, a function important in

maintaining fetal calcium homeostasis. Furthermore, PTHrP

regulates uterine vascular tone during pregnancy, inducing

vasodilation in the UA of both non-pregnant and pregnant rats

(66) and human feto-placental vasculature (67, 68). This
Frontiers in Endocrinology 07
vasodilatory effect is mediated through the PTH1 receptor

(PTH1R) and involves NO and prostacyclin production, leading

to relaxation of VSMCs (66, 69). PTHrP increases the expression of

COX-2 and the production of 8-iso-prostaglandin F2a, which in

turn can regulate the expression of PTH1R, suggesting a feedback

mechanism in VSMCs (70). Alterations in PTHrP expression have

been associated with pregnancy complications. For instance,

decreased levels of PTHrP have been observed in the placentas of

spontaneously hypertensive rats, and they have been shown to

correlate with IUGR (71). In conclusion, PTHrP is a

multifunctional protein that, through its vasodilatory effects,

regulation of vascular tone, and facilitation of calcium transport,

ensures adequate UPBF and supports fetal development. However,

despite these findings, the precise molecular mechanisms by which

PTHrP regulates uterine vascular remodeling remain poorly

defined, further human studies evaluating PTHrP levels in

pregnancy complication are still lacking. Future research should

also clarify whether PTHrP modulation could offer therapeutic

benefits in pregnancy disorders.

2.6.2 Insulin growth factor
Insulin growth factor 2 (IGF-2) is abundantly expressed in

trophoblast cells and fetal tissue (72). Studies on human uterine

microvascular endothelial cells (UMVECs) have demonstrated that

IGF-2 promotes ECs migration through the mannose 6-phosphate

receptor (73). In addition, IGF-2 has been shown to promote

endothelial proliferation and cell survival in placental villous

explants, indicating a broader function in placental angiogenesis.

The importance of IGF-2 in fetal development is further

underscored by studies in mice, where IGF-2 deficiency resulted

in growth restriction (74), indirectly supporting its action on UPBF.

Thus, IGF-2 contributes to the vascular adaptation to pregnancy

mainly by promoting angiogenesis.

Although the role of IGF-2 in placental angiogenesis and fetal

growth has been documented gaps remain in understanding its

effects on the maternal uterine circulation in the context of vascular

tone and UPBF regulation. Further, the molecular pathways

through which IGF-2 might influence NO production or

expression, as well as PGI2 are largely unexplored. Future studies

should clarify these mechanisms particularly through in vivo

models and functional assessment of uterine circulation to better

define IGF-2 contribution to maternal vascular adaptation

during pregnancy.

2.6.3 Pregnancy-associated plasma protein A
PAPP-A is a proteinase highly expressed during pregnancy

(75). PAPP-A enhances IGF bioavailability (76), which in turn

promotes trophoblast invasion and angiogenesis, leading to a

proper vascular remodeling required for adequate uteroplacental

perfusion and fetal development. Low maternal serum PAPP-A has

been associated with high UA resistance index (77), suggesting

PAPP-A involvement in the regulation of UBPF.

Although PAPP-A is associated with improved IGF

bioavailability and favorable pregnancy outcomes, come mainly

from observational rather than direct mechanistic findings. The
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mechanisms by which PAPP-A modulates UA vasodilation and

vasoconstriction events during pregnancy, as well as the

downstream effects of altered PAPP-A expression on uterine

microvascular networks beyond the spiral UA remain

poorly defined.

2.6.4 Human chorionic gonadotropin
hCG is a glycoprotein hormone produced predominantly by

placental syncytiotrophoblast. hCG receptors have been identified

on uterine ECs (78, 79), and hCG promotes angiogenesis by

stimulating ECs migration and capillary sprouting (80). Evidence

from luteal tissue also supports its pro-angiogenic properties,

increasing proliferation of ECs and expansion of both endothelial

and pericyte compartments, thus contributing to vascular

stabilization during pregnancy (81). Additionally, hCG increases

migration, proliferation and invasion of trophoblast cells into the

maternal decidua and the subsequent remodeling of spiral UA into

low-resistance, high-capacitance vessels, essential for adequate

placental perfusion (82). Moreover, hCG induces vasodilation of

UA through the NO pathway, reducing vascular resistance and

enhancing UPBF (83).

However, the downstream intracellular signaling pathways

mediating hCG’s pro-angiogenic and vasodilatory actions—

beyond NO—are not comprehensively characterized. Longitudinal

studies examining hCG fluctuations and uterine hemodynamics

throughout pregnancy, along with experimental models

manipulating hCG levels, would help clarify its direct role in

uterine vascular adaptation and disease susceptibility.

2.6.5 Placental protein 13
PP13, also known as galectin-13, is a member of the galectin

family predominantly secreted from placental syncytiotrophoblasts.

In addition to its immunomodulatory function (84), PP13

contributes to the vascular remodeling of the spiral UA (85) and

uterine veins (UV) (86), ensuring adequate UPBF to the fetus. In

vivo studies have demonstrated that PP13 administration lowered

blood pressure and promoted placental and fetal growth (86). These

findings are further supported by ex vivo evidence demonstrating

PP13 vasodilation effects in UA from both rats (87–89) and humans

(90). The vasodilation action of PP13 is mediated, at least in part,

through the NO pathway. By promoting increased UPBF, PP13

supports fetal development and contributes to the maintenance of a

healthy pregnancy.

Although the contribution of PP13 in mediating the uterine

vascular adaptation to pregnancy has been widely demonstrated in

animal models or ex vivo, there is a lack of human in vivo data

confirming its role in UPBF regulation.

2.6.6 Placental lactogen and placental growth
hormone

PL and GH-V are members of the growth hormone/prolactin

family expressed in the human syncytiotrophoblast. Although a

direct association between PL and UPBF has not been definitively

established (91), maternal circulating levels of PL have been

positively associated with fetal weight (92). Consistent studies in
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animal models have demonstrated that PL deficiency resulted in

reduced fetal and placental weight (93), indirectly indicating a

potential contribution of PL to adequate UPBF necessary for

normal fetal growth. The full-length hormone PL stimulates

blood vessel formation in vivo at different stages of CAM

development (94), thus sustaining its potential pro-angiogenic

effect at the feto-maternal interface. However, the role of PL in

mediating the vascular adaptation to pregnancy remains

inconclusive and needs to be further elucidated.

