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Background/Aims: The placenta expresses and releases specific microRNAs
(MiRNAs) into the maternal circulation that may influence insulin secretion
during pregnancy. We hypothesized that specific decidual/placental miRNAs
are associated with maternal insulin secretion during pregnancy.

Methods: In the Genetics of Glucose regulation in Gestation and Growth
(Gen3G) prospective cohort, we estimated maternal insulin secretion using the
Stumvoll first phase index derived from an oral glucose tolerance test at ~26
weeks of gestation. We quantified miRNAs by small RNA sequencing in placenta
(N=435) and first trimester plasma (=422) samples. We used the Limma R
package to identify miRNAs associated with the Stumvoll index (P<0.05). We
adjusted models for Matsuda index, gravidity, maternal age, newborn sex,
gestational age at sampling (first trimester plasma sampling or delivery for
placenta samples), and for technical covariates (batch and run for plasma,
surrogate variables for placenta).

Results: Participants had a median [IQR] Stumvoll first phase index of 1112.9
[905.4 - 1284.5] in pregnancy. We identified 30 decidual/placental and 93 first
trimester plasma miRNAs nominally associated with the Stumvoll first phase
estimate (P<0.05). Lower insulin secretion was associated with lower levels of
has-miR-199a-3p|has-miR-199b-3p (b=1.47[0.10, 2.69] in placenta and b= 4.22
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[0.70, 7.67] in plasma), and with higher levels of has-miR-3150b-3p (b= -6.97
[-14.39, 0.40] in placenta and b= -9.19 [-18.38, -0.60] in plasma).

Conclusion: We identified hsa-miR-199a-3p|hsa-miR-199b-3p and hsa-miR-
3150b-3p as differentially expressed in placenta and circulating levels associated
with insulin secretion in pregnancy. Hsa-miR-199a-3p may regulate insulin
secretion by modulating the expression of E-cadherin and components of the
Notch signaling pathway; hsa-miR-3150b-3p may influence glucose-induced
insulin secretion through interaction with phospholipase A2.

pregnancy, placenta, insulin secretion, diabetes, microRNA

Introduction

Gestational diabetes mellitus (GDM) affects approximately 14%
of pregnancies worldwide and is associated with both short- and
long-term complications for the mother and her offspring (1).
Short-term complications include an increased risk of gestational
hypertensive disorders, caesarean delivery, large for gestational age
birth, and neonatal hypoglycemia (2, 3). In the long term, GDM is
associated with an increased risk of metabolic and cardiovascular
diseases in both the mother and offspring (4). GDM manifests as
hyperglycemia due to excessive insulin resistance or inadequate
insulin secretion or a combination of both defects. Defect in insulin
secretion revealed in pregnancy affects many but not all GDM cases
(5) and may be an important predictor for future maternal risk of
type 2 diabetes (6).

The placenta is an important regulator of maternal metabolism
during pregnancy, and its structure and function are also influenced
by maternal signals during its development (7). Recent evidence
suggests that the placenta may also play a role in modulating insulin
secretion during pregnancy through the release of small
extracellular vesicles (containing hormones and microRNAs) into
the maternal circulation (8). In addition, insulin secretion increases
during the first trimester, before any decline in insulin sensitivity
(9). Animal studies have also shown that pancreatic beta cell
proliferation during pregnancy is regulated by placental lactogen
and serotonin (10, 11). However, the exact placental factors
responsible for increasing insulin secretion during human
pregnancy are still unknown.

MicroRNAs (miRNAs) are short non-coding, single strand
RNA sequences of ~19 to 25 nucleotides, mostly implicated in
protein synthesis repression (12). miRNAs are secreted into
bloodstream where they are highly stable and can exert their
functions in autocrine, paracrine or endocrine manners, like

Abbreviations: BMI, body mass index; CPM, counts per million reads; GDM,
gestational diabetes mellitus; Gen3G, Genetics of Glucose regulation in Gestation
and Growth; miRNAs, microRNAs; RIN, RNA integrity number; SVs,

surrogate variables.
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hormones. Placental miRNAs are mainly (not exclusively)
encoded into three clusters (i.e., C1I9MC, C14MC, and miR-371-3
clusters), released into maternal circulation as early as the sixth
week of gestation, and implicated in pregnancy processes like
placentation and fetal growth (13). Circulating and placental
miRNAs in pregnancy have been associated with GDM
development, insulinemia and glycemia (14). These associations
may be partially explained by the effects of placental miRNAs on
both insulin sensitivity and secretion during pregnancy. While
previous studies have reported associations between placental
miRNAs and insulin sensitivity during pregnancy (15, 16), their
potential role in the modulation of insulin secretion remains
unclear. We therefore hypothesized that some specific decidual/
placental miRNAs secreted into the maternal bloodstream
contribute to modulating insulin secretion during pregnancy.

