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Hospital of Guangxi Medical University, Nanning, Guangxi, China, 3Department of Cardiology, The
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Spinal cord injury (SCI), a debilitating neurological disorder with complex

pathophysiology, involves primary mechanical trauma followed by multifactorial

cascades of secondary inflammation, oxidative stress, and apoptosis. Hormones

have emerged as a research focus in SCI therapeutics due to their neuroprotective

properties. As pivotal regulators of cellular signaling, hormones exhibit dual roles in

either exacerbating or mitigating secondary damage. This review synthesizes three

decades of research, highlighting that hormones such as corticosteroids,

melatonin, and estrogen demonstrate significant therapeutic potential in animal

models and clinical studies, though controversies persist regarding their efficacy

and safety profiles. Key findings include: (1) Glucocorticoids, exemplified by

methylprednisolone (MP), suppress inflammation and reduce tissue damage but

face skepticism over long-term benefits, with high-dose regimens correlating with

significant adverse effects such as gastrointestinal bleeding, hyperglycemia, and

metabolic complications; (2) Melatonin exerts multi-target neuroprotection by

modulating autophagy, inhibiting apoptosis, and suppressing inflammasome

activation; (3) Sex hormones (e.g., testosterone, progesterone) improve functional

recovery through metabolic balance regulation and neural regeneration, while

estrogen enhances angiogenesis and motor function via the synergistic

involvement of multiple receptor-mediated genomic (ERa/ERb) and non-

genomic (GPER) signaling pathways. The non-genomic actions rapidly activate

kinase cascades, such as PI3K/Akt-CREB and ERK, which in turn regulate both

immediate cellular functions and gene expression profiles, contributing to the

overall neuroprotective effects; (4) Combinatorial therapies (e.g., MP with

neurotrophic factors) and novel delivery systems (e.g., nanoparticle-based drug

carriers) represent promising strategies to optimize therapeutic outcomes. These
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advances elucidate the multidimensional mechanisms of hormonal interventions

while revealing critical challenges, including dose-dependent adverse effects,

antagonistic effects in polypharmacy, and unresolved long-term safety concerns.

Overall, hormonal therapies for SCI present a “dual-edged sword” of efficacy versus

risks, necessitating future innovations in precision regulation and mechanistic

exploration to bridge translational gaps.
KEYWORDS

spinal cord injury, hormonal signaling, glucocorticoids, neuroinflammation, hormone
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1 Introduction

Spinal cord injury (SCI) initiates with primary mechanical trauma,

followed by secondary inflammatory and degenerative cascades

involving neuroinflammation, blood-spinal cord barrier (BSCB)

disruption, and axonal degeneration. Current treatments, including

corticosteroids and immunosuppressants, exhibit limited efficacy and

significant adverse effects. Glucocorticoids such as MP were once

considered standard acute-phase therapeutics; however, due to an

unfavorable risk-benefit profile, they have been downgraded to non-

recommended options in major guidelines (1). Hormones, with their

pleiotropic roles in inflammation and tissue repair, harbor untapped

therapeutic potential. This review systematically examines the roles of

hormones in SCI, encompassing molecular mechanisms, clinical

evidence, risk-benefit analyses, and cutting-edge technological

applications, aiming to inform optimized therapeutic strategies.
2 Pathophysiological mechanisms and
therapeutic controversies of classical
hormones

MP, a representative glucocorticoid, was once regarded as a

standard therapy for acute SCI due to its inhibition of lipid

peroxidation and inflammatory mediator release. The NASCIS-II

protocol recommended a loading dose of 30 mg/kg within

8 hours post-injury, followed by a 24-hour maintenance infusion at

5.4 mg/kg/h, which reportedly improved motor scores (2). However,

subsequent studies found no significant motor function improvement

in acute traumatic SCI (TSCI) patients under this regimen, alongside

markedly increased complication risks (3).

