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Machine learning-based
predictive model for hungry
bone syndrome following
parathyroidectomy in secondary
hyperparathyroidism
Yalin Chai, Nan Yuan, Jiaming Yin, Bing Shen, Lijie Sun,
Lin Zhang, Le Yin, Xuan Wang, Feng Luo*

and Congjuan Luo *

The Affiliated Hospital of Qingdao University, Qingdao, China
Objective: To develop an interpretable machine learning model for predicting

hungry bone syndrome (HBS) risk following parathyroidectomy in secondary

hyperparathyroidism (SHPT) patients.

Methods: This retrospective study analyzed 181 SHPT patients who underwent

parathyroidectomy at the Affiliated Hospital of Qingdao University (2015 - 2025).

Participants were randomly divided into a training group (70%) and a validation

group (30%). From 46 candidate variables, five key predictors were selected

through logistic regression and Boruta algorithm. Seven machine learning

models were trained, evaluated by ROC curves, calibration curves, and

decision curve analysis (DCA). Model interpretability was quantified via SHapley

Additive exPlanations (SHAP).

Results: The XGBoost algorithm demonstrated excellent predictive

performance, with an AUC of 0.878 (95% CI: 0.779 - 0.973) and an F1 score of

0.871 for the validation cohort. The key predictors included preoperative

parathyroid hormone (Pre-PTH), the percentage decay between Pre-PTH and

PTH at skin closure (%PTH), alkaline phosphatase, serum calcium, and age.

Additionally, we designed a web application to estimate HBS risk.

Conclusions: This interpretablemachine-learningmodel is effective in predicting

the risk of HBS in SHPT patients after parathyroidectomy, thereby providing

guidance for postoperative surveillance strategies.
KEYWORDS

hungry bone syndrome, secondary hyperparathyroidism, parathyroidectomy, risk
factors, machine learning
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1 Introduction

Secondary hyperparathyroidism (SHPT), a prevalent

complication of chronic kidney disease (CKD), contributes to

bone lesions, vascular calcification, and elevated risks of

cardiovascular events and mortality (1–3). Epidemiological

studies indicate that SHPT affects 20%-80% of CKD patients,

with prevalence rates correlating with disease severity and dialysis

duration (4). Current therapeutic strategies encompass vitamin D

analogs (e.g., calcitriol) (5), calcimimetics (e.g., cinacalcet), and

phosphate binders (6). For refractory cases, parathyroidectomy

(PTX) remains the definitive intervention per KDIGO guidelines,

particularly in CKD patients with persistent hyperparathyroidism

(intact parathyroid hormone [iPTH] >800 pg/mL) (7, 8). PTX has

been shown to improve survival rates by 15%-57% in dialysis-

dependent patients (9) and alleviate symptoms such as pruritus,

bone pain, and fracture risk (10–13).

Postoperative hungry bone syndrome (HBS), a complication

affecting 25%-75% of PTX cases (14–16), is clinically characterized

by prolonged hypocalcemia (corrected serum calcium <2.1 mmol/L

for >4 days) (17, 18). The pathophysiology involves accelerated

bone remodeling under chronic PTH stimulation, followed by

abrupt mineralization and calcium influx into osteoid tissue after

rapid postoperative PTH decline, resulting in severe hypocalcemia

(19, 20). Elevated preoperative PTH levels are strongly associated

with HBS development (21–23). Notably, recent studies propose

that %PTH (the percentage decay between Pre-PTH and PTH at

skin closure) predicts hypocalcemia following thyroidectomy (24).

However, this metric has not yet been evaluated as a predictor of

HBS in SHPT patients undergoing PTX. We investigated the

relationship between %PTH and postoperative HBS and used

machine learning to develop a predictive model for the

occurrence of HBS after parathyroidectomy in SHPT patients.
2 Methods

2.1 Patients and designs

This retrospective cohort study enrolled patients diagnosed

with secondary hyperparathyroidism who underwent

parathyroidectomy at the Affiliated Hospital of Qingdao

University between January 2015 and May 2025. Inclusion

criteria required comprehensive preoperative clinical evaluation

and documented serum calcium measurements within 72 hours

postoperatively. The study protocol was reviewed and approved by
Abbreviations: AdaBoost, Adaptive Boosting; ALP, Alkaline Phosphatase; ROC,

Receiver operating characteristic curve; CatBoost, Categorical Boosting; CKD,

Chronic kidney disease; DCA, Decision curve analysis; HBS, Hungry bone

syndrome; KNN:K-nearest neighbors; LightGBM, Light gradient boosting

machine; LR, Logistic regression; NN, Neural Network; PTH, Parathyroid

hormone; PTX, Parathyroidectomy; Scr, Serum creatinine; SHAP, Shapley

additive explanations; SHPT, Secondary hyperparathyroidism; SVM, Support

vector machine; XGBoost, Extreme gradient boosting.
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the Ethics Committee of the Affiliated Hospital of Qingdao

University (Approval No. QYFY WZLL 29980). Sample size

determination adhered to the 10 events per variable (EPV)

criterion, ensuring that the minimum number of outcomes for

binary classifications exceeded 10-fold the number of independent

variables in the predictive model.