The goal of this study was to discover novel decidual/placental
miRNA implicated in insulin secretion modulation during
pregnancy. We investigated whether maternal insulin secretion in
late second trimester was associated with decidual/placental
miRNA expression levels (assessed by whole-genome miRNA
sequencing), and with circulating miRNA detectable in first-
trimester plasma samples, using an agnostic approach.

Methods
Gen3G cohort

The Genetics of Glucose regulation in Gestation and Growth
(Gen3G) cohort is a prospective pregnancy and birth cohort from
Sherbrooke, Canada, described previously (17). Briefly, between
2010 and 2013, we recruited 1024 women without pre-existing
diabetes or overt diabetes (hemoglobin Alc 26.5% or glucose =185
mg/dL after a 50-g glucose load) at first trimester of pregnancy.
Exclusion criteria were non-singleton pregnancy, alcohol use
disorder, and regular use of medications affecting glucose
metabolism. In addition, participants who declined biobanking of
both plasma and placental samples were also excluded from the
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present analyses. We followed women throughout their pregnancy
during which we collected data and information at first trimester
(V1), in the late second trimester (V2), and at delivery. Each
participant provided written informed consent according to the
Declaration of Helsinki. The study protocol was approved by the
ethical committees from the CHUS and the Harvard Pilgrim Health
Care Institute.

Variable collection and measurements

At V1, we collected demographic data, anthropometric
measures (standardized height and weight, to calculate body mass
index (BMI)), obstetric history, and blood samples. Blood samples
were centrifuged, and plasma samples were aliquoted and kept
at -80°C until RNA extraction.

At V2, women underwent a 75g oral glucose tolerance test
(OGTT) during which we collected additional blood samples at
fasting, 1h and 2h time-points to measure glucose and insulin
levels. We measured glucose levels (mmol/L) immediately after
blood sample collection using the hexokinase method (Roche
Diagnostics; CHUS biochemistry laboratory). We aliquoted plasma
samples after blood centrifugation and stored them at -80°C until
insulin measurement (pg/ml), using a multiplexed particle-based flow
cytometric assay (Human Milliplex MAP kits; EMD Millipore). We
estimated insulin sensitivity using the Matsuda index and insulin
secretion using the Stumvoll first phase index based on first phase 3-
cell function using 0, 60, 120 min glucose and insulin values during
the 75¢ OGTT, without inclusion of demographic parameters into
the formulas. We used the following formulas: Matsuda= 10 000/
V(Gluc0 xIns0 xmean glucosexmean insulin), with concentrations in
glucose and insulin being expressed as mg/dL and wU/mL (18); and
Stumvoll= 1194 + 4.724 A~ Ins0 — 117.0 A~ Gluc60 + 1.414 A~
Ins60, with concentrations in glucose and insulin being expressed as
mg/dL and pmol/L (43). We ascertained GDM using the
International Association of Diabetes and Pregnancy Study Groups
criteria (fasting plasma glucose > 5.lmmol/L and/or 1-hour plasma
glucose > 10.0mmol/L and/or 2-hour plasma glucose > 8.5 mmol/L)
(19). Women clinically diagnosed with GDM were referred to a
diabetes in pregnancy clinic managed by endocrinologists.

At delivery, we collected newborn gestational age and sex using
medical records. Trained research staff collected placental tissue
within 30 minutes of delivery, following a standardized protocol
(17). Briefly, a 1 cm? placental biopsy, including decidual tissue, was
collected from the maternal facing side of the placenta within a 5 cm
radius of the corresponding location of cord insertion on the other
side. The biopsy sample was immediately placed in RNA-Later for
at least 24 hours at 4°C, then stored at -80°C until RNA extraction.