GH-V is specifically expressed in the syncytiotrophoblast and

invasive EVTs of the human placenta (95). It has been shown to

promote EVTs invasive-phenotype in vitro (95), which is an

essential process for spiral UA remodeling. Further, its pro-

angiogenic effect has been proved in bovine brain capillary cells

(94). GH-V correlates with the increases in circulating IGF-1

observed during pregnancy (96) and it is associated with fetal

growth (97, 98). However, conflicting results exist on the

relationship between maternal GH-V/IGF-1 concentrations and

fetal growth during pregnancy (98).

In summary, while PL promote angiogenesis, GH enhances

EVT invasion and is associated with IGF-2 increases. However,

direct evidence linking PL and GH with uterine hemodynamics in

humans is missing. Further, data on receptors and downstream

pathways in ECs or VSMCs needs to be clarified.

2.6.7 Leptin
Leptin, a peptide hormone primarily secreted by adipocytes, is

also produced by the placenta, particularly by syncytiotrophoblasts

(99). Leptin treatment resolves the infertility in obese female mice

(100) and it is essential for implantation processes (101). Leptin is

likely to play a role in placental development, as its receptors have

been identified on placental cytotrophoblasts (CTBs) (102). In vitro

studies have demonstrated that leptin promotes CTB invasion (103)

through STAT3, PI3K, MAPK pathways (103) and partly by

modulating MMPs activity (104). Specifically, leptin increased the

secretion of MMP-2 and fetal fibronectin and enhanced the activity

of MMP-9 (105). Further, leptin treatment has been shown to

induce angiogenesis in UAECs (106), in UVECs and in porcine

aortic ECs (107). Although leptin has demonstrated vasodilation

effects in the human forearm (108), its direct vasoactive role in the

uterine circulation remains to be elucidated. Further, the balance

between the pro-angiogenic vs pro-inflammatory effects leptin-

mediated in the uterine vasculature is poorly understood, thus

further studies need to be addressed.

2.6.8 Corticotropin-releasing hormone
CRH is secreted by syncytiotrophoblast cells of the human

placenta into both the fetal and maternal circulation (109). It

regulates the hypothalamic-pituitary-adrenal axis and the

initiation of labor. Further, CRH acts as a vasodilator of the feto-

maternal circulation (110) and UA from pregnant rats via NO–

cGMP-EDHF signaling (111). Hence, providing evidence that CRH

may act as a regulator of the UPBF. Furthermore, CRH has been

shown to attenuate the invasiveness of EVTs, thereby contributing

to ensuring controlled remodeling of spiral UA (112). The dual
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action of promoting vasodilation and regulating trophoblast

invasion demonstrates that CRH contributes to the remodeling of

the spiral UA. Most of the vasodilatory evidence is from animal

models; confirmation in human uterine arteries is limited, further,

the interaction with other placental hormones in regulating vascular

tone is poorly explored.

2.6.9 Neuropeptide Y
NPY is widely expressed in the central and peripheral nervous

systems, and it is also produced by placental and fetal membranes

(112). NPY regulates UPBF mainly by inducing vasoconstriction

through Y1 receptors located on VSMCs (113). However, UAs

isolated from pregnant animals showed a reduced sensitivity to

NPY (114), which suggests a finely tuned regulatory mechanism to

balance vascular tone and ensure adequate UPBF. In normal

placentas, Y2R- the NPY receptor involved in promoting

angiogenesis (115) and vasodilation (116)- is the most abundantly

expressed among the NPY receptors (117). These changes in

receptor expression patterns support a role for NPY in the

vascular adaptation of pregnancy. Nonetheless, the specific

contribution of NPY and Y2R in regulating UA vascular tone and

angiogenesis during pregnancy needs to be further investigated.

2.6.10 Inhibin A
Inhibin A is produced by placental syncytiotrophoblast during

pregnancy, and its circulating levels increase as pregnancy

progresses. While direct evidence of inhibin A role in uterine

vascular remodeling is limited, its elevated levels have been

associated with PE and IUGR (118), suggesting a potential role of

inhibin A in placental function and uterine perfusion during

pregnancy. To the best of our knowledge, no direct evidence

supports vasodilation or angiogenic properties of inhibin A on

the uterine circulation during pregnancy, although inhibin A

induces angiogenesis in pathological processes (119). Therefore,

given the similarities between tumors and the human placenta, the

pro-angiogenic properties of inhibin A on uterine circulation

during gestation remain to be elucidated.

2.6.11 Activin A
Activin A is a member of the transforming growth factor-beta

(TGF-b) superfamily and the placenta is the major source of activin

A throughout pregnancy (120). The importance of activin A in

sustaining a physiologic pregnancy is suggested by the association

between its levels and pregnancy complications (121). Activin A

receptors are expressed on human trophoblast cells (122) and their

role in promoting trophoblast cells invasion, differentiation and

migration has been widely demonstrated in HTR8/SV neo cell

culture (123–126). Further, Activin A has been shown to enhance

VEGF expression, thereby promoting angiogenesis (126).

Interestingly, in UVECs activin A promotes the expression of

adhesion molecules (127), contributing to the maternal endothelial

dysfunction observed in women with PE (128). Although direct

evidence of a vasodilatory effect of activin A on UA is lacking, its

involvement in trophoblast-endothelial crosstalk suggests a role in

mediating the adaptations of the uterine circulation to pregnancy.
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2.6.12 Pregnancy-specific b-glycoproteins
PSGs are secreted mainly by trophoblast cells throughout

gestation (129). During pregnancy, members of the PSGs family

regulate the vascular function, promoting angiogenesis and

vasodilation. In vitro, treatment with PSG-1 enriched exosomes

promotes UVECs proliferation and migration, as well as NO release

(130). Consistent with these findings, Qin et al., have demonstrated

a role of PSG-9 in increasing NO production through the enhanced

expression levels of store-operated calcium entry channels proteins

(131). In addition, PSG-1 induces angiogenesis via TGFB-1 and

VEGF-A, thus contributing to the establishment of the feto-

maternal circulation during pregnancy (132). However, the direct

effects of PSGs on uterine artery reactivity and spiral artery

remodeling in vivo are largely unexplored. Moreover, the specific

contributions of different PSG isoforms beyond PSG-1 and PSG-9

to uterine vascular adaptation remain unclear. Further research is

needed to elucidate the receptor-mediated pathways involved and

to investigate whether PSGs exert differential effects in normal

versus pathological pregnancies.
3 Pathological conditions and
dysregulation of uterine circulation

