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Development of machine
learning predictive model for
type 2 diabetic retinopathy using
the triglyceride-glucose index
explained by SHAP method
Xiaoqin Liu1†, Shuying Wu1†, Yue Yang1, Yang Li1,
Xinting Zhang1, Rihui Liu2, Ling Qin3* and Fei Li1*

1The First Hospital of Jilin University, Changchun, Jilin, China, 2Guangdong Mental Health Center,
Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern
Medical University, Guangzhou, Guangdong, China, 3Meihekou Central Hospital, Meihekou,
Jilin, China
Introduction: This study aimed to develop a diabetic retinopathy (DR) Prediction

model using various machine learning algorithms incorporating the novel

predictor Triglyceride-glucose index (TyG). Furthermore, the model was

interpreted using the SHapley Additive exPlanations (SHAP) method.

Method: Real-world data were collected from a general hospital in a major city

and a county clinic, then divided into the DR Group (1392) and non-DR group

(2358). Baseline data were collected, and variables were selected using Recursive

Feature Elimination with Cross-Validation (RFECV). The performance of five

machine learning algorithms, including Logistic Regression model (LR),

Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and

XGBoost (XGB), was assessed based on accuracy, sensitivity, specificity, and Area

Under the Curve (AUC) of the Receiver Operating characteristic Curve (ROC).

The optimal model was interpreted using SHAP.

Result: LVM and LR demonstrated superior performance in both the test set and

training set (ROC, 0.85 and 0.82, respectively). The top five predictors identified

by SHAP analysis included TyG, Insulin therapy, HbA1c, Diabetes Course, HDL.

HDL was identified as a protective factor, while the remaining factors were

associated with retinopathy.

Conclusion: LR and SVM demonstrated the best performance. To our

knowledge, this is the first machine learning-based DR prediction model

integrating the triglyceride-glucose index (TyG) as a core predictor,

overcoming limitations of insulin resistance (IR) assessment in resource-limited

settings. TyG provides a cost-effective alternative to conventional IR biomarkers

(e.g., HOMA-IR), enabling practical DR risk stratification in primary care.
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1 Introduction

Diabetes has a high incidence and mortality rate, thus emerging

as a major global health challenge. The global prevalence of diabetes

in people aged 20~79 years may increase to 12.2% by 2045 (1).

Diabetic retinopathy (DR), the most common and serious ocular

complication of type 2 diabetes, can result in visual impairment and

even permanent vision loss (2). To date, DR is the leading cause of

blindness among individuals aged 20~74, contributing to new cases

of preventable blindness in developing countries (3, 4). A meta-

analysis showed that the worldwide prevalence of DR is about 22.27%

(5). Notably, China has the largest number of diabetic patients in the

world (1), with about 27.9% of diabetes cases being DR (6), of which

34% are in rural areas. Most DR patients are asymptomatic or mild in

the early stage and are only detected when great damage has occurred

or at the late stage (2). Therefore, early screening of DR is crucial.

However, the detection rate of DR remains suboptimal (7),

particularly in certain primary hospitals and remote regions due to

the constraints in medical conditions and limited social resources.

Therefore, more accessible methods are needed to aid healthcare

professionals in diagnosis and screening of DR.

To date, factors such as diabetes duration, age, BMI, smoking,

blood pressure, HbA1c levels, and cholesterol have been identified

as risk factors for diabetic retinopathy (DR) (8, 9). However, only a

limited number of studies have incorporated insulin resistance (IR)

into DR prediction models, despite substantial evidence (10, 11)

demonstrating a strong association between IR and DR. The

hyperinsulinemic-euglycemic clamp (HIEC) is the gold standard

for detecting IR (12), However, it is expensive and complex, limiting

its use. HOMA-IR (13) is the most commonly utilized method for

estimating insulin resistance; however, it requires the measurement

of fasting insulin levels, which imposes specific technical demands

on laboratory capabilities. Additionally, this method is not suitable

for patients undergoing insulin therapy and is not widely adopted in

primary care settings or resource-limited regions. Therefore,

HOMA-IR cannot be widely promoted in primary hospitals and

poor areas (14, 15). A new index has been recently identified for

detecting IR: Triglyceride-glucose index (TyG) (16), TyG is

calculated by fasting triglyceride (TG) and fasting blood glucose

(FBG), providing a simple, reliable, and cheap detection tool (17).