RNA extraction, sequencing, and quality
control

Trained laboratory staff extracted total RNA from placental
biopsies (15 mg) and first trimester plasma samples (500 UL) using

Frontiers in Endocrinology

10.3389/fendo.2025.1622500

the MirVana PARIS kit (Thermo Fisher Scientific, catalog no.
AM1556) following the manufacturer’s standard procedure for
tissues stored in RNAlater and liquid samples respectively. For
plasma samples, total RNA was eluded in 75 pL of nuclease-free
water and samples were concentrated by precipitation and
resuspended in 5 PL of nuclease-free water, as previously
described (20).

Placenta

We sent 3 pg of each sample with (RNA Integrity Number)
RIN > 5 and RNA concentration > 89 ng/ul to Novogene for small
RNA sequencing (N=476). We prepared libraries using Qiagen
Small RNA Kit to generate 75-bp single end reads on NovaSeq 6000
platform. On average, we obtained 28M total reads (range 19M-
60M). We excluded six duplicated samples and used Mahalanobis
distance (21) on quantified miRNAs to identify and exclude one
outlier sample. We additionally excluded two who had
hyperglycemia detected and treated before V2, 9 non-European
(outliers on principal component plots) and 23 participants with
missing phenotypic data leaving 435 placenta samples available for
this analysis (see Figure 1).

Plasma

We prepared libraries using the Truseq Small RNA Sample Prep
kit (Illumina, BC, Canada, catalog #RS-200-0012) following our
standardized protocol detailed in (20). The quality of each library
was evaluated using either the Agilent High Sensitivity DNA kit
(Agilent, Mississauga, Ontario, Canada; catalog no 5067-4626) on
the Agilent 2100 Bioanalyzer or the Kapa Illumina GA with Revised
Primers-SYBR Fast Universal kit (Kapa Biosystems; library
concentration) and the LabChip GX instrument (PerkinElmer,
catalog no CLS760672; library length and absence of primer
dimers). The libraries sent for sequencing were selected based on
availability of samples and offspring longitudinal data (see Figure 1).
Libraries (n=456) were sequenced at McGill University and
Génome Québec Innovation Centre (Montreéal, Canada) either on
a HiSeq 2500 or HiSeq 4000 platform at 50 cycles, with 7 cycles
indexing read. Twelve samples were sequenced twice on both
platforms (Pearson’s correlation coefficient between platform
>0.94). We removed the 12 duplicated samples, 7 outlier samples
with low read counts (<500 000), and 15 participants with missing
phenotypic data, leaving 422 plasma samples available for this
analysis (see Figure 1).

Statistical analyses

We visually inspected histograms of each continuous variable to
assess distribution. We transformed the Stumvoll first phase index
(Box-Cox), and the Matsuda Index (log,) to approach a
normal distribution.

First, we investigated the association between insulin secretion,
estimated using the Stumvoll first-phase index, and GDM
development. We performed logistic regression with GDM as the
outcome and the z-score of the Box-Cox transformed Stumvoll
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1024 participants included at first trimester

856 participants with complete 75g-OGTT
measurements at second trimester

Placenta
n =700 |*-*

Exclusions:

. Non-matching ID or missing samples (n=3}
Insufficient biological sample (n=25}
Low quality RNA (RIN<S; n=174)
Low RNA concentration (<89 ng/pl; n=28)

Inclusions: | ]
. Duplicated samples (n=6)

Exclusions:

«  1ttrimester 50g GCT glycemia > 10.8 mmol/L
(n=2)
Outlier in Mahalanabis distance (n=1)
Non-European descent (n=9)
Incomplete phenotypic data (n=23}
Duplicated samples (n=6}

| n =435 |*-

FIGURE 1

Participants with )}
available samples

Selected -
participants

n=476 |., Samples sent for RNA

sequencing

Samples included in
the analyses

)

| First trimester plasma |

802 |

Exclusions:*
Non-European descent (n=32)
Women without offspring follow-up or
epigenomic data at follow-up (n=326)

________________ Inclusions:
+ Duplicated samples (n=12)

Exclusions:
Low coverage (n=7)
Incomplete phenotypic data (n=15}
Duplicated samples (n=12}

“'l n=422 |

Flowchart illustrating participant selection from the Gen3G cohort for inclusion in both the placenta and first trimester plasma datasets. *Exclusion
criteria for maternal plasma microRNA sequencing study. GCT, glucose challenge test; OGTT, oral glucose tolerance test; RIN, RNA integrity number.

first-phase estimate as the exposure. The regression model included
maternal age at first trimester, first trimester BMI, and gravidity
status as covariates.