Appropriately timed pregnancy-dependent changes in

vasculature are critical for healthy pregnancy outcomes. Thus,

alterations in the secretion of placental hormones and metabolites

compromise the physiological adaptation of the uterine circulation,

leading to reduced UPBF. Most of the pregnancy losses occur early

in gestation, when the placenta is established. These losses may be

associated with aberrations in remodeling of the uterine vasculature

and angiogenesis imbalance at the feto-maternal interface, resulting

in pregnancy complications such as PE, IUGR, GDM, and PAS as

discussed in the following section.
3.1 PE

PE is defined as new-onset hypertension after 20 weeks of

pregnancy, with or without proteinuria and evidence of end-organ

damage. Clinically, PE is associated with several maternal and fetal

complications (133), and is generally classified in early-onset (<34

weeks of gestation), which tends to be more severe, and late-onset

(>34 weeks of gestation), which is usually milder. The placenta has a

crucial role in the pathophysiology of both early- and late-onset PE,

though the specific mechanisms differ. Early-onset PE is more

strongly associated with abnormal placentation, poor uterine

perfusion, and IUGR (134), whereas late-onset is primarily

attributed to predisposing maternal factors and placental

senescence (134).

It is generally accepted that PE originates from the abnormal

transformation of the spiral arteries underlying the placenta, due to

impaired invasion of the uterine wall by migrating trophoblast cells

(135, 136). In addition to incomplete or absent vascular remodeling,

signs of vascular damage, resembling atherosclerosis-like lesions,
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have been described in placental bed samples from women with PE

compared to women with healthy pregnancies (135). This

maladaptive phenotype leads to narrower maternal uterine vessels

and relative placental ischemia, ultimately reducing the UPBF as

demonstrated by Doppler ultrasound (137–139).

Numerous hormones and proteins of placental origin have been

investigated to elucidate the molecular mechanisms underlying the

aberrant uterine vascular phenotype observed in PE. It is well-

established that PE is associated with a decrease in pro-angiogenic

factors such as PlGF and VEGF, coupled with an increase in anti-

angiogenic factors such as sFlt-1 and sEng.

Supporting this notion, a reduction in circulating PlGF has been

associated with placental hypoperfusion in both human (140) and

animal models of PE (141). Placental hypoperfusion, indicative of

defective adaptations of the uterine circulation, may be partially

explained by a substantial elevation of sFlt-1 observed in PlGf-/-

mice (142). Notably, PlGF administration dampened sFlt-1

increase, restoring angiogenic signaling in a PE-like model (141).

The anti-angiogenic effects of sFlt-1 are further exacerbated by

sEng, which has been shown to induce a severe state of PE in

pregnant rats (143). The exacerbation of the PE-like symptoms is

further supported by in vitro evidence showing that, in UVEC, sEng

treatment contributes to endothelial dysfunction by inhibiting NO

production, reducing cell viability, impairing trophoblast

invasiveness, as well as suppressing MMPs expression (144).

Thus, PE is characterized by a shift toward an antiangiogenic

profile, which disrupts the normal vascular homeostasis, resulting

in endothelial cell dysfunction, including decreased NO production,

and release of procoagulant proteins. Hence, contributing to

hypertension and reduced UPBF.
3.2 IUGR

IUGR is defined as fetal weight estimated to be below the 10th

percentile for its gestational age. The most common cause of IUGR

is poor placental function and placental ischemia due to

deteriorated uteroplacental perfusion (145, 146). A strong

association between IUGR and PE has been consistently observed,

with IUGR frequently arising in pregnancies complicated by severe

PE (147). Histopathological observations revealed a significant

decrease in villous vascular density (148) and a maldevelopment

of the placental terminal villous tree in placentae from IUGR

pregnancies compared to those from normal pregnancies (149).

These findings suggest that the aberrant vascular formation is a

leading determinant in IUGR, explaining the sub-optimal UPBF.

From a molecular standpoint, the angiogenic profile of IUGR

placentas presents inconsistencies that may reflect compensatory

and pathogenic mechanisms. A study from Barut et al., reported

increased placental expression of VEGF-A, basic fibroblast growth

factor and eNOS, in placental samples from IUGR mothers

compared to control samples collected during the third trimester

(150). This result suggests a possibly compensatory upregulation

aimed at resolving placental hypoxia. However, Lyall et al. (151),

found a reduction in VEGF expression in placental villous tissue
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from pregnancies complicated by IUGR and PE, indicating that

angiogenic insufficiency may dominate in such pathological

contexts. Similarly, the expression of PlGF mRNA in placental

samples from IUGR pregnancies has been inconsistent, with

evidence demonstrating a decrease in PlGF expression only in

severe cases of IUGR (152). Study using an ovine model of IUGR

has demonstrated an increase in VEGF mRNA levels in the IUGR

group compared to the control in early gestation, possibly reflecting

early compensatory mechanisms. However, during mid-gestation,

the expression of VEGF receptors in fetal tissue was significantly

reduced, potentially limiting VEGF and PlGF signaling, thereby

impairing angiogenesis and placental vascular development (153).

This finding may reflect a progressive failure of the placenta to

sustain proangiogenic signaling under chronic stress, hence

affecting UPBF.
3.3 Gestational diabetes mellitus

GDM, defined as hyperglycemia first diagnosed during

pregnancy (154), affects up to 20% of pregnancies worldwide

(155), and it is frequently associated with uteroplacental

insufficiency, as well as increased risk of IUGR and PE (156, 157).

Morphological and structural abnormalities have been

documented in human GDM placentas (158, 159) as well as in

placentas from hyperglycemic animal model, resulting in IUGR

(160). Placentas from hyperglycemic-induced animal model exhibited

disrupted trophoblast invasion, inadequate spiral UA remodeling

(160), as well as dysregulation in PGI2 levels (161, 162) and

decreased levels of VEGF and PlGF (163, 164).

Collectively, the molecular, structural and functional

abnormalities observed in GDM pregnancy suggest a defective

vascularization due to impaired placental development in GDM

pregnancy, affecting the uteroplacental circulation and thus

compromising the UPBF.
3.4 Placenta accreta spectrum

PAS encompasses a spectrum of conditions characterized by

abnormal placental adhesion to the uterine wall, which fails to

detach at birth (165). The vast majority of PAS cases are attributed

to scarring from cesarean births, which disrupts the endometrial-

myometrial interface and promotes aberrant implantation (166–168).