Besides, this index tool has shown better results than HOMA-IR

(18), Elsewhere, Srinivasan (19) and Yao (20) have shown that TyG

and DR are closely related, while others not.
Abbreviations: TyG-index, Triglyceride-glucose index; DR, Diabetic retinopathy;

RI, insulin resistance; HOMA-IR, Homeostatic Model Assessment for Insulin

Resistance; TC, Total cholesterol; TG, Triglyceride; LDL, Low-density

lipoprotein; HDL, High-density lipoprotein; FBG, Fasting blood glucose; BMI,

Body mass index; LR, Logistic regression; DT, Decisiontree; RF, Randomforest;

XCBoost, eXtremegradient boosting; SVM, Support vector machine; RFECV,

Recursive Feature Elimination with Cross-Validation; AUC, Area under the

curves; ROC, Receiver operating characteristic curve; SHAP, Shapley

additive explanation.
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In recent years, artificial intelligence (AI) has demonstrated

significant advantages in disease prediction. Machine learning

(ML), encompassing both deep learning (DL) and traditional ML

approaches represents the most widely adopted technique (21).While

DL has proven highly effective in medical image analysis—as

evidenced by studies on brain tumor classification using DCNN

(22), U-Net-based MRI segmentation (23), and mammography

interpretation via XAI-RACapsNet (24)—its superior performance

is primarily confined to high-dimensional (imaging) data.

Furthermore, DL imposes higher computational demands than

traditional ML methods. Due to the inherent opacity of its multiple

processing layers (the so-called "black box" problem), DL poses

greater challenges to model interpretability and accountability (25).

In contrast, traditional ML algorithms (e.g., SVM, LR) exhibit distinct

advantages when processing tabular data: superior interpretability

through SHAP, critical for clinical trust (26); reduced computational

demands, enabling deployment in resource-limited settings (27); and

comparable performance to DL on tabular biomedical data with

limited samples (27). Given our goal of developing a primary-care-

suitable tool, we prioritized lightweight, interpretable models over

complex DL architectures. In the absence of imaging inputs, ML

outperforms DL in tabular data prediction. The newly discovered

predictors can improve the predictive value for the prediction model

(28, 29), TyG, as a new index for measuring IR, has shown great value

in many studies, While integrating the TyG as a novel predictor

further enhances accessibility without compromising performance.

However, no predictionmodel uses TyG to predict the DR among the

DM2 population.

To bridge this critical gap, we present the first machine learning

framework integrating TyG for DR prediction, which

simultaneously addresses three key limitations of prior

approaches: 1) Methodological Barrier: Existing models (30–33)

neglect insulin resistance (IR) or rely on impractical biomarkers

[e.g., HOMA-IR requiring fasting insulin (11)]; 2) Clinical

Applicability: TyG leverages routine lipid/glucose tests, enabling

IR assessment in resource-limited settings where specialized assays

are unavailable (17, 18); 3) Model Interpretability: We employ

SHAP to decode the "black box" nature of ML models,

quantifying TyG's non-linear contribution to DR risk. By

validating this approach across multi-tier healthcare centers

(urban tertiary vs. rural primary hospitals), we establish TyG as a

novel, deployable biomarker for scalable DR screening.
2 Methods

2.1 Research design

2.1.1 Population
This is a retrospective study, where patient data were extracted

from the real-world database of The First Hospital of Jilin

University (a general hospital in a major city) and Meihekou

Central Hospital (a primary health care institution in the county)

from January 1, 2010 to December 31, 2023.
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2.1.2 Inclusion criteria
a. Patients diagnosed with type 2 diabetes(T2DM) following the

criteria of the 2024 American Diabetes Association (34); b. Patients

aged≥18 years; c. Patients with complete indicators (triglyceride and

fasting glucose).

2.1.3 Exclusion criteria
a. Patients diagnosed with retinopathy at admission; b. Patients

suffering from other retinal diseases, glaucoma, optic neuropathy, or eye

diseases caused by systemic diseases; c. Patients with a history of eye

surgery; d. Patients with severe systemic diseases (cancer, myocardial

infarction, and dialysis history); e. Patients with data loss exceeding 20%.

2.1.4 Outcome
The extraction variable was the first measurement record at first

admission. Diagnosis information was extracted from the discharge

diagnosis, and the follow-up was conducted until the first DR

diagnosis, otherwise the last visit time was selected as the follow-up

endpoint. Diagnostic criteria of DR included: A spectrum of retinal

microvascular lesions on retinal examination with diabetic patients

(35), including mild, moderate, and severe non-proliferative DR and

proliferative DR. DR was diagnosed using 45° photos of macular center

and indirect ophthalmoscopy when pupils were dilated. DR diagnosis

was mainly achieved by endocrinologists and ophthalmologists.

Patients diagnosed with retinopathy in other hospitals during the

follow-up process were marked as DR, and the follow-up time was

based on the earliest diagnosis time. Positive and negative samples were

defined as DR and non-DR patients, respectively.

2.1.5 Ethical approval
This study was conducted following the Helsinki Declaration

and was approved by the Research Ethics Committee of The First

Hospital of Jilin University (approval number: 2024-918). Each

participant provided signed written informed consent. This study

was reported based on TRIPOD (28).

2.1.6 Baseline data collection
Data indicators, including sex, age, height, weight, smoking,

drinking, course of T2DM, insulin therapy, hypertension history,

and laboratory parameters, were mainly obtained from literature

reports (2, 36, 37).