To process miRNA expression data in both placenta and plasma
samples, we applied the extracellular RNA processing toolkit
(exceRpt) pipeline (version 4.6) from Rozowsky et al. (22).
Briefly, exceRpt uses FASTX-Toolkit and FastQC to remove the
adapters and poor quality read (Phred score <20 for 80% or more of
the read), applies STAR to align remaining high-quality sequences
to the human genome (GRCh37) then performs miRNA
quantification using miRbase (version 21) annotations. We
removed miRNAs with low abundance by keeping only those
with at least 6 read counts in a minimum of 20% of samples,
leaving 674 miRNAs in plasma and 952 miRNAs in placenta for
analyses. We normalized the retained miRNAs using the edgeR R
package (23) by computing counts per million reads (CPM).

For the placenta miRNA data analyses, we adjusted models for
Matsuda Index (log,), gravidity status, maternal age, newborn sex
and gestational age at delivery as well as 5 surrogate variables (SVs)
to account for cell type composition and technical bias including
batch effects. We used the EstDImRMT function from isva (24) on
the residual matrix - obtained by regressing the Stumvoll first phase
estimate and adjustment variables on the miRNA counts - to
determine the optimal number of SVs to estimate, which was
found to be 21 based on the variance structure of our dataset.
Subsequently, we applied the SmartSVA (25) R package to compute
the 21 SVs, of which we retained only the first 5 for downstream
analyses, as the remaining SVs captured biological variance. In the
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plasma miRNA analyses, we adjusted models for Matsuda Index
(log,), gravidity status, maternal age and gestational age at first
trimester (i.e., at the time of plasma collection for miRNA
quantification), batch, and sequencing run. We also conducted
sensitivity analyses to additionally include delivery mode as
covariate. For both placenta and plasma analysis, we applied the
voom (26) transformation to the CPM expression and then fit a
linear model for each miRNA using Limma (27) identify differential
levels of miRNAs with Stumvoll first phase index as a continuous
independent variable; we reported miRNAs with differential levels
in relation to the Stumvoll with P-values <0.05.

To further assess the robustness of these findings in the placenta
and plasma datasets, we performed a bootstrap resampling analysis
(28). In the placenta, considering the stability of the SVs, which
capture batch effects and cell type composition, as well as the
substantial computational burden associated with recomputing
SVs in each bootstrap sample, we retained the 5 SVs estimated in
the main analysis rather than recalculating them for each resampled
dataset. For each miRNA, we reported the frequency of significance
(P-value < 0.05) across bootstrap re-samples, as well as the 95%
confidence interval (CI) around the normalized read count and beta
values, corresponding to the values of the 2.5th and 97.5th
percentiles of the distribution of the corresponding estimates
across 1,000 bootstrap re-samples of the dataset. We did not
correct for multiple testing but instead focused on insulin
secretion-associated miRNAs identified in both plasma and
placenta analyses and on direction of associations. Statistical
analyses were conducted in R (version 4.0.3).
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mMiRNA-mRNA interactions

For miRNA associated with Stumvoll index in both the placenta
and first trimester plasma analyses (same direction of association),
we assessed miRNA-mRNA interactions using the DIANA database
TarBase-v9.0 as it considers those validated experimentally (29).
We applied the following filter: experimental throughput set to low,
and experimental type including both direct and indirect methods.

Data and resource availability

The datasets analyzed during the current study are available on
dbGAP, (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs003151.v1.pl) and on GEO, (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi). No applicable resources
were generated or analyzed during the current study.

Results
Participants’ characteristics

The characteristics of the 435 participants included in the placenta
sample analyses are described in Table 1. Overall, women had a median
[interquartile range (IQR)] age of 28.5 [25.4 - 31.5] years, and BMI of
23.8 [21.4 - 28.0] kg/m” in the first trimester of pregnancy (gestational
age: 9.3 [8.1 - 11.6] weeks); 159 (36.5%) were primigravid. In the second
trimester of pregnancy (gestational age: 26.3 [25.9 - 27.3] weeks),

TABLE 1 Characteristics of the 435 Gen3G participants with decidual/
placental miRNA measurements.