In PAS, EVTs excessively invade the myometrium (169), often within a

rigid, collagen-rich extracellular matrix (170), accompanied by

inflammation and hypoxia in uterus (171, 172). The absence of

proper decidualization and EVT invasiveness prevents the

remodeling of the uterine spiral artery in PAS (173), resulting in an

abnormal pulsatile and high-velocity blood flow at the feto-maternal

interface (174). Histopathologic analysis has revealed excessive

vascularity in scarred uterine tissue in PAS (173) (175) and a lack of

structural integrity of the vessel, potentially due to Von Willebrand

factor suppression as demonstrated in ECs of PAS epiplacental

artery (176).
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The excessive vascularization is supported by upregulation of

VEGF, angiopoietin-2 (177) and PlGF (178) in PAS lysates, and

reduced expression of antiangiogenic factors such as vascular

endothelial growth factor receptor-2 (VEGFR-2), endothelial cell

tyrosine kinase receptor (Tie-2), and sflt-1 in syncytiotrophoblast

cells from PAS placenta specimens (177). While evidence on VEGF

levels in PAS remains controversial (178), hormonal regulation of

angiogenic signaling may contribute to this imbalance. Indeed, the

relaxin gene is upregulated in the basal plate of PAS placentas,

together with RFXP1 in both the basal plate and villous

trophoblast (179).

Animal models have recapitulated this condition, including

placental dysplasia, incomplete remodeling of the spiral arteries,

deep trophoblast invasion at the feto-maternal interface and

reduced placental perfusion, as well as imbalances in angiogenic

and anti-angiogenic factors within the placenta and in peripheral

blood (180).
4 Therapeutic interventions

Understanding the molecular mechanisms by which placental

hormones and proteins regulate UA adaptations and functions

during pregnancy offers novel opportunities for therapeutic

strategies in the context of pregnancy diseases. The administration

of pregnancy-related hormones and proteins involved in uterine

vascular adaptations during healthy gestation may restore the

maternal vascular homeostasis in pathological conditions.

Remarkably, as naturally occurring molecules synthesized during

pregnancy, their administration is less likely to cause adverse effects

on maternal and fetal health during pregnancy. As previously

discussed, hormones and metabolites secreted by the placenta

exert pleiotropic actions during pregnancy, promoting the uterine

vascular adaptations to pregnancy. Thus, the preclinical evidence

makes them particularly attractive candidates for therapeutic use.

For example, relaxin infusion in women at >40 weeks of

gestation did not induce adverse side effects and demonstrated a

modest reduction in systolic blood pressure (181). However, relaxin

research has advanced to clinical trials primarily in the context of

acute heart failure patients, demonstrating good tolerability,

improved renal function, and enhanced systemic perfusion

following its infusion (182, 183).

Progesterone is another placental hormone with emerging

therapeutic potential. Evidence for progesterone beneficial effects

during pregnancy arises from the PROMISE trial (184) and the

PRISM trial (185), in which first trimester initiation of vaginal

progesterone prevented pregnancy loss, lowering the risk of PE and

the risk of pregnancy hypertensive disorders (186). Similarly, hCG

administration induces a significant improvement in the pregnancy

success rate in women with oligomenorrhea (187). Although there

were no adverse effects of administering hCG during pregnancy, the

evidence supporting its supplementation to prevent recurrent

miscarriage remains equivocal (188).

Hence, hormones and proteins secreted by the placenta are

naturally occurring molecules that normally circulate in the
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maternal bloodstream during pregnancy. Although the number of

pregnancy-specific clinical trials remains limited, the existing

evidence from preclinical and clinical studies indicates a favorable

safety profile and mechanistic plausibility for their use during

pregnancy. Thus, their administration to women with

complicated pregnancy would be expected to ameliorate the

maternal vascular dysfunction observed in some pregnancy-

related disorders, enabling the activation of several beneficial

pathways through the administration of one therapeutic.

However, future clinical trials specifically designed to evaluate

efficacy, timing of administration, and optimal dosing in women

with pregnancy diseases characterized by placental dysfunction will

be crucial for improving our understanding of innovative

therapeutic interventions.
4.1 Placental-target drug delivery systems

The ability of most drugs to reach therapeutic concentrations is

limited by the placenta, which acts as a selective barrier between

fetal and maternal circulation. To face these challenges, a range of

methods for placental-targeted drug delivery have been developed.

These include stem cell-based therapies, lipid nanoparticles

therapies, and gene therapies.

4.1.1 Stem cell-based therapies
Stem cells are undifferentiated cells, capable of self-renewal and

of differentiating into several specialized cells (189). These cells have

been isolated from embryonic tissues, placenta, and amniotic fluid

(190). Stem cell-based therapies using mesenchymal stromal cells

have been shown to hold potential in promoting vascular health

(191). In vitro, transplantation of mesenchymal stem cells

genetically modified to express the heme-oxygenase 1 gene

promoted placental vascularization and restored angiogenic

balance (192). Accordingly, in a PE-like animal model,

transplantation of mesenchymal stem cells modified to express

the heme-oxygenase 1 gene alleviates PE symptoms, promoting

angiogenesis and improving placental perfusion (193). More

recently, exosomes derived from human umbilical cord

mesenchymal stem cells have been shown to induce similar

therapeutic effects as mesenchymal cells themselves. For instance,

in animal models of PE, exosome-derived mesenchymal cells

decreased blood pressure and proteinuria (194–196), and

decreased the death rate of the fetuses (195) as well as the fetal

birth weight (196). Furthermore, human umbilical cord

mesenchymal stem cells-derived exosomes have been shown to

rescue sFlt-1-induced HUVECs dysfunction in vitro (196).

4.1.2 Lipid nanoparticles therapies
The lipid nanoparticles (LNPs) are nanostructured lipid carriers

that encapsulate nucleic acids for efficient intracellular delivery

(197). LNPs can be classified into liposomes, solid lipid

nanoparticles and nanostructured lipid carriers. Drug-loaded

LNPs have been successfully employed in the treatment of both

acute and chronic disorders (198). However, the use of LNPs-based
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therapies during pregnancy requires careful consideration, as it

introduces unique challenges to drug delivery. A recent study

demonstrates that the structural composition and delivery route

of LNPs during pregnancy critically influence mRNA delivery

efficiency, maternal immune activation and fetal outcomes (199).

