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Spinal cord injury (SCI), a debilitating neurological disorder with complex
pathophysiology, involves primary mechanical trauma followed by multifactorial
cascades of secondary inflammation, oxidative stress, and apoptosis. Hormones
have emerged as a research focus in SCI therapeutics due to their neuroprotective
properties. As pivotal regulators of cellular signaling, hormones exhibit dual roles in
either exacerbating or mitigating secondary damage. This review synthesizes three
decades of research, highlighting that hormones such as corticosteroids,
melatonin, and estrogen demonstrate significant therapeutic potential in animal
models and clinical studies, though controversies persist regarding their efficacy
and safety profiles. Key findings include: (1) Glucocorticoids, exemplified by
methylprednisolone (MP), suppress inflammation and reduce tissue damage but
face skepticism over long-term benefits, with high-dose regimens correlating with
significant adverse effects such as gastrointestinal bleeding, hyperglycemia, and
metabolic complications; (2) Melatonin exerts multi-target neuroprotection by
modulating autophagy, inhibiting apoptosis, and suppressing inflammasome
activation; (3) Sex hormones (e.g., testosterone, progesterone) improve functional
recovery through metabolic balance regulation and neural regeneration, while
estrogen enhances angiogenesis and motor function via the synergistic
involvement of multiple receptor-mediated genomic (ERa/ERB) and non-
genomic (GPER) signaling pathways. The non-genomic actions rapidly activate
kinase cascades, such as PI3K/Akt-CREB and ERK, which in turn regulate both
immediate cellular functions and gene expression profiles, contributing to the
overall neuroprotective effects; (4) Combinatorial therapies (e.g., MP with
neurotrophic factors) and novel delivery systems (e.g., nanoparticle-based drug
carriers) represent promising strategies to optimize therapeutic outcomes. These
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advances elucidate the multidimensional mechanisms of hormonal interventions
while revealing critical challenges, including dose-dependent adverse effects,
antagonistic effects in polypharmacy, and unresolved long-term safety concerns.
Overall, hormonal therapies for SCl present a “dual-edged sword” of efficacy versus
risks, necessitating future innovations in precision regulation and mechanistic
exploration to bridge translational gaps.

KEYWORDS

spinal cord injury, hormonal signaling, glucocorticoids, neuroinflammation, hormone
therapy, bioinformatics

1 Introduction

Spinal cord injury (SCI) initiates with primary mechanical trauma,
followed by secondary inflammatory and degenerative cascades
involving neuroinflammation, blood-spinal cord barrier (BSCB)
disruption, and axonal degeneration. Current treatments, including
corticosteroids and immunosuppressants, exhibit limited efficacy and
significant adverse effects. Glucocorticoids such as MP were once
considered standard acute-phase therapeutics; however, due to an
unfavorable risk-benefit profile, they have been downgraded to non-
recommended options in major guidelines (1). Hormones, with their
pleiotropic roles in inflammation and tissue repair, harbor untapped
therapeutic potential. This review systematically examines the roles of
hormones in SCI, encompassing molecular mechanisms, clinical
evidence, risk-benefit analyses, and cutting-edge technological
applications, aiming to inform optimized therapeutic strategies.

2 Pathophysiological mechanisms and
therapeutic controversies of classical
hormones

MP, a representative glucocorticoid, was once regarded as a
standard therapy for acute SCI due to its inhibition of lipid
peroxidation and inflammatory mediator release. The NASCIS-II
protocol recommended a loading dose of 30 mg/kg within
8 hours post-injury, followed by a 24-hour maintenance infusion at
5.4 mg/kg/h, which reportedly improved motor scores (2). However,
subsequent studies found no significant motor function improvement
in acute traumatic SCI (TSCI) patients under this regimen, alongside
markedly increased complication risks (3).

Multiple studies confirm that MP reduces apoptotic cell death
post-SCI (4-6). It lowers levels of malondialdehyde, a lipid
peroxidation biomarker (7), and exerts neuroprotection by
mitigating axonal damage, enhancing blood flow, reducing calcium
influx, and suppressing microglial/macrophage aggregation and
inflammatory mediator expression (8). Mechanistically, MP inhibits
lipid peroxidation (9) and downregulates pro-inflammatory
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cytokines (e.g., TNF-o, IL-6) (10), while blocking oxidative stress
cascades (11) and suppressing oligodendrocyte apoptosis via the
STATS5 pathway (12) (Figure 1).

Nevertheless, high-dose MP (>5000 mg), though effective in
reducing spinal edema, significantly elevates complication risks
(13). In experimental models with a single dose equivalent to that
used in humans, the effect found of MP after 24h was an increase in
the amount of water due to a decrease in the expression of AQP4, as
well as greater damage to the BSCB. Moreover, MP increased the
extravasation of plasma components after SCI and enhanced tissue
swelling and edema. Notably, MP’s neuroprotection exhibits a critical
time window: Two-photon microscopy reveals that administration
within 30 minutes post-injury attenuates progressive axonal injury,
neuronal death, and microglial/macrophage activation, whereas
delayed treatment (>8 hours) drastically diminishes efficacy (14).
This narrow timeframe for intervention is further corroborated by
time-series transcriptomic analysis, which identifies 8-12 hours post-
injury as the optimal window for MP to exert its core
immunomodulatory effects (15). These dose- and time-dependent
contradictions underscore the necessity for individualized risk-
benefit assessments in clinical practice.

Weaver et al. compared the efficacy of MP with anti-CD11d
monoclonal antibodies, revealing that while MP preserves spinal
cord tissue, it fails to improve neurological function and may
antagonize the effects of other immunotherapies (16). Wu et al.
demonstrated that 24-hour MP treatment in rats reduced skeletal
muscle mass and upregulated atrophy-related genes (FOXOI,
MAFbx, MuRF1, and REDD1) (17). High-dose MP significantly
elevates risks of infections (e.g., pneumonia), hyperglycemia, and
gastrointestinal hemorrhage (18), with higher complication rates
observed in pediatric patients (19). Long-term use further correlates
with muscle atrophy (17) and diminished ovarian reserve (20).
Multicenter studies (3)and clinical guidelines (21) indicate that MP
fails to confer significant neurological improvement, challenging its
historical status as a “gold standard.” These conflicting outcomes
underscore the necessity for rigorous risk-benefit evaluations in MP
clinical applications, with future research prioritizing low-dose
short-term regimens or combinatorial therapies to mitigate
adverse effects.
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Schematic representation of hormonal and inflammatory pathways in spinal cord injury, emphasizing glucocorticoid involvement, cellular apoptosis,

and immune cell interactions.

3 Multidimensional regulation of sex
hormones: from metabolic
modulation to neural regeneration

3.1 Testosterone: dual roles in metabolic
homeostasis and axonal repair

SCI disrupts hypothalamic-pituitary-gonadal (HPG) axis
function, leading to hypogonadism in approximately 60% of male
patients (22). Clinical studies demonstrate that testosterone
replacement therapy (TRT) significantly increases lean body mass,
reduces visceral adiposity, and enhances resting energy expenditure
in hypogonadal males with SCI (23, 24). Spinal motor neurons
highly express androgen receptor (AR) with predominantly
nuclear localization, without significant sexual dimorphism,
providing a target for testosterone action (25). Testosterone
exerts neuroprotective effects via an AR-dependent mechanism,
significantly reducing motor neuron death after injury (26). Clinical
studies further confirm that TRT significantly improves motor
function in male patients with incomplete SCI (with ASIA Scale
scores increasing by 10.9-11.8 points in grades C/D), but shows no
efficacy in complete injuries (27), highlighting the reparative potential
of AR-mediated testosterone therapy on residual motor pathways. In
animal models, testosterone treatment partially reverses MP-induced
muscle atrophy and mitigates reductions in muscle fiber cross-
sectional area (CSA) (28). Although the precise molecular
mechanisms remain unclear, experimental evidence suggests that
testosterone regulates the balance between muscle protein synthesis
and degradation (29). Furthermore, combining testosterone with
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resistance training amplifies muscle mass recovery, increasing
quadriceps CSA by 9% (30). In neural repair, testosterone
administration in adult female rats with spinal contusion preserved
dendritic length of motor neurons and maintained muscle mass and
fiber CSA, despite no significant effects on lesion volume or motor
neuron count (31).

3.2 Progesterone: anti-inflammatory
pathways and molecular mechanisms of
myelin regeneration

Progesterone exerts therapeutic effects in SCI through
multifaceted mechanisms. It suppresses pro-inflammatory
mediators (e.g., TNF-o, iNOS, COX-2) and glial activation (32, 33),
attenuates neuroinflammation via NF-kB pathway inhibition, and
achieves neuroprotection by upregulating BDNF expression (34) and
preserving neuronal ultrastructure (35). Progesterone promotes
multi-mechanistic repair after SCI via classical progesterone
receptors. This leads to reduced release of pro-inflammatory
cytokines (36). Progesterone enhances remyelination by increasing
oligodendrocyte numbers. Treatment groups showed 35%
oligodendrocyte presence compared to 7.5% in controls. It also
upregulates myelin basic protein expression (37). It supports white
matter preservation. Lesion volume is reduced, and white matter
sparing increases to 16%, versus 7% in controls. Motor coordination
and gait parameters also improve (38). Long-term treatment over 60
days is crucial for functional recovery. It does not induce
hyperalgesia. Its clinical safety profile is better than MP. These
findings support its translational potential (39). Progesterone also
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promotes oligodendrocyte differentiation and remyelination (40),
alleviates neuropathic pain by inhibiting NMDA receptor
hyperactivation (41), and modulates neuropeptide systems (42).
Preclinical studies confirm its efficacy in enhancing motor function
and axonal survival (43, 44), while a clinical trial combining
progesterone with vitamin D demonstrated improved functional
recovery in acute SCI (45).

3.3 Estrogen: multi-mechanistic
neuroprotective effects of estrogen

Among known hormones, estrogens possess some of the most
potent neuroprotective effects. Three types of receptors primarily
mediate the effects of estrogen: the classical nuclear receptors ERo.
and ERP, and the G protein-coupled estrogen receptor (GPER).
ERo and ERP are localized within the nuclei of neurons, particularly
in regions associated with reproductive functions such as the dorsal
root ganglia, pelvic ganglia, and spinal dorsal horn. Among these,
ERa predominates in superficial sensory layers, while ER is more
abundant in deep autonomic regions, regulating neuropeptide
expression and neural plasticity through genomic effects (46).
GPER, on the other hand, is an endogenous estrogen receptor
located on the endoplasmic reticulum/nuclear membrane. Upon
binding with estrogen, it activates nuclear PI3K, leading to the in
situ synthesis of PIP3. The accumulation of nuclear PIP3
subsequently recruits and activates signaling molecules such as
Akt, rapidly regulating transcription factors and gene expression.
GPER is an intracellular receptor primarily localized to the
endoplasmic reticulum and Golgi apparatus, capable of binding
estrogen with high affinity and triggering non-genomic signaling
pathways via the Gi/o-EGFR axis to achieve rapid physiological
regulation (47). GPER exhibits tissue-specific functions: it promotes
proliferation of ER-negative cells in cancer, and plays active roles in
cardiovascular protection and metabolic diseases (48). Its ligand
promiscuity (e.g., activation by Tamoxifen (TMX)) provides a
rationale for developing targeted therapies to circumvent the side
effects of traditional estrogen drugs. These receptors together form
an integrated nuclear-membrane-intracellular signaling network
that precisely regulates the diverse functions of estrogen.

Estrogen exerts neuroprotective effects in SCI through
mechanisms including promoting remyelination, anti-apoptosis,
pro-angiogenesis, and modulation of microglial and glial cell
activity. Estrogen directly promotes remyelination, including
inhibiting demyelination processes (49, 50) and enhancing
Schwann cell differentiation via the ERB-ERK1/2 pathway (51).
Simultaneously, it reduces oligodendrocyte apoptosis by
suppressing the RhoA-JNK3-cJun axis (52), maintaining white
matter integrity. Estrogen synergizes with cell therapies by
improving the remyelination capacity of stem cells (53) and
Schwann cells (54, 55).

Estrogen upregulates the anti-apoptotic protein Bcl-2 via the
PI3K/Akt-CREB pathway (56) and inhibits pro-inflammatory
cytokines (e.g., TNF-o, IL-1B) and inflammasome activity (57),
reducing neuronal apoptosis. Specifically, GPER-mediated non-
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canonical signaling plays an indispensable role in estrogen’s anti-
apoptotic effects, as demonstrated by the findings that the specific
GPER agonist G-1 mimics estrogen’s protection against SCI-
induced apoptosis while GPER knockdown abolishes this effect,
independent of classical nuclear ER pathways (56, 58). In terms of
vascular protection, estrogen maintains BSCB integrity by
suppressing MMP-9 (59) and stimulates angiogenesis (60).
Angiogenesis not only provides nutritional support but also acts
synergistically with neural repair processes; for example, the
localized nanoparticle-based estrogen delivery platform can
reduce glial scar formation and promote axonal regeneration (61),
highlighting the interplay of multiple mechanisms.

Estrogen modulates microglial phenotypic polarization through
ERo, ERP, and GPER: suppressing the pro-inflammatory M1
phenotype (reducing expression of CD86, iNOS, and IL-1f) (62)
and promoting the anti-inflammatory M2 phenotype (increasing
expression of Arg-1 and CD206) (63). The mechanisms involve
inhibition of the NF-kxB/MAPK pathway (64) and NLRP3
inflammasome activation, as well as delaying the activation of
disease-associated microglia through metabolic reprogramming
(65). These effects can delay disease progression in experimental
autoimmune encephalomyelitis models (66).

Whether the neuroprotective effects of estrogen are sex-specific
remains debatable, but most evidence supports the influence of sex
differences. For instance, remyelination in female animals does not
depend on CXCR4, whereas it depends on the testosterone-CXCR4
axis in males (67, 68); the intrinsic ER expression in microglia is
independent of circulating estrogen levels (69), but estrogen loss
after menopause exacerbates neuroinflammation (70, 71). Selective
estrogen receptor modulators (SERMs) like TMX can mimic the
protective effects (72), but supraphysiological doses may exacerbate
damage via the ERO/NF-xB pathway (73). These findings provide a
basis for developing sex-specific neuroprotective strategies targeting
microglia (74). Although some studies suggest limited sex specificity
(75), the overall consensus supports considering sex factors in
treatment strategies. It is worth noting that the efficacy of TMX is
not limited to male animals. Studies by Colon et al. in female rat
models demonstrated that TMX administration immediately or 24
hours after SCI similarly improves locomotor recovery and reduces
secondary damage (76).

Basic research reveals that 17B-estradiol can significantly reduce
immune cell infiltration (e.g., monocytes/macrophages/neutrophils)
during the acute phase of SCI, but long-term high-dose use carries
carcinogenic risks. TMX can mimic the neuroprotective effects of
estradiol in SCI models (e.g., suppressing inflammation, antioxidant,
and anti-apoptotic effects) and alleviates tissue damage by
downregulating the expression of the Ccr2 and Mmpl2 genes in
microglia. Ccr2, primarily expressed on microglia and infiltrating
macrophages, mediates the recruitment of inflammatory cells to the
injury site. In the early phase of SCI (within 24 hours), activated
microglia highly express Ccr2, exacerbating neuroinflammation and
secondary damage. By downregulating Ccr2, TMX significantly
reduces inflammatory cell infiltration, thereby containing the
inflammatory response and preserving neuronal and axonal
integrity, which aligns with its broad anti-inflammatory action.
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Mmp12, mainly produced by macrophages/microglia, is involved in
extracellular matrix degradation, BSCB disruption, and pro-
inflammatory factor activation. In SCI, Mmpl2 overexpression
aggravates tissue destruction, axonal demyelination, and cell death.
By inhibiting Mmp12, TMX helps maintain extracellular matrix
stability, reduces tissue damage, and promotes a reparative
microenvironment. These mechanisms collectively demonstrate
that TMX exerts its neuroprotective effects in the acute phase of
SCI (<24 hours) through multi-targeted interventions in both
inflammatory and matrix degradation pathways (76, 77).
Administration within 24 hours post-injury can still improve
motor function, offering a wider therapeutic window than MP (78).
Clinically, although there are no large-scale SCI trials, studies on
estrogen use for menopausal syndrome or cardiovascular diseases
indirectly support its neuroprotective potential. Animal models show
that estrogen treatment improves functional scores, increases axon
number and diameter, and enhances motor evoked potentials [with
significantly shorter latency (17-fold reduction) and higher amplitude
(7-fold increase)]. Future work needs to integrate novel delivery
systems (e.g., nano-platforms) and receptor-specific modulation to
optimize clinical translation (79).

3.4 Gonadotropin-releasing hormone: a
potential target for neuroplasticity

GnRH improves SCI outcomes through multi-target
mechanisms involving neuroprotection, urological repair, and
endocrine regulation. Calderon-Vallejo et al. (80) demonstrated
that GnRH enhances motor function in ovariectomized rats by
upregulating neurofilament expression and promoting axonal
regeneration. Additionally, GnRH exhibits urological protective
effects (81), restoring voluntary urination in 68% of SCI rats by
reducing bladder wall thickening and renal fibrosis. However,
combinatorial therapies may induce complex effects (82). They
found that co-administration of GnRH with growth hormone (GH)
suppresses motor recovery, underscoring the need for cautious
design of multi-hormone regimens. GnRH also modulates the
HPG axis: Bauman et al. (83) reported enhanced follicle-
stimulating hormone (FSH) responses to GnRH stimulation in
SCI males, while Sullivan et al. (50) emphasized that HPG axis
central inhibition requires testosterone replacement to improve
metabolic health comprehensively.

4 Mechanistic roles of metabolic-
immune crosstalk hormones

4.1 Leptin: bridging metabolic
dysregulation and neuroinflammation

Leptin is an energy homeostatic regulatory peptide secreted by
white adipocytes. It suppresses appetite and increases energy
expenditure by binding to receptors in the hypothalamus. Within
the nervous system, the leptin receptor (LepRb) is widely expressed
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in the hippocampus, cortex, and spinal cord, where it contributes to
the regulation of synaptic plasticity (84). Leptin protects neuronal
function by inhibiting ATP-induced astrocyte damage, reducing
arachidonic acid and prostaglandin E2 release, and activating the
JAK2/Stat3 pathway to upregulate caveolin-1 expression (85). Acute
leptin treatment decreases caspase-3 activity, suppresses pro-
inflammatory molecules, and improves sensory-motor recovery
post-SCI (86). Leptin can exacerbate pain by activating microglia
(87), whereas blocking leptin signaling suppresses microglial
proliferation and alleviates pain. Leptin exhibits a dual role in
SCI. Endogenously elevated leptin levels are associated with
metabolic syndrome (88), abdominal obesity (89), and
neuropathic pain mediated via microglial activation (87). In
contrast, acute exogenous leptin administration upregulates
caveolin-1 through the JAK2/Stat3 pathway, suppresses ATP-
induced inflammatory responses in astrocytes (85), reduces
caspase-3 activity and pro-inflammatory cytokine release,
promotes oligodendrocyte survival and white matter preservation,
and ultimately improves motor functional recovery (86). Its efficacy
depends on injury type (protective in complete SCI vs. promotive of
pain in root injury) and timing (effective in acute phase) (90).
However, long-term leptin treatment may be limited due to
exacerbation of lean mass loss (91) or dysregulated bone
metabolism (92). Elevated leptin levels in SCI patients correlate
with central obesity, metabolic syndrome, and cardiovascular risks
(88, 89). This elevation likely stems from sympathetic dysfunction
and altered fat distribution, with higher leptin concentrations
observed in individuals with more rostral injury levels (93).
Notably, leptin positively correlates with lean mass but associates
solely with fat mass in sarcopenic obesity, reflecting its metabolic
remodeling post-SCI (91). Leptin also enhances bone healing, with
increased expression linked to improved callus formation in
fracture-SCI models (92).

4.2 Melatonin: circadian rhythm-integrated
neuroprotection and motor synergy leptin:
bridging metabolic dysregulation and
neuroinflammation

Melatonin, an indoleamine hormone secreted by the pineal
gland, plays essential roles in regulating circadian rhythms—by
synchronizing the biological clock via receptors in the
suprachiasmatic nucleus to promote sleep—, antioxidant defense
through direct scavenging of free radicals (e.g., «OH/ONOO™), and
activation of enzymes such as SOD and GPx, and immune
modulation by suppressing pro-inflammatory cytokines (e.g., TNF-
o, IL-6) and enhancing lymphocyte activity. In the context of SCI,
these innate functions extend to multi-target neuroprotective
mechanisms, including inhibition of inflammasome activation,
restoration of mitochondrial dysfunction, and stabilization of the
BSCB. Melatonin has emerged as a therapeutic focus in SCI. Its
mechanisms include mitochondrial protection, autophagy-apoptosis
balance regulation, and inflammasome modulation. Melatonin

suppresses NLRP3 inflammasome activity via the Nrf2/ARE

frontiersin.org


https://doi.org/10.3389/fendo.2025.1627414
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

Guo et al.

pathway, reducing oxidative stress and pro-inflammatory cytokines
(e.g., IL-1B, TNF-o) (92), while improving mitochondrial
dysfunction and neuronal apoptosis through SIRT1/Drpl signaling
(94). It balances autophagy and apoptosis via PI3K/AKT/mTOR and
Wnt/B-catenin pathways, upregulating Beclin-1 and LC3B to
enhance cellular clearance (95), and promotes motor neuron
survival (96). At the tissue level, melatonin stabilizes the BSCB by
inhibiting MMP3/AQP4-mediated microvascular permeability (97)
and reduces neuroinflammation via microglial M2 polarization (98).

5 Neuroregeneration-oriented
hormones and growth factors

5.1 Erythropoietin: dual pathways in
angiogenesis and anti-apoptosis

EPO, with its anti-apoptotic and anti-inflammatory properties,
is a promising therapeutic candidate for SCI. Preclinical studies
show EPO inhibits inflammation (reducing myeloperoxidase
activity) and apoptosis (lowering caspase-3 activity), while
attenuating pathological damage via downregulation of TSP-1
and TGEF-B (99). It promotes neural regeneration by upregulating
PDGEF-P and GFAP expression (64). Clinically, EPO combined with
MP improves neurological function and daily living activities in
long-term follow-ups (100), with animal studies confirming its
superiority over MP monotherapy (101). A clinical trial reported
higher primary endpoint achievement in the EPO group versus MP
alone (102), and early application (within 6 hours) may enhance
efficacy (103), though other trials found no significant
differences (104).

5.2 Growth hormone: BSCB repair and
insulin-like growth factor-1 synergistic
mechanisms

GH exerts neuroprotective and reparative effects in SCI through
multiple pathways. GH mitigates BSCB disruption and edema
formation by reducing tracer extravasation (e.g., Evans blue) and
preserving spinal cord evoked potential amplitudes, thus protecting
neural conduction (105, 106). Its mechanisms likely involve
suppression of vascular hyperpermeability and cellular injury,
indicating direct neuroprotective potential in acute phases. GH also
indirectly promotes repair by elevating IGF-1 levels, with TiO,
nanowire-loaded GH enhancing this effect while reducing BSCB
damage and neuronal loss (107). TiO, nanowires are one-
dimensional nanomaterials composed of titanium dioxide, with
diameters ranging from 1 to 100 nm. They exhibit high specific
surface area, good biocompatibility, and photo-responsive properties.
Surface functionalization—such as amino modification—confers a
positive charge on TiO, nanowires, enabling electrostatic adsorption
with negatively charged GH molecules. Alternatively, covalent
conjugation strategies like glutaraldehyde cross-linking can be
employed to achieve GH immobilization. Preclinical studies suggest
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GH may improve hemodynamics; for instance, octreotide
(a somatostatin analog) increases clitoral and vaginal blood flow
post-SCI, though its mechanism differs from GH (108). Notably, SCI
patients frequently exhibit GH-IGF-I axis hypoactivity, characterized
by blunted GH responses and metabolic abnormalities (e.g., increased
adiposity), which GH supplementation may ameliorate (109).

5.3 Thyrotropin-releasing hormone: ion
homeostasis and neural repair

As a neuropeptide, TRH promotes SCI recovery by regulating
monoamine neurotransmitters and ion channel activity. TRH exerts
neuroprotective and repair effects through multiple mechanisms in
SCI. Basic studies have shown that TRH maintains ion homeostasis,
such as reducing cellular edema by enhancing Na-K"-ATPase
activity (110), and regulates the metabolic balance of TRH and
5-HT in the injured spinal cord to minimize distal neurotransmitter
depletion (111). Its anti-inflammatory effects include inhibiting
vasogenic edema (112) and downregulating microglial activation
to alleviate central pain (113). Additionally, TRH analogs (e.g.,
CG3703) exhibit therapeutic potential due to their high affinity for
spinal TRH receptors, though their efficacy is closely linked to
molecular modifications (114). Clinical studies demonstrate that
TRH significantly improves motor and sensory functions in
patients with incomplete SCI (115). Notably, TRH receptor
expression decreases shortly after injury but gradually normalizes
with the recovery of endogenous TRH (116), supporting the need
for exogenous TRH supplementation. However, the long-term
effects of TRH on neuronal excitability remain unclear (117).

6 Cross-regulation between the HPA
and HPG axes

Following acute SCI, the hypothalamic-pituitary-adrenal
(HPA) axis induces excessive glucocorticoid release (e.g., cortisol)
via the sympathoadrenal reflex, directly or indirectly inhibiting
hypothalamic GnRH secretion and causing central hypogonadism
(118). For example, Priiss et al. observed increased cortisol and
decreased norepinephrine in mice after acute SCI, suggesting that
excessive HPA axis activation disrupts HPG axis function through
neuroendocrine mechanisms (118). HPG axis dysfunction
exacerbates metabolic disorders: HPG axis inhibition (e.g., low
testosterone) is closely associated with increased body fat and
metabolic syndrome in SCI patients, further promoting sustained
HPA axis activation. Sullivan et al. found that low testosterone in
young male SCI patients is primarily due to hypothalamic-pituitary
drive deficiency and correlates significantly with increased body fat
(50). Bauman et al.confirmed that the pituitary gland in SCI
patients shows enhanced FSH response but insufficient luteinizing
hormone response to GnRH, indicating that hypothalamic
regulation impairment may be related to HPA axis negative
feedback (49). Through GnRH dose-response experiments,
Bauman et al. identified specific differences in pituitary responses
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among SCI patients, highlighting the need for optimized
interventions (e.g., glucocorticoid antagonism or testosterone
supplementation) to break the vicious cycle (119).

In summary, interactions between the HPA and HPG axes after
SCI form a closed-loop of “increased glucocorticoids-gonadal
inhibition-metabolic abnormalities,” necessitating combined
targeted therapies to improve outcomes.

7 Combination therapies and novel
delivery strategies: overcoming
therapeutic efficacy limitations

7.1 Combination therapies

The limitations of single-agent hormone therapies have driven
researchers to explore combination regimens and innovative
delivery technologies. Combination therapies can overcome the
efficacy ceiling of monotherapy. MP, a classic anti-inflammatory
agent, exhibits marked variability in its combinatorial effects. For
instance, Gorio et al. demonstrated that MP antagonizes the
neuroprotective effects of EPO by suppressing EPO receptor
upregulation or interfering with its anti-apoptotic pathways (120).
In contrast, a clinical study by Xiong et al. revealed that co-
administration of EPO and MP significantly improved
neurological function and daily living capacity in ischemia-
reperfusion injury (100). This paradox suggests that MP’s
immunosuppressive properties may exert dual-phase effects
depending on pathological stages—suppressing inflammation
acutely while potentially impeding regenerative signaling pathways.

7.2 Combination strategies targeting
antioxidant and immunomodulatory
pathways show greater synergistic
potential

Carnosine is an endogenous dipeptide (B-alanyl-L-histidine)
widely present in muscular and neural tissues, known for its
antioxidant, anti-glycation (inhibiting AGEs formation), and pH-
buffering capacities. Irisin is an exercise-induced myokine released
through the cleavage of FNDC5 protein, primarily involved in
regulating energy metabolism (promoting browning of white
adipose tissue), neuroprotection (upregulating BDNF), and anti-
inflammatory pathways (suppressing NF-kB). In the context of SCI,
the combination of MP and carnosine alleviates neural damage by
elevating irisin levels, likely through synergistically enhancing
antioxidant defenses and promoting the secretion of neurotrophic
factors. This pathway has been further confirmed by Albayrak et al
(121). Teixeira et al. further demonstrated that MP combined with
granulocyte colony-stimulating factor (G-CSF) significantly
enhanced motor function and reduced inflammatory cell
infiltration, indicating complementary mechanisms between G-
CSF’s neuroregenerative effects and MP’s anti-inflammatory
actions (122). Similarly, Genovese et al. confirmed that melatonin
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combined with dexamethasone synergistically suppressed
neutrophil infiltration and apoptosis, mitigating secondary injury
(123). In summary, successful combination therapies require
meticulous optimization of temporal coordination, target
complementarity, and dosage regimens.

8 Clinical translation potential of
targeted delivery systems

To circumvent systemic side effects of conventional drug
administration, MP-loaded nanoparticles (e.g., PLGA-MP) and in
situ gels (e.g., fibrin/chitosan composites) have emerged as research
priorities. Cox et al. utilized estrogen-loaded nanoparticle patches
targeting injury sites, reducing glial scar formation and promoting
axonal regeneration while avoiding systemic toxicity from high-
dose estrogen (74). Similarly, Karabey-Akyurek et al. developed an
MP-nano-fibrin gel for localized delivery, achieving efficacy
comparable to high-dose systemic MP with significantly reduced
adverse effects (124). Qin et al. designed Nano-MP, a prodrug-based
system selectively targeting injured areas, which not only enhanced
neuroprotection in rat models but also avoided glucocorticoid-
induced muscle atrophy and osteoporosis (125). Wang et al.
reported carrier-free nanoparticle MP(2)-TK@RU NPs integrated
with the antioxidant rutin, enabling ROS-responsive MP release to
simultaneously suppress inflammation, oxidative damage, and
promote functional recovery (126). Chvatal et al. achieved deep
MP penetration using PLGA nanoparticles combined with
hydrogels (127), while Zhai et al. developed a microneedle-CD-
MOF system to breach the dura barrier for precise controlled release
(128). Despite diverse strategies, these studies collectively
demonstrate that targeted delivery systems can overcome the
limitations of conventional therapies. Future efforts should
prioritize validating long-term safety and clinical applicability to
advance nanodelivery technologies from experimental to
clinical stages.

9 Conclusion and prospect

Hormonal therapies exhibit multi-layered mechanisms in SCI
repair, ranging from anti-inflammatory actions to neuroregeneration.
However, their clinical application remains challenged by
inconsistent efficacy and significant side effects, necessitating
precise strategies to harness their therapeutic potential. Research on
hormonal interventions for SCI has evolved from single-molecule
approaches to complex regulatory networks. Beyond classical
glucocorticoids, it is now well described that sex hormones
like estrogen or its SERMs, like TMX, as well as other hormone
(e.g., melatonin, GH, and leptin) contribute to neuroprotection and
repair via multi-target mechanisms. Future studies should focus on:
1. Elucidating hormone-cytokine-epigenetic crosstalk to develop
multi-pathway synergistic agents; 2. Leveraging nanotechnology
and gene editing to overcome delivery barriers and advance novel
delivery platforms; 3. Deciphering receptor-specific signaling
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pathways for targeted agonists/antagonists using OMICs and
bioinformatics approaches; 4. Optimizing combination strategies,
such as integrating hormones with stem cells or biomaterials.
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