Characteristic Median [IQR] or n (%)
First trimester of pregnancy

Age (years) 28.5 [25.4-31.5]

BMI (kg/m?) 23.8 [21.4-28.0]
Primigravid 159 (36.6)
Gestational age (weeks) 9.3 [8.1-11.6]

Second trimester of pregnancy
Gestational age (week) 26.3 [25.9-27.3]
Diagnosis of GDM* 36 (8.3)

Stumvoll first phase index 1112.9 [905.4-1284.5]

Matsuda Index 6.8 [4.7-9.4]
Delivery

Cesarian section 73 (16.8)
Gestational age (weeks) 39.6 [38.6-40.3]
Child’s sex (female) 205 (47.1)

*By the International Association of the Diabetes in Pregnancy Study Groups criteria. BMI,
body mass index; GDM, gestational diabetes mellitus.
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women had a Stumvoll first phase index of 1112.9 [905.4 - 1284.5]
and Matsuda index of 6.8 [4.7 — 9.4]; 36 (8.3%) met diagnosis criteria for
GDM. The gestational age at delivery was 39.6 [38.7 - 40.3] weeks) and
205 (47.1%) of newborns were female. The characteristics of the 422
participants included in the analysis of miRNAs from plasma samples
were very similar and are described in Supplementary Table 1.

Insulin secretion estimated by the Stumvoll
index measured at ~26 weeks of gestation
is associated with GDM status

Using logistic regression and controlling for maternal
first-trimester age, first-trimester BMI, and gravidity, we found
that higher insulin secretion, estimated using the z-score of the
Box-Cox transformed Stumvoll first-phase index, measured at
~26 weeks’ gestation, was significantly associated with a lower
odds of GDM at the same assessment (odds ratio [OR] = 0.56 per
SD increase of Stumvoll, 95% confidence interval [CI]: 0.39-0.80,
p-value=0.001).

Decidual/placental and first trimester
plasma miRNAs associated with insulin
secretion estimated by the Stumvoll index
measured at ~26 weeks of gestation

We detected a total of 952 miRNAs in placental samples and
674 miRNAs in first trimester plasma samples. We identified 30
decidual/placental and 93 first trimester plasma miRNAs nominally
associated (P<0.05; no correction for multiple testing) with
Stumvoll first phase index measured at ~26 weeks of gestation. Of
these, 13 decidual/placental and 44 plasma miRNAs were positively
associated with the Stumvoll index. Supplementary Tables 2, 3
provide the full list of these miRNAs with their mean normalized
read counts, percentages of placenta and plasma samples in which
they were detected, beta, nominal P-values, and summary metrics
from the bootstrap analysis. Briefly, the beta values, representing
log2-fold changes in miRNA levels per unit increase in the Box-Cox
transformed Stumvoll index, ranged from -9.34 to 7.65 in placental
samples and from -14.0 to 14.9 in first trimester plasma samples.
On average, the 30 decidual/placental miRNAs and 93 first
trimester plasma miRNAs, remained significant in 95% and 92%
of bootstrap iterations, respectively. Two of these miRNAs (hsa-
miR-199a-3p|hsa-miR-199b-3p and hsa-miR-3150b-3 miRNAs)
were nominally associated (P<0.05 and same direction of
association) with the Stumvoll first phase index in both placenta
and first trimester plasma samples (see Table 2). Specifically, lower
insulin secretion was associated with lower levels of has-miR-199a-
3p|has-miR-199b-3p (b=1.47 [0.11, 2.84] in placenta and b= 4.22
[0.93, 7.52] in plasma), and with higher levels of has-miR-3150b-3p
(b= -6.97 [-13.85, -0.09] in placenta and b= -9.19 [-17.42, -0.96] in
plasma). In our sensitivity analyses including delivery mode as a
covariate, results remained essentially the same for hsa-miR-199a-
3p|hsa-miR-199b-3p and hsa-miR-3150b-3 miRNAs.
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TABLE 2 Common miRNAs associated with Stumvoll first phase index (P<0.05) in both placenta and first trimester plasma samples.