Thus, there is a need to design pregnancy-adapted LNPs for safe

and effective placental-targeted therapies. For example, LNPs

encapsulating VEGF-mRNA triggered vasodilation in the

placentas of pregnant mice (200), resolved maternal hypertension

and partially restored placental vasculature, the local and systemic

immune response, and serum levels of sFlt-1 (201). Similarly, LNPs

delivering PlGF mRNA to the placenta in pregnant mice achieved

efficient protein expression without maternal or fetal toxicity,

further supporting their potential therapeutic action in treating

placental-related dysfunction (202).
4.1.3 Gene therapy
Gene therapies typically require a vector to introduce gene

material into target cells. The vector can be either viral or non-viral,

and both have proven effective for transporting therapeutic agents

directly to specific organs and cells, including the placenta. Major

viral vectors used for gene therapies are adenovirus, lentivirus and

adeno-associated virus, which differ in efficiency, duration of gene

expression and immunogenicity. For example, in pregnant mice,

the use of RGD fiber-mutant adenoviral vectors enhanced placental

tropism and gene transfer efficiency by 10- to 100-fold compared to

conventional vectors and sustained transgene expression for at least

7 days (203). Notably, RGD fiber-mutant adenovirus vectors did

not induce placental dysfunction or fetal loss (203), suggesting a

favorable safety profile for RGD fiber-mutant adenoviral vectors

during pregnancy. Intra-arterial administration of adenoviral

vectors encoding the VEGF gene has been associated with

enhanced fetal growth (204, 205) and increased UPBF (52) in

animal models.

Among non-viral vectors, nanostructured delivery systems

complexed with the IGF-1 gene have shown promising results in

pregnancy models. In vivo studies in pregnant mice demonstrated

that this vector effectively delivered the gene in the placenta and

alleviated IUGR (206). Similarly, in guinea pigs, IGF-1 gene delivery

promoted vascular remodeling, enhancing the expression of growth

factors (207) and increasing the fetal capillary volume density along

with fetal glucose transport (208). Accordingly, in ex vivo human

placental explants, perfusion with the IGF-1 vector increased

human IGF1 expression in villous fragments and enhanced

translocation of glucose transporters (209).

In addition to gene transfection approaches, gene silencing

strategies using small interfering RNAs represent other

possibilities in the treatment of pregnancy-related disorders. In

this regard, the use of siRNA for sFlt-1 has been shown to lower

maternal blood pressure and to reduce proteinuria in an animal

model of PE (210, 211). Thus, comprehensively, these approaches

may have the potential to improve the hemodynamic disturbance

observed in pregnancy complications such as PE and IUGR.
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5 Predictive biomarkers and
diagnostics

A wide range of serum biomarkers have been investigated as

potential markers for early screening of pregnancy complications

(see Tables 2–5).
5.1 Biomarkers for diagnosing PE

5.1.1 Hormonal and protein biomarkers
PAPP-A levels <10th percentile in the first trimester are

associated with an increased risk of PE (209, 212). Its predictive

value improves when combined with other markers, such as b-hCG
(213–215) and UA pulsatility index (216).

In the early second trimester of pregnancy (16–18 weeks of

gestation), elevated b-hCG levels have been associated with PE and

particularly severe PE (217). However, other studies demonstrate

inconsistent findings (216, 218). A recent meta-analysis confirmed

increased levels of serum b-hCG in the early second trimester, but

not during the first trimester, in pregnancies later complicated by

PE compared to healthy pregnancies (219).

Another biomarker used to predict PE is A-Disintegrin and

Metalloprotease-12 (ADAM-12) decreased levels, in association

with PAPP-A, correlate with the severity of IUGR (220), though

findings are inconsistent for ADAM-12 association with PE and

related disorders (221). Conflicting evidence, such as increased

ADAM-12 levels reported in PE and HELLP syndrome (222),

underscores the need for further validation.

Research has also been conducted on the use of PP13 in the

prediction of PE. Low first-trimester levels are associated with PE

risk (223–225), while increased amounts of PP13 carried via the

placental-associated extracellular vesicles have been reported in late

gestation (226). Combined with PAPP-A and the free leptin index,

PP13 can reach a detection rate of 40% at a 10% false positive rate

(227). Inhibin A levels are elevated during both the first trimester

(228) and the second trimester (229) in pregnancies complicated by

PE, and its levels correlate with the incidence and severity of PE

(229). However, to increase its predictive value, the level of inhibin-

A is used in combination with other biomarkers such as PAPP-A

(228), endoglin and PlGF (230). Additional hormones have also

been explored for PE screening. For example, relaxin levels decrease

during the first trimester of pregnancy and have been associated

with late-onset PE (231), though relaxin levels may not reflect

disease severity (232).

Similarly, decreased serum levels of PTHrP (233) E2 and

progesterone (234) are lower in preeclamptic pregnancies

compared to healthy pregnancies.

A reduction in PL levels has also been associated with PE onset,

making it a reliable marker of placental function in the second half

of pregnancy (235).

Conversely, leptin concentration is significantly increased in PE,

both early and late in gestation (236, 237).
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TABLE 2 Biomarkers associated with PE categorized by trimester of pregnancy at screening.

Biomarker (units) Type
GW

(at sampling)
Control
mean

PE
mean

(phenotype)
Reference

First trimester

PAPP-A
(MoM)

protein – 0.53 <0.53 (212)

PAPP-A
(MoM)

protein 11-13 1.00 0.84 (242)

PAPP-A (ng/mL) protein 12-14 129
121(mild)

71.7 (severe)
(228)

b-hCG (MoM) glycoprotein hormone 11-13 1.00 0.92 (242)

PP13 (MoM) protein 8-13 1.00
0.89 (mild)
0.65 (severe)

(223)

PP13 (MoM) protein 6-10 – 0.28 (252)

PP13 (pg/mL) protein 9-12 132.5 27.2 (251)

PP13 (pg/mL) protein 9-12 225.3 ± 67.3 157.9 ± 45.5 (224)

PP13 (pg/mL) protein 10-13 54.8 35.8 (severe) (227)

Inhibin A (pg/mL) protein 12-14 277
341(mild)
378 (severe)

(228)

Inhibin A (pg/mL) protein 11-13 231.13 286.64 (242)

activin A (ng/mL) protein 11-13 2.16 2.52 (242)