Surgical indications for parathyroidectomy were defined as

meeting at least one of the following criteria:(1) Severe SHPT

(persistent intact parathyroid hormone [iPTH] >800 pg/mL)

refractory to pharmacological therapy with calcitriol or vitamin D

analogs;(2)Severe SHPT accompanied by hyperphosphatemia

(serum phosphate >2.0 mmol/L);(3)Severe SHPT with clinically

significant symptoms (intractable pruritus and/or bone pain);(4)

Radiologically confirmed parathyroid hyperplasia (maximum gland

diameter >1.0 cm).Exclusion criteria comprised:(1)Concurrent

hepatobiliary or pancreatic disorders;(2)Cognitive impairment

impairing informed consent or follow-up compliance;(3)

Recurrent SHPT with prior parathyroidectomy history. The flow

chart of the study is shown in Figure 1.
2.2 Data collection and definitions

Demographic and clinical characteristics were systematically

collected, including: General characteristics: Sex, age, height, body

mass index (BMI), dialysis modality (hemodialysis/peritoneal

dialysis), dialysis vintage, and clinical manifestations (bone pain,

height reduction, pruritus); Preoperative management: Use of

calcimimetics (Cinacalcet), vitamin D analogs (Calcitriol,

Paricalcitol, Alfacalcitol), phosphate binders(Lanthanum

carbonate), and medication for osteoporosis (Bisphosphonates);

Laboratory parameters: Pre-PTH, PTH at skin closure, calcium,

potassium, phosphate, albumin, alkaline phosphatase (ALP),

cystatin C, creatinine, urea, uric acid, triglycerides, total

cholesterol, low-density lipoprotein (LDL), high-density

lipoprotein (HDL), and hemoglobin; Surgery-related factors:

Procedure type, number of excised parathyroid glands;

Comorbidities:hypertension, diabetes mellitus, coronary artery

disease, cerebrovascular disease, osteoporosis, fracture.

Blood samples were obtained within 72 hours postoperatively.

Patients were stratified into two groups based on corrected serum

calcium levels:HBS group: Corrected calcium <2.1 mmol/L; Non-

HBS group: Corrected calcium ≥2.1 mmol/L. Corrected calcium

formula: Corrected Ca (mmol/L) = ionized Ca + (40 − serum

albumin [g/L]) × 0.02.The percentage decay between Pre-PTH and

PTH at skin closure(%PTH): [(Preoperative PTH – PTH at skin

closure)/Preoperative PTH] × 100%. Blood was collected uniformly

20 minutes after total thyroidectomy (before skin closure) to control

half-life effects.
2.3 Calcium management

Heparin-free dialysis was implemented during the final

preoperative session and the initial postoperative session.
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Postoperative calcium monitoring followed a tiered protocol. The

average medication dosage for managing hypocalcemia after

parathyroidectomy varies among patients, but typically involves a

combination of intravenous and oral calcium supplements. The

recommended dose of intravenous calcium gluconate is 2 mg/kg/h,

with the median total dose reported in studies being approximately

8.2g (Interquartile Range 6.1 - 10.3g). Oral calcium supplements

usually consist of 3 - 6g elemental calcium daily (7.5 - 15g calcium

carbonate), which should be combined with active vitamin D (e.g.,

calcitriol 0.5 - 2.0 mg/day). Discharge criteria included: Stable

corrected calcium within normal range; Absence of hypocalcemia-

related symptoms; No surgery-associated complications.
2.4 Statistical analysis and model
development

All statistical analyses were conducted using R software (version

4.3.1, R Foundation for Statistical Computing, Austria), with a

significance level set at P < 0.05.The normality test and the chi-

square test were used for the measurement data, and the normally

distributed data were expressed as mean ± standard deviation, and

the t-test was used for comparison between groups; the non-

normally distributed data were expressed as median (interquartile

spacing), and the Mann-Whitney U-test was used for comparison

between groups; the counting data were expressed as percentage
Frontiers in Endocrinology 03
(%), and the c2-test or Fisher’s exact probability method was used

for comparison between groups. ‘s exact probability method.

MissForest (random forest interpolation technique) was used to

interpolate the data, and data with more than 20% missing were

discarded. The training set and test set are separated and

interpolated respectively to avoid information leakage.