Decidual/placental miRNA

(-14.39 to 0.40) (-2.66 to -2.43)

Plasma miRNA

(-18.39 to -0.60) (-0.87 to -0.64)

Mean Mean
Bei P-values ?:arcrtln g(l;iencti LDizisger fei P-values ?gargq sgiic: Diziadon
o, o/ \ % o, o/ \%
(95% Cl) (95%IC) rate (%) (95% Cl) (95%Cl) rate (%)
(log,CPM) (log,CPM)
hsa-miR-199a-3p| 1.47 003 13.85 1000 422 001 11.21 970
hsa-miR-199b-3p (0.10 to 2.69) ’ (13.80 to 13.89) : (0.70 to 7.67) : (11.11 to 11.31) i
hsa-miR-3150b-3p 697 0.05 254 90.8 919 0.03 076 80.2

*Percentage of samples in which the listed miRNA was detected. Beta represents changes in log2 miRNA levels per unit increase in Box-Cox transformed Stumvoll estimate value.

MiRNA-mRNA interactions for miRNAs
associated with the Stumvoll index in both
the placenta and first trimester plasma
analyses

Table 3 present target genes of miRNAs associated with the
Stumvoll index in both the placenta and first trimester plasma
analyses. We identified miRNA-mRNA interactions only for hsa-
miR-199a-3p, which targets the following genes: DNAJA4, FLTI,
TAB3, TGFBI, and ZHXI.

Discussion

In this large prospective cohort, we used genome-wide miRNA
sequencing to identify decidual/placental miARNSs associated with
insulin secretion during pregnancy. Our study identified 30
decidual/placental miRNAs suggestively associated (nominal P-
value) with insulin secretion as estimated by the Stumvoll first
phase index from 75g-OGTT performed at ~26 weeks of gestation.
Two of these identified miRNAs (hsa-miR-199a-3p|hsa-miR-199b-
3p, hsa-miR-3150b-3p) were detected in first trimester plasma
samples and their circulating levels were associated with insulin

secretion in later pregnancy. Although none of the associations
would remain statistically significant after correction for multiple
testing (e.g. FDR), we prioritized miRNAs that exhibited consistent
directional associations across both placental and plasma tissues. As
placental miRNAs are produced in trophoblast cells, and can be
exported to maternal circulation (30), this consistency may
reinforce their physiological relevance. Supporting this, a previous
study reported that the ten most abundant miRNAs in mid-
gestation placental tissue were also highly abundant in matched
maternal plasma samples collected at the same time point (31).
Higher insulin secretion in pregnancy was associated with
greater levels of hsa-miR-199a-3p|hsa-miR-199b-3p, in both
placenta and plasma. These results are consistent with a previous
study conducted by our group, which reported that hsa-miR-199a-
3|hsa-miR-199b-3p were detected at lower levels in first-trimester
plasma samples from women who later developed GDM, compared
to those who did not (32). However, these miRNAs did not appear
as GDM predictors in that previous study which may be because the
analyses were conducted on the general GDM definition without
any subtyping based on the underlying physiological processes
(insulin resistance or deficiency). Given that our samples were
collected from the maternal side of the placenta, it could be
hypothesis that the release of hsa-miR-199a-3p|hsa-miR-199b-3p

TABLE 3 Experimentally validated microRNA—target gene interactions and associated experimental details.

. . . Experimental Experimental Micro
miRNA Gene®  Tissue Cell line Cell type P P b
method type tscore
DNAJA4 Skin MEWO NA 0.57
FLTI L A549 Epithelial cell 1
- prietial ce™s Luciferase Reporter Assay Direct
hsa-miR- TAB3 Liver Hce NA 08
199a-3p Cell Line
TGFBI Lung HFL1 Fibroblasts qPCR Indirect 0.7
ZHX1 Gastric SGC7901 NA Luciferase Reporter Assay Direct -1
hsa-miR- NA NA NA NA NA NA NA
199b-3p
hsa-miR- NA NA NA NA NA NA NA
3150b-3

“Experimentally validated interactions with miRNAs as retrieved from TarBase v9.0.
PRepresents a confidence score reflecting the strength or reliability of each miRNA-gene interaction, with higher values indicating stronger support.
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from decidual cells into the maternal circulation enhance insulin
secretion during pregnancy and might protect against development
of GDM. Further analyses should be conducted to investigate
whether these miRNAs would be good predictors of GDM
development in subtypes affected by insulin deficiency.

Hsa-miR-199a-3p|hsa-miR-199b-3p are expressed in multiple
human tissues, including the pancreas (33). They are encoded in
two distinct genes (MIR199a on chromosome 1 and MIR199b on
chromosome 9, respectively), although their mature miRNAs are
identical, allowing them to target the same mRNAs and exert
similar post-transcriptional regulatory functions. Nevertheless,
their distinct genomic location may have differential
transcriptional regulation. To date, research has primarily focused
on the biological functions of hsa-miR-199a-3p, particularly in the
context of cancer (34) and only a few studies related to glycemic/
insulin regulation. In the field of diabetes, Zhang et al. reported that
hsa-miR-199a-3p was the most downregulated miRNA in
peripheral blood from patients with diabetic nephropathy, and
that its blood levels were negatively correlated with proteinuria in
these patients (35). Using human proximal tubular kidney HK-2
cells, the authors demonstrated that hsa-miR-199a-3p inhibited
apoptosis and the inflammatory response by targeting the IKKp/
NEF-xB pathway in vitro (35). Another functional study in HK-2
kidney cells examining the role of hsa-miR-199a-3p in diabetic
nephropathy showed that hsa-miR-199a-3p protects these cells
from diabetic-induced injury by upregulating E-cadherin
expression through the repression of KDM6A, a histone lysine
demethylase (36). Interestingly, cadherins have been shown to
directly influence the ability of pancreatic beta cells to secrete
insulin in response to glucose by facilitating the formation of
adhesion junctions (37). Moreover, hsa-miR-199a-3p has been
shown to activate the Notch signaling pathway by inducing the
overexpression of Notchl, Jaggedl, DII-1, and Hesl genes in
cultured cardiospheres (38). The Notch signaling pathway is
expressed in the adult human pancreas, where it regulates beta
cell proliferation and maturation (39). Inhibition of Notch1 has also
been shown to reduce insulin secretion and beta cell mass in
isolated pancreatic beta cells (40). Given these findings, the effects
of hsa-miR-199a-3p on the regulation of E-cadherin and the Notch
signaling pathway should be further explored in pancreatic beta
cells and to determine whether these mechanisms are relevant to
insulin secretion.

Higher levels of hsa-miR-3150b-3p (in both placenta and
plasma) were associated with lower insulin secretion during
pregnancy. To our knowledge, no study has yet investigated the
role and actions of hsa-miR-3150b-3p in the context of pregnancy
or diabetes. However, bioinformatic analyses suggest that
hsa-miR-3150b-3p interacts with phospholipase A2 (41).
Interestingly, inhibition of phospholipase A2 reduces glucose-
induced insulin secretion in isolated human islets (42). Therefore,
the downregulation of phospholipase A2 by hsa-miR-3150b-3p may
represent a mechanism contributing to the association with reduced
insulin secretion observed in our study, but this hypothesis needs to
be tested in functional experiments.
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Strengths and limitations

The strengths of this study include a large sample size and the use
of agnostic transcriptome-wide small RNA sequencing in two tissues
from the same participant to identify novel insulin secretion-associated
miRNAs. This study also has some limitations. First, we focused our
attention on consistency of association (direction and nominal P<0.05)
in miRNA datasets from two different tissues; however, we did not
adjust for multiple hypothesis testing, with remaining possibility of
false positives. We also lacked external validation in a different cohort.
Thus, our findings should be interpreted with caution, replicated in
other cohorts and be viewed as hypothesis-generating to be tested in
future functional studies. In addition, our study is observational, so we
cannot infer causality of the observed associations. Finally, our sample
included only participants of European descent, which precludes the
extrapolation of our results to other ancestries.

Conclusion

In conclusion, we reported that lower insulin secretion in late
second trimester of pregnancy was nominally associated with lower
hsa-miR-199a-3p|hsa-miR-199b-3p and with higher hsa-miR-3150b-
3p in both first trimester plasma and placenta at delivery. Our previous
findings reported lower levels of hsa-mir-199a-3p|hsa-mir-199b-3p in
the first-trimester plasma of pregnant women who later developed
GDM, highlighting their potential protective role. The effects of hsa-
mir-199a-3p on E-cadherin and the Notch signaling pathway should
be further explored in pancreatic beta cells to determine whether these
mechanisms are relevant to insulin secretion during pregnancy. These
novel miRNAs may complement existing metabolic or genetic risk
models to improve early prediction of GDM risk or be targeted to
augment insulin secretion in GDM with insulin deficiency.
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