Second trimester

PAPP-A (ng/mL) protein 18-20 621
661(mild)
596 (severe)

(228)

b-hCG
(IU/mL)

glycoprotein hormone 16-18 19165.03 ± 8044.7

27,519.61 ± 7,483.04
(mild)

36,420.27 ± 6,703.07
(severe)

(217)

b-hCG (MoM) glycoprotein hormone 22-24 0.923 0.933 (216)

Inhibin A (pg/mL) protein 18-20 195
213 (mild)
340 (severe)

(228)

Inhibin A (MoM) protein 16-20 <1.25 >1.25 (229)

Inhibin A (MoM) protein 15-22 0.94 1.45 (230)

Relaxin 2 (MoM) hormone 15-22 1.019 1.116 (230)

Leptin (ng/mL) hormone 9-26 20.9 30.5 (236)

Endoglin (MoM) membrane glycoprotein 15-22 1.00 1.278 (230)

PlGF
(pg/mL)

growth factor 15-19 122.4 ± 81 61.3 ± 28.1 (245)

PlGF
(pg/mL)

growth factor 14-23 146 86 (246)

sFlt-1
(pg/mL)

protein 14-23 2,353 3,861 (246)

PlGF/sFlt-1 growth factor/protein ratio 14-23 1.2 1.6 (246)

VEGF
(pg/mL)

growth factor 15-19 6.03 ± 4.64 2.57 ± 1.45 (245)

(Continued)
F
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CRH levels increase in late pregnancy in women with PE

(238, 239), with a sensitivity of 92.5% and specificity of 82.5% as

a single predictive marker for PE (238).

Elevated serum NPY levels have also been reported in PE during

the third trimester (240). Interestingly, another study found a

decrease in NPY2 receptor rather than NPY expression in late

pregnancy (117).

Finally, the role of activin A remains unclear. Although no

significant difference between PE and healthy pregnancy has been

demonstrated in its levels through gestation (241), a slight increase

in the first trimester was observed in another study; however, the

association remains too weak to support its use in PE

screening (242).

5.1.2 Growth factors biomarkers
A recent study found that the levels of IGF-1 and its receptor in

the serum and in placental tissue were significantly lower in the

preeclamptic group compared to a control group. IGF-1 exhibited a

sensitivity of 86% and a specificity of 100% for diagnosing PE, while

serum IGF-1R showed a sensitivity and a specificity of 77% for

diagnosing PE (243). Angiogenic factors have emerged as a useful

tool for the identification of patients at risk for pregnancy
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complications. The lowering of PlGF alone (244) or in association

with VEGF (245), as well as in association with sFlt-1 (246), has

been associated with PE. In addition, increased sFlt-1, sFlt-1/PlGF

ratio, and a decline in PlGF levels have also been associated with PE

(247). Further, PlGF in association with PAPP-A may predict early

onset PE during the third trimester (228).
5.2 Biomarkers for diagnosing IUGR

Hormonal and protein biomarkers - Low levels of PAPP-A

during the first trimester have been consistently associated with

IUGR (248, 249). The predictive value improves when PAPP-A is

combined with UA Doppler pulsatility index (249).

While some studies found no significant association between b-
hCG and the occurrence of IUGR (249), a meta-analysis reported

increased levels of b-hCG during the second trimester in pregnancy

complicated by IUGR (250).

PP13 has shown potential as a predictive biomarker for IUGR,

particularly when assessed during the second trimester, where PP13

levels are significantly. However, its predictive accuracy is higher for

PE than for IUGR (251). Nonetheless, maternal serum PP13 in the
TABLE 2 Continued

Biomarker (units) Type
GW

(at sampling)
Control
mean

PE
mean

(phenotype)
Reference

Third trimester

PAPP-A (ng/mL) protein 26-28 1392
1276 (mild)
1170 (severe)

(228)

PP13 pg/mL protein >24 964 1598 (226)

Inhibin A (pg/mL) protein 26-28 346
430 (mild)

1250 (severe)
(228)

Relaxin (ng/mL) hormone 20-41 0.42 ± 0.05
0.24 ± 0.03 (mild)
0.23 ± 0.01 (severe)

(232)

PTHrP (pg/mL) protein 21-28 452.7 ± 9.04 355 ± 3.38 (233)

Leptin (ng/mL) hormone 37-39 10.8 ± 5.3 26.6 ± 10.9 (237)

CRH (pmol/l) hormone
31-35
36-38

195 ± 44
669 ± 87

1020 ± 304
1390 ± 257

(239)

NPY (pmol/m) neuropeptide – 23.20 40.90 (240)

NPY (ng/mL) neuropeptide 37-42) 0.5 ± 0.02 0.5 ± 0.03 (117)

NPY2R
(gene expression)

neuropeptide receptor 37-42 4.5 ± 1.375 1.2± 0.440 (117)

activin A (mIU/L) protein 8-38 4.34 not different (241)

Igf-1 (ng/mL) growth factor 29-42 113.5 ± 16.6 87.7 ± 17.5 (243)

PlGF
(log)

growth factor 30-33 3.7 ± 1.6 2.9 ± 1.4 (244)

sFlt-1
(pg/mL)

protein 26-40 1731.5 9581 (247)

sFlt-1/PlGF protein/growth factor ratio 26-40 3.96 158 (247)
GW, gestational week.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1637570
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Esposito et al. 10.3389/fendo.2025.1637570
first trimester may predict the risk of developing IUGR, PE, or PE

complicated by IUGR (252). However, PP13 role in predicting

IUGR remains contradictory (253).

A positive correlation between maternal PL levels and estimated

fetal weight has been reported in a cross-sectional study, suggesting

its potential utility in monitoring fetal growth (235, 254).
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Importantly, PL reduction has been significantly associated not

only with the onset of PE, but also with asymmetrical IUGR,

supporting its role as a marker of placental dysfunction (235).

Elevated maternal serum leptin concentrations at delivery have

been documented in pregnancies complicated by IUGR compared

to normal pregnancies (255). Similarly, elevated CRH levels in the
TABLE 3 Biomarkers associated with IUGR categorized by trimester of pregnancy at screening.