Laboratory parameters included glycated hemoglobin (HbA1c,

g/dL), total cholesterol (TC, mmol/L), high-density lipoprotein

(HDL, mmol/L), low-density lipoprotein (LDL, mmol/L),

triglyceride (TG, mg/dL), fasting blood glucose (FPG, mg/dL),

fasting C-Peptide (C-PE, ng/ml), fasting insulin (FINS,mU/ml)

and C-reactive protein (CRP, mg/L).
Body mass index (BMI) was was calculated using the formula as

follows: weight (kg)/ height (m)2. TyG index: LN [triglyceride (mg/

dl)×plasma glucose (mg/dl)/2]. Three graduate students collated

and cross-checked the collected data. A unified training for the data

collection and collation personnel was conducted to ensure the

accuracy and consistency of the data.
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2.1.7 Sample size calculation
The sample size was mainly based on Riley (38) standard for

accurate estimation. Four sample sizes (at least 878) (predicted

value with small average error, intercept model only, ensuring

shrinkage coefficient of 0.9, and ensuring small optimism of

apparent model) were calculated. The total sample size was at

least 966 [878 + 10% (878)], considering that some medical

record information was incomplete and 10% contingency.

2.1.8 Model construction
Three single model algorithms (LR, DT, and SVM) and two

integrated methods (RF and XGBoost) were used to train the model.

LR is a machine learning method for solving binary classification

problems, and is used to estimate the possibility of something.

DT is a simple and easy-to-operate tree-type classification

prediction model, providing intuitive and easy-to-understand

results. However, DT can easily lead to overfitting during the

classification process. SVM is widely used to construct a

hyperplane concept to classify the observed values and can be

used to deal with classification and regression problems.

Compared with the single DT model, the integrated algorithms

have higher accuracy but present more complicated and difficult

results to explain.

2.1.9 Statistical analysis
2.1.9.1 Statistical interpretation

R4.2.1 software was used for all data analysis. The variables

missing more than 20%, including fasting C-Peptide, fasting insulin,

and CRP were deleted to improve the utilization rate of the data. For

individual missing values, the average interpolation method and

mode interpolation method were used for counting data and

measuring data, respectively. The normally distributed data were

expressed as X ± S, and compared using two independent samples

T-test. The non-normally distributed data were expressed as P50

(P25, P75) and compared using Mann-Whitney U test. The

counting data were expressed as frequency (%) and compared

using X2 test. The correlation between the predictive indicators

and retinopathy was assessed using univariate and multivariate

logistic regression models. Variables with univariate analysis P < .05

were included in multivariate logistic regression analysis. The odds

ratio (OR) and corresponding 95% confidence interval (CI) were

used to indicate the trend of correlation.

2.1.9.2 Variable selection

The model was trained and verified using Python3.9.15 software

and tool kits Sklearn1.0.2, XGBoost1.7.4, and shap0.41.0. The

recursive feature elimination with cross-validation (RFECV) was

used to screen the optimal index. The least important features were

continuously eliminated by training the model. The performance of

the model was evaluated until the optimal performance index was

reached. In this study, the variables with P < 0.1 in the comparison

between groups were included in the RFECV model, and the best

indicators were selected for subsequent prediction.
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2.1.9.3 Model performance assessment

The prediction efficiency of LR, DT, SVM, RF, and XGBoost 5

models was evaluated based on accuracy, sensitivity, specificity, and

Area Under the Curve (AUC) of receiver operating characteristic

curve. Accuracy, precision, recall rate, and F1 score were used as the

indicators. SHAP was used to visually explain the machine learning

model. The Summary Plot, Shap Heat map, and importance

ranking diagram were also drawn. The actual application of a

single sample model was visualized via Force Plot. P < .05 was

considered a statistically significant difference.

To further assess model stability, we performed 5-fold cross-

validation on the entire dataset. Performance metrics (AUC,

accuracy, sensitivity, specificity) were averaged over 5 iterations

with standard deviations calculated.

2.1.9.4 Model interpretation

We employed SHapley Additive exPlanations (SHAP) (26), to

interpret model predictions using Python's shap package (v0.41.0).

Given computational advantages for tree-based models, SHAP

analysis was applied to the XGBoost classifier via TreeExplainer.

SHAP values – quantifying each feature's marginal contribution to

predictions – were calculated for every sample in the training

dataset. Four interpretability visualizations were generated: Global

Feature Importance: Features ranked by mean absolute SHAP
Frontiers in Endocrinology 04
value. Summary Plot: Dot-plot distribution of SHAP values per

feature. Horizontal position indicates impact direction (positive/

negative SHAP); color encodes feature value (red=high, blue=low).

Force Plot: Illustrates additive feature contributions driving an

individual prediction from the base value (dataset average) to the

model output f(x). Partial Dependence Plot: Generated using scikit-

learn’s PartialDependenceDisplay, depicting the marginal effect of

TyG on predicted DR risk while averaging other features.

2.1.9.5 Multicollinearity assessment

To evaluate potential multicollinearity among predictors, we

calculated the variance inflation factor (VIF) for all variables

included in both the machine learning models and multivariate

logistic regression. VIF values < 5 were considered indicative of no

significant multicollinearity.
3 Result

3.1 Social demographic and clinical
characteristics

The distribution of study participants is shown in Figure 1. A

total of 2014 positive cases were extracted from real-world data, and
FIGURE 1

Flowchart of participant selection. DR, diabetic retinopathy; NDR, No DR.
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5058 negative cases were extracted via the computer random

sampling method. Finally, 622 cases were excluded from the

positive group (including 402 with missing data, 108 with other

diseases affecting vision, 108 with vision surgery, and 94 with

critical illness) and 2700 cases were excluded from the negative

group (2305 with missing data and 395 with other serious systemic

diseases), leaving 3755 cases (1392 cases in the positive group and

2358 cases in the negative group) About 63.09% of the remaining

cases were males and 36.91% were females. The subjects were aged

18~91 years, with an average age of 54.8 ± 12.3 (Table 1).

The variables with univariate P<0.05 were included in

multivariate logistics regression analysis. The results showed that

HDL (P<.001, OR = 0.176, 95% CI:0.144~0.215), smoking (P = .002,

OR = 0.759, 95% CI:0.620~0.92), LDL (P = .021, OR = 0.811, 95%

CI:0.678~0.969), BMI (P = .001, OR = 0.815, 95% CI:0.726~0.915),

TyG (P = .038, OR = 1.091, 95% CI:1.005, 1.185), age (P = .014,

OR = 1.149, 95% CI:1.028~1.284), hypertension history (P<.001,

OR = 1.506, 95% CI:1.273~1.781), course of T2DM (P<.001, OR =

1.798, 95% CI:1.615~2.002), insulin therapy (P<.001, OR = 3.166,

95% CI:2.621~3.824), HbA1c (P<.001, OR = 3.443, 95%

CI:2.879~4.116), were the independent influencing factors of

DR (Table 2).
Frontiers in Endocrinology 05
3.2 RFECV screening

The independent variables were selected via RFECV method,

and recursive features were eliminated. The results showed that

nine indexes, including age, BMI, Diabetes course, Insulin therapy,

Hypertension, HbA1c, TC, HDL, and TyG, were retained, and five

indexes (sex, smoking, drinking, FBG, and LDL) were

excluded (Figure 2).
3.3 Training and verification of the model

The data were grouped into the training set and testing set (7:3).

The last nine indexes were used as the optimal solution for model

training. Moreover, SVM and LR showed the best performance in

the test set and training set. The AUC curves of the five models are

shown in Figure 3. The comparison of various prediction

indexes (Table 3).

Five-fold cross-validation confirmed model stability: Logistic

Regression: AUC 0.824 ± 0.012, Accuracy 0.760 ± 0.007; SVM: AUC

0.815 ± 0.007, Accuracy 0.762 ± 0.016; The minimal standard

deviations (<0.02) indicate robust performance across data subsets.
TABLE 1 Comparison of baseline data between the two groups.

Variables
Overall Control Case

P
(n=3750) (n=2358) (n=1392)

Sex Female 1384 (36.91) 800 (33.93) 584 (41.95) <.001

Male 2366 (63.09) 1558 (66.07) 808 (58.05)

Age 54.8 ± 12.3 53.3 ± 12.8 57.2 ± 11.1 <.001

BMI 25.9 ± 3.7 26.0 ± 3.8 25.7 ± 3.4 .021

Smoking No 2798 (74.61) 1724 (73.11) 1074 (77.16) .007

Yes 952 (25.39) 634 (26.89) 318 (22.84)

Drinking No 2912 (77.65) 1803 (76.46) 1109 (79.67) .025

Yes 838 (22.35) 555 (23.54) 283 (20.33)

Hypertension No 1922 (51.25) 1313 (55.68) 609 (43.75) <.001

Yes 1828 (48.75) 1045 (44.32) 783 (56.25)

Insulin therapy No 1484 (39.57) 1248 (52.93) 236 (16.95) <.001

Yes 2266 (60.43) 1110 (47.07) 1156 (83.05)

Course of diabetes 10.0 (4.0, 15.0) 6.0 (3.0, 10.1) 12.0 (8.0, 20.0) <.001

HbA1c 8.7 (7.3, 10.2) 8.2 (7.0, 9.8) 9.3 (8.2, 10.7) <.001

TC 4.9 (4.2, 5.7) 4.9 (4.3, 5.7) 4.8 (4.1, 5.6) .001

HDL 1.1 (1.1, 1.3) 1.1 (1.1, 1.2) 1.1 (0.9, 1.3) <.001

LDL 3.0 (2.4, 3.5) 3.0 (2.5, 3.6) 2.9 (2.3, 3.4) <.001

TG 2.0 (1.3, 3.4) 2.0 (1.3, 3.2) 2.0 (1.4, 4.0) .072

FBG 8.9 (6.9, 12.0) 8.5 (6.7, 11.6) 9.7 (7.3, 12.6) <.001

TyG 2.2 (1.7, 2.9) 2.2 (1.6, 2.8) 2.3 (1.7, 3.0) <.001
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3.4 SHAP model analysis

3.4.1 Ranking of feature importance
The top 5 variables based on SHAP values in the ML model are

shown in Figure 4. A summary plot is shown in Figure 4B, where “red”

and “blue” represent higher and lower eigenvalues, respectively. SHAP

value<0 indicates negative influence, SHAP value>0 indicates positive

influence. The dispersion of feature distribution (located above the Y

axis) was directly related to the importance of the feature. Furthermore,

TyG, Insulin therapy, HbA1c, and Diabetes course showed positive

effects on retinopathy, while HDL showed negative effects.

3.4.2 Practical application of the model
The force Plot is shown in Figure 5. The blue and red arrows

indicate that this factor reduces and increases the risk of retinopathy,

respectively. The reference value represents the average SHAP value of

all samples. F(x) represents the comprehensive SHAP value of each

patient. The model can only predict the patient's retinopathy if the

value of f(x) is greater than the base value. The 1045th case (Figure 5)

was randomly predicted using the test set. Notably, f(x) was less than

the base value, which was accurately predicted as the control group.

3.4.3 The effect of key features on outcomes
A partial dependence diagram of the influence of the first three

indicators on infection was drawn, showing the marginal effect

relationship between important characteristics and outcome

variables (how important influencing factors affect retinopathy).

TyG> 4 showed significant impact (Figure 6). Multicollinearity

assessment showed all VIF values were below 1.4 for both

machine learning and logistic regression models, well under the

threshold of 5, indicating no significant multicollinearity concerns.
4 Discussion

Early screening and identification of people at high risk of

developing DR is important for prevention and treatment.
Frontiers in Endocrinology 06
However, Li et al. (39) showed that only 17.48% of T2DM

undergo routine DR Screening yearly. Doctors in the diabetes

department, especially in primary hospitals that lack equipments

and professionals, often overlook the early signs of retinopathy in

their patients (36, 37). This study introduces a paradigm shift in

diabetic retinopathy (DR) risk stratification by integrating the

triglyceride-glucose index (TyG) – an easily measurable, low-cost

surrogate of insulin resistance (IR) – into machine learning

prediction models. Unlike prior models that either overlook IR

(40–42) or rely on impractical biomarkers like HOMA-IR

(requiring specialized insulin assays) (11), our approach leverages

routinely available lipid/glucose data, addressing a critical barrier in

primary care settings. The prominent contribution of TyG in SHAP

analysis (Figures 4–6) further establishes its role as a novel,

interpretable predictor for scalable DR screening.

Results showed that logistic regression and SVM had the best

performance among the five models, with area under ROC curve of

the testing set and training set of 0.85 and 0.82 respectively. Similarly,

Tsao et al. (43) showed that the SVM model has good predictive

performance. Jiang et al. (37) also showed that logistic regression has

good predictive performance. LR is a linear model suitable for small

sample analysis, and it is sensitive to outliers. SVM finds the optimal

hyperplane by optimizing the objective function, which is suitable for

the analysis of complex data (37). Different algorithms have their own

advantages in the modeling process, and no algorithm can be applied

to all models. Therefore, the corresponding model should be selected

according to the research design. This study was conducted based on

the computational minimum sample size. Therefore, a study with a

larger sample size is needed to compare the performance between LR

and SVM. Our SVM model demonstrated test set AUC (0.85)

comparable to Jiang et al. (37) (AUC = 0.89) and superior to Wang

et al. (40) (AUC = 0.709). The integration of TyG provided predictive

power comparable to HOMA-IR-based models (11) without

requiring specialized tests. Unlike Roşu et al. (42) (AUC = 0.72)

and Yang et al. (32) (AUC = 0.78) which excluded insulin resistance

indicators, our TyG-incorporated model achieved higher AUC (0.85)

with clinically accessible variables. This balances performance and

feasibility for primary care settings.While our initial hold-out test set

showed excellent performance (AUC >0.83), the additional 5-fold

cross-validation provides stronger evidence of model robustness. The

cross-validated AUC remained above 0.81 with standard deviations

<0.02, confirming reliable performance across diverse data partitions.

Herein, the variables included in LR and SVM were consistent.

The remaining variables were described in previous studies except for

the significant predictive ability of TyG (9, 31, 37, 44, 45). Previous

studies showed that the interpretability of ML models is challenging

(46). In the present study, SHAP was used to improve model

interpretability. SHAP is used to interpret a "black box" model that

calculates a Shapley value for each feature in the prediction model to

assess the importance of all feature combinations, reflecting their

contribution to the predictive power of the overall model (26). SHAP

results showed that the top 5 variables included TyG, HDL, Insulin

therapy, Diabetes course, and HbA1c.

This study observed discordant results for Smoking and LDL

between univariate and multivariate analyses, with a notable
TABLE 2 Results of multivariate logistic regression analysis.

Variable B Wald P OR (95%CI)

HDL -1.736 291.731 <.001 0.176(0.144, 0.215)

Smoking -0.275 7.136 .008 0.759(0.620, 0.929)

LDL -0.21 5.3 .021 0.811(0.678, 0.969)

BMI -0.205 12.035 .001 0.815(0.726, 0.915)

TyG 0.087 4.319 .038 1.091(1.005, 1.185)

Age 0.139 6.005 .014 1.149(1.028, 1.284)

Hypertension 0.409 22.879 <.001 1.506(1.273, 1.781)

Course of diabetes 0.587 115.088 <.001 1.798(1.615, 2.002)

Insulin_therapy 1.152 143.06 <.001 3.166(2.621, 3.824)

HbA1c 1.236 183.72 <.001 3.443(2.879, 4.116)
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FIGURE 2

Selection results of RFECV method (9 indexes were retained, 5 indexes were excluded).
FIGURE 3

Receiver operating characteristic (ROC) curves based of five machine learning models.
TABLE 3 Prediction performance indicators of five models in the training and testing sets.

Model
Train set Test set

Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy

LR 0.70 0.58 0.64 0.75 0.70 0.69 0.70 0.79

XGBoost 0.69 0.62 0.65 0.75 0.65 0.62 0.64 0.75

SVM 0.70 0.60 0.65 0.75 0.73 0.67 0.7 0.80

RF 0.68 0.61 0.64 0.74 0.64 0.64 0.64 0.75

DT 0.59 0.56 0.58 0.69 0.59 0.64 0.62 0.72
F
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reversal in smoking's effect direction (univariate: lower prevalence

in DR group, P = 0.007; multivariate: protective association, OR =

0.759, P = 0.008). This reversal is explained by two synergistic

mechanisms: First, hypertension mediation—hypertension was

more prevalent in the DR group (56.25% vs 44.32%, P < 0.001)

and strongly predicted DR (OR = 1.506, P < 0.001); since smoking
Frontiers in Endocrinology 08
promotes hypertension (47), adjusting for it in multivariate models

revealed smoking's residual protective effect via metabolic

pathways. Second, exclusion of severe comorbidities may favor

resilient smokers, consistent with the "smoker’s paradox" in

chronic disease cohorts (48, 49). Regarding LDL and HDL, their

reversals reflect collinearity within lipid metabolism (univariate

analysis failed to disentangle HDL/LDL effects from TyG, which

correlates with triglycerides) and a synergistic risk interaction where

low HDL combined with high TyG increases DR risk—captured

only by multivariate models. These reversals underscore that risk

factors' net effects depend on comorbidities: Heavy smokers with

hypertension remain high-risk despite smoking's statistical

"protection," while LDL's reversal highlights complex lipid

interactions in DR pathogenesis.

TyG emerged as a key predictor with dual significance. Notably,

increased TyG levels were associated with a high risk of DR due to

the excessive production of mitochondrial superoxide in

microvascular endothelial cells. This production is caused by

pathway-specific insulin resistance, meanwhile, triggering

intracellular hyperglycemia and vascular damage (50). As a

biochemical indicator reflecting synergistic dysregulation of

glucose/lipid metabolism (51), TyG directly links to DR

pathogenesis. Our SHAP analysis revealed a “non-linear risk

surge” at TyG>4, aligning with the point where dysregulated

glucose/lipid metabolism triggers mitochondrial superoxide
FIGURE 5

Force plot of SHAP analysis method. NDR patient.
RE 4FIGU

SHAP interpretation (A) The importance ranking of the model prediction features. The horizontal coordinate represents the SHAP values. The larger
SHAP values indicate that the variable is more important; (B) Each point represents a feature value, and different colors represent the final influence
of the feature on the model output results. Red and blue represent larger and smaller values, respectively.
FIGURE 6

Partial dependence plots of SHAP analysis method (TyG).
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overproduction in retinal microvessels – a key driver of early

vascular damage. Based on multivariate regression, each unit

increase in TyG elevates DR risk by 9.1% (OR = 1.091, 95%

CI:1.005–1.185). The threshold effect at TyG>4 reflects amplified

risk accumulation consistent with Zhou et al.'s (52) report. This

threshold is calculable from routine lipid/glucose tests. We

recommend annual fundus screening for patients exceeding

TyG>4. Crucially, TyG overcomes limitations of traditional IR

metrics. Our study is the first to operationalize TyG within a

predictive algorithm, with its threshold effect (TyG>4) providing

actionable clinical guidance.Though TyG cut-offs vary by disease

context [e.g., 4.65 for IR (16), 8.88 for diabetes progression (53)],

our threshold specifically targets DR risk stratification in primary

care settings where standardized values remain undefined. A meta-

analysis (54) showed that there is no standardized threshold value

for TyG and clear threshold value related to TyG and DR.

Therefore, more high-quality studies are needed to determine the

optimal cut-off point for TyG in the future.

Insulin therapy is another key predictor of DR.Wang, Li et al (40,

45) found that the insulin treatment is associated with a high risk of

DR development, possibly because insulin therapy indicates worse

islet function. While Ricard found it possibly related to the rapid

reduction of blood glucose (55). Nonetheless, more basic research is

needed to confirm the findings. This study, along with others, has

demonstrated that the duration of diabetes mellitus is closely

associated with the development of DR (30, 41, 44, 56), possibly

due to the prolonged exposure of blood vessels to risk factors.

Herein, DR was linked to increased HBA1c levels. This may be

due to the continuous elevation of blood glucose, which can lead to

dysfunction of the retinal vascular endothelium and cause retinal

ischemia and increased vascular permeability (2). Similar findings

have been reported previously (11, 30, 45).

In addition, HDL was identified as a key predictor of DR. Low

HDL levels may indicate a higher risk of DR, consistent with Ros ̧u,
Liu, Li et al (42, 57, 58).

By addressing three critical gaps – 1) IR assessment simplification

via TyG, 2) cross-tier validation (urban tertiary/rural primary

hospitals), and 3) SHAP-driven interpretability – our model

enables scalable DR screening. Our model requires only 9 routinely

collected variables, enabling seamless integration into electronic

health records (EHR) for real-time risk stratification during

diabetic outpatient visits. Based on SHAP probability thresholds

(Figures 4-6), we propose a tiered screening pathway: High-risk

patients (TyG >4 and other key predictors elevated): Prioritize

immediate ophthalmologist referral. Low-to-intermediate-risk

patients: Maintain routine annual/biannual retinal screening. This

approach is particularly valuable for resource-limited settings (e.g.,

rural clinics), where the model can optimize specialist resource

allocation by focusing on high-risk individuals identified through

universally available tests like TyG (calculated from routine lipid/

glucose tests). Besides, Our model exhibits inherent generalizability

potential through its reliance on universal predictors requiring only

routine clinical data, demonstrated demographic resilience across

diverse populations, and established scalability pathways including a

simplified screening protocol and ongoing multi-region validation.
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This study bridges a translational gap: while TyG-DR

associations were reported, we are the first to validate its clinical

utility within a predictive algorithm. The integration with SHAP

interpretation further distinguishes our model from conventional

approaches. while retrospective data from two hospitals with

different resource levels (urban tertiary vs. rural primary) may

introduce selection bias, this heterogeneity enhances real-

world generalizability.

Limitation: First, only internal verification was conducted, thus

effective external verification is needed. Secondly, excluding high-

missingness variables may omit useful information, and while

mean/mode imputation is practical, advanced techniques (e.g.,

multiple imputation) might reduce potential bias. Last, this study

did not differentiate early vs. late-stage DR in predictions due to

ungraded diagnostic records. However, our model prioritizes

biomarkers linked to DR progression (TyG, diabetes course).

Future work should incorporate standardized severity staging to

enable stage-specific optimization.
5 Conclusion and recommendations

In this study, a DR prediction model was built using TyG and

other easily available clinical data. LR and SVMmodels had the best

performance. SHAP showed that the most important predictors of

DR were TyG, insulin therapy, diabetes course, HbA1c, and HDL.

These findings suggest that baseline characteristics of patients can

be used to screen for high-risk DR to improve early diagnosis and

implement timely referral for patients.
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16. Simental-Mendıá LE, Rodrıǵuez-Morán M, Guerrero-Romero F. The product of
fasting glucose and triglycerides as surrogate for identifying insulin resistance in
apparently healthy subjects. Metab Syndrome Related Disord. (2008) 6:299–304.
doi: 10.1089/met.2008.0034

17. Abbasi F, Reaven GM. Comparison of two methods using plasma triglyceride
concentration as a surrogate estimate of insulin action in nondiabetic subjects:
triglycerides × glucose versus triglyceride/high-density lipoprotein cholesterol.
Metabolism: Clin Exp. (2011) 60:1673–6. doi: 10.1016/j.metabol.2011.04.006

18. Park HM, Lee HS, Lee Y-J, Lee J-H. The triglyceride-glucose index is a more
powerful surrogate marker for predicting the prevalence and incidence of type 2
diabetes mellitus than the homeostatic model assessment of insulin resistance. Diabetes
Res Clin Pract. (2021) 180:109042. doi: 10.1016/j.diabres.2021.109042

19. Srinivasan S, Singh P, Kulothungan V, Sharma T, Raman R. Relationship
between triglyceride glucose index, retinopathy and nephropathy in Type 2 diabetes.
Endocrinology Diabetes Metab. (2021) 4:e00151. doi: 10.1002/edm2.151

20. Yao L, Wang X, Zhong Y, Wang Y, Wu J, Geng J, et al. The triglyceride-glucose
index is associated with diabetic retinopathy in chinese patients with type 2 diabetes: A
hospital-based, nested, case-control study. Diabetes Metab Syndrome Obesity: Targets
Ther. (2021) 14:1547–55. doi: 10.2147/DMSO.S294408
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fendo.2025.1631647/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fendo.2025.1631647/full#supplementary-material
https://doi.org/10.1016/j.diabres.2021.109119
https://doi.org/10.1016/S0140-6736(09)62124-3
https://doi.org/10.1001/jama.290.15.2057
https://doi.org/10.1001/jama.290.15.2057
https://doi.org/10.1007/s40273-019-00800-w
https://doi.org/10.1016/j.ophtha.2021.04.027
https://doi.org/10.1136/bjophthalmol-2017-310316
https://doi.org/10.1016/S2213-8587(19)30411-5
https://doi.org/10.1016/j.artmed.2023.102617
https://doi.org/10.1080/07853890.2024.2413920
https://doi.org/10.1080/07853890.2024.2413920
https://doi.org/10.3389/fendo.2022.993423
https://doi.org/10.1007/BF00280883
https://doi.org/10.1186/s12933-020-01086-5
https://doi.org/10.1186/s12933-020-01086-5
https://doi.org/10.1186/s12933-021-01305-7
https://doi.org/10.1186/s12933-021-01305-7
https://doi.org/10.1089/met.2008.0034
https://doi.org/10.1016/j.metabol.2011.04.006
https://doi.org/10.1016/j.diabres.2021.109042
https://doi.org/10.1002/edm2.151
https://doi.org/10.2147/DMSO.S294408
https://doi.org/10.3389/fendo.2025.1631647
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2025.1631647
21. Haq MA, Khan I, Ahmed A, Eldin SM, Alshehri A, Ghamry NA. DCNNBT: A
NOVEL DEEP CONVOLUTION NEURAL NETWORK-BASED BRAIN TUMOR
CLASSIFICATION MODEL. Fractals . (2023) 31:2340102. doi: 10.1142/
S0218348X23401023

22. Ganesh S, Gomathi R, Kannadhasan S. Brain tumor segmentation and detection
in MRI using convolutional neural networks and VGG16. Cancer biomark. (2025)
42:18758592241311184. doi: 10.1177/18758592241311184

23. Yousef R, Khan S, Gupta G, Siddiqui T, Albahlal BM, Alajlan SA, et al. U-net-
based models towards optimal MR brain image segmentation. Diagnostics (Basel
Switzerland). (2023) 13:1624. doi: 10.3390/diagnostics13091624

24. Alhussen A, Anul Haq M, Ahmad Khan A, Mahendran RK, Kadry S. XAI-
RACapsNet: Relevance aware capsule network-based breast cancer detection using
mammography images via explainability O-net ROI segmentation. Expert Syst Appl.
(2025) 261:125461. doi: 10.1016/j.eswa.2024.125461

25. Theodosiou AA, Read RC. Artificial intelligence, machine learning and deep
learning: Potential resources for the infection clinician. J Infect. (2023) 87:287–94.
doi: 10.1016/j.jinf.2023.07.006

26. Lundberg SM, Lee S-I. A Unified Approach to Interpreting Model Predictions.
In: Proceedings of the Thirty-first Annual Conference on Neural Information Processing
Systems (NeurIPS) (2017).Long Beach, California, USA: Curran Associates Inc.4768–77

27. Somvanshi S, Das S, Aaqib Javed S, Antariksa G, Hossain A. A survey on deep
tabular learning. (2024). 2410.12034

28. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a
multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the
TRIPOD statement. BMJ. (2015) 350:g7594. doi: 10.1161/CIRCULATIONAHA.
114.014508

29. Steyerberg EW, Pencina MJ, Lingsma HF, Kattan MW, Vickers AJ, Van Calster
B. Assessing the incremental value of diagnostic and prognostic markers: a review and
illustration. Eur J Clin Invest. (2012) 42:216–28. doi: 10.1111/j.1365-2362.2011.02562.x

30. Mulat Tebeje T, Kindie Yenit M, Gedlu Nigatu S, Bizuneh Mengistu S, Kidie
Tesfie T, Byadgie Gelaw N, et al. Prediction of diabetic retinopathy among type 2
diabetic patients in University of Gondar Comprehensive Specialized Hospital, 2006-
2021: A prognostic model. Int J Med Inform. (2024) 190:105536. doi: 10.1016/
j.ijmedinf.2024.105536

31. Jin S, Zhang X, Liu H, Hao J, Cao K, Lin C, et al. Identification of the optimal
model for the prediction of diabetic retinopathy in chinese rural population: handan
eye study. J Diabetes Res. (2022) 2022:4282953. doi: 10.1155/2022/4282953

32. Yang J, Jiang S. Development and validation of a model that predicts the risk of
diabetic retinopathy in type 2 diabetes mellitus patients. Acta Diabetol. (2023) 60:43–
51. doi: 10.1007/s00592-022-01973-1

33. Li H-Y, Dong L, Zhou W-D, Wu H-T, Zhang R-H, Li Y-T, et al. Development
and validation of medical record-based logistic regression and machine learning
models to diagnose diabetic retinopathy. Graefe's Arch Clin Exp Ophthalmol. (2023)
261:681–9. doi: 10.1007/s00417-022-05854-9

34. American Diabetes Association Professional Practice Committee. 2. Diagnosis
and classification of diabetes: standards of care in diabetes-2024. Diabetes Care. (2024)
47:S20–42. doi: 10.2337/dc24-S002

35. Wong TY, Cheung CMG, Larsen M, Sharma S, Simó R. Diabetic retinopathy.
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