Use LASSO regression, Boruta method and logistic regression

to select the final feature variables used in the model. In logistic

analysis, variables with p < 0.05 are considered as potential risk

factors. The LASSO method selects features and reduces dimension

by narrowing the coefficients, retaining the features with large

contributions and eliminating redundant features. Boruta is a

feature selection method that determines the importance of each

variable by comparing its Z-score. Three methods were selected to

select the common characteristic variables as the final variables of

the model. This method improves the accuracy of the model,

reduces the risk of overfitting and excludes irrelevant predictors.

Machine learning is more advantageous for classification and

prediction and can handle features more efficiently than

traditional statistical methods (22, 25, 26). Data were trained on

the following seven ML models: Logistic Regression (LR), Adaptive

Boosting (AdaBoost), Support Vector Machine (SVM), eXtreme

Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), K-

Nearest Neighbors (KNN), and Neural Network (NN). We used

grid search to optimize the parameters. The performance of the

prediction model was evaluated by the AUC of the ROC curve,
FIGURE 1

The patient flow chart in our study.
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calibration curve, specificity, accuracy, recall, F1 score. Decision

curve analysis (DCA) was plotted to assess clinical utility. For the

most performance-driven diagnostic models, we revalidated their

generalization capabilities using 10-fold cross-validation to prevent

overfitting. The SHAP feature importance ranking and SHAP

beeplot visually demonstrate each feature’s contribution to the

final prediction, while the SHAP plot intuitively visualizes how

different features influence individual predictions.
3 Results

3.1 Characteristics of the participants

From January 2015 to May 2025, 181 eligible secondary

hyperparathyroidism (SHPT) patients undergoing parathyroidectomy

(PTX)were included in the final analysis. These patients were randomly

allocated intoa trainingcohort (n=128)andavalidationcohort (n=53)at
Frontiers in Endocrinology 04
a 7:3 ratio. Among the 181 participants, 105 (58%) developed

postoperative hungry bone syndrome (HBS). The overall missing data

situation is shown in Supplementary Table 1. Compared with the non-

HBS group, patients in the HBS group had a significantly lower median

age (P <0.001). Regarding comorbidities, the HBS group showed higher

prevalence of osteoporosis (P = 0.017). In terms of preoperative

medication use, the HBS group demonstrated higher usage rates of

paricalciferol (P = 0.037) and bisphosphonates (P = 0.040). For

preoperative symptoms, the HBS group exhibited higher proportions

of osteodynia, eight reduction, and pruritus. These findings are detailed

in Table 1. In terms of surgical methods, the proportion of SPTX was

lower in HBS group (P <0.05), and the proportion of TPTX and TPTX

+AT was higher. The proportion of HBS group with ≥4 parathyroid

glands removedwashigher, and theproportionof<4parathyroid glands

removed was lower. The results are shown in Table 2. Laboratory data

comparison (Table 3) showed that compared with the non-HBS group,

the HBS group had a higher percentage of Ca, Bun, Pre-PTH, PTH at

skin closure, %PTH than the non-HBS group (P <0.05).
TABLE 1 Comparison of General characteristics in the Non-HBS and HBS groups.

Variable Levels Overall (N = 181)
Group

P-value
Non-HBS (N = 76) HBS (N = 105)

General characteristics

Age(years) 46.65 (10.27) 50.84 (9.46) 43.62 (9.80) <0.001

Gender, n (p%)
male 92.00 (50.83%) 38.00 (50.00%) 54.00 (51.43%)

0.850
female 89.00 (49.17%) 38.00 (50.00%) 51.00 (48.57%)

H(cm) 165.01 (8.42) 164.74 (7.49) 165.20 (9.07) 0.708

Wt(kg) 64.23 (13.35) 65.11 (13.31) 63.59 (13.41) 0.449

BMI(kg/m2) 24.51 (13.33) 24.15 (4.41) 24.77 (17.13) 0.725

Dialysis time(years) 7.35 (3.16) 7.82 (3.65) 7.01 (2.71) 0.106

Dialysis modality, n (p%)

Hemodialysis 168.00 (92.82%) 70.00 (92.11%) 98.00 (93.33%)

0.752Peritoneal
dialysis

13.00 (7.18%) 6.00 (7.89%) 7.00 (6.67%)

Cinacalcet, n (p%)
no 139.00 (76.80%) 57.00 (75.00%) 82.00 (78.10%)

0.626
yes 42.00 (23.20%) 19.00 (25.00%) 23.00 (21.90%)

Calcitriol, n (p%)
no 80.00 (44.20%) 31.00 (40.79%) 49.00 (46.67%)

0.432
yes 101.00 (55.80%) 45.00 (59.21%) 56.00 (53.33%)

Paricalcitol, n (p%)
no 175.00 (96.69%) 71.00 (93.42%) 104.00 (99.05%)

0.037
yes 6.00 (3.31%) 5.00 (6.58%) 1.00 (0.95%)

Alfacalcidol, n (p%)
no 174.00 (96.13%) 71.00 (93.42%) 103.00 (98.10%)

0.107
yes 7.00 (3.87%) 5.00 (6.58%) 2.00 (1.90%)

Lanthanum carbonate, n (p%)
no 167.00 (92.27%) 72.00 (94.74%) 95.00 (90.48%)

0.290
yes 14.00 (7.73%) 4.00 (5.26%) 10.00 (9.52%)

Bisphosphonates, n (p%)
no 178.00 (98.34%) 73.00 (96.05%) 105.00 (100.00%)

0.040
yes 3.00 (1.66%) 3.00 (3.95%) 0.00 (0.00%)

(Continued)
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TABLE 1 Continued

Variable Levels Overall (N = 181)
Group

P-value
Non-HBS (N = 76) HBS (N = 105)

General characteristics

Height reduction, n (p%)
no 167.00 (92.27%) 73.00 (96.05%) 94.00 (89.52%)

0.105
yes 14.00 (7.73%) 3.00 (3.95%) 11.00 (10.48%)

Osteodynia, n (p%)
no 95.00 (52.49%) 43.00 (56.58%) 52.00 (49.52%)

0.348
yes 86.00 (47.51%) 33.00 (43.42%) 53.00 (50.48%)

Pruritus, n (p%)
no 136.00 (75.14%) 55.00 (72.37%) 81.00 (77.14%)

0.463
yes 45.00 (24.86%) 21.00 (27.63%) 24.00 (22.86%)

Hypertension, n (p%)
no 45.00 (24.86%) 23.00 (30.26%) 22.00 (20.95%)

0.153
yes 136.00 (75.14%) 53.00 (69.74%) 83.00 (79.05%)

Coro2ry heart disease, n (p%)
no 145.00 (80.11%) 58.00 (76.32%) 87.00 (82.86%)

0.277
yes 36.00 (19.89%) 18.00 (23.68%) 18.00 (17.14%)

Diabetes, n (p%)
no 170.00 (93.92%) 72.00 (94.74%) 98.00 (93.33%)

0.696
yes 11.00 (6.08%) 4.00 (5.26%) 7.00 (6.67%)

Cerebrovascular disease, n (p%)
no 168.00 (92.82%) 71.00 (93.42%) 97.00 (92.38%)

0.789
yes 13.00 (7.18%) 5.00 (6.58%) 8.00 (7.62%)

Osteoporosis, n (p%)
no 177.00 (97.79%) 72.00 (98.63%) 105.00 (100.00%)

0.017
yes 4.00 (2.21%) 1.00 (5.26%) 3.00 (0.00%)

Fracture, n (p%)
no 177.00 (97.79%) 73.00 (96.05%) 104.00 (99.05%)

0.176
yes 4.00 (2.21%) 2.00 (3.95%) 2.00 (0.95%)
F
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TABLE 2 Comparison of Surgery-related factors in the Non-HBS and HBS groups.

Variable Levels Overall (N = 181)
Group

P-value
Non-HBS (N = 76) HBS (N = 105)

Surgery-related factors

Surgical time(minutes) 137.32 (56.47) 132.13 (56.66) 141.08 (56.30) 0.295

Number of resections

1 1.00 (0.57%) 1.00 (1.35%) 0.00 (0.00%)

0.064
2 12.00 (6.86%) 8.00 (10.81%) 4.00 (3.96%)

3 20.00 (8.57%) 11.00 (12.16%) 9.00 (5.94%)

4 148.00 (84.00%) 56.00 (75.68%) 92.00 (90.10%)

TPTX, n (p%)
no 147.00 (81.22%) 65.00 (85.53%) 82.00 (78.10%)

0.206
yes 34.00 (18.78%) 11.00 (14.47%) 23.00 (21.90%)

SPTX, n (p%)
no 150.00 (82.87%) 58.00 (76.32%) 92.00 (87.62%)

0.046
yes 31.00 (17.13%) 18.00 (23.68%) 13.00 (12.38%)

TPTX+AT, n (p%)
no 64.00 (35.36%) 29.00 (38.16%) 35.00 (33.33%)

0.503
yes 117.00 (64.64%) 47.00 (61.84%) 70.00 (66.67%)
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3.2 Feature selection

The selection of variables was based on the overlapping results

of logistic regression, Lasso regression and Boruta’s algorithm.

Univariate analysis showed (Table 4) that %PTH had a p-value

<0.001, indicating that %PTH was significantly associated with

postoperative HBS. In addition, Pre-PTH (p<0.001)), age

(p<0.001), Ca (p=0.014), ALP (p<0.001), TPTX (p=0.045), SPTX

(p=0.029) and the number of parathyroid glands resected (p=0.004)

were significantly different between the HBS and non-HBS groups.

All the above significant parameters were included in the

multifactorial logistic regression analysis. In the LASSO regression

analysis, variable coefficients are shown in Figure 2A, while the

relationship between regularization parameter (l) and mean cross-

validation error (CVM) is illustrated in Figure 2B. The five variables

identified through LASSO regression as strongly associated with

HBS include Pre-PTH, ALP, %PTH, Age, and Ca. The regression

coefficients for these variables are detailed in Supplementary

Table 2. The Boruta method identified variables including Pre-

PTH, ALP,%PTH, Age, PTH at skin closure, number of parathyroid

glands removed, and Ca (Figure 2C). Ultimately, these five variables

—Pre-PTH, ALP, %PTH, Age, and Ca—were selected for

subsequent analyses.
Frontiers in Endocrinology 06
3.3 Performance comparison of different
ML methods

Following feature selection, seven machine learning

algorithms—Logistic Regression (LR), Adaptive Boosting

(AdaBoost), Support Vector Machine (SVM), eXtreme Gradient

Boosting (XGBoost), Categorical Boosting (CatBoost), K-Nearest

Neighbors (KNN), and Neural Network (NN)—were trained to

predict postoperative HBS.

To compare the need to include %PTH, we compared the

difference in AUC values between whether or not to exclude %

PTH. The results showed that the AUC value of the model

including %PTH was higher (Supplementary Table 3), so we

included %PTH for further analysis.

Among machine learning models, the XGBoost model (AUC =

0.878) showed the best performance, followed by LR (AUC =

0.876), CatBoost (AUC = 0.874), KNN (AUC = 0.869), SVM

(AUC = 0.865), NN (AUC = 0.833) and AdaBoost (AUC =

0.821). (Figure 3A). Classification in the validation cohort

outperformed all models with an F1 score of 0.871 and an

accuracy of 0.849. Detailed performance metrics for all models,

including specificity, precision, and accuracy, are summarized in

Table 5. The calibration curves show a very good agreement
TABLE 3 Comparison of Biochemical indicators in the Non-HBS and HBS groups.

Variable Overall(N = 171)
Group

P-value
Non-HBS (N = 76) HBS (N = 105)

Biochemical indicators

Hb(g/L) 108.66 (16.89) 110.57 (15.28) 107.27 (17.91) 0.183

WBC (109/L) 5.75 (1.67) 5.77 (1.82) 5.73 (1.56) 0.886

CRP(mg/L) 4.87 (5.66) 4.66 (5.35) 5.02 (5.90) 0.670

Ca (mmol/L) 2.43 (0.20) 2.50 (0.21) 2.39 (0.18) <0.001

K(mmol/L) 5.01 (0.74) 4.90 (0.75) 5.09 (0.72) 0.084

P(mmol/L) 2.24 (0.54) 2.20 (0.56) 2.27 (0.53) 0.405

Pre-PTH(pg/ml) 1,633.45 (1,000.47) 976.45 (482.33) 2,108.99 (1,010.39) <0.001

PTH at skin closure(pg/ml) 198.22 (125.36) 174.60 (122.91) 215.31 (124.92) 0.030

%PTH 84.55 (12.18) 79.39 (15.63) 88.29 (6.86) <0.001

Scr(µmol/L) 807.96 (258.24) 801.67 (244.34) 812.52 (268.91) 0.778

Bun(mmol/L) 22.66 (6.82) 21.31 (6.65) 23.64 (6.80) 0.023

CYSC(mg/L) 6.74 (1.71) 6.47 (1.69) 6.93 (1.72) 0.076

UA(µmol/L) 362.50 (119.60) 361.71 (119.58) 363.08 (120.18) 0.939

ALP(U/L) 354.19 (410.73) 161.39 (169.91) 493.73 (473.64) <0.001

ALB(g/L) 39.69 (4.44) 40.22 (4.88) 39.30 (4.08) 0.185

TG(mmol/L) 1.66 (0.92) 1.81 (1.14) 1.56 (0.71) 0.091

TC(mmol/L) 4.31 (1.17) 4.16 (1.27) 4.41 (1.08) 0.170

HDL(mmol/L) 2.45 (0.69) 2.37 (0.71) 2.50 (0.67) 0.187

LDL(mmol/L) 1.18 (0.39) 1.13 (0.34) 1.21 (0.42) 0.136
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TABLE 4 Univariate and multivariate logistic regression analysis.

Variable Levels OR (univariable) OR (multivariable)

Age(years) 0.96 (0.92 - 0.99, p=.026) 0.96 (0.91 - 1.01, p=.152)

Gender, n (p%)
male

female 1.22 (0.61 - 2.47, p=.572)

H(cm) 0.99 (0.95 - 1.03, p=.570)

Wt(kg) 0.99 (0.96 - 1.01, p=.270)

BMI(kg/m2) 1.01 (0.98 - 1.04, p=.620)

Dialysis time(years) 0.90 (0.80 - 1.00, p=.056)

Dialysis modality, n (p%)
Hemodialysis

Peritoneal dialysis 1.23 (0.28 - 5.39, p=.782)

Cinacalcet, n (p%)
no

yes 1.41 (0.59 - 3.37, p=.434)

Calcitriol, n (p%)
no

yes 0.77 (0.38 - 1.58, p=.480)

Paricalcitol, n (p%)
no

yes 0.17 (0.02 - 1.58, p=.119)

Alfacalcidol, n (p%)
no

yes 0.27 (0.05 - 1.46, p=.129)

Lanthanum carbonate, n (p%)
no

yes 2.29 (0.44 - 11.83, p=.321)

Bisphosphonates, n (p%)
no

yes 0.00 (0.00-Inf, p=.987)

Hypertension, n (p%)
no

yes 2.16 (0.94 - 4.94, p=.070)

Coro2ry heart disease, n (p%)
no

yes 0.80 (0.35 - 1.86, p=.608)

Diabetes, n (p%)
no

yes 0.71 (0.17 - 2.99, p=.645)

Cerebrovascular disease, n (p%)
no

yes 12614529.59 (0.00-Inf, p=.986)

Osteoporosis, n (p%)
no

yes 0.00 (0.00-Inf, p=.988)

Fracture, n (p%)
no

yes 0.00 (0.00-Inf, p=.988)

Surgical time(minutes) 1.00 (1.00 - 1.01, p=.523)

Number of resections 3.18 (1.44 - 7.00, p=.004) 1.55 (0.38 - 6.23, p=.540)

TPTX, n (p%) 2.76 (1.02 - 7.48, p=.045) 2.60 (0.61 - 11.02, p=.194)

SPTX, n (p%) 0.31 (0.11 - 0.88, p=.029) 1.46 (0.17 - 12.90, p=.732)

TPTX+AT, n (p%) 0.98 (0.47 - 2.06, p=.958)

(Continued)
F
rontiers in Endocrinology
 0
7
 frontiersin.org

https://doi.org/10.3389/fendo.2025.1635451
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chai et al. 10.3389/fendo.2025.1635451
between predicted probabilities and observations (Figure 3B). In

addition, decision curve analysis (DCA) confirmed its optimal net

benefit across clinically relevant probability thresholds (Figure 3C).

To evaluate the generalization capability of the top-performing

diagnostic models, we conducted cross-validation with 10-fold
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resampling to prevent overfitting. The ROC curve results

(Figure 4) confirm that our constructed model demonstrates

excellent generalization performance without signs of overfitting

or underfitting. Based on these findings, the XGBoost model was

identified as the most effective model in this study.
FIGURE 2

Feature selection. (A) The relationship between Lambda (regularization parameter) and CVM (mean cross validation error) in Lasso regression;
(B) Lasso regression Lambda and Coefficients Plot. (C) Feature selection based on Boruta principle. Green boxes indicate important variables, red
boxes indicate unimportant variables.
TABLE 4 Continued

Variable Levels OR (univariable) OR (multivariable)

Hb(g/L) 0.99 (0.96 - 1.01, p=.176)

WBC (109/L) 0.90 (0.73 - 1.12, p=.352)

CRP(mg/L) 1.04 (0.97 - 1.12, p=.280)

Ca (mmol/L) 0.10 (0.02 - 0.63, p=.014) 0.06 (0.00 - 1.15, p=.062)

K(mmol/L) 1.43 (0.86 - 2.40, p=.171)

P(mmol/L) 1.00 (0.53 - 1.90, p=.990)

Pre-PTH(pg/ml) 1.00 (1.00 - 1.00, p<.001) 1.00 (1.00 - 1.00, p=.003)

PTH at skin closure(pg/ml) 1.00 (1.00 - 1.01, p=.185)

%PTH 1.10 (1.04 - 1.15, p<.001) 1.03 (0.97 - 1.09, p=.357)

Scr(µmol/L) 1.00 (1.00 - 1.00, p=.935)

Bun(mmol/L) 1.04 (0.99 - 1.10, p=.143)

CYSC(mg/L) 1.09 (0.89 - 1.34, p=.419)

UA(µmol/L) 1.00 (1.00 - 1.00, p=.844)

ALP(U/L) 1.01 (1.00 - 1.01, p<.001) 1.00 (1.00 - 1.01, p=.151)

ALB(g/L) 0.96 (0.89 - 1.04, p=.287)

TG(mmol/L) 0.80 (0.53 - 1.21, p=.290)

TC(mmol/L) 1.36 (0.98 - 1.88, p=.067)

HDL(mmol/L) 2.11 (0.77 - 5.73, p=.144)

LDL(mmol/L) 1.59 (0.93 - 2.70, p=.088)
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3.4 Clinical decision threshold analysis

ROC curve analysis with the AUC-ROC index identified a

statistically optimal threshold of 0.489 (95% CI: 0.483 - 0.509),

achieving 87.1% sensitivity and 81.8% specificity at this level

(Supplementary Table 3). The decision curve demonstrated a net

benefit of 0.3614 at the 35% threshold, confirming its clinical

applicability. We established a three-tier risk stratification system:

Low-risk (<20%): Standard calcium supplementation regimen;

Moderate-risk (20 - 35%): Close monitoring; High-risk (≥35%):

Intensive calcium supplementation regimen. The XGBoost

prediction model developed in this study reduced HBS

undiagnosed rate from 19.4% to 0% at the 35% decision

threshold, providing a robust tool for developing personalized

calcium supplementation strategies in clinical practice.
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3.5 Interpretability analysis

The SHAP interpretability method system reveals the decision-

making mechanism of XGBoost model in predicting HBS risk.

Figure 5A (feature importance bar chart) shows that preoperative

PTH level (mean SHAP = 0.32) is the most significant predictive

factor, followed by Age,%PTH, Ca, and ALP. Figure 5B (bee swarm

plot) further clarifies feature directionality: Preoperative high

calcium levels significantly reduce HBS risk (SHAP value negative

skew), while younger patients and elevated ALP drive risk increase

(SHAP value positive clustering). The individualized decision

mechanism is illustrated in Figure 5C (force plot): Taking a 47-

year-old patient (preoperative PTH 1974 pg/mL, %PTH 84, calcium

2.35 mmol/L, ALP 292 U/L) as an example, the model predicts a

98.0% probability of HBS.
FIGURE 3

Predictive performance of the model in validation cohorts. (A) Receiver Operating Characteristic (ROC) curves for the validation cohorts. The curves
illustrate the discriminatory ability of different predictive models, with the area under the ROC curve (AUC) values displayed for each model: Logistic
Regression (LR), eXtreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
Gradient Boosting Machine (GBM), Categorical Boosting (CatBoost). (B) Calibration Curve. Exhibited excellent alignment between predicted
probabilities and observed outcomes. (C) Decision Curve Analysis (DCA). The curves show the net benefit of each model across various threshold
probabilities.
TABLE 5 Detailed performance metrics for all models in validation cohorts.

Model Accuracy Sensitivity Specificity F1

Logistic 0.83 (0.654 - 0.923) 0.774 (0.518 - 0.968) 0.909 (0.738 - 1.000) 0.842 (0.648 - 0.933)

SVM 0.83 (0.672 - 0.923) 0.871 (0.679 - 1.000) 0.773 (0.500 - 1.000) 0.857 (0.713 - 0.944)

NeuralNetwork 0.811 (0.662 - 0.912) 0.774 (0.645 - 1.000) 0.864 (0.500 - 1.000) 0.828 (0.695 - 0.926)

Xgboost 0.849 (0.654 - 0.923) 0.871 (0.518 - 0.972) 0.818 (0.750 - 1.000) 0.871 (0.678 - 0.948)

KNN 0.83 (0.711 - 0.962) 0.806 (0.603 - 1.000) 0.864 (0.750 - 1.000) 0.847 (0.674 - 0.932)

Adaboost 0.755 (0.672 - 0.923) 0.806 (0.580 - 1.000) 0.682 (0.577 - 1.000) 0.794 (0.657 - 0.913)

CatBoost 0.849 (0.769 - 0.982) 0.903 (0.720 - 1.000) 0.773 (0.625 - 1.000) 0.865 (0.711 - 0.948)
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3.6 Application of model

To bridge the gap between predictive analytics and clinical

utility, we operationalized the XGBoost model through an intuitive

web-based platform (https://chaiyalin.shinyapps.io/make_web/).

This tool enables clinicians to input patient-specific parameters—

including preoperative PTH, ALP, serum calcium, age, %PTH—

to generate real-time HBS risk stratification. The platform’s

device-agnostic architecture ensures seamless access across

desktop and mobile environments without requiring specialized

software installation.
4 Discussion

Postoperative hungry bone syndrome (HBS) is a frequent

complication following parathyroidectomy (PTX) in secondary

hyperparathyroidism (SHPT) patients. We found that

preoperative PTH was the most important risk factor for

postoperative HBS. The possible reason is the rapid reduction in

PTH levels shifts the bone turnover equilibrium toward

mineralization, resulting in massive calcium influx into osteoid

tissue and subsequent hypocalcemia (19, 20). This study identifies

%PTH as independent predictors of HBS, leveraging PTH’s short

half-life (3 – 5 minutes) to reflect real-time parathyroid

functional dynamics.

Alkaline phosphatase (ALP), a biomarker of osteoblast activity,

emerged as a critical predictor of HBS, consistent with prior studies

(27–29). Elevated preoperative ALP levels signify heightened bone
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turnover, which exacerbates postoperative calcium sequestration

(30). Notably, ALP demonstrates stronger correlations with bone

histomorphometric changes and dialysis patient mortality than

PTH (31), underscoring its clinical utility in risk stratification.

While bone-specific ALP (B-ALP) offers superior specificity for

bone metabolism (21), its exclusion from routine clinical assays in

primary care settings limits its practical applicability. Our study

corroborates prior evidences (23, 32) demonstrating that

preoperative hypocalcemia independently predicts postoperative

HBS, likely reflecting an elevated baseline bone remodeling state

in SHPT patients (33). Mechanistically, abrupt postoperative PTH

suppression disrupts the bone resorption-formation equilibrium,

triggering accelerated osteoblast-driven mineralization and

subsequent calcium efflux from circulation to bone tissue.

Notably, younger age emerged as an independent HBS risk factor,

aligning with findings by Kritmetapak et al. (34) and He et al. (23).

This association may stem from heightened osteoblast activity and

skeletal calcium utilization efficiency in younger individuals.

Conversely, older patients exhibited reduced susceptibility,

potentially attributable to age-related declines in 1a-hydroxylase
activity, chronic malnutrition, and impaired osteoblast calcium

uptake capacity. However, conflicting data from Gong et al. (35)

associate advanced age with HBS risk, possibly due to prevalent

vitamin D deficiency and protein-energy wasting in elderly

populations. These discrepancies likely arise from cohort

heterogeneity and surgical technique variations, underscoring the

need for multicenter studies to clarify age-specific risk profiles.

Additionally, we observed a reduced HBS rate among patients using

bisphosphonates preoperatively, which aligns with other studies.
FIGURE 4

Ten fold cross validation evaluation. ROC curve plot of XGBoost.
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Some authors have documented that bisphosphonates can improve

HBS (19, 36, 37). Davenport et al. (19)described a study showing

that pamidronate could decrease postoperative HBS rates.

In recent years, machine learning has shown great potential in

disease diagnosis and prognosis. However, few studies have been

conducted to predict postoperative HBS using ML models. This

study introduces an interpretable machine learning model that

individualizes HBS risk prediction using five clinically accessible

variables. The model’s operationalization as a web-based calculator

enables real-time risk stratification, aligning with KDIGO

guidelines for proactive postoperative management. Internal

validation via cohort partitioning demonstrated robust

discriminatory performance, supporting its reliability for clinical
Frontiers in Endocrinology 11
deployment. Moreover, traditional evaluation methods

often exhibit high rates of missed diagnoses. Our XGBoost model

effectively reduces diagnostic gaps by integrating multidimensional

features such as%PTH levels while maintaining appropriate

specificity. We have further developed a risk stratification

framework (low, medium, and high-risk) based on this threshold,

establishing corresponding preventive measures and monitoring

strategies. This model is designed for intraoperative decision

support, enabling surgeons to adjust calcium prophylaxis

strategies based on real-time %PTH dynamics. High-risk patients

trigger immediate IV calcium infusion protocols.

However, several limitations warrant consideration. This study

has the following limitations: 1. The single-center retrospective
frontiersin.o
FIGURE 5

Interpretability of machine learning predictions using SHAP. (A) SHAP importance plot; (B) SHAP beeswarm plot; (C) SHAP force plot. Pre-PTH,
preoperative parathyroid hormone; %PTH, [(Preoperative PTH – PTH at skin closure)/Preoperative PTH] × 100%; ALP, Alkaline phosphatase (U/L); Ca,
Serum calcium (mmol/L).
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design limits model generalizability, requiring multicenter

prospective validation; 2. The HBS definition is based solely on

biochemical indicators without incorporating symptom assessment,

which may lead to minor misclassification; 3. Key bone metabolism

markers such as bone-specific alkaline phosphatase and osteocalcin

are absent (38); 4. Model calibration performance may drift over

time, necessitating periodic recalibration; 5. Differences in surgical

techniques across centers and variations in surgeons’ expertise may

affect model applicability.
5 Conclusion

Our findings demonstrate that %PTH exhibits a strong

independent association with postoperative hungry bone

syndrome (HBS). Leveraging machine learning algorithms, we

developed and validated a predictive model incorporating five

clinically accessible preoperative parameters: 1) preoperative PTH,

2) %PTH, 3) age, 4) serum calcium, and 5) alkaline phosphatase

(ALP). This model serves as a practical clinical tool for early

identification of high-risk patients, enabling targeted prophylactic

interventions such as preoperative calcium optimization and

intensified postoperative monitoring. By utilizing routinely

available preoperative biomarkers, our approach bridges the gap

between predictive analytics and actionable clinical decision-

making in CKD-associated SHPT management.
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