Biomarker (units) Type
GW

(at sampling)
Control
mean

IUGR
mean

Reference

First trimester

PAPP-A
(MoM)

protein 11-14 - ≤0.4 (248)

PAPP-A
(difference in median)

protein 11-14 1 0.64 (295)

PAPP-A
(MoM)

protein 11-13 1.15 ± 0.59 0.79 ± 0.38 (249)

b-hCG
(MoM)

glycoprotein hormone 11-13 1.36 ± 0.85 1.52 ± 0.94 (249)

PP13
(pg/mL)

protein 9-12 132.5 86.6 (251)

PP13
(MoM)

protein 6-10 - 0.44 (252)

Third trimester

Leptin (ng/mL) hormone 33-41 37.17 ± 28.07 52.73 ± 30.49 (255)

CRH
(pg/mL)

hormone 33 137.0 ± 11.3 232.0 ± 43.5 (256)

CRH
(fold change)

hormone 29-34 - 40 (257)

PAPP-A
(fold change)

protein 29-34 - 5 (257)

Inhibin A
(pg/mL)

protein 20-40 0.55 ± 0.21 0.76 ± 0.27 (258)

PSG-1
(fold change)

protein 29-34 - 5 (259)

PlGF
(MoM)

growth factor 26-31 0.43 0.26 (260)

PlGF
(median)

growth factor 35-40 13.8 12.14 (264)

sFlt-1 (MoM) protein 26-31 1.74 4.62 (260)

sFlt-1/PlGF (MoM)
protein/growth
factor ratio

26-31 5.88 38.76 (260)

sEng
(ng/ml)

protein 20-37 5.3 25.9 (263)

sEng
(ng/ml)

protein 36-39 10.6 ± 3.7 12.2 ± 4.3 (266)

VEGF
(median)

growth factor 35-40 12.98 10.81 (264)

Flt-1
(median)

protein 35-40 15.5 14.9 (264)
GW, gestational week.
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third trimester of pregnancy have been associated with a 3.6-fold

increase in IUGR risk (256). Molecular studies using in silico

approaches further support these findings, showing increased

RNA expression of PAPP-A2 and CRH in both maternal blood

and placental tissue from IUGR pregnancies (257).

Additionally, higher levels of inhibin A and B have been

observed in fetuses affected by IUGR compared to controls (258).

Lastly, lower levels of serum PSG-1 have been reported in the late

second trimester of IUGR pregnancies (259).

Growth factors biomarkers – During the third trimester,

pregnancies with IUGR showed significantly lower levels of free

and total PlGF (260). A meta-analysis revealed that pregnant
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women with IUGR and PE may have higher sFlt-1/PlGF ratio. A

sFlt-1/PlGF ratio >33 showed strong predictive capacity in FGR

(261). Nonetheless, similar to Flt-1/PlGF, sEng has high predictive

value for IUGR along with PE and HELLP (262). IUGR

pregnancies, along with PE, showed significantly elevated sEng

concentrations and a strong positive correlation with sFlt-1 (263).

Remarkably, placental transcript abundance for VEGF was

significantly lower in IUGR placentae compared to healthy

placentae (264). Additionally, increased sEng levels have been

consistently associated with GDM, PE, and IUGR across different

stages of gestation (265, 266). Despite these associations, a meta-

analysis by Conde-Agudelo et al., including 53 studies and 39,974
TABLE 4 Biomarkers associated with GDM categorized by trimester of pregnancy at screening.

Biomarker (units) Type GW (at sampling) Control
mean

GDM
mean

Reference

First trimester

Relaxin 2
(ng/mL)

hormone 12 0.47 0.83 (268)

PAPP-A
(MoM)

protein <14 0.99 0.97 (273)

PAPP-A
(MoM)

protein 11-13 1.2 ± 0.7 0.8 ± 0.5 (274)

b-HCG
(MoM)

glycoprotein hormone <14 1.02 1.05 (273)

b-HCG
(MoM)

glycoprotein hormone 11-13 1.2 ± 0.5 1 ± 0.5 (274)

PlGF
(log10)

growth factor 11-14 1.68 1.76 (280)

PlGF
(MoM)

growth factor 8-14 1.03 ± 0.48 1.05 ± 0.38 (281)

Second trimester

b-HCG
(MoM)

glycoprotein hormone 12 1.03 ± 0.50 0.96 ± 0.48 (272)

PAPP-A
(MoM)

protein 12 1.09 ± 0.50 1.00 ± 0.51 (272)

PP13
(MoM)

protein 16-20 1.16 1.47 (275)

sFlt-1
(MoM)

protein 16-20 1.04 0.66 (275)

VEGF-A
(pg/mL)

growth factor 23-29 146.60 ± 12.03 296.92 ± 17.37 (265)

Endoglin
(pg/mL)

protein 23-29 1444.78 ± 82.30 1814.06 ± 141.10 (265)

Third trimester

Relaxin 2
(pg/mL)

hormone - 439 667.5 (269)

Leptin
(ng/mL)

hormone 28 18.2 ± 1.5 24.9 ± 1.6 (277)

Leptin
(ng/mL)

hormone 24-28 24.10 30.60 (278)
GW, gestational week.
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women, concluded a minimal predictive accuracy of angiogenic

factors for IUGR (267).
5.3 Biomarkers for diagnosing GDM

5.3.1 Hormonal and protein biomarkers
Plasma levels of relaxin-2 have been found to increase in both

the first- (268) and third-trimester of pregnancy in women with

GDM (269).

The association between b-HCG and GDM appears more

controversial. One study reported that the incidence of GDM was

increased in women with elevated b-HCG levels during the second

trimester of pregnancy (250, 270). In contrast, Liu et al., found that

increased b-HCG levels in early pregnancy were associated with a

lower risk of GDM (271), raising the possibility of a time course-

dependent profile in the predictive capacity. Supporting this

complexity, a machine learning study demonstrated improved

prediction accuracy for GDM when b-HCG was used in

combination with PAPP-A (272).

Although PAPP-A alone may not be a definitive predictive

marker for GDM (273, 274) low levels could support the

recommendation for early screening as part of a broader

diagnostic approach. Low serum PAPP-A MoM levels are

significantly associated with the development of GDM,
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Increased serum levels of PP13 in the early second trimester

were significantly associated with GDM, with a detection rate of

92.3% at 80% specificity (275). This preliminary study may support

PP13 as an early screening biomarker, though its implementation in

clinical practice requires validation.

PL has also been implicated in GDM. A meta-analysis showed

that in women with type 1 GDM, PL is decreased in early pregnancy

and increased in late pregnancy (276), suggesting that PL dynamics

may reflect placental adaptation to altered glycemic states.