Multiple studies confirm that MP reduces apoptotic cell death

post-SCI (4–6). It lowers levels of malondialdehyde, a lipid

peroxidation biomarker (7), and exerts neuroprotection by

mitigating axonal damage, enhancing blood flow, reducing calcium

influx, and suppressing microglial/macrophage aggregation and

inflammatory mediator expression (8). Mechanistically, MP inhibits

lipid peroxidation (9) and downregulates pro-inflammatory
02
cytokines (e.g., TNF-a, IL-6) (10), while blocking oxidative stress

cascades (11) and suppressing oligodendrocyte apoptosis via the

STAT5 pathway (12) (Figure 1).

Nevertheless, high-dose MP (>5000 mg), though effective in

reducing spinal edema, significantly elevates complication risks

(13). In experimental models with a single dose equivalent to that

used in humans, the effect found of MP after 24h was an increase in

the amount of water due to a decrease in the expression of AQP4, as

well as greater damage to the BSCB. Moreover, MP increased the

extravasation of plasma components after SCI and enhanced tissue

swelling and edema. Notably, MP’s neuroprotection exhibits a critical

time window: Two-photon microscopy reveals that administration

within 30 minutes post-injury attenuates progressive axonal injury,

neuronal death, and microglial/macrophage activation, whereas

delayed treatment (>8 hours) drastically diminishes efficacy (14).

This narrow timeframe for intervention is further corroborated by

time-series transcriptomic analysis, which identifies 8–12 hours post-

injury as the optimal window for MP to exert its core

immunomodulatory effects (15). These dose- and time-dependent

contradictions underscore the necessity for individualized risk-

benefit assessments in clinical practice.

Weaver et al. compared the efficacy of MP with anti-CD11d

monoclonal antibodies, revealing that while MP preserves spinal

cord tissue, it fails to improve neurological function and may

antagonize the effects of other immunotherapies (16). Wu et al.

demonstrated that 24-hour MP treatment in rats reduced skeletal

muscle mass and upregulated atrophy-related genes (FOXO1,

MAFbx, MuRF1, and REDD1) (17). High-dose MP significantly

elevates risks of infections (e.g., pneumonia), hyperglycemia, and

gastrointestinal hemorrhage (18), with higher complication rates

observed in pediatric patients (19). Long-term use further correlates

with muscle atrophy (17) and diminished ovarian reserve (20).

Multicenter studies (3)and clinical guidelines (21) indicate that MP

fails to confer significant neurological improvement, challenging its

historical status as a “gold standard.” These conflicting outcomes

underscore the necessity for rigorous risk-benefit evaluations in MP

clinical applications, with future research prioritizing low-dose

short-term regimens or combinatorial therapies to mitigate

adverse effects.
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3 Multidimensional regulation of sex
hormones: from metabolic
modulation to neural regeneration

3.1 Testosterone: dual roles in metabolic
homeostasis and axonal repair

SCI disrupts hypothalamic-pituitary-gonadal (HPG) axis

function, leading to hypogonadism in approximately 60% of male

patients (22). Clinical studies demonstrate that testosterone

replacement therapy (TRT) significantly increases lean body mass,

reduces visceral adiposity, and enhances resting energy expenditure

in hypogonadal males with SCI (23, 24). Spinal motor neurons

highly express androgen receptor (AR) with predominantly

nuclear localization, without significant sexual dimorphism,

providing a target for testosterone action (25). Testosterone

exerts neuroprotective effects via an AR-dependent mechanism,

significantly reducing motor neuron death after injury (26). Clinical

studies further confirm that TRT significantly improves motor

function in male patients with incomplete SCI (with ASIA Scale

scores increasing by 10.9–11.8 points in grades C/D), but shows no

efficacy in complete injuries (27), highlighting the reparative potential

of AR-mediated testosterone therapy on residual motor pathways. In

animal models, testosterone treatment partially reverses MP-induced

muscle atrophy and mitigates reductions in muscle fiber cross-

sectional area (CSA) (28). Although the precise molecular

mechanisms remain unclear, experimental evidence suggests that

testosterone regulates the balance between muscle protein synthesis

and degradation (29). Furthermore, combining testosterone with
Frontiers in Endocrinology 03
resistance training amplifies muscle mass recovery, increasing

quadriceps CSA by 9% (30). In neural repair, testosterone

administration in adult female rats with spinal contusion preserved

dendritic length of motor neurons and maintained muscle mass and

fiber CSA, despite no significant effects on lesion volume or motor

neuron count (31).
3.2 Progesterone: anti-inflammatory
pathways and molecular mechanisms of
myelin regeneration

Progesterone exerts therapeutic effects in SCI through

multifaceted mechanisms. It suppresses pro-inflammatory

mediators (e.g., TNF-a, iNOS, COX-2) and glial activation (32, 33),

attenuates neuroinflammation via NF-kB pathway inhibition, and

achieves neuroprotection by upregulating BDNF expression (34) and

preserving neuronal ultrastructure (35). Progesterone promotes

multi-mechanistic repair after SCI via classical progesterone

receptors. This leads to reduced release of pro-inflammatory

cytokines (36). Progesterone enhances remyelination by increasing

oligodendrocyte numbers. Treatment groups showed 35%

oligodendrocyte presence compared to 7.5% in controls. It also

upregulates myelin basic protein expression (37). It supports white

matter preservation. Lesion volume is reduced, and white matter

sparing increases to 16%, versus 7% in controls. Motor coordination

and gait parameters also improve (38). Long-term treatment over 60

days is crucial for functional recovery. It does not induce

hyperalgesia. Its clinical safety profile is better than MP. These

findings support its translational potential (39). Progesterone also
FIGURE 1

Schematic representation of hormonal and inflammatory pathways in spinal cord injury, emphasizing glucocorticoid involvement, cellular apoptosis,
and immune cell interactions.
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promotes oligodendrocyte differentiation and remyelination (40),

alleviates neuropathic pain by inhibiting NMDA receptor

hyperactivation (41), and modulates neuropeptide systems (42).

Preclinical studies confirm its efficacy in enhancing motor function

and axonal survival (43, 44), while a clinical trial combining

progesterone with vitamin D demonstrated improved functional

recovery in acute SCI (45).
3.3 Estrogen: multi-mechanistic
neuroprotective effects of estrogen

Among known hormones, estrogens possess some of the most

potent neuroprotective effects. Three types of receptors primarily

mediate the effects of estrogen: the classical nuclear receptors ERa
and ERb, and the G protein-coupled estrogen receptor (GPER).

ERa and ERb are localized within the nuclei of neurons, particularly
in regions associated with reproductive functions such as the dorsal

root ganglia, pelvic ganglia, and spinal dorsal horn. Among these,

ERa predominates in superficial sensory layers, while ERb is more

abundant in deep autonomic regions, regulating neuropeptide

expression and neural plasticity through genomic effects (46).

GPER, on the other hand, is an endogenous estrogen receptor

located on the endoplasmic reticulum/nuclear membrane. Upon

binding with estrogen, it activates nuclear PI3K, leading to the in

situ synthesis of PIP3. The accumulation of nuclear PIP3

subsequently recruits and activates signaling molecules such as

Akt, rapidly regulating transcription factors and gene expression.

GPER is an intracellular receptor primarily localized to the

endoplasmic reticulum and Golgi apparatus, capable of binding

estrogen with high affinity and triggering non-genomic signaling

pathways via the Gi/o-EGFR axis to achieve rapid physiological

regulation (47). GPER exhibits tissue-specific functions: it promotes

proliferation of ER-negative cells in cancer, and plays active roles in

cardiovascular protection and metabolic diseases (48). Its ligand

promiscuity (e.g., activation by Tamoxifen (TMX)) provides a

rationale for developing targeted therapies to circumvent the side

effects of traditional estrogen drugs. These receptors together form

an integrated nuclear-membrane-intracellular signaling network

that precisely regulates the diverse functions of estrogen.

Estrogen exerts neuroprotective effects in SCI through

mechanisms including promoting remyelination, anti-apoptosis,

pro-angiogenesis, and modulation of microglial and glial cell

activity. Estrogen directly promotes remyelination, including

inhibiting demyelination processes (49, 50) and enhancing

Schwann cell differentiation via the ERb-ERK1/2 pathway (51).

Simultaneously, it reduces oligodendrocyte apoptosis by

suppressing the RhoA-JNK3-cJun axis (52), maintaining white

matter integrity. Estrogen synergizes with cell therapies by

improving the remyelination capacity of stem cells (53) and

Schwann cells (54, 55).

Estrogen upregulates the anti-apoptotic protein Bcl-2 via the

PI3K/Akt-CREB pathway (56) and inhibits pro-inflammatory

cytokines (e.g., TNF-a, IL-1b) and inflammasome activity (57),

reducing neuronal apoptosis. Specifically, GPER-mediated non-
Frontiers in Endocrinology 04
canonical signaling plays an indispensable role in estrogen’s anti-

apoptotic effects, as demonstrated by the findings that the specific

GPER agonist G-1 mimics estrogen’s protection against SCI-

induced apoptosis while GPER knockdown abolishes this effect,

independent of classical nuclear ER pathways (56, 58). In terms of

vascular protection, estrogen maintains BSCB integrity by

suppressing MMP-9 (59) and stimulates angiogenesis (60).

Angiogenesis not only provides nutritional support but also acts

synergistically with neural repair processes; for example, the

localized nanoparticle-based estrogen delivery platform can

reduce glial scar formation and promote axonal regeneration (61),

highlighting the interplay of multiple mechanisms.

Estrogen modulates microglial phenotypic polarization through

ERa, ERb, and GPER: suppressing the pro-inflammatory M1

phenotype (reducing expression of CD86, iNOS, and IL-1b) (62)
and promoting the anti-inflammatory M2 phenotype (increasing

expression of Arg-1 and CD206) (63). The mechanisms involve

inhibition of the NF-kB/MAPK pathway (64) and NLRP3

inflammasome activation, as well as delaying the activation of

disease-associated microglia through metabolic reprogramming

(65). These effects can delay disease progression in experimental

autoimmune encephalomyelitis models (66).

Whether the neuroprotective effects of estrogen are sex-specific

remains debatable, but most evidence supports the influence of sex

differences. For instance, remyelination in female animals does not

depend on CXCR4, whereas it depends on the testosterone-CXCR4

axis in males (67, 68); the intrinsic ER expression in microglia is

independent of circulating estrogen levels (69), but estrogen loss

after menopause exacerbates neuroinflammation (70, 71). Selective

estrogen receptor modulators (SERMs) like TMX can mimic the

protective effects (72), but supraphysiological doses may exacerbate

damage via the ERa/NF-kB pathway (73). These findings provide a

basis for developing sex-specific neuroprotective strategies targeting

microglia (74). Although some studies suggest limited sex specificity

(75), the overall consensus supports considering sex factors in

treatment strategies. It is worth noting that the efficacy of TMX is

not limited to male animals. Studies by Colón et al. in female rat

models demonstrated that TMX administration immediately or 24

hours after SCI similarly improves locomotor recovery and reduces

secondary damage (76).

Basic research reveals that 17b-estradiol can significantly reduce

immune cell infiltration (e.g., monocytes/macrophages/neutrophils)

during the acute phase of SCI, but long-term high-dose use carries

carcinogenic risks. TMX can mimic the neuroprotective effects of

estradiol in SCI models (e.g., suppressing inflammation, antioxidant,

and anti-apoptotic effects) and alleviates tissue damage by

downregulating the expression of the Ccr2 and Mmp12 genes in

microglia. Ccr2, primarily expressed on microglia and infiltrating

macrophages, mediates the recruitment of inflammatory cells to the

injury site. In the early phase of SCI (within 24 hours), activated

microglia highly express Ccr2, exacerbating neuroinflammation and

secondary damage. By downregulating Ccr2, TMX significantly

reduces inflammatory cell infiltration, thereby containing the

inflammatory response and preserving neuronal and axonal

integrity, which aligns with its broad anti-inflammatory action.
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Mmp12, mainly produced by macrophages/microglia, is involved in

extracellular matrix degradation, BSCB disruption, and pro-

inflammatory factor activation. In SCI, Mmp12 overexpression

aggravates tissue destruction, axonal demyelination, and cell death.

By inhibiting Mmp12, TMX helps maintain extracellular matrix

stability, reduces tissue damage, and promotes a reparative

microenvironment. These mechanisms collectively demonstrate

that TMX exerts its neuroprotective effects in the acute phase of

SCI (≤24 hours) through multi-targeted interventions in both

inflammatory and matrix degradation pathways (76, 77).

Administration within 24 hours post-injury can still improve

motor function, offering a wider therapeutic window than MP (78).

Clinically, although there are no large-scale SCI trials, studies on

estrogen use for menopausal syndrome or cardiovascular diseases

indirectly support its neuroprotective potential. Animal models show

that estrogen treatment improves functional scores, increases axon

number and diameter, and enhances motor evoked potentials [with

significantly shorter latency (17-fold reduction) and higher amplitude

(7-fold increase)]. Future work needs to integrate novel delivery

systems (e.g., nano-platforms) and receptor-specific modulation to

optimize clinical translation (79).
3.4 Gonadotropin-releasing hormone: a
potential target for neuroplasticity

GnRH improves SCI outcomes through multi-target

mechanisms involving neuroprotection, urological repair, and

endocrine regulation. Calderón-Vallejo et al. (80) demonstrated

that GnRH enhances motor function in ovariectomized rats by

upregulating neurofilament expression and promoting axonal

regeneration. Additionally, GnRH exhibits urological protective

effects (81), restoring voluntary urination in 68% of SCI rats by

reducing bladder wall thickening and renal fibrosis. However,

combinatorial therapies may induce complex effects (82). They

found that co-administration of GnRH with growth hormone (GH)

suppresses motor recovery, underscoring the need for cautious

design of multi-hormone regimens. GnRH also modulates the

HPG axis: Bauman et al. (83) reported enhanced follicle-

stimulating hormone (FSH) responses to GnRH stimulation in

SCI males, while Sullivan et al. (50) emphasized that HPG axis

central inhibition requires testosterone replacement to improve

metabolic health comprehensively.
4 Mechanistic roles of metabolic-
immune crosstalk hormones

4.1 Leptin: bridging metabolic
dysregulation and neuroinflammation

Leptin is an energy homeostatic regulatory peptide secreted by

white adipocytes. It suppresses appetite and increases energy

expenditure by binding to receptors in the hypothalamus. Within

the nervous system, the leptin receptor (LepRb) is widely expressed
Frontiers in Endocrinology 05
in the hippocampus, cortex, and spinal cord, where it contributes to

the regulation of synaptic plasticity (84). Leptin protects neuronal

function by inhibiting ATP-induced astrocyte damage, reducing

arachidonic acid and prostaglandin E2 release, and activating the

JAK2/Stat3 pathway to upregulate caveolin-1 expression (85). Acute

leptin treatment decreases caspase-3 activity, suppresses pro-

inflammatory molecules, and improves sensory-motor recovery

post-SCI (86). Leptin can exacerbate pain by activating microglia

(87), whereas blocking leptin signaling suppresses microglial

proliferation and alleviates pain. Leptin exhibits a dual role in

SCI. Endogenously elevated leptin levels are associated with

metabolic syndrome (88), abdominal obesity (89), and

neuropathic pain mediated via microglial activation (87). In

contrast, acute exogenous leptin administration upregulates

caveolin-1 through the JAK2/Stat3 pathway, suppresses ATP-

induced inflammatory responses in astrocytes (85), reduces

caspase-3 activity and pro-inflammatory cytokine release,

promotes oligodendrocyte survival and white matter preservation,

and ultimately improves motor functional recovery (86). Its efficacy

depends on injury type (protective in complete SCI vs. promotive of

pain in root injury) and timing (effective in acute phase) (90).

However, long-term leptin treatment may be limited due to

exacerbation of lean mass loss (91) or dysregulated bone

metabolism (92). Elevated leptin levels in SCI patients correlate

with central obesity, metabolic syndrome, and cardiovascular risks

(88, 89). This elevation likely stems from sympathetic dysfunction

and altered fat distribution, with higher leptin concentrations

observed in individuals with more rostral injury levels (93).

Notably, leptin positively correlates with lean mass but associates

solely with fat mass in sarcopenic obesity, reflecting its metabolic

remodeling post-SCI (91). Leptin also enhances bone healing, with

increased expression linked to improved callus formation in

fracture-SCI models (92).
4.2 Melatonin: circadian rhythm-integrated
neuroprotection and motor synergy leptin:
bridging metabolic dysregulation and
neuroinflammation

Melatonin, an indoleamine hormone secreted by the pineal

gland, plays essential roles in regulating circadian rhythms—by

synchronizing the biological clock via receptors in the

suprachiasmatic nucleus to promote sleep—, antioxidant defense

through direct scavenging of free radicals (e.g., •OH/ONOO−), and

activation of enzymes such as SOD and GPx, and immune

modulation by suppressing pro-inflammatory cytokines (e.g., TNF-

a, IL-6) and enhancing lymphocyte activity. In the context of SCI,

these innate functions extend to multi-target neuroprotective

mechanisms, including inhibition of inflammasome activation,

restoration of mitochondrial dysfunction, and stabilization of the

BSCB. Melatonin has emerged as a therapeutic focus in SCI. Its

mechanisms include mitochondrial protection, autophagy-apoptosis

balance regulation, and inflammasome modulation. Melatonin

suppresses NLRP3 inflammasome activity via the Nrf2/ARE
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pathway, reducing oxidative stress and pro-inflammatory cytokines

(e.g., IL-1b, TNF-a) (92), while improving mitochondrial

dysfunction and neuronal apoptosis through SIRT1/Drp1 signaling

(94). It balances autophagy and apoptosis via PI3K/AKT/mTOR and

Wnt/b-catenin pathways, upregulating Beclin-1 and LC3B to

enhance cellular clearance (95), and promotes motor neuron

survival (96). At the tissue level, melatonin stabilizes the BSCB by

inhibiting MMP3/AQP4-mediated microvascular permeability (97)

and reduces neuroinflammation via microglial M2 polarization (98).
5 Neuroregeneration-oriented
hormones and growth factors

5.1 Erythropoietin: dual pathways in
angiogenesis and anti-apoptosis

EPO, with its anti-apoptotic and anti-inflammatory properties,

is a promising therapeutic candidate for SCI. Preclinical studies

show EPO inhibits inflammation (reducing myeloperoxidase

activity) and apoptosis (lowering caspase-3 activity), while

attenuating pathological damage via downregulation of TSP-1

and TGF-b (99). It promotes neural regeneration by upregulating

PDGF-b and GFAP expression (64). Clinically, EPO combined with

MP improves neurological function and daily living activities in

long-term follow-ups (100), with animal studies confirming its

superiority over MP monotherapy (101). A clinical trial reported

higher primary endpoint achievement in the EPO group versus MP

alone (102), and early application (within 6 hours) may enhance

efficacy (103), though other trials found no significant

differences (104).
5.2 Growth hormone: BSCB repair and
insulin-like growth factor-1 synergistic
mechanisms

GH exerts neuroprotective and reparative effects in SCI through

multiple pathways. GH mitigates BSCB disruption and edema

formation by reducing tracer extravasation (e.g., Evans blue) and

preserving spinal cord evoked potential amplitudes, thus protecting

neural conduction (105, 106). Its mechanisms likely involve

suppression of vascular hyperpermeability and cellular injury,

indicating direct neuroprotective potential in acute phases. GH also

indirectly promotes repair by elevating IGF-1 levels, with TiO2

nanowire-loaded GH enhancing this effect while reducing BSCB

damage and neuronal loss (107). TiO2 nanowires are one-

dimensional nanomaterials composed of titanium dioxide, with

diameters ranging from 1 to 100 nm. They exhibit high specific

surface area, good biocompatibility, and photo-responsive properties.

Surface functionalization—such as amino modification—confers a

positive charge on TiO2 nanowires, enabling electrostatic adsorption

with negatively charged GH molecules. Alternatively, covalent

conjugation strategies like glutaraldehyde cross-linking can be

employed to achieve GH immobilization. Preclinical studies suggest
Frontiers in Endocrinology 06
GH may improve hemodynamics; for instance, octreotide

(a somatostatin analog) increases clitoral and vaginal blood flow

post-SCI, though its mechanism differs from GH (108). Notably, SCI

patients frequently exhibit GH-IGF-I axis hypoactivity, characterized

by blunted GH responses and metabolic abnormalities (e.g., increased

adiposity), which GH supplementation may ameliorate (109).
5.3 Thyrotropin-releasing hormone: ion
homeostasis and neural repair

As a neuropeptide, TRH promotes SCI recovery by regulating

monoamine neurotransmitters and ion channel activity. TRH exerts

neuroprotective and repair effects through multiple mechanisms in

SCI. Basic studies have shown that TRHmaintains ion homeostasis,

such as reducing cellular edema by enhancing Na+-K+-ATPase

activity (110), and regulates the metabolic balance of TRH and

5-HT in the injured spinal cord to minimize distal neurotransmitter

depletion (111). Its anti-inflammatory effects include inhibiting

vasogenic edema (112) and downregulating microglial activation

to alleviate central pain (113). Additionally, TRH analogs (e.g.,

CG3703) exhibit therapeutic potential due to their high affinity for

spinal TRH receptors, though their efficacy is closely linked to

molecular modifications (114). Clinical studies demonstrate that

TRH significantly improves motor and sensory functions in

patients with incomplete SCI (115). Notably, TRH receptor

expression decreases shortly after injury but gradually normalizes

with the recovery of endogenous TRH (116), supporting the need

for exogenous TRH supplementation. However, the long-term

effects of TRH on neuronal excitability remain unclear (117).
6 Cross-regulation between the HPA
and HPG axes

Following acute SCI, the hypothalamic-pituitary-adrenal

(HPA) axis induces excessive glucocorticoid release (e.g., cortisol)

via the sympathoadrenal reflex, directly or indirectly inhibiting

hypothalamic GnRH secretion and causing central hypogonadism

(118). For example, Prüss et al. observed increased cortisol and

decreased norepinephrine in mice after acute SCI, suggesting that

excessive HPA axis activation disrupts HPG axis function through

neuroendocrine mechanisms (118). HPG axis dysfunction

exacerbates metabolic disorders: HPG axis inhibition (e.g., low

testosterone) is closely associated with increased body fat and

metabolic syndrome in SCI patients, further promoting sustained

HPA axis activation. Sullivan et al. found that low testosterone in

young male SCI patients is primarily due to hypothalamic-pituitary

drive deficiency and correlates significantly with increased body fat

(50). Bauman et al.confirmed that the pituitary gland in SCI

patients shows enhanced FSH response but insufficient luteinizing

hormone response to GnRH, indicating that hypothalamic

regulation impairment may be related to HPA axis negative

feedback (49). Through GnRH dose-response experiments,

Bauman et al. identified specific differences in pituitary responses
frontiersin.org

https://doi.org/10.3389/fendo.2025.1627414
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Guo et al. 10.3389/fendo.2025.1627414
among SCI patients, highlighting the need for optimized

interventions (e.g., glucocorticoid antagonism or testosterone

supplementation) to break the vicious cycle (119).

In summary, interactions between the HPA and HPG axes after

SCI form a closed-loop of “increased glucocorticoids-gonadal

inhibition-metabolic abnormalities,” necessitating combined

targeted therapies to improve outcomes.
7 Combination therapies and novel
delivery strategies: overcoming
therapeutic efficacy limitations

7.1 Combination therapies

The limitations of single-agent hormone therapies have driven

researchers to explore combination regimens and innovative

delivery technologies. Combination therapies can overcome the

efficacy ceiling of monotherapy. MP, a classic anti-inflammatory

agent, exhibits marked variability in its combinatorial effects. For

instance, Gorio et al. demonstrated that MP antagonizes the

neuroprotective effects of EPO by suppressing EPO receptor

upregulation or interfering with its anti-apoptotic pathways (120).

In contrast, a clinical study by Xiong et al. revealed that co-

administration of EPO and MP significantly improved

neurological function and daily living capacity in ischemia-

reperfusion injury (100). This paradox suggests that MP’s

immunosuppressive properties may exert dual-phase effects

depending on pathological stages—suppressing inflammation

acutely while potentially impeding regenerative signaling pathways.
7.2 Combination strategies targeting
antioxidant and immunomodulatory
pathways show greater synergistic
potential

Carnosine is an endogenous dipeptide (b-alanyl-L-histidine)
widely present in muscular and neural tissues, known for its

antioxidant, anti-glycation (inhibiting AGEs formation), and pH-

buffering capacities. Irisin is an exercise-induced myokine released

through the cleavage of FNDC5 protein, primarily involved in

regulating energy metabolism (promoting browning of white

adipose tissue), neuroprotection (upregulating BDNF), and anti-

inflammatory pathways (suppressing NF-kB). In the context of SCI,

the combination of MP and carnosine alleviates neural damage by

elevating irisin levels, likely through synergistically enhancing

antioxidant defenses and promoting the secretion of neurotrophic

factors. This pathway has been further confirmed by Albayrak et al

(121). Teixeira et al. further demonstrated that MP combined with

granulocyte colony-stimulating factor (G-CSF) significantly

enhanced motor function and reduced inflammatory cell

infiltration, indicating complementary mechanisms between G-

CSF’s neuroregenerative effects and MP’s anti-inflammatory

actions (122). Similarly, Genovese et al. confirmed that melatonin
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combined with dexamethasone synergistically suppressed

neutrophil infiltration and apoptosis, mitigating secondary injury

(123). In summary, successful combination therapies require

meticulous optimization of temporal coordination, target

complementarity, and dosage regimens.
8 Clinical translation potential of
targeted delivery systems

To circumvent systemic side effects of conventional drug

administration, MP-loaded nanoparticles (e.g., PLGA-MP) and in

situ gels (e.g., fibrin/chitosan composites) have emerged as research

priorities. Cox et al. utilized estrogen-loaded nanoparticle patches

targeting injury sites, reducing glial scar formation and promoting

axonal regeneration while avoiding systemic toxicity from high-

dose estrogen (74). Similarly, Karabey-Akyurek et al. developed an

MP-nano-fibrin gel for localized delivery, achieving efficacy

comparable to high-dose systemic MP with significantly reduced

adverse effects (124). Qin et al. designed Nano-MP, a prodrug-based

system selectively targeting injured areas, which not only enhanced

neuroprotection in rat models but also avoided glucocorticoid-

induced muscle atrophy and osteoporosis (125). Wang et al.

reported carrier-free nanoparticle MP(2)-TK@RU NPs integrated

with the antioxidant rutin, enabling ROS-responsive MP release to

simultaneously suppress inflammation, oxidative damage, and

promote functional recovery (126). Chvatal et al. achieved deep

MP penetration using PLGA nanoparticles combined with

hydrogels (127), while Zhai et al. developed a microneedle-CD-

MOF system to breach the dura barrier for precise controlled release

(128). Despite diverse strategies, these studies collectively

demonstrate that targeted delivery systems can overcome the

limitations of conventional therapies. Future efforts should

prioritize validating long-term safety and clinical applicability to

advance nanodelivery technologies from experimental to

clinical stages.
9 Conclusion and prospect

Hormonal therapies exhibit multi-layered mechanisms in SCI

repair, ranging from anti-inflammatory actions to neuroregeneration.

However, their clinical application remains challenged by

inconsistent efficacy and significant side effects, necessitating

precise strategies to harness their therapeutic potential. Research on

hormonal interventions for SCI has evolved from single-molecule

approaches to complex regulatory networks. Beyond classical

glucocorticoids, it is now well described that sex hormones

like estrogen or its SERMs, like TMX, as well as other hormone

(e.g., melatonin, GH, and leptin) contribute to neuroprotection and

repair via multi-target mechanisms. Future studies should focus on:

1. Elucidating hormone-cytokine-epigenetic crosstalk to develop

multi-pathway synergistic agents; 2. Leveraging nanotechnology

and gene editing to overcome delivery barriers and advance novel

delivery platforms; 3. Deciphering receptor-specific signaling
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pathways for targeted agonists/antagonists using OMICs and

bioinformatics approaches; 4. Optimizing combination strategies,

such as integrating hormones with stem cells or biomaterials.
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