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The Affiliated Hospital of Qingdao University, Qingdao, China

Objective: To develop an interpretable machine learning model for predicting
hungry bone syndrome (HBS) risk following parathyroidectomy in secondary
hyperparathyroidism (SHPT) patients.

Methods: This retrospective study analyzed 181 SHPT patients who underwent
parathyroidectomy at the Affiliated Hospital of Qingdao University (2015 - 2025).
Participants were randomly divided into a training group (70%) and a validation
group (30%). From 46 candidate variables, five key predictors were selected
through logistic regression and Boruta algorithm. Seven machine learning
models were trained, evaluated by ROC curves, calibration curves, and
decision curve analysis (DCA). Model interpretability was quantified via SHapley
Additive exPlanations (SHAP).

Results: The XGBoost algorithm demonstrated excellent predictive
performance, with an AUC of 0.878 (95% ClI: 0.779 - 0.973) and an F1 score of
0.871 for the validation cohort. The key predictors included preoperative
parathyroid hormone (Pre-PTH), the percentage decay between Pre-PTH and
PTH at skin closure (%PTH), alkaline phosphatase, serum calcium, and age.
Additionally, we designed a web application to estimate HBS risk.

Conclusions: This interpretable machine-learning model is effective in predicting
the risk of HBS in SHPT patients after parathyroidectomy, thereby providing
guidance for postoperative surveillance strategies.

hungry bone syndrome, secondary hyperparathyroidism, parathyroidectomy, risk
factors, machine learning
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1 Introduction

Secondary hyperparathyroidism (SHPT), a prevalent
complication of chronic kidney disease (CKD), contributes to
bone lesions, vascular calcification, and elevated risks of
cardiovascular events and mortality (1-3). Epidemiological
studies indicate that SHPT affects 20%-80% of CKD patients,
with prevalence rates correlating with disease severity and dialysis
duration (4). Current therapeutic strategies encompass vitamin D
analogs (e.g., calcitriol) (5), calcimimetics (e.g., cinacalcet), and
phosphate binders (6). For refractory cases, parathyroidectomy
(PTX) remains the definitive intervention per KDIGO guidelines,
particularly in CKD patients with persistent hyperparathyroidism
(intact parathyroid hormone [iPTH] >800 pg/mL) (7, 8). PTX has
been shown to improve survival rates by 15%-57% in dialysis-
dependent patients (9) and alleviate symptoms such as pruritus,
bone pain, and fracture risk (10-13).

Postoperative hungry bone syndrome (HBS), a complication
affecting 25%-75% of PTX cases (14-16), is clinically characterized
by prolonged hypocalcemia (corrected serum calcium <2.1 mmol/L
for >4 days) (17, 18). The pathophysiology involves accelerated
bone remodeling under chronic PTH stimulation, followed by
abrupt mineralization and calcium influx into osteoid tissue after
rapid postoperative PTH decline, resulting in severe hypocalcemia
(19, 20). Elevated preoperative PTH levels are strongly associated
with HBS development (21-23). Notably, recent studies propose
that %PTH (the percentage decay between Pre-PTH and PTH at
skin closure) predicts hypocalcemia following thyroidectomy (24).
However, this metric has not yet been evaluated as a predictor of
HBS in SHPT patients undergoing PTX. We investigated the
relationship between %PTH and postoperative HBS and used
machine learning to develop a predictive model for the
occurrence of HBS after parathyroidectomy in SHPT patients.

2 Methods
2.1 Patients and designs

This retrospective cohort study enrolled patients diagnosed
with secondary hyperparathyroidism who underwent
parathyroidectomy at the Affiliated Hospital of Qingdao
University between January 2015 and May 2025. Inclusion
criteria required comprehensive preoperative clinical evaluation
and documented serum calcium measurements within 72 hours
postoperatively. The study protocol was reviewed and approved by

Abbreviations: AdaBoost, Adaptive Boosting; ALP, Alkaline Phosphatase; ROC,
Receiver operating characteristic curve; CatBoost, Categorical Boosting; CKD,
Chronic kidney disease; DCA, Decision curve analysis; HBS, Hungry bone
syndrome; KNN:K-nearest neighbors; LightGBM, Light gradient boosting
machine; LR, Logistic regression; NN, Neural Network; PTH, Parathyroid
hormone; PTX, Parathyroidectomy; Scr, Serum creatinine; SHAP, Shapley
additive explanations; SHPT, Secondary hyperparathyroidism; SVM, Support

vector machine; XGBoost, Extreme gradient boosting.
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the Ethics Committee of the Affiliated Hospital of Qingdao
University (Approval No. QYFY WZLL 29980). Sample size
determination adhered to the 10 events per variable (EPV)
criterion, ensuring that the minimum number of outcomes for
binary classifications exceeded 10-fold the number of independent
variables in the predictive model.

Surgical indications for parathyroidectomy were defined as
meeting at least one of the following criteria:(1) Severe SHPT
(persistent intact parathyroid hormone [iPTH] >800 pg/mL)
refractory to pharmacological therapy with calcitriol or vitamin D
analogs;(2)Severe SHPT accompanied by hyperphosphatemia
(serum phosphate >2.0 mmol/L);(3)Severe SHPT with clinically
significant symptoms (intractable pruritus and/or bone pain);(4)
Radiologically confirmed parathyroid hyperplasia (maximum gland
diameter >1.0 cm).Exclusion criteria comprised:(1)Concurrent
hepatobiliary or pancreatic disorders;(2)Cognitive impairment
impairing informed consent or follow-up compliance;(3)
Recurrent SHPT with prior parathyroidectomy history. The flow
chart of the study is shown in Figure 1.

2.2 Data collection and definitions

Demographic and clinical characteristics were systematically
collected, including: General characteristics: Sex, age, height, body
mass index (BMI), dialysis modality (hemodialysis/peritoneal
dialysis), dialysis vintage, and clinical manifestations (bone pain,
height reduction, pruritus); Preoperative management: Use of
calcimimetics (Cinacalcet), vitamin D analogs (Calcitriol,
Paricalcitol, Alfacalcitol), phosphate binders(Lanthanum
carbonate), and medication for osteoporosis (Bisphosphonates);
Laboratory parameters: Pre-PTH, PTH at skin closure, calcium,
potassium, phosphate, albumin, alkaline phosphatase (ALP),
cystatin C, creatinine, urea, uric acid, triglycerides, total
cholesterol, low-density lipoprotein (LDL), high-density
lipoprotein (HDL), and hemoglobin; Surgery-related factors:
Procedure type, number of excised parathyroid glands;
Comorbidities:hypertension, diabetes mellitus, coronary artery
disease, cerebrovascular disease, osteoporosis, fracture.

Blood samples were obtained within 72 hours postoperatively.
Patients were stratified into two groups based on corrected serum
calcium levels:HBS group: Corrected calcium <2.1 mmol/L; Non-
HBS group: Corrected calcium 2.1 mmol/L. Corrected calcium
formula: Corrected Ca (mmol/L) = ionized Ca + (40 — serum
albumin [g/L]) x 0.02.The percentage decay between Pre-PTH and
PTH at skin closure(%PTH): [(Preoperative PTH - PTH at skin
closure)/Preoperative PTH] x 100%. Blood was collected uniformly
20 minutes after total thyroidectomy (before skin closure) to control
half-life effects.

2.3 Calcium management

Heparin-free dialysis was implemented during the final
preoperative session and the initial postoperative session.
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Patients with secondary
hyperparathyroidism who
underwent
parathyroidectomy
from January 2015 to May

2025(n=204)
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Exclude

Patients with cognitive

impairment(n=1)
Patients with liver,biliary,or

pancreatic diseases(n=4)
Patients with recurrent SHPT who
have a history of PTX surgery(n=2)
Patients with extensive missing

181 patients were enrolled

data(n=16)

HBS group
(n=105)

FIGURE 1
The patient flow chart in our study.

Postoperative calcium monitoring followed a tiered protocol. The
average medication dosage for managing hypocalcemia after
parathyroidectomy varies among patients, but typically involves a
combination of intravenous and oral calcium supplements. The
recommended dose of intravenous calcium gluconate is 2 mg/kg/h,
with the median total dose reported in studies being approximately
8.2g (Interquartile Range 6.1 - 10.3g). Oral calcium supplements
usually consist of 3 - 6g elemental calcium daily (7.5 - 15g calcium
carbonate), which should be combined with active vitamin D (e.g.,
calcitriol 0.5 - 2.0 pg/day). Discharge criteria included: Stable
corrected calcium within normal range; Absence of hypocalcemia-
related symptoms; No surgery-associated complications.

2.4 Statistical analysis and model
development

All statistical analyses were conducted using R software (version
4.3.1, R Foundation for Statistical Computing, Austria), with a
significance level set at P <0.05.The normality test and the chi-
square test were used for the measurement data, and the normally
distributed data were expressed as mean + standard deviation, and
the t-test was used for comparison between groups; the non-
normally distributed data were expressed as median (interquartile
spacing), and the Mann-Whitney U-test was used for comparison
between groups; the counting data were expressed as percentage
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Non-HBS
group(n=76)

(%), and the 2-test or Fisher’s exact probability method was used
for comparison between groups. ‘s exact probability method.
MissForest (random forest interpolation technique) was used to
interpolate the data, and data with more than 20% missing were
discarded. The training set and test set are separated and
interpolated respectively to avoid information leakage.

Use LASSO regression, Boruta method and logistic regression
to select the final feature variables used in the model. In logistic
analysis, variables with p < 0.05 are considered as potential risk
factors. The LASSO method selects features and reduces dimension
by narrowing the coefficients, retaining the features with large
contributions and eliminating redundant features. Boruta is a
feature selection method that determines the importance of each
variable by comparing its Z-score. Three methods were selected to
select the common characteristic variables as the final variables of
the model. This method improves the accuracy of the model,
reduces the risk of overfitting and excludes irrelevant predictors.
Machine learning is more advantageous for classification and
prediction and can handle features more efficiently than
traditional statistical methods (22, 25, 26). Data were trained on
the following seven ML models: Logistic Regression (LR), Adaptive
Boosting (AdaBoost), Support Vector Machine (SVM), eXtreme
Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), K-
Nearest Neighbors (KNN), and Neural Network (NN). We used
grid search to optimize the parameters. The performance of the
prediction model was evaluated by the AUC of the ROC curve,
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calibration curve, specificity, accuracy, recall, F1 score. Decision
curve analysis (DCA) was plotted to assess clinical utility. For the
most performance-driven diagnostic models, we revalidated their
generalization capabilities using 10-fold cross-validation to prevent
overfitting. The SHAP feature importance ranking and SHAP
beeplot visually demonstrate each feature’s contribution to the
final prediction, while the SHAP plot intuitively visualizes how
different features influence individual predictions.

3 Results
3.1 Characteristics of the participants

From January 2015 to May 2025, 181 eligible secondary
hyperparathyroidism (SHPT) patients undergoing parathyroidectomy
(PTX) were included in the final analysis. These patients were randomly
allocated into a training cohort (n=128) and a validation cohort (n=53) at

10.3389/fendo.2025.1635451

a 7:3 ratio. Among the 181 participants, 105 (58%) developed
postoperative hungry bone syndrome (HBS). The overall missing data
situation is shown in Supplementary Table 1. Compared with the non-
HBS group, patients in the HBS group had a significantly lower median
age (P <0.001). Regarding comorbidities, the HBS group showed higher
prevalence of osteoporosis (P = 0.017). In terms of preoperative
medication use, the HBS group demonstrated higher usage rates of
paricalciferol (P = 0.037) and bisphosphonates (P = 0.040). For
preoperative symptoms, the HBS group exhibited higher proportions
of osteodynia, eight reduction, and pruritus. These findings are detailed
in Table 1. In terms of surgical methods, the proportion of SPTX was
lower in HBS group (P <0.05), and the proportion of TPTX and TPTX
+AT was higher. The proportion of HBS group with >4 parathyroid
glands removed was higher, and the proportion of <4 parathyroid glands
removed was lower. The results are shown in Table 2. Laboratory data
comparison (Table 3) showed that compared with the non-HBS group,
the HBS group had a higher percentage of Ca, Bun, Pre-PTH, PTH at
skin closure, %PTH than the non-HBS group (P <0.05).

TABLE 1 Comparison of General characteristics in the Non-HBS and HBS groups.

Variable Levels

Group

Overall (N = 181)

Non-HBS (N = 76) HBS (N = 105)

General characteristics

Age(years) 46.65 (10.27) 50.84 (9.46) 43.62 (9.80) <0.001
male 92.00 (50.83%) 38.00 (50.00%) 54.00 (51.43%)
Gender, n (p%) 0.850
female 89.00 (49.17%) 38.00 (50.00%) 51.00 (48.57%)
H(cm) 165.01 (8.42) 164.74 (7.49) 165.20 (9.07) 0.708
Wt(kg) 64.23 (13.35) 65.11 (13.31) 63.59 (13.41) 0.449
BMI(kg/m2) 24.51 (13.33) 24.15 (4.41) 24.77 (17.13) 0.725
Dialysis time(years) 7.35 (3.16) 7.82 (3.65) 7.01 (2.71) 0.106
Hemodialysis 168.00 (92.82%) 70.00 (92.11%) 98.00 (93.33%)
Dialysis modality, n (p%) . 0.752
Perit 1
critonea 13.00 (7.18%) 6.00 (7.89%) 7.00 (6.67%)
dialysis
no 139.00 (76.80%) 57.00 (75.00%) 82.00 (78.10%)
Cinacalcet, n (p%) 0.626
yes 42.00 (23.20%) 19.00 (25.00%) 23.00 (21.90%)
no 80.00 (44.20%) 31.00 (40.79%) 49.00 (46.67%)
Calcitriol, n (p%) 0.432
yes 101.00 (55.80%) 45.00 (59.21%) 56.00 (53.33%)
no 175.00 (96.69%) 71.00 (93.42%) 104.00 (99.05%)
Paricalcitol, n (p%) 0.037
yes 6.00 (3.31%) 5.00 (6.58%) 1.00 (0.95%)
no 174.00 (96.13%) 71.00 (93.42%) 103.00 (98.10%)
Alfacalcidol, n (p%) 0.107
yes 7.00 (3.87%) 5.00 (6.58%) 2.00 (1.90%)
no 167.00 (92.27%) 72.00 (94.74%) 95.00 (90.48%)
Lanthanum carbonate, n (p%) 0.290
yes 14.00 (7.73%) 4.00 (5.26%) 10.00 (9.52%)
no 178.00 (98.34%) 73.00 (96.05%) 105.00 (100.00%)
Bisphosphonates, n (p%) 0.040
yes 3.00 (1.66%) 3.00 (3.95%) 0.00 (0.00%)
(Continued)
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TABLE 1 Continued

Group
Variable Levels Overall (N = 181)
Non-HBS (N = 76) HBS (N = 105)
General characteristics
no 167.00 (92.27%) 73.00 (96.05%) 94.00 (89.52%)
Height reduction, n (p%) 0.105
yes 14.00 (7.73%) 3.00 (3.95%) 11.00 (10.48%)
no 95.00 (52.49%) 43.00 (56.58%) 52.00 (49.52%)
Osteodynia, n (p%) 0.348
yes 86.00 (47.51%) 33.00 (43.42%) 53.00 (50.48%)
no 136.00 (75.14%) 55.00 (72.37%) 81.00 (77.14%)
Pruritus, n (p%) 0.463
yes 45.00 (24.86%) 21.00 (27.63%) 24.00 (22.86%)
no 45.00 (24.86%) 23.00 (30.26%) 22.00 (20.95%)
Hypertension, n (p%) 0.153
yes 136.00 (75.14%) 53.00 (69.74%) 83.00 (79.05%)
no 145.00 (80.11%) 58.00 (76.32%) 87.00 (82.86%)
Coro2ry heart disease, n (p%) 0.277
yes 36.00 (19.89%) 18.00 (23.68%) 18.00 (17.14%)
no 170.00 (93.92%) 72.00 (94.74%) 98.00 (93.33%)
Diabetes, n (p%) 0.696
yes 11.00 (6.08%) 4.00 (5.26%) 7.00 (6.67%)
no 168.00 (92.82%) 71.00 (93.42%) 97.00 (92.38%)
Cerebrovascular disease, n (p%) 0.789
yes 13.00 (7.18%) 5.00 (6.58%) 8.00 (7.62%)
no 177.00 (97.79%) 72.00 (98.63%) 105.00 (100.00%)
Osteoporosis, n (p%) 0.017
yes 4.00 (2.21%) 1.00 (5.26%) 3.00 (0.00%)
no 177.00 (97.79%) 73.00 (96.05%) 104.00 (99.05%)
Fracture, n (p%) 0.176
yes 4.00 (2.21%) 2.00 (3.95%) 2.00 (0.95%)

TABLE 2 Comparison of Surgery-related factors in the Non-HBS and HBS groups.

Group
Variable Levels Overall (N = 181)
Non-HBS (N = 76) HBS (N = 105)
Surgery-related factors
Surgical time(minutes) 137.32 (56.47) 132.13 (56.66) 141.08 (56.30) 0.295
1 1.00 (0.57%) 1.00 (1.35%) 0.00 (0.00%)
2 12.00 (6.86%) 8.00 (10.81%) 4.00 (3.96%)
Number of resections 0.064
3 20.00 (8.57%) 11.00 (12.16%) 9.00 (5.94%)
4 148.00 (84.00%) 56.00 (75.68%) 92.00 (90.10%)
no 147.00 (81.22%) 65.00 (85.53%) 82.00 (78.10%)
TPTX, n (p%) 0.206
yes 34.00 (18.78%) 11.00 (14.47%) 23.00 (21.90%)
no 150.00 (82.87%) 58.00 (76.32%) 92.00 (87.62%)
SPTX, n (p%) 0.046
yes 31.00 (17.13%) 18.00 (23.68%) 13.00 (12.38%)
no 64.00 (35.36%) 29.00 (38.16%) 35.00 (33.33%)
TPTX+AT, n (p%) 0.503
yes 117.00 (64.64%) 47.00 (61.84%) 70.00 (66.67%)
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TABLE 3 Comparison of Biochemical indicators in the Non-HBS and HBS groups.

Group

Variable Overall(N = 171) P-value

Non-HBS (N = 76) HBS (N = 105)

Biochemical indicators

Hb(g/L) 108.66 (16.89) 110,57 (15.28) 107.27 (17.91) 0.183
WBC (109/L) 5.75 (1.67) 577 (1.82) 573 (1.56) 0.886
CRP(mg/L) 4.87 (5.66) 466 (5.35) 5.02 (5.90) 0.670
Ca (mmol/L) 243 (0.20) 250 (0.21) 239 (0.18) <0.001
K(mmol/L) 5.01 (0.74) 4.90 (0.75) 5.09 (0.72) 0.084
P(mmol/L) 2.24 (0.54) 220 (0.56) 227 (0.53) 0.405
Pre-PTH(pg/ml) 1,633.45 (1,000.47) 976.45 (482.33) 2,108.99 (1,010.39) <0.001

PTH at skin closure(pg/ml) 198.22 (125.36) 174.60 (122.91) 215.31 (124.92) 0.030
%PTH 84.55 (12.18) 79.39 (15.63) 88.29 (6.86) <0.001
Scr(imol/L) 807.96 (258.24) 801.67 (244.34) 812.52 (268.91) 0.778
Bun(mmol/L) 22.66 (6.82) 21.31 (6.65) 23.64 (6.80) 0.023
CYSC(mg/L) 6.74 (1.71) 6.47 (1.69) 6.93 (1.72) 0.076
UA(umol/L) 362.50 (119.60) 361.71 (119.58) 363.08 (120.18) 0.939
ALP(U/L) 354.19 (410.73) 16139 (169.91) 493.73 (473.64) <0.001
ALB(g/L) 39.69 (4.44) 4022 (4.88) 39.30 (4.08) 0.185
TG(mmol/L) 1.66 (0.92) 1.81 (1.14) 1.56 (0.71) 0.091
TC(mmol/L) 431 (1.17) 416 (1.27) 4.41 (1.08) 0.170
HDL(mmol/L) 245 (0.69) 237 (0.71) 250 (0.67) 0.187
LDL(mmol/L) 1.18 (0.39) 1.13 (0.34) 1.21 (0.42) 0.136

3.2 Feature selection

The selection of variables was based on the overlapping results
of logistic regression, Lasso regression and Boruta’s algorithm.
Univariate analysis showed (Table 4) that %PTH had a p-value
<0.001, indicating that %PTH was significantly associated with
postoperative HBS. In addition, Pre-PTH (p<0.001)), age
(p<0.001), Ca (p=0.014), ALP (p<0.001), TPTX (p=0.045), SPTX
(p=0.029) and the number of parathyroid glands resected (p=0.004)
were significantly different between the HBS and non-HBS groups.
All the above significant parameters were included in the
multifactorial logistic regression analysis. In the LASSO regression
analysis, variable coefficients are shown in Figure 2A, while the
relationship between regularization parameter (A) and mean cross-
validation error (CVM) is illustrated in Figure 2B. The five variables
identified through LASSO regression as strongly associated with
HBS include Pre-PTH, ALP, %PTH, Age, and Ca. The regression
coefficients for these variables are detailed in Supplementary
Table 2. The Boruta method identified variables including Pre-
PTH, ALP,%PTH, Age, PTH at skin closure, number of parathyroid
glands removed, and Ca (Figure 2C). Ultimately, these five variables
—Pre-PTH, ALP, %PTH, Age, and Ca—were selected for
subsequent analyses.
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3.3 Performance comparison of different
ML methods

Following feature selection, seven machine learning
algorithms—Logistic Regression (LR), Adaptive Boosting
(AdaBoost), Support Vector Machine (SVM), eXtreme Gradient
Boosting (XGBoost), Categorical Boosting (CatBoost), K-Nearest
Neighbors (KNN), and Neural Network (NN)—were trained to
predict postoperative HBS.

To compare the need to include %PTH, we compared the
difference in AUC values between whether or not to exclude %
PTH. The results showed that the AUC value of the model
including %PTH was higher (Supplementary Table 3), so we
included %PTH for further analysis.

Among machine learning models, the XGBoost model (AUC =
0.878) showed the best performance, followed by LR (AUC =
0.876), CatBoost (AUC = 0.874), KNN (AUC = 0.869), SVM
(AUC = 0.865), NN (AUC = 0.833) and AdaBoost (AUC =
0.821). (Figure 3A). Classification in the validation cohort
outperformed all models with an F1 score of 0.871 and an
accuracy of 0.849. Detailed performance metrics for all models,
including specificity, precision, and accuracy, are summarized in
Table 5. The calibration curves show a very good agreement
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TABLE 4 Univariate and multivariate logistic regression analysis.

10.3389/fendo.2025.1635451

Variable Levels OR (univariable) OR (multivariable)
Age(years) 0.96 (0.92 - 0.99, p=.026) 0.96 (0.91 - 1.01, p=.152)
male
Gender, n (p%)
female 1.22 (0.61 - 2.47, p=.572)
H(cm) 0.99 (0.95 - 1.03, p=.570)
Wt(kg) 0.99 (0.96 - 1.01, p=.270)
BMI(kg/m2) 1.01 (0.98 - 1.04, p=.620)
Dialysis time(years) 0.90 (0.80 - 1.00, p=.056)
Hemodialysis

Dialysis modality, n (p%)

Peritoneal dialysis

1.23 (0.28 - 5.39, p=.782)

no
Cinacalcet, n (p%)
yes 1.41 (0.59 - 3.37, p=.434)
no
Calcitriol, n (p%)
yes 0.77 (0.38 - 1.58, p=.480)
no
Paricalcitol, n (p%)
yes 0.17 (0.02 - 1.58, p=.119)
no
Alfacalcidol, n (p%)
yes 027 (0.05 - 1.46, p=.129)
no
Lanthanum carbonate, n (p%)
yes 2.29 (0.44 - 11.83, p=.321)
no
Bisphosphonates, n (p%)
yes 0.00 (0.00-Inf, p=.987)
no
Hypertension, n (p%)
yes 2.16 (0.94 - 4.94, p=.070)
no
Coro2ry heart disease, n (p%)
yes 0.80 (0.35 - 1.86, p=.608)
no
Diabetes, n (p%)
yes 0.71 (0.17 - 2.99, p=.645)
no
Cerebrovascular disease, n (p%)
yes 12614529.59 (0.00-Inf, p=.986)
no
Osteoporosis, n (p%)
yes 0.00 (0.00-Inf, p=.988)
no
Fracture, n (p%)
yes 0.00 (0.00-Inf, p=.988)

Surgical time(minutes)

Number of resections

1.00 (1.00 - 1.01, p=.523)

3.18 (1.44 - 7.00, p=.004)

1.55 (0.38 - 6.23, p=.540)

TPTX, n (p%)

2.76 (1.02 - 7.48, p=.045)

2.60 (0.61 - 11.02, p=.194)

SPTX, n (p%)

0.31 (0.11 - 0.88, p=.029)

1.46 (0.17 - 12.90, p=.732)

TPTX+AT, n (p%)

0.98 (0.47 - 2.06, p=.958)
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TABLE 4 Continued

Variable
Hb(g/L)

WBC (109/1)

Levels

OR (univariable)
0.99 (0.96 - 1.01, p=.176)

0.90 (0.73 - 1.12, p=.352)

10.3389/fendo.2025.1635451

OR (multivariable)

CRP(mg/L)

1.04 (0.97 - 1.12, p=.280)

Ca (mmol/L)

0.10 (0.02 - 0.63, p=.014)

0.06 (0.00 - 1.15, p=.062)

K(mmol/L)
P(mmol/L)

Pre-PTH(pg/ml)

PTH at skin closure(pg/ml)

%PTH

1.43 (0.86 - 2.40, p=.171)
1.00 (0.53 - 1.90, p=.990)
1.00 (1.00 - 1.00, p<.001)
1.00 (1.00 - 1.01, p=.185)

1.10 (1.04 - 1.15, p<.001)

1.00 (1.00 - 1.00, p=.003)

1.03 (0.97 - 1.09, p=.357)

Scr(pmol/L)

1.00 (1.00 - 1.00, p=.935)

Bun(mmol/L)

1.04 (0.9 - 1.10, p=.143)

CYSC(mg/L)
UA(pmol/L)
ALP(U/L)

ALB(g/L)

1.09 (0.89 - 1.34, p=.419)
1.00 (1.00 - 1.00, p=.844)
1.01 (1.00 - 1.01, p<.001)

0.96 (0.89 - 1.04, p=.287)

1.00 (1.00 - 1.01, p=.151)

TG(mmol/L)

0.80 (0.53 - 1.21, p=.290)

TC(mmol/L)
HDL(mmol/L)

LDL(mmol/L)

1.36 (0.98 - 1.88, p=.067)
2.11 (0.77 - 5.73, p=.144)

1.59 (0.93 - 2.70, p=.088)

between predicted probabilities and observations (Figure 3B). In  resampling to prevent overfitting. The ROC curve results
addition, decision curve analysis (DCA) confirmed its optimal net

benefit across clinically relevant probability thresholds (Figure 3C).

(Figure 4) confirm that our constructed model demonstrates
excellent generalization performance without signs of overfitting
To evaluate the generalization capability of the top-performing  or underfitting. Based on these findings, the XGBoost model was

diagnostic models, we conducted cross-validation with 10-fold identified as the most effective model in this study.
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FIGURE 2
Feature selection. (A) The relationship between Lambda (regularization parameter) and CVM (mean cross validation error) in Lasso regression;
(B) Lasso regression Lambda and Coefficients Plot. (C) Feature selection based on Boruta principle. Green boxes indicate important variables, red
boxes indicate unimportant variables.
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FIGURE 3

Predictive performance of the model in validation cohorts. (A) Receiver Operating Characteristic (ROC) curves for the validation cohorts. The curves
illustrate the discriminatory ability of different predictive models, with the area under the ROC curve (AUC) values displayed for each model: Logistic
Regression (LR), eXtreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
Gradient Boosting Machine (GBM), Categorical Boosting (CatBoost). (B) Calibration Curve. Exhibited excellent alignment between predicted
probabilities and observed outcomes. (C) Decision Curve Analysis (DCA). The curves show the net benefit of each model across various threshold

probabilities.

3.4 Clinical decision threshold analysis

ROC curve analysis with the AUC-ROC index identified a
statistically optimal threshold of 0.489 (95% CI: 0.483 - 0.509),
achieving 87.1% sensitivity and 81.8% specificity at this level
(Supplementary Table 3). The decision curve demonstrated a net
benefit of 0.3614 at the 35% threshold, confirming its clinical
applicability. We established a three-tier risk stratification system:
Low-risk (<20%): Standard calcium supplementation regimen;
Moderate-risk (20 - 35%): Close monitoring; High-risk (=35%):
Intensive calcium supplementation regimen. The XGBoost
prediction model developed in this study reduced HBS
undiagnosed rate from 19.4% to 0% at the 35% decision
threshold, providing a robust tool for developing personalized
calcium supplementation strategies in clinical practice.

TABLE 5 Detailed performance metrics for all models in validation cohorts.

3.5 Interpretability analysis

The SHAP interpretability method system reveals the decision-
making mechanism of XGBoost model in predicting HBS risk.
Figure 5A (feature importance bar chart) shows that preoperative
PTH level (mean SHAP = 0.32) is the most significant predictive
factor, followed by Age,%PTH, Ca, and ALP. Figure 5B (bee swarm
plot) further clarifies feature directionality: Preoperative high
calcium levels significantly reduce HBS risk (SHAP value negative
skew), while younger patients and elevated ALP drive risk increase
(SHAP value positive clustering). The individualized decision
mechanism is illustrated in Figure 5C (force plot): Taking a 47-
year-old patient (preoperative PTH 1974 pg/mL, %PTH 84, calcium
2.35 mmol/L, ALP 292 U/L) as an example, the model predicts a
98.0% probability of HBS.

Model Accuracy Sensitivity Specificity F1

Logistic 0.83 (0.654 - 0.923) 0.774 (0.518 - 0.968) 0.909 (0.738 - 1.000) 0.842 (0.648 - 0.933)
SVM 0.83 (0.672 - 0.923) 0.871 (0.679 - 1.000) 0.773 (0.500 - 1.000) 0.857 (0.713 - 0.944)
NeuralNetwork 0.811 (0.662 - 0.912) 0.774 (0.645 - 1.000) 0.864 (0.500 - 1.000) 0.828 (0.695 - 0.926)
Xgboost 0.849 (0.654 - 0.923) 0.871 (0518 - 0.972) 0.818 (0.750 - 1.000) 0.871 (0.678 - 0.948)
KNN 0.83 (0.711 - 0.962) 0.806 (0.603 - 1.000) 0.864 (0.750 - 1.000) 0.847 (0.674 - 0.932)
Adaboost 0.755 (0.672 - 0.923) 0.806 (0.580 - 1.000) 0.682 (0.577 - 1.000) 0.794 (0.657 - 0.913)
CatBoost 0.849 (0.769 - 0.982) 0.903 (0.720 - 1.000) 0.773 (0.625 - 1.000) 0.865 (0.711 - 0.948)
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FIGURE 4

Ten fold cross validation evaluation. ROC curve plot of XGBoost.

3.6 Application of model

To bridge the gap between predictive analytics and clinical
utility, we operationalized the XGBoost model through an intuitive
web-based platform (https://chaiyalin.shinyapps.io/make_web/).
This tool enables clinicians to input patient-specific parameters—
including preoperative PTH, ALP, serum calcium, age, %PTH—
to generate real-time HBS risk stratification. The platform’s
device-agnostic architecture ensures seamless access across
desktop and mobile environments without requiring specialized
software installation.

4 Discussion

Postoperative hungry bone syndrome (HBS) is a frequent
complication following parathyroidectomy (PTX) in secondary
hyperparathyroidism (SHPT) patients. We found that
preoperative PTH was the most important risk factor for
postoperative HBS. The possible reason is the rapid reduction in
PTH levels shifts the bone turnover equilibrium toward
mineralization, resulting in massive calcium influx into osteoid
tissue and subsequent hypocalcemia (19, 20). This study identifies
%PTH as independent predictors of HBS, leveraging PTH’s short
half-life (3 - 5 minutes) to reflect real-time parathyroid
functional dynamics.

Alkaline phosphatase (ALP), a biomarker of osteoblast activity,
emerged as a critical predictor of HBS, consistent with prior studies
(27-29). Elevated preoperative ALP levels signify heightened bone
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turnover, which exacerbates postoperative calcium sequestration
(30). Notably, ALP demonstrates stronger correlations with bone
histomorphometric changes and dialysis patient mortality than
PTH (31), underscoring its clinical utility in risk stratification.
While bone-specific ALP (B-ALP) offers superior specificity for
bone metabolism (21), its exclusion from routine clinical assays in
primary care settings limits its practical applicability. Our study
corroborates prior evidences (23, 32) demonstrating that
preoperative hypocalcemia independently predicts postoperative
HBS, likely reflecting an elevated baseline bone remodeling state
in SHPT patients (33). Mechanistically, abrupt postoperative PTH
suppression disrupts the bone resorption-formation equilibrium,
triggering accelerated osteoblast-driven mineralization and
subsequent calcium efflux from circulation to bone tissue.
Notably, younger age emerged as an independent HBS risk factor,
aligning with findings by Kritmetapak et al. (34) and He et al. (23).
This association may stem from heightened osteoblast activity and
skeletal calcium utilization efficiency in younger individuals.
Conversely, older patients exhibited reduced susceptibility,
potentially attributable to age-related declines in la-hydroxylase
activity, chronic malnutrition, and impaired osteoblast calcium
uptake capacity. However, conflicting data from Gong et al. (35)
associate advanced age with HBS risk, possibly due to prevalent
vitamin D deficiency and protein-energy wasting in elderly
populations. These discrepancies likely arise from cohort
heterogeneity and surgical technique variations, underscoring the
need for multicenter studies to clarify age-specific risk profiles.
Additionally, we observed a reduced HBS rate among patients using
bisphosphonates preoperatively, which aligns with other studies.
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FIGURE 5
Interpretability of machine learning predictions using SHAP. (A) SHAP importance plot; (B) SHAP beeswarm plot; (C) SHAP force plot. Pre-PTH,
preoperative parathyroid hormone; %PTH, [(Preoperative PTH — PTH at skin closure)/Preoperative PTH] x 100%; ALP, Alkaline phosphatase (U/L); Ca,
Serum calcium (mmol/L).

Some authors have documented that bisphosphonates can improve
HBS (19, 36, 37). Davenport et al. (19)described a study showing
that pamidronate could decrease postoperative HBS rates.

In recent years, machine learning has shown great potential in
disease diagnosis and prognosis. However, few studies have been
conducted to predict postoperative HBS using ML models. This
study introduces an interpretable machine learning model that
individualizes HBS risk prediction using five clinically accessible
variables. The model’s operationalization as a web-based calculator
enables real-time risk stratification, aligning with KDIGO
guidelines for proactive postoperative management. Internal
validation via cohort partitioning demonstrated robust
discriminatory performance, supporting its reliability for clinical
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deployment. Moreover, traditional evaluation methods
often exhibit high rates of missed diagnoses. Our XGBoost model
effectively reduces diagnostic gaps by integrating multidimensional
features such as%PTH levels while maintaining appropriate
specificity. We have further developed a risk stratification
framework (low, medium, and high-risk) based on this threshold,
establishing corresponding preventive measures and monitoring
strategies. This model is designed for intraoperative decision
support, enabling surgeons to adjust calcium prophylaxis
strategies based on real-time %PTH dynamics. High-risk patients
trigger immediate IV calcium infusion protocols.

However, several limitations warrant consideration. This study
has the following limitations: 1. The single-center retrospective
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design limits model generalizability, requiring multicenter
prospective validation; 2. The HBS definition is based solely on
biochemical indicators without incorporating symptom assessment,
which may lead to minor misclassification; 3. Key bone metabolism
markers such as bone-specific alkaline phosphatase and osteocalcin
are absent (38); 4. Model calibration performance may drift over
time, necessitating periodic recalibration; 5. Differences in surgical
techniques across centers and variations in surgeons’ expertise may
affect model applicability.

5 Conclusion

Our findings demonstrate that %PTH exhibits a strong
independent association with postoperative hungry bone
syndrome (HBS). Leveraging machine learning algorithms, we
developed and validated a predictive model incorporating five
clinically accessible preoperative parameters: 1) preoperative PTH,
2) %PTH, 3) age, 4) serum calcium, and 5) alkaline phosphatase
(ALP). This model serves as a practical clinical tool for early
identification of high-risk patients, enabling targeted prophylactic
interventions such as preoperative calcium optimization and
intensified postoperative monitoring. By utilizing routinely
available preoperative biomarkers, our approach bridges the gap
between predictive analytics and actionable clinical decision-
making in CKD-associated SHPT management.
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