In addition, increased leptin levels were observed in the third

trimester of pregnancies complicated by GDM compared to

normoglycemic pregnancies (277, 278). Accordingly, a meta-

analysis confirmed these data, revealing increased leptin

concentrations in GDM cases regardless of gestational age, with

no trimester-dependent variation in its level (279).

5.3.2 Growth factors biomarkers
Similar, GDM has been associated with increased levels of sFlt-1

(280). However, the predictive value of PlGF in GDM remains

uncertain (244, 281). Accordingly, increased levels of VEGF-A,

endoglin, endothelin-1, and angiopoietin-2 have also been

documented in GDM placentas compared to controls (265). In a

longitudinal study, the sFlt-1 levels were higher in the first trimester

in GDM women as compared to non-GDM women. Placental PlGF

and Flt-1 levels were lower in the GDM group, and they were
TABLE 5 Biomarkers associated with PAS categorized by trimester of pregnancy at screening.

Biomarker (units) Type GW (at sampling) Control
mean

PAS
mean

Reference

First trimester

PAPP-A
(MoM)

protein - 0.89 1.96 (284)

PAPP-A
(IU/L)

protein 11-13 5.34 3.63 (286)

b-hCG
(IU/L)

glycoprotein hormone 11-13 33.5 51.4 (286)

Second trimester

alpha-fetoprotein
(MoM)

protein 16-19 1.08 1.17 (290)

alpha-fetoprotein
(MoM)

protein - 0.98 ± 0.60 1.49 ± 0.54 (291)

b-hCG
(MoM)

glycoprotein hormone 16-19 1.02 1.36 (290)

Third trimester

PL
(copies/mL)

hormone 28-32 90 615 (288)

PL
(MoM)

hormone - 1.00 2.78 (289)

b-hCG
mg/L

glycoprotein hormone 26-34 11.8 ± 8.8 7.8 ± 5.9 (287)

sFlt-1 (pg/mL) protein 33-39 25,779.2 9407.1 (292)
GW, gestational week.
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negatively associated with placental dimensions, revealing that an

imbalance in these growth factors may affect placental development,

hence pregnancy outcomes in GDM (282). Additionally, increased

sEng levels have been consistently associated with GDM (283).
5.4 Biomarkers for diagnosing PAS

Hormonal and protein biomarkers - Increased levels of PAPP-A

during the first trimester of pregnancy have been observed in women

at higher risk of PAS (284, 285). In contrast, another study reported

that PAPP-A levels were lower in PAS cases, while b-hCG levels were

increased compared to the control group. Interestingly, combining

these biomarkers in predictive models substantially improved

diagnostic accuracy over single-marker use, with a sensitivity of

100% and specificity of 72% (286). Studies have also examined the

diagnostic value of hyperglycosylated human CG. One study found

that levels of this hormone were lower in PAS cases compared to

controls in both the second and third trimesters of pregnancy.

However, its diagnostic performance was limited, showing only a

modest sensitivity and specificity (287).

Another hormone of interest is PL. Research has shown that

during the third trimester, PL mRNA levels are increased in the

plasma of women with invasive placentation (288). These results are

in agreement with the study from Jing et al., which confirmed that

maternal plasma PL mRNA concentrations were significantly

increased in PAS cases compared to controls (289).

In addition to protein hormones, alpha-fetoprotein (AFP), a

glycoprotein produced by the fetal liver and transported to maternal

serum through the placenta or by diffusion across fetal membranes,

has also emerged as a potential biomarker for PAS. A retrospective

case-control study found increased levels of AFP in the PAS group

during the second trimester, with a sensitivity of 71% and a specificity

of 46% (290). Similar results were obtained in a subsequent study,

which demonstrated a positive association between elevated second-

trimester serum AFP and placenta accreta, suggesting its potential use

as a screening tool for pregnancy at high risk of PAS (291).

Growth factors biomarkers - PAS is characterized by an

excessive neovascularization, thus angiogenic factors have also

been studied as potential biomarkers. A study found significantly

increased maternal serum PlGF levels in PAS cases compared to the

healthy group during the third trimester, while no differences were

found in serum levels of VEGF (178). In the same study, PlGF is

elevated in maternal serum and the placental bed of patients with

PAS disorders compared to those without PAS (178).

In contrast, studies investigating sFlt-1 levels have yielded less

conclusive results. One study reported no association between third-

trimester sFlt-1 levels and PAS disorders (292). Another study suggested

that although sFlt-1 and PlGF expression slightly differ depending on

the depth of placental invasion, there is no direct correlation between

serum levels and PlGF and sFlt-1 expression in the placenta (293).

Although these biomarkers show potential for detecting adverse

pregnancy outcomes, large-scale studies are needed to conclude

whether they could be used in early screening for pregnancy

complications such as IUGR, PE, GDM, and PAS.
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6 Future research directions

There is still much to learn about how the placental hormones

and metabolites contribute to maintaining basal and activity-

dependent perfusion of the uterine circulation during pregnancy.

Therefore, it is critical for basic science and clinical studies to

elucidate the precise molecular mechanisms by which hormones,

growth factors, and proteins secreted by the placenta modulate

uterine vascular adaptation to pregnancy. A deeper understanding

of these pathways is essential to inform clinical strategies for early

diagnosis, risk stratification, and targeted therapy. Placental

hormones and metabolites represent promising therapeutic

targets for the prevention and treatment of pregnancy

complications, including PE and IUGR. Integrative approaches

combining translational models, omics technologies, and

longitudinal clinical studies will be critical to unlocking their

potential and improving maternal and fetal outcomes.
7 Conclusion

The endocrine function of the placenta is central to the

hemodynamic adaptations of the uterine circulation during

pregnancy. The placental hormones and metabolites appear to have

a substantial effect on the uterine circulation, including altering ECs

vasodilator production, decreasing vascular resistance, and promoting

the remodeling of the UA. Placental hormones and metabolites also

promote the angiogenic process, ultimately contributing to the

increase in UPBF necessary to sustain normal fetal growth. Most of

these changes occur in the first trimester of pregnancy, a crucial

period where abnormalities in the secretion of placental hormones

and metabolites may reflect early signs of placental and uterine

vascular impairment. Understanding how the secretion of placental

hormones and metabolites is altered during gestation, both under

normal and pathological conditions, is important for the treatment

and prevention of pregnancy